

A Sobolev trained neural network surrogate with residual weighting scheme for computational mechanics

The financial support provided under project-ID 278867966, TRR188 by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

M.G.R. Faes F.-J. Barthold M.A. Valdebenito J. Liedmann

Presented by *Ali Kilicsoy*, Chair for Reliability Engineering at TU Dortmund

General process

Base neural network

Model parameters θ and data x_i , y_i

$$\theta = (W^{[l]}, b^{[l]})_{l=1}^{L}, (x_i, y_i)_{i=1}^{m}$$

Loss function *L*

$$L = \frac{1}{2m} \sum_{i=1}^{m} ||N_{\theta}(x_i) - y_i||^2$$

$$h^{[l]} = \phi(W^{[l]}h^{[l-1]} + b^{[l]})$$

$$N_{\theta}(x) = h^{[L]}$$

Base neural network

Model parameters θ and data x_i , y_i

$$\theta = (W^{[l]}, b^{[l]})_{l=1}^{L}, (x_i, y_i)_{i=1}^{m}$$

Loss function *L*

$$L = \frac{1}{2m} \sum_{i=1}^{m} ||N_{\theta}(x_i) - y_i||^2$$

$$h^{[l]} = \phi(W^{[l]}h^{[l-1]} + b^{[l]})$$

$$N_{\theta}(x) = h^{[L]}$$

Automatic differentiation per chain rule

$$\frac{\partial y_1}{\partial w_b} = \frac{\partial y_1}{\partial h_d} \frac{\partial h_d}{\partial h_c} \frac{\partial h_c}{\partial w_b}$$

$$\frac{\partial y_1}{\partial w_a} = \frac{\partial y_1}{\partial h_d} \frac{\partial h_d}{\partial h_c} \frac{\partial h_c}{\partial h_b} \frac{\partial h_b}{\partial w_a}$$

Base neural network

6

- Sensitivity information decisively influences training convergence
- Sensitivity information is available for low cost (computational, economical, etc.)
- Varying degrees of application

June 15-19 2025, Stavanger, Norway

Model parameters θ and data x_i , y_i , ∇y_i

$$\theta = (W^{[l]}, b^{[l]})_{l=1}^{L}, (x_i, y_i, \nabla y_i)_{i=1}^{m}$$

Loss function L

$$L = \frac{1}{2m} \sum_{i=1}^{m} (\|N_{\theta}(x_i) - y_i\|^2 + \|\nabla N_{\theta}(x_i) - \nabla y_i\|^2)$$

$$h^{[l]} = \phi(W^{[l]}h^{[l-1]} + b^{[l]})$$

$$N_{\theta}(x) = h^{[L]}$$

$$\nabla N_{\theta}(x) = \frac{\partial N_{\theta}(x)}{\partial x}$$

8

Automatic Differentiation per chain rule

$$\frac{\partial y_1}{\partial x_1} = \frac{\partial y_1}{\partial h_d} \frac{\partial h_d}{\partial h_c} \frac{\partial h_c}{\partial h_b} \frac{\partial h_b}{\partial x_1} \qquad \qquad \frac{\partial L}{\partial w} = \frac{\partial L}{\partial N_\theta} \frac{\partial N_\theta}{\partial w} + \frac{\partial L}{\partial \nabla N_\theta} \frac{\partial \nabla N_\theta}{\partial w}$$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial N_{\theta}} \frac{\partial N_{\theta}}{\partial w} + \frac{\partial L}{\partial \nabla N_{\theta}} \frac{\partial \nabla N_{\theta}}{\partial w}$$

Previously:

$$\frac{\partial y_1}{\partial w_a} = \frac{\partial y_1}{\partial h_d} \frac{\partial h_d}{\partial h_c} \frac{\partial h_c}{\partial h_b} \frac{\partial h_b}{\partial w_a}$$

June 15-19 2025, Stavanger, Norway

Reusable gradient terms

Residual weighting

$$L = \frac{1}{2} \sum_{k=1}^{n} (N_{\theta} - y)^{2} + \frac{1}{2} \sum_{k=1}^{n} \sum_{k=1}^{n} (\nabla N_{\theta} - \nabla y)^{2} \xrightarrow{Gradients} \nabla L = \nabla L_{1} + \nabla L_{2} + \cdots$$

$$\mathsf{MSE}: \frac{\partial L}{\partial \theta} = (N_{\theta} - y) \frac{\partial N_{\theta}}{\partial \theta}$$

- Due MSE definition of loss terms \rightarrow Magnitude $|L_i|$ acts as a weight for i-th gradient direction
- The less accurate L_i , the greater its gradient factor $|L_i|$
- Varying difficulty \rightarrow staggered $|L_i| \rightarrow$ gradient update intuitive to worst L_i , counterintuitive to best L_i

$$L = \frac{1}{2} \sum_{\mathbf{\lambda_1}} \lambda_1 (N_{\theta} - \mathbf{y})^2 + \frac{1}{2} \sum_{\mathbf{\lambda_2}} \sum_{\mathbf{\lambda_2}} (\nabla N_{\theta} - \nabla \mathbf{y})^2$$

Optimal convergence

- Training step split into individual parts of the sum, which are vectors
- Unique composition at each training step
- Optimal convergence path more sophisticated

Weighting targets

Abbreviation	Method	Target
L_{max}	max L	Loss Maximisation
CD_{min}	$\min(1 - \frac{\nabla L \cdot \nabla L_i}{ \nabla L \cdot \nabla L_i })$	Gradient Alignment
SNN	Sobolev Trained	-

$$L = \frac{1}{2} \sum_{\mathbf{\lambda_1}} \lambda_1 (\mathbf{N_{\theta}} - \mathbf{y})^2 + \frac{1}{2} \sum_{\mathbf{\lambda_2}} \sum_{\mathbf{\lambda_2}} (\nabla \mathbf{N_{\theta}} - \nabla \mathbf{y})^2$$

Loss maximization

 $\max_{\lambda} L$ subject to $\lambda \geq 1$

- Very straightforward
- Essentially a constant gradient step, but -
- $\rightarrow |L_i|$ dicate Δ_i , decreasing with convergence

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp. 137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572

Weighting targets

Abbreviation	Method	Target
L_{max}	max L	Loss Maximisation
CD_{min}	$\min(1 - \frac{\nabla L \cdot \nabla L_i}{ \nabla L \cdot \nabla L_i })$	Gradient Alignment
SNN	Sobolev Trained	-

$$L = \frac{1}{2} \sum_{\mathbf{\lambda_1}} (\mathbf{N_{\theta}} - \mathbf{y})^2 + \frac{1}{2} \sum_{\mathbf{\lambda_2}} \sum_{\mathbf{\lambda_2}} (\mathbf{\nabla} \mathbf{N_{\theta}} - \mathbf{\nabla} \mathbf{y})^2$$

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp. 137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572

Loss gradient alignment

$$\min_{\lambda} (1 - \frac{\nabla L \cdot \nabla L_i}{|\nabla L| \cdot |\nabla L_i|})$$
 subject to $\lambda \ge 1$

- Ratios $|\nabla L_i|$ dicate α_i , ratios α_i dictate Δ_i
- When a loss target is dominated, its residual weight increases stronger
- Monotonically increasing even with convergence – regularization issue thus clipped

Weighting targets

For one training step:

$$L = \frac{1}{2} \sum_{\mathbf{\lambda_1}} \lambda_1 (\mathbf{N_{\theta}} - \mathbf{y})^2 + \frac{1}{2} \sum_{\mathbf{\lambda_2}} \sum_{\mathbf{\lambda_2}} (\nabla \mathbf{N_{\theta}} - \nabla \mathbf{y})^2$$

A.O.M. Kilicsoy, J. Liedmann, M.A. Valdebenito, F.-J. Barthold and M.G.R. Faes, "Sobolev Neural Network With Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics," in IEEE Access, vol. 12, pp. 137144-137161, 2024, doi: 10.1109/ACCESS.2024.3465572

Loss gradient alignment

June 15-19 2025, Stavanger, Norway

$$\min_{\lambda} (1 - \frac{\nabla L \cdot \nabla L_i}{|\nabla L| \cdot |\nabla L_i|})$$
 subject to $\lambda \ge 1$

- Ratios $|\nabla L_i|$ dicate α_i , ratios α_i dictate Δ_i
- When a loss target is dominated, its residual weight increases stronger
- Monotonically increasing even with convergence – regularization issue thus clipped

Weighted gradient enhanced neural network

2D Hook with geometric design parameters

Model Components	Value
Degrees of Freedom per Element	2
Elements	512
Design Parameters	2
Nodes per Element	4
Nonlinear material	St Venant, plane stress
System Behaviour	Static

Conclusion

- Multiple loss terms lead to staggered training focus
 - potentially counterintuitive at various training steps without priority weighting
- Weighting for improved training convergence
 - dynamic definition to avoid tuning and flexible to current iteration
 - optimization target/function crucial to training convergence
 - → Choice: equilibrium between gradient vectors; no domination by residuals
- Mean accuracy improvement small; however training more robust
 - widening gap with increasing model size
- CD_{min} convergence performs well for all residuals
 - more complex case could show increasing performance gap

Thank you!

