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Abstract  

In the context of the estimation discrete moments 
of a response of interest, polynomial chaos expansions 
(PCE) have been shown to provide a highly efficient 
and accurate surrogate modelling strategy [1]. Let’s as-
sume a probability space (Ω, ℱ,𝒫), where Ω is an event 
space, ℱ a 𝜎-algebra on Ω and 𝒫 a probability measure 
defined on ℱ. If the input variable of a mathematical 
model, 𝑌 = ℳ(𝑋), is a random variable 𝑋(𝜔), 𝜔 ∈ Ω, 
the model response 𝑌(𝜔) is by definition also a random 
variable. Assuming that 𝑌	has a finite variance, a PCE 
represents the output variable 𝑌	as a function of another 
random variable 𝜉	with given distribution: 

𝑌 = ℳ(𝑋) ≈ 𝑔!"#(𝜉) = 2 𝛽𝜶
𝜶∈ℕ!

Ψ𝜶(𝝃) 

and as such represents the function ℳ(𝑋), which could 
be an expensive-to-evaluate numerical model, via pol-
ynomial expansion, where 𝛽𝜶 are deterministic coeffi-
cients and Ψ𝜶 are multivariate orthogonal polynomials 
according to the Askey scheme. The orthonormal na-
ture of the basis, in combination with the specific form 
of the PCE allow for very efficient post-processing. In-
deed, once a PCE approximation is calibrated (e.g., via 
Least-Angle regression), it is possible to analytically 
obtain statistical moments or global sensitivity indices 
of 𝑌 at almost no extra computational cost. Generally, 
a (discrete) statistical moment of the 𝑚'(	 order,	⟨𝑌)⟩, 
with 𝑚 ∈ 	ℕ is defined as: 

⟨𝑌)⟩ = :[𝑔(𝑿)])𝑝*(𝑥)𝑑𝑥	

= 	 2 …
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As can be seen from the final part of the formula, in 
case of PCE, it is necessary to integrate over basis func-
tions (which are orthonormal polynomials), which 
leads to a dramatic simplification in comparison to the 
integration of the original mathematical function. 
Moreover, it is well known that PCE allows for analyt-
ical solution of this equation. Besides well-known for-
mulas for mean and variance, higher statistical central 
moments skewness (3rd moment) and kurtosis (4th mo-
ment) can be also obtained using analytical formulas for 

Legendre and Hermite polynomials [2]. While very 
powerful to estimate such discrete moments, the esti-
mation of the full distribution of a response of interest, 
including its tails, is still an open challenge. This makes 
the method less applicable to for instance the analysis 
of medium to small failure probabilities in structural 
systems. 

A potential route to estimate the full distribution 
of a response 𝑌, including its tails, is through the PCE 
estimation of fractional moments ⟨𝑌.⟩ of Y, with 𝑟 ∈
ℝ\01 , as introduced in [3].  Indeed, it can be shown that 
a fractional moment ⟨𝑌.⟩ in fact contains an infinite 
number of integer moments: 

⟨𝑌.⟩ =2F𝑟𝑖H 𝜇2
.34

5

46,

J(𝑌 − 𝜇2)4L 

with 𝑖 any non-negative integer and F𝑟𝑖H a fractional in-
teger operator. This illustrates that fractional moments 
indeed carry a wealth of information on the stochastic 
properties of the response variable 𝑌. However, an es-
timation of these fractional statistical moments of 
costly mathematical models ℳ by means of statistical 
sampling (e.g., following a Monte Carlo Simulation ap-
proach) is challenging since it is typically not possible 
or desirable to create a large experimental design. 
Therefore, this paper therefore presents a novel ap-
proach to allow for an analytical estimation of frac-
tional moments directly from polynomial chaos expan-
sions of a response of interest.  

Specifically, the first four statistical moments ob-
tained from deterministic coefficients are used for an 
estimation of arbitrary fractional moments of 𝑌  via 
Hölder's inequality: 

𝔼[|𝑌|.] ≤ (𝔼[|𝑌|7])
.
7 , 

where 𝑠 ∈ [1,2,3,4] are obtained using a standard PCE.  
Then, based on the fitting of a highly flexible probabil-
ity density function (PDF) (as presented in [3]), the full 
PDF of the response of interest can be determined. It is 
clear that the error of the approximation grows with the 
difference |𝑠 − 𝑟| . Therefore, an integer moment 
𝐸[|𝑌|7] that are utilized for the estimation of a frac-
tional moment should be selected as close as possible 
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to the selected 𝑟. Naturally it is possible to reliably es-
timate fractional moments only in the interval between 
integer moments obtained from PCE, i.e., 𝑟 ∈ (1, 4). 
Based on the thus estimated fractional moments, further 
statistical analysis can be performed. For instance, the 
distribution of 𝑌 can be determined in a similar fashion 
as was proposed in [3]. 

A toy model is included to illustrate the efficacy 
of the developed approach. Specifically, a simple ana-
lytical function of an input random vector containing 
three independent Gaussian variables 𝑿 ∼ 𝒩(𝝁 =
10, 𝝈8 = 4)m, namely: 

𝑌 = 20 + 𝑋, + 𝑋8 + 𝑋9. 
 Therefore, the quantity of interest is also a Gauss-

ian variable 𝑌 ∼ 𝒩(𝜇 = 50, 𝜎8 = 12). The proposed 
approach is utilized for estimation of the following frac-
tional moments ⟨|𝑌|.⟩,  with 𝑟 ∈ 𝒓 =
[1.1, 1.2, 1.8, 1.9, 2.1,2.2,2.9,3].  Note that the frac-
tional moments are close to the integer moments ob-
tained analytically from PCE in order to reduce the er-
ror of approximation by Hölder’s inequality. These ob-
tained fractional moments are then further used for 
identification of the most suitable probability distribu-
tion to represent the stochastic nature of 𝑌, assuming 
the M-EIGD-LESND that was presented in [3]. The ob-
tained results of the proposed approach are compared 
to approximation based on standard sampling approach 
represented by Latin Hypercube Sampling (LHS) con-
taining 200 samples. 

Figure 1 illustrates the result obtained with the 
proposed approach. Although the PCE approach leads 
to a slight error near the mean value, it leads to almost 
perfect accuracy at both tails of the CDF. Opposed, 
LHS is a very efficient method for estimation of mean 
values, but it has clearly a worse performance in esti-
mation of higher moments affected by tails and thus 
also fractional moments. Note that although the PCE 
approach is based on identical samples, it is an approx-
imation of QoI over whole input space and thus its re-
sult is less affected by outliers. This fact is also sup-
ported by results obtained from LHS sampling using a 

PCE surrogate model instead of the original mathemat-
ical model (PCE-LHS). The results of PCE-LHS are 
identical to LHS with the original model, which clearly 
shows that although the surrogate model is accurate, 
LHS sampling adds additional error to estimated frac-
tional moments and thus it is beneficial to the proposed 
approach instead of numerical estimation if a trained 
PCE is available.   
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Figure 1. Comparison of the fitted distribution using PCE and LHS 


