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Abstract. Artificial Neural Networks (ANNs) can solve many (un)supervised learning tasks
by virtue of the universal approximation theorem. In the context of on-line process control for
manufacturing processes, ANNs are an ideal approach for e.g., on-line monitoring or predic-
tion tasks. However, since they are trained on experimental input-output pairs, the governing
physical relations are only implicitly included. This, for instance, can cause inaccuracies when
extrapolating to out-of-sample data-points [1]. On the other hand, the numerical approximation
of the governing physical laws via numerical methods holds strong potential for the accurate
simulation of physical phenomena that occur during manufacturing processes. However, the
corresponding computational effort is an impediment that arises with the need for numerous
simulations [2]. This makes the application of such numerical schemes computationally in-
tractable within an on-line monitoring context. As such, it is clear that ANNs and numerical
simulation models have strong potential, but are fundamentally different models. However,
their combination serves as a potentially efficient and accurate aggregated predictor, the so
called grey-box model. Such grey-box model is based on highly efficient machine learning
algorithms, the black-box member, and backed by validated data with respect to physics gener-
ated by the numerical model, the white-box member. A grey-box model capable of defining a
trustworthy prediction, including a measurement of uncertainty on the estimator, remains chal-
lenging.

In this paper, we introduce an ensemble machine learning method based on the residual
modelling approach [3] that is able to provide a best-estimate under scarce data. We do so
by combining the predictions of the white-box, stemming from partial differential equations



implemented in a multi-physics numerical solver, with the black-box, representing the residual
error between the white-box predictions and available experimental data. The novelty of this
work is in the contribution of each counterpart in the grey-box. The weight of each counterpart
in the ensemble model is based on distance metrics between available data in each model.
The proposed grey box method indicates significant performance gains compared to either the
performance of each counterpart, as well to the classic residual modelling approach.

1 INTRODUCTION

In the context of process monitoring, real-time quality estimation based on data-driven tech-
niques are becoming ever more common [4, 5]. These approaches typically link process param-
eters and on-line measurements to product quality metrics in order to guard the process. In this
respect, machine learning approaches yield very fast black-box models enabling on-line appli-
cation for process control. However, multiple problems arise with these black-box models: (a)
These models are known to have only limited value when extrapolation is required [6]. Their
use is most relevant for well-confined and -controlled processes that enable the generation of a
clear, industrially representative and comprehensive dataset for the model training. There are
large discrepancies between a lab-environment or numerically-made dataset and an industrial
dataset, which is prone to inaccuracy due to changing variables or boundary conditions that
come with the large change in environment. (b) Quantitative measurement capabilities for the
process response are often limited in industrial processes, hence eliminating the applicability of
data-hungry algorithms such as most supervised deep-learning toolboxes [7].

On the other end of the spectrum, multi-physical models help to understand and give insight
in the quality affecting phenomena. Defining a reliable ‘white-box’ model of a production
process, however, proves to be extremely complex, as it often involves advanced non-linear
models. The time to run one accurate, high resolution simulation typically takes several hours or
even days. Consequently, the use of simulation nowadays remains limited to high-end products
and processes that fail to meet specifications, but especially in large volume industry, experience
on this topic remains scarce [8].

This paper elaborates the modelling methodology proposed for a robust ‘grey-box’ under
scarce data. The idea for a method for scarce data arises from a bottom up approach. To achieve
such a grey-box, an efficient approach is required to switch or incorporate two or more models.
Current state-of-the-art literature to include physics, albeit in the form of ground truth data,
partial differential equations or boundary conditions, ranges from very basic data augmentation
models [9] to very complex systems, e.g., Physics Informed Neural Networks (PINN) [10],
NeuralPDEs [11] or Neural Operators [12]. For data augmentation, the main principal is to in-
clude both data from an experimental campaign and from a validated physics based white-box,
and to train a model on the union set of both subsets. On the other hand, a PINN model can
extend a black-box architecture based on experimental data by adding the governing partial dif-
ferential equations to include physics in the overarching model. Ultimately, both fundamentally
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different models can be assigned the label of ‘grey-box’. While very efficient methods have
been studied in literature, there is often the assumption of a large stream of measurement data.
This assumption is often required, e.g., with the use of neural network approaches, requiring
a rather high amount of unique data-points. However, from a practical perspective, there are
many arguments that obtaining such a dataset is not trivial. This is often the case where gener-
ating data is exceeding a threshold on a cost function, including, e.g., labour, destructive tests,
materials, environmental aspects. Consequently, in this study, the ‘black-box” model is required
to operate with a restricted dataset. Furthermore, the specific case arises that the white-box is a
rather expensive model, thus also providing data that is sparse in the time domain. The effect
of both aforementioned assumptions are investigated in this paper. The rest of this paper is
organised as follows: Section 2 starts with elaborating the general concept, and introduces the
weighted residual model based on the shortcomings of the classic residual modelling approach.
Section 3 provides a summary of the results on a 1D numerical case study. Finally, section 4
provides the main conclusions in this work.

2 WEIGHTED RESIDUAL MODELLING

This section introduces an approach based on the existing residual modelling approach [13]
for an effective predictor by combining the predictions of the white-box, stemming from partial
differential equations implemented in a multi-physics numerical solver, with the black-box,
representing the residual error between the white-box predictions and available experimental
data.

2.1 General bias correction

An efficient, comprehensive approach for a grey-box model is the use of residual modelling.
The residual model consists of two terms, where one is adding knowledge from the white-box
and the other from observed data. Thus, the resulting grey-box is a summation equivalent to the
predictions of a white-box and the offset between the white-box predictions and any collected
experimental data, mapped as the black-box model:

fap(x) = fwe(z|2®) + r(z]z®, 2%), (D

where (x*°) represents numerical sample points, (z¢) represents experimental sample points,
fw B represents the white-box and r(z|z¢, z*°) the residual between simulated and experimental
data, modelled by a black-box that projects and interpolates the residual error. The magnitude
of the black-box term can be interpreted as being the extent to which the measurements verify
the prediction of the white-box counterpart. This is defined as:

r(z)|z®, %) = fep(|r®) — fwp(x|r®). ()

This modelling architecture is often applied in cases where the white-box part is only a
rough estimation, often due to multiple assumptions to lower the computation cost or due to
lack of knowledge on the process. Furthermore, it is vital that the available data is continuous,
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enabling a very fine discretisation over the parameter domain. In this regard, the residual can
correct the rough estimation of the white-box towards known observations. However, in the
scenario where the white-box is representing a complex high dimensional, non-linear model, it
becomes infeasible to establish a dense sampling in the overall parameter domain. As such, in
the scenario of limited, discontinuous data, the white-box is presented as a surrogate model by
means of a Gaussian process (GP) model:

fwe(x®) ~ GP,(m(z®), k(z®, ")), 3)

where m(x*) is the mean function and k(x*, 2) a positive definite kernel function. For simplic-
ity in this work, the subscript ,, is used to refer to the black box, e.g., ., 0., respectively the
mean and standard deviation of the Gaussian process. The GP structure has become a standard
in many applications because of its powerful, non-parametric regression nature which has been
developed considerably within the machine learning community in the last 15 years, thereby
having a pedigree in terms of response surface modelling and sensitivity analysis [14]. There is
extended literature on applications [15, 16], as well as further developments of the method, such
as PCE-kriging [17, 18], co-kriging [19] or structural reliability analysis [20]. The main reasons
why GP are of great value in this work, are the minimal requirement for prior knowledge, its
capabilities under the presence of noise, and the fact that GP does not only provide an inter-
polation technique, but it automatically provides confidence intervals for the model predictions
as well. It is worth mentioning that although GP is ideal for this work, there are drawbacks,
such as it’s difficulty in handling high dimensional data and large datasets, where none of the
aforementioned criteria is relevant in the context of this work.

Next, the residual is modelled as the error between the surrogate of the white-box and the
black-box counterpart, whereas the latter is based on incomplete or unevenly distributed mea-
surement data, which is also interpolated by means of a GP model:

BB(2°) ~ GPy(m(x°), k(x°, 2'°)). 4)

For simplicity in this work, the subscript ; is used to refer to the black box, e.g., p, 03, re-
spectively the mean and standard deviation of the Gaussian process. In the context of FE mod-
elling, residual modelling is often known as ‘bias correction’, which tries to improve the fitting
of a white-box model, that shows discrepancies between model simulations and observations.
This definition acknowledges that there is likely some error in the complex FE representation,
possibly originating from wrong or conservative assumptions, often in the case of epistemic
uncertainty in the corresponding structure.

In the case where a white-box can provide continuous data, e.g. by relatively simple, yet
inaccurate analytical equations, the bias correction is an improvement of the solution space, by
correcting the solution with known observations.

However, in the context of limited observations, the accuracy of a bias correction approach
might suffer from inter- or extrapolation error stemming from the black-box. Imagine the ex-
treme scenario where only two deterministic experimental observations are available. The best
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fit for a possible interpolation method, without any additional physical knowledge on the struc-
ture, is a linear combination between the points. Suppose a white-box counterpart, which does
include the physical knowledge on the structure, is calibrated on the known observations. Ad-
ditional points are propagated through the white-box model and a well-fit meta model is con-
structed to interpolate the results from the model, thereby showing that there is a clear nonlinear
trend between the two known experimental observations. Following the definition of a bias cor-
rection, the continuous function fy g(z®) is enriched with the knowledge from fzp(z°¢), being
the linear function between the set of two point, thereby neglecting the extra information gen-
erated by the white-box. As a result, by applying the residual model, the additional information
is lost. This proves that the problem arises that a well performing residual model is neglecting
the additional value of the extra propagation of the white-box in the case of scarce, incomplete
or unevenly distributed data.

2.2 A weighted residual

As aresponse to the problem described in section 2.1, where scarce data can cause potential
inter- or extrapolation errors, a solution is required that enables the traditional residual mod-
elling to comply with the assumption of limited data. In this paper, we propose to achieve this
by assigning a weight to both the response surface on the limited experimental and numerical
data in the total predictor. Therefore, we propose to extend Eq.(1) with a control parameter o
such that

fap(@) = fwp(z]e®) + a(r(z|z®, z°)). (5)
Substituting with Eq.(2) yields:

fop(z) = (1 — a) fwe(z|z®) + afpp(x|z®). (6)
We propose to add the the control parameter «,, which is a measure defined by the variance

of the GP representing fpp. The idea is inspired by the intuition of Kalman filters, where the
state update equation is based on a Kalman gain K, [21]:

j:n,n = (1 - Kn>£n,n71 + annu (7)

where K, is the measurement weight and (1 — K,) a weight for the current state estimate. To
quote the definition of the Kalman gain: “The Kalman Gain is close to zero when the measure-
ment uncertainty is high and the estimate uncertainty is low. Hence we give a significant weight
to the estimate and a small weight to the measurement. On the other hand, when the measure-
ment uncertainty is low, and the estimate uncertainty is high, the Kalman Gain is close to one.
Hence we give a low weight to the estimate and a significant weight to the measurement.” [21].
It is clear that the proposed « in this work is analogue to /K, in the state space update equation
used in Kalman filters. However, while Kalman filters aim at providing a next step prediction
in the presence of uncertainty, our work aims at giving a prediction in the presence of uncer-
tainty based on a mix of two surrogate models over a predefined parameter domain. To define
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Figure 1: Introduction of alpha, based on the distance measure derived from a kriging interpolator

«, we propose a measure for the uncertainty of the experimental data based on the estimate
given by the GP representing fzp. The variance of the GP is defined in terms of a correlation
function R and its hyper-parameters 6. The correlation function R = R(z, 2’; 0) describes the
correlation between two sample points in the output space, that depends on x, 2/, and the hyper-
parameters 6. Therefore o becomes a distance measure, since the variance of the GP model
describes “similarity” between observations and new points, i.e., how similar such points are,
depending on the distance between the input points. E.g., regions of denser observations yield
a high confidence, allowing the residual model to add more of the residual term. Regions with
a lack of observations, both inter- or extrapolating, yield a lower level of confidence, declining
the residual model to add its residual to the white-box information. Figure 1 illustrates a 1D
example with two observations, on which a GP model is fit. The grey area is the predicted con-
fidence region, stemming from the correlation between the sample points in the output space.
The variance is extracted and visualised as an orange curve, to clearly visualise effect on the
proposed o weight, visualised as an orange dashed curve.

2.3 Properties

We propose the hypothesis that the variance, resulting from the GP as a surrogate model on
the measurement data, is the best estimator for a fidelity of the black-box. Albeit the estimator
has to be selected carefully, as the GP model has variation stemming from the correlation func-
tion R. Eq.(8) describes a smooth-step function, ranging from o7, .. to o7, and acting as a
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power law for 7 and «:

2 2
Omax Oy < Ub,min
2y 2 2 2
Oé(O'b) - Sm(amaa: - amin) + Qmin ay, € [O-b,min7 O-b7ma$i| (8)
2 2
Qmin oy > Obmax

with S,, a sigmoid-like interpolation and « ranges from cin t0 mag. 04,5, and o3, Tepre-
sent the parameters that define the bounds to fine tune the trade-off between the models. Without
prior knowledge on the process or system, the value of aimm and aimax is set equal to the upper
and lower limit of the variance in fpp(z¢). The hypothesis, Eq.(6) and Eq.(8) allow to set up
some ground rules for the concept:

1. 0} = 0} pin = foB(x) = fBB(2]2°),0 =1
Op = Op max = fap(®) = fwp(z|z®),a =0

2.

3. 03 > aimm

4. a €10,1]
where rule n.1 & n.2 describe the extreme scenario’s where the weight is either minimal or
maximal and neglects information from fy g(z|2*) in rule n.1 and vice versa. Rule n.3 & n.4
specifically aim at a Gaussian process regression (GPR) model, similar to the described GP in
this work, however, including an extra term for added noise in the system. For a simple GP
problem, as provided in section 3, « is set to range between zero and one. However, in more
complex scenario’s, one might prefer one model over the other, such that one model, regardless
of the availability of measurement data, is part of the grey box. This can be made feasible by
diminishing the range of a by increasing the lower or reducing the upper bound. By doing so,
either rule n.1 or n.2 is unachievable, thereby the condition that the grey box takes the form of
the corresponding white or black box, becomes excluded.

In the case of sparse data, where the proposed grey-box largely depends on the interpolation
performance of both surrogate models, it is vital for the proposed approach to make a distinc-
tion between ground truth and artificial data, that, although generated by the governing physical
laws of the process, might drift due to extrapolation on the deterministically validated model.
To incorporate this effect, we propose to add a ’confidence index’ to the confidence bounds
on the grey box model. this confidence index makes the distinction between a single model
that is trained with a dataset consisting of the combination of experimental and numerical data
(augmented model) and the proposed weighted combination of two surrogate models. The con-
fidence index acts as a safety, where the confidence region enlarges according to the already
present weight parameter «. Thus, the variance in the resulting grey model is a trade-off be-
tween confidence on measurement data and uncertainty arising on the extrapolation of a well
calibrated white-box model:

o; = (1—a)(os, +7) + a.op, 9)



Lars Bogaerts, Matthias G.R. Faes and David Moens

with Eq.(9) analogue to Eq.(6), but including an extra term with -, a confidence index based
on the trustworthiness in the white-box. The confidence index, according to Eq.(9) an absolute
combination with the weighted variance from both models, requires a specific value in the same
magnitude as the predicted variance over the response. It should be noted that the confidence
is strictly case dependent and requires expert knowledge on the subject. According to the au-
thors, a good baseline for this value is the mean variance over the complete parameter domain.
This effect is depicted in figure 2. Two individual models, referred to as the white surrogate
model and the black surrogate model are both fitted on several deterministic points. The black
surrogate model is fitted on p points z; = {z|0 < z < 11,7 = 1,..., p} and the white surrogate
model is fitted on ¢ points z; = {z|11 <z < 15,i=1,...,q} with x = 11 the intersection
of both sets. It is noted that the variance increases in function of the distance between points.
When extrapolating, e.g., the black-box above x = 11 and vice versa, the variance reaches a
maximum. The confidence of the grey-box, based on Eq.(9) is a hybrid form of both models,
thus resulting in a variance that considers all data-points. However, due to the confidence index,
based on the knowledge that the FE-model accounts for possible drift, there is a noticeable dis-
advantageous effect when interpolation is also exceeding «,,,., due to -y acting as a confidence
index of the white-box. When comparing to the ’augmented model’, it can be noted that the
model treats all points as equal, hence not assigning a weight to each model.

Black SM \
White SM \

30 Grey SM \
S Augmented SM \

(o O  Observations \\
© 20 x  simulations \ i
/ \

Figure 2: The expected variance, given by a two independent GP models and their hybrid form

3 ILLUSTRATIVE EXAMPLE

The performance of the proposed grey-box methodology is assessed based on a numerical
example, representing a random generated higher order polynomial sampled between zero and
3m. Figure 3 illustrates the steps in generating the grey-box and visually compares the pro-
posed grey-box methodology with the original residual modelling approach. The underlying
true function is given in semi-opaque as a dotted line. The first figure illustrates the example
where 10 samples are used to fit a black-box model, where the samples are only selected until
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Figure 3: Surrogate model in terms of: observations [n = 10] (top-left), white-box results [n = 10] (top-right),
residual model (bottom-left), weighted residual model (bottom-right)

x = 27. It can be noted that the model has a dense region of data-points, hence the very small
confidence intervals. When the interpolation error increases, e.g., between x = 3.7 and x = 4.9
, and especially during extrapolation, > 2, the confidence bounds indicate a build-up of
lack of confidence. Furthermore, when no data are present, GP revert to its prior trend, in this
case a constant mean function. The second graph visualises the surrogate model acting as the
white-box, which is fitted using another 10 samples, sampled more uniformly between x = 0
and z = 37. The bottom left graph represents a classic residual model, according to Eq.(1).
Due to the lack of experimental data, the residual term that is mapped by the black-box revert to
it’s prior knowledge, however it does not incorporate the fact that the surrogate model reverted
to its mean prior, hence the lack of accurate predictions at z = 5 and higher. To evaluate the
performance of a surrogate model, the Mean square error (MSE) is a widely adopted metric,

expressed as:
(e = F(x)", (10)
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Table 1: Effect of sample-sizes
No.BB. No.WB MSEBB MSEWB MSEGB MSEaGB MSLLGB MSLL aGB

10 10 0.3075 0.0453 0.3075 0.0449 -0.4684 -0.9978
5 30 0.4244 0.00394 0.4244  0.00002724 5.91 -1.25
30 20 0.3583 0.0034 0.3583 0.0033 13.8479 -2.2402
10 200 0.3075 0.0020 0.3075 0.0003396 22.8580 -2.0682
200 10 0.3451 0.1198 0.3451 0.0892 7.4435 0.3283

with y, the measured signal and f(x.) the model model prediction. The MSE of the model
results in 0.3075, which is actually worse than the MSE of the SM representing the white-box
(MSE WB = 0.0453) In contrast, the last figure illustrates the performance of the proposed
weighted residual model, clearly indicating a mix of the black and white-box surrogate model
according to Eq.(6). In conditions where experimental data are available, they serve as a ground
truth. As soon as the confidence interval increases, the information of the white-box receive a
higher fidelity, albeit with a wider confidence interval compared to the surrogate model that is
fitted on the data of the individual model, due to the added term consisting of the confidence in-
dex to the grey-box. The proposed model results in a MSE of 0.0449, only a slight improvement
over the white-box (MSE WB = 0.0453). However, since MSE does only provide information
on the mean value, a second metric, the Mean Standardised Log Loss (MSLL), introduced by
Rasmussen et al. [6] provides a probabilistic measure based on both the mean and confidence
level of a surrogate model.

1
—log p (| D, z,) = 3 log (2707) + (11)

where the predictive variance o2 is computed as 02 = V(f.) + o2, and V(f.) the expected
variance, given by the key predictive equations of GPR [6]. Comparing the proposed architec-
ture with the classic residual model lowers the MSLL from -0.4684 to -0.9978, thus a better
score for overall fit and confidence level. Table 1 gives an overview of the scores, both MSE
and MSLL, for different scenarios where the amount of samples in each surrogate model varies.
This clearly indicates that the weighted residual model repeatedly dominates. Furthermore it
can be noted that even in the case where 200 samples are present, the MSE of the weighted
residual model outperforms the surrogate model that is trained on one out of two models.

4 CONCLUSIONS

The main goal of this work is to address the main bottleneck of black-box models: their
unreliable and often poor performance in scarce sampled regions of the spacial representation of
the data. One of the possible advantages of the proposed grey-box methodology is the expected
improvement of the grey-box in sparsely sampled datasets by means of enriching a black-box,
experimentally based surrogate model with validated data with respect to physics generated by
a numerical model, the white-box counterpart.

10
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This paper introduces an ensemble machine learning method based on the residual modelling
approach to achieve a trustworthy estimation, effectively addressing challenges posed by scarce
data availability. The method leverages the available experimental data by utilising a distance
metric to assign a weight to both the white and black-box part. Furthermore, a confidence
index is added, based on the hypothesis that a well calibrated physical model might drift over a
parameter domain due to epistemic uncertainty or assumptions in the physical model. To adress
this, the authors would argue that a case specific value has to be determined based on expert
knowledge or a defined measure of uncertainty on the model. We use mean-squared-error and
standardised-log-loss metrics to evaluate the method, which indicates a superior performance
compared of the proposed methodology to either the performance of the white or black-box
model, as well to the classic residual modelling approach.
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