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Base neural network
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Base neural network

Model parameters 8 and data x;, y;

6 = (W[l]’b[l])le’ (xi’yi ?;1

Loss function L

1
L= =32 1INg(xp) — yill?

Zm
hltl = o Upli-1] 4 pliy
Ng(x) = hlt

Automatic differentiation per chain rule
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Base neural network
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Gradient enhanced neural network
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Gradient enhanced neural network

4 Convergence performance
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With gradient e e ) . . .
w information * Sensitivity information decisively influences

/ \\ Output training convergence

e Sensitivity information is available for low cost
(computational, economical, etc.)

With gradient

information * Varying degrees of application
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Gradient enhanced neural network
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Gradient enhanced neural network

Previously:
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Residual weighting

1 1 Gradient 0 0
L= Ez (Ng—y)2+§zz (VN — Vy)2 =25 VL = VL, + VL, + - MSE: =2 = (Ng — ) =2

* Due MSE definition of loss terms = Magnitude |L;| acts as a weight
for i-th gradient direction

* The less accurate L;, the greater its gradient factor |L;|

 Varying difficulty - staggered |L;| = gradient update intuitive to
worst L;, counterintuitive to best L;

) L= 2 M-t ) Yk TN
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Optimal convergence

Initialisation Point

Optimisation Space

Training Convergence

dortmund ESREL SRA-E 2025

June 15-19 2025, Stavanger, Norway

Training step split into individual parts of
the sum, which are vectors

Unique composition at each training step

Optimal convergence path more
sophisticated
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Weighting targets

Loss maximization
Lmax max L Loss Maximisation
max L subjectto 1 > 1
CDp; in(1 — —2 7Lt Gradient Ali t 4
min min( VLI~ VL] radient Alignmen
e \Very straightforward
SNN Sobolev Trained -
* Essentially a constant gradient step, but -
1 1
_ - a2 4 _ 2
L=3 Z AN =)™+ Z z A2 (VNo = V) - |L;| dicate A;, decreasing with convergence

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network
With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp.
137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572
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Weighting targets

Loss gradient alignment

Lmax max L Loss Maximisation
min(1 — ——) subject to 1 > 1

CD,..: in(1 ——VL VL Gradient Alignment A VLIIVL] B

min min |VL| . |VL1|) g
SN sobolevirained ) * Ratios |VL;| dicate a;, ratios a; dictate A;
[ - 1 AL (N , 1 At (UNa — T2 * When a loss target is dominated, its residual
- Ez 1(No = )" + Ezz 2 (VNo = Vy) weight increases stronger

* Monotonically increasing even with
convergence — regularization issue thus clipped

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network
With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp.
137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572
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Weighting targets

For one training step:

a:ay.ag :AI:AZ:A:?‘

""" ? —>Equilibrium in residual weight change

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network
With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp.
137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572

Loss gradient alignment

VL-VL;

) subjectto A1 >1
[VL|-|VL;]

m/11n(1 —

* Ratios |VL;| dicate a;, ratios a; dictate A;

* When a loss target is dominated, its residual

weight increases stronger

* Monotonically increasing even with
convergence — regularization issue thus clipped
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Weighted gradient enhanced neural network
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2D Hook with geometric design parameters

Applied force Material with nonlinear

elasticity
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Results
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Results
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Results
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Results
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Conclusion

Multiple loss terms lead to staggered training focus
— potentially counterintuitive at various training steps without priority weighting

Weighting for improved training convergence
— dynamic definition to avoid tuning and flexible to current iteration
— optimization target/function crucial to training convergence
—> Choice: equilibrium between gradient vectors; no domination by residuals

Mean accuracy improvement small; however training more robust
— widening gap with increasing model size

CD,,in, convergence performs well for all residuals
— more complex case could show increasing performance gap Thank VOU!
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