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Abstract
This contribution introduces a novel framework for the first excursion probability sensitivity estimation,
applicable to linear dynamic systems subject to a Gaussian excitation. The proposed methodology is based
on Domain Decomposition method, and the sensitivity estimator is calculated as the partial derivative of
the first excursion probability with respect to a design parameter, such as the geometrical dimensions of the
system. The linearity of the system plays a key role in building an efficient estimator. Domain Decomposition
Method exploits this feature by exploring the failure domain in a very convenient way due to its special
structure, characterized by the union of a large number of elementary linear failure domains. This approach
allows the sensitivity estimator to be derived as a byproduct of the first excursion probability estimator. The
effectiveness of this technique is demonstrated through a numerical example involving a large-scale model.

1 Introduction

The safety level of stochastic structural dynamical systems is of utmost importance for an appropriate design
and can be quantified by means of the so-called first excursion probability. This probability indicates if
one or more responses of interest exceed a predetermined threshold during a stochastic excitation [1]. The
specific case where the system’s behavior remains linear (e.g. for serviceability design purposes [2]) and,
the stochastic loading is modeled as a Gaussian process, has been addressed through several methods. These
methods take advantage of the above-mentioned properties to estimate the first excursion probability in a very
efficient way. Some of the well known techniques include a very Efficient Importance Sampling (EIS) [3], the
Domain Decomposition Method (DDM) [4], Directional Importance Sampling (DIS) [5] and, multidomain
Line Sampling (mLS) [6].

Furthermore, first excursion probabilities can exhibit high sensitivity to perturbations in structural properties,
including changes in mass, stiffness, or geometrical dimensions of structural members. Thus, assessing
the influence of these parameters on the first excursion probability is crucial for enhancing the reliability
analysis [7]. Such information can be very useful in the context of risk evaluation, decision making, as
well as reliability-based design optimization problems [8]. Estimating the gradient of failure probability
is a complex task that has been addressed in literature (see e.g. [9, 10]), which has been calculated with
respect to two different kind of parameters [11]. One group involves the gradient estimation with respect
distribution parameters of random variables, which describe uncertain structural properties [12]. The other
group, involves the gradient estimation with respect to deterministic parameters related to structural behavior
[7, 13], which is the focus of this work.

An approach which is particularly useful to estimate first excursion probabilities is the so-called Domain
Decomposition Method [4]. The objective of this contribution is to extend the application of this method
towards estimating the sensitivity of the first excursion probability. The focus is on linear structural systems
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subject to a Gaussian loading, where the sensitivity is calculated with respect to deterministic structural
parameters. In this regard, the use of the Domain Decomposition Method plays a key role in the failure
domain exploration due to the system’s linearity. Furthermore, the sensitivity estimator is developed as a
byproduct of the reliability analysis [14], significantly enhancing computational efficiency. Also, a sensitivity
analysis of the spectral properties of the system is performed [15].

The remaining sections are organized as follows. Section 2 presents the problem, the first excursion prob-
ability, and its gradient definition. Section 3 presents the aforementioned gradient calculation by means of
Domain Decomposition Method. Then, one example of the proposed framework is illustrated in Section 4.
Finally, Section 5 draws the discussion to a closure and presents thoughts on future developments.

2 Problem statement

2.1 Gaussian loading

The structural system is subjected to a dynamic load p, defined as a discrete Gaussian process over a duration
T . This process is discretized into nT time instants, each of duration ∆t, defined as tk = (k − 1)∆t, k =
1, . . . , nT . The dynamic load is represented in terms of the Karhunen-Loève expansion (see e.g. [16, 17]),
and is given by:

p (tk, z) = µk +ψ
T
k z, k = 1, . . . , nT , (1)

where p (tk, z) is the loading at time tk; z is a realization of a standard Gaussian random variable vectorZ of
dimensions nKL×1, with nKL being the order of truncation of the Karhunen-Loève expansion (nKL ⩽ nT );
ψk is a vector of dimensions nKL×1 containing information on the covariance of the Gaussian process; and
the expected value of the process at time tk is denoted as µk.

2.2 Structural system

The structural system of nD degrees-of-freedom is assumed as linear elastic with classical damping. It is
subjected to the Gaussian loading p(t, z), and its equation of motion is given by [18]:

M(y)ẍ(t,y, z) +C(y)ẋ(t,y, z) +K(y)x(t,y, z) = g(y)p(t, z), t ∈ [0, T ], (2)

where displacement, velocity, and acceleration are represented by x, ẋ, and ẍ, respectively, all vectors of
dimension nD×1; the mass, damping, and stiffness matrices,M ,C, andK, respectively, are of dimensions
nD × nD; the coupling vector g represents the interaction between the loading and the degrees of freedom
of the system, and it has dimensions nD × 1; and the deterministic vector y, containing parameters yq with
q = 1, . . . , nY that represent the structural properties of the system, is of size nY × 1. For instance, the
vector y can contain parameters related to the geometry of structural members (such as cross-sectional area
or length) or material properties (such as Young’s Modulus), among others. Importantly, these parameters
can be subject to potential changes due to design decisions [19].

The solution of equation (2) allows to control of one or more responses of interest, such as displacements
and internal stresses, for example. In this work, the responses of interest correspond to linear combinations
of the displacements, denoted as ηi(t,y, z), i = 1, . . . , nη, being nη the number of responses of interest, and
are calculated using the convolution integral [18]:

ηi(t,y, z) =

∫ t

0
hi(t− τ,y)p(τ,z)dτ, i = 1, . . . , nη, (3)

where hi denotes unit impulse response function of the i-th response of interest assuming null initial condi-
tions. This function can be determined through modal analysis [18].

Due to the discretized (in time) definition of the stochastic load in equation (1), it is possible to consider the
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discretized responses of interest, by means of numerical integration of equation (3), resulting in:

ηi (tk,y, z) = ai,k(y)
Tz, i = 1, . . . , nη, k = 1, . . . , nT , (4)

where ai,k(y) is a vector of dimensions nKL × 1, which is defined as:

ai,k(y) =
k∑

m=1

∆tϵmhi (tk − tm,y)ψm, (5)

being ϵm chosen according to the adopted integration rule [20]. For example, using the trapezoidal rule
ϵm = 1/2 if m = 1 or m = k; otherwise ϵm = 1.

2.3 First excursion probability

The design requirements are defined in vector b of dimensions nη×1, where bi is its i-th element and denotes
the prescribed threshold for the response of interest ηi. The performance function g(y, z) indicates whether
the response of interest ηi exceeds the prescribed threshold bi during the stochastic excitation, resulting in a
negative or positive value, respectively. Thus, the performance function is given by:

g(y, z) = 1− max
i=1,...,nη

(
max

k=1,...,nT

( |ηi (tk,y, z)|
bi

))
, (6)

where |·| is the absolute value and the response of interest ηi is normalized by the threshold bi. Therefore,
the failure domain can be formally defined as F = {z ∈ RnKL : g(y, z) ⩽ 0}.

The probability associated with the failure domain can be quantified by means of the so-called first excursion
probability [1]:

pF (y) =

∫

g(y,z)≤0
fZ(z)dz, (7)

where fZ(z) is the standard Gaussian probability density function in nKL dimensions.

In practical engineering applications, nKL can be in the order of hundreds or thousands. Consequently,
the first excursion probability in equation (7) becomes a high-dimensional integral without a closed-form
solution, requiring advanced simulation methods [21] for its evaluation. This has led to the development of
several methods which leverage the system’s linearity to estimate the first excursion probability [3, 4, 5, 6].

2.4 Sensitivity of first excursion probability

The dependence of the failure probability in equation (7) on the vector y suggests that a change in one
or more design parameters can impact the value of the failure probability. Specifically, a change in the
parameter yq directly impacts the limit state function (from equation (6), g(y, z) = 0). Therefore, studying
the sensitivities of the failure probability with respect to different parameters is crucial for design purposes.
One potential approach to measure this sensitivity is to calculate the gradient of the first excursion probability
[22], as follows:

∂pF (y)

∂yq
= −

∫

g(y,z)=0

∂g(y, z)

∂yq

1

∥∇zg(y, z)∥
fZ(z)dS, q = 1, . . . , nY , (8)

where ∥·∥ denotes Euclidean norm; ∇z is the nabla operator ∇z = [∂/∂z1, . . . , ∂/∂znKL ]
T ; and dS denotes

a differential element of the limit state hypersurface S = {z ∈ RnKL : g(y, z) = 0}. The equation (8), like
equation (7), does not have a closed-form solution, making its estimation a challenging task.
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3 Domain Decomposition Method (DDM)

3.1 General remarks

This contribution is based on the Domain Decomposition Method. For this purpose, the failure probability
integral is written in terms of the effective contribution of each elementary failure domain, obtaining the
same first excursion probability estimator that is presented in [4]. Note that the deduction for the Domain
Contribution Method presented in here differs from the one originally presented in [4]. Such alternative
deduction is chosen on purpose, as it facilitates the calculation of the probability sensitivity.

3.2 Effective contribution of the elementary failure domains

The failure domain defined in Section 2.3 has a unique geometry. It is composed of the union of nη × nT
elementary failure domains. Each of these elementary failure domains Fi,k describes the event where
the response ηi exceeds the prescribed threshold bi at the time instant tk, and can be decomposed in its
positive and negative side, that means Fi,k = F+

i,k ∪ F−
i,k. Then, the elementary failure domain that

represents wether the response of interest ηi exceeds its threshold bi at the time instant tk is defined as
F+
i,k =

{
z ∈ RnKL : aTi,k(y)z ⩾ bi

}
. Similarly, F−

i,k =
{
z ∈ RnKL : aTi,k(y)z ⩽ −bi

}
represents the ele-

mentary failure domain that indicates whether the response of interest −ηi exceeds its threshold bi at the time
instant tk. It is straightforward to note that the events F+

i,k and F−
i,k are defined as mutually exclusive events

with equal probabilities of occurrence, whenever the mean of the load µk = 0, k = 1, . . . , nT . Now, the
failure domain is defined as the union of all the elementary failure domains, that is F = ∪nη

i=1 ∪nT
k=1 Fi,k. In

Figure 1, a schematic representation of the elementary failure domains is shown, for the case where nη = 1
and nT = nKL = 2.

F−
1,1

z1

F+
1,1

F+
1,2

F−
1,2

F+
1,1 ∩ F+

1,2

F−
1,1 ∩ F−

1,2

z2

failure domain

failure domain

safe domain

Figure 1: Elementary failure domains representation for the case where nη = 1 and nT = nKL = 2.

The existing degree of overlap between elementary failure domains becomes notable when equation (7)
involves high dimensions. To address this problem, the analytical definition of the elementary failure do-
mains is crucial, and the first excursion probability of equation (7) can be written in terms of the effective
contribution of each of the individual elementary failure domains [3, 4] as:

pF (y) =

nη∑

i=1

nT∑

k=1

pi,k(y), (9)

where pi,k(y) is the effective contribution associated with the elementary failure domain Fi,k, defined as
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follows:
pi,k(y) =

∫

z∈Fi,k

1∑nη

h=1

∑nT
j=1 IFh,j

(y, z)
fZ(z)dz. (10)

where IFh,j
(y, z) is an indicator function which is equal to 1 in case that z ∈ Fi,k. The discounting factor

1/
∑nη

h=1

∑nT
j=1 IFi,k

(y, z) accounts for discounting the effective contribution resulting from the interaction
between elementary failure domains. An interpretation of the effective contribution is as follows: if a possible
realization z of Z belongs to two or more elementary failure domains, the discounting factor is less than 1.
This implies that the effective contribution pi,k corresponds to the probability of occurrence of the event Fi,k,
reduced by the discounting factor due to the overlap between elementary failure domains.

3.3 First excursion probability by means of Domain Decomposition Method

The estimation of the failure probability shown in equation (9) is done by estimating the effective contribution
of the elementary failures domains. In order to achieve this, the equation (10) is written using the Directional
Sampling scheme [23]. This technique allows writing the realization vector z in terms of its Euclidean norm
r and its unit direction u, that means z = ru. The unit vector is defined in the standard Gaussian space
and is calculated as u = z/∥z∥, and the Euclidean norm is defined as r = ∥z∥, where r2 follows a Chi-
squared distribution of nKL degrees-of-freedom [24]. Therefore, the resulting effective contribution integral
is reformulated as:

pi,k(y) =

∫

u∈ΩU

∫

ru∈Fi,k

2rfR2

(
r2
)
fU (u)∑nη

h=1

∑nT
j=1 IFh,j

(y, ru)
drdu, (11)

where ΩU =
{
u ∈ RnKL : uTu = 1

}
denotes the sample space for u; fU (u) corresponds to the uniform

probability density function over the (nKL − 1)-dimensional hypersphere; and fR2 (·) is the Chi-squared
probability density function with nKL degrees of freedom. It is possible to demonstrate [24] that the term
2rfR2(r2) arises from transforming the probability distribution associated with r to the Chi-squared proba-
bility distribution, which depends on r2.

z1

z2

F+
1,1

F+
1,2F+

1,3

c
1,2 (y,u)

c
1,1 (y,u)

c
1,3 (y,u)

∫∞
c1,2(y,u)

2rfR2

(
r2

)∑nη

h=1

∑nT
j=1 IFh,j

(y, ru)
dr

1

u

Figure 2: Inner integral of equation (11) in the context of p1,2 estimation for the case where nη = 1, nT = 3
and nKL = 2.

For a better understanding of the effective contribution in the context of Directional Sampling, Figure 2
illustrates the case with nη = 1, nT = 3, and nKL = 2 when estimating p1,2. For simplicity, only the
positive side of the elementary failure domains are labeled. It is worth noting that, from equation (11),

USD – METHODS 4488



Prel
im

ina
ry

pro
ce

ed
ing

s

IS
M

A-U
SD

20
24

the inner integral (highlighted with the green arrow in Figure 2) given a realization of the unit direction
vector u, has an analytical solution due to the system’s linearity. Indeed, it can be solved by decomposing
the integration interval [c1,2(y,u),∞[ into segments, where in each of these segments, exhibits a different
degree of overlap between elementary failure domains. In other words, the integration interval is subdivided
into parts where the discounting factor 1/

∑nη

h=1

∑nT
j=1 IFh,j

(y, ru) from equation (11) remains constant.
For instance, in Figure 2, the values of the discounting factor for each segment are presented in Table 1:

Table 1: Effective contribution discounting factor in example shown in Figure 2.

segment 1/
∑nη

h=1

∑nT
j=1 IFh,j

(y, ru)

[c1,3(y,u), c1,2(y,u)[ -
[c1,2(y,u), c1,1(y,u)[ 2

[c1,1(y,u),∞[ 3

Note that even though the failure domain includes the event F1,3, the integration is performed within the
domain of F1,2 when estimating the effective contribution p1,2.

The calculation of a single effective contribution also involves solving the outer integral of equation (11).
This integration requires significant computational effort due to the evaluation of all possible directions
u. However, the effective contribution can be estimated efficiently by introducing an importance sampling
density function f IS,(i,k)

U (u) into equation (11). The importance sampling density function is based on the
ideas proposed in [3, 5, 25], with the difference that each effective contribution pi,k has its own importance
sampling density function, given by:

f
IS,(i,k)
U (u) = fU (u|Fi,k) , (12)

where fU (u|Fi,k) is the probability density associated with the direction u conditioned on the occurrence
of an elementary failure event Fi,k.

In practical implementation, explicitly calculating all efective contributions pi,k shown in equation (9), in-
volves a considerable computational effort. Nevertheless, the summation of the effective contribution terms
can be estimated through simulation [4] by incorporating weights that can be interpreted as a probability
mass function. A very convenient way to define them is to be proportional to the probability of occurrence
of the event Fi.k (as in [3]). Therefore, equation (9) can be written as:

pF (y) =

nη∑

i=1

nT∑

k=1

(
1

wi,k
pi,k(y)

)
wi,k, (13)

where the weight wi,k is defined as follows:

wi,k =
P [Fi,k]∑nη

l=1

∑nT
m=1 P [Fl,m]

. (14)

The expression in equation (13) involves a summation over a discrete random variablewi,k and an integration
over a continuous random variable u. This can be solved through simulation by generating samples of both
random variables, as follows:

pF ≈ p̃F (y) =
1

N

N∑

j=1

(
1

w(i,k)(j)
p̃(i,k)(j)(y,u(i,k)(j))

)
, (15)

where the pair (i, k) associated with the sample (j) is randomly selected with probability proportional to the
weights wi,k; N is the total number of samples; the vector u(i,k)(j) is distributed according to f IS,(i,k)

U (u);
and p̃(i,k)(j)(y,u(i,k)(j)) is a single estimation of the effective contribution pi,k(y), where u(i,k)(j) denotes a

sample drawn from f
IS,(i,k)
U (u). Thus, equation (15) is the first excursion probability estimator by means of
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Domain Decomposition Method.

3.4 Sensitivity of first excursion probability by means of Domain Decomposition
Method

The sensitivity of the first excursion probability quantifies changes in the failure probability resulting from
potential modifications in design parameters. These changes directly impact the limit state hypersurface
associated with the failure domain. A geometrical representation of this situation is shown in Figure 3, for
the case where nη = nY = 1 and nT = nKL = 2. The failure domain is represented by the region
g(yq, z) ⩽ 0, and the safe domain is represented by the region g(yq, z) > 0. The limit state function
g(yq, z) = 0 is perturbed due to a change ∆ in the design parameter yq, resulting in g(yq +∆, z) = 0.

g(yq, z) = 0

g(yq +∆, z) = 0

u

z

z1

z2

g(yq, z) < 0

g(yq, z) > 0

Figure 3: Sensitivity representation of the limit state function for the case where nη = nY = 1 and nT =
nKL = 2 due to a perturbation in the design parameter yq.

Clearly, while exploring a possible realization u drawn from f
IS,(i,k)
U (u) (as defined in equation (12)) within

the framework of the Domain Decomposition Method, the effective contribution pi,k is affected by the design
parameter perturbation. Consequently, the failure probability estimator changes.

The desired sensitivities can be obtained by calculating the partial derivative of equation (13) with respect to
a design parameter yq = 1, . . . , nY , leading to:

∂pF (y)

∂yq
=

nη∑

i=1

nT∑

k=1

(
1

wi,k

∂pi,k(y)

∂yq

)
wi,k, (16)

where the term ∂pi,k(y)/∂yq can be calculated using Leibniz’ rule [22]. The chain rule for differentiation
involves calculating the derivatives of the discretized responses of interest from equation (3). This is followed
by calculating the derivatives of the impulse response functions and, consequently, the derivatives of the
system’s spectral properties (natural frequencies and mode shapes). This task can be efficiently performed
using the method proposed in [15], which involves solving a system of linear equations associated with the
system’s stiffness and mass matrices, as well as their derivatives.

The sensitivity of the first excursion probability in equation (16) can also be estimated through simulation by
sampling the discrete random variable wi,k and the continuous random variable u, resulting in:

∂pF (y)

∂yq
≈ ∂p̃F (y)

∂yq
=

1

N

N∑

j=1


 1

w(i,k)(j)

∂p̃(i,k)(j)
(
u(i,k)(j)

)

∂yq


 , (17)

where the pair (i, k) associated with the sample (j) is randomly selected with probability proportional to the
weightswi,k;N is the total number of samples; the vectoru(i,k)(j) is distributed according to f IS,(i,k)

U (u); and
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∂p̃(i,k)(j)(y,u(i,k)(j))/∂yq is a single estimation of the derivative of the effective contribution ∂pi,k(y)/∂yq,

where u(i,k)(j) denotes a sample drawn from f
IS,(i,k)
U (u). Therefore, equation (17) is the gradient of the first

excursion probability estimator, with respect to the design parameter yq, by means of Domain Decomposition
Method.

4 Numerical example

The gradient estimates of the first excursion probability, by means of Domain Decomposition Method, are
presented in a numerical example involving a three-dimensional finite element model which comprises 29466
degrees-of-freedom, where linear elastic behavior is assumed. The model, illustrated in Figure 4, is a 16-
story reinforced concrete building where each typical floor involves columns, beams, slab and a shear wall
core (highlighted as blue in Figure 4). The slabs of each floor have a thickness of 18 [cm], while the shear
walls possess a nominal thickness of 40 [cm], both modeled using shell elements. The interstory height is
equal to 3.24 [m], which gives a total building height of 52.0 [m]. The material properties for the reinforced
concrete are giving by the Young’s modulus E = 2.5× 1010 [N/m2], the Poisson ratio ν = 0.3 and the mass
density equal to 2500 [kgf/m3]. To ensure a correct characterization of the response, the first 20 mode shapes
are retained. In addition, a classical damping of 5% is considered for all modes.

45◦

x

y

ground
acceleration

reinforced concrete
shear wall core

Figure 4: Perspective view of schematic representation of 16-story reinforced concrete building subject to
stochastic ground acceleration.

The stochastic ground acceleration is modeled as a modulated discrete white noise process applied at 45◦

with respect to the x axis. This white noise passes through a Clough-Penzien filter (see e.g. [26]) and has a
spectral density of S = 3× 10−3 [m2/s2]. The duration of the ground acceleration is T = 10 [s], discretized
into 1001 time instants (nKL = nT = 1001), each of duration ∆ = 0.01 [s]. The discrete white noise

USD – METHODS 4491
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process is modulated by the following function m(t):

m(t) =





(t/5)2 0 ≤ t ≤ 5[ s]
1 5 ≤ t ≤ 6[ s]

e−(t−6)2 t > 6[ s]

. (18)

In addition, the Clough-Penzien filter is characterized by the natural circular frequencies ωg,1 = 15.6 [rad/s]
and ωg,2 = 10 [rad/s], and the damping ratios ζg,1 = 0.6 and ζg,2 = 0.9.

The sixteen interstory drifts corresponds to the responses of interest in both x and y directions. They are
measured with respect to the center of each of the floors during the stochastic excitation. That means a total
of nη = 32 responses of interest in 1001 time instants, being involved a total of 32000 elementary failure
domains. The performance criterion is based on serviceability requirements and specifies that none of the
responses should exceed a prescribed threshold of bi = 6.5 mm, which is 0.2% of the floor height. The
first excursion probability associated with this problem is calculated by means of Domain Decomposition
Method, resulting in p̃F ≈ 2.0 × 10−3. The objective is to estimate the sensitivity of the first excursion
probability by means of Domain Decomposition Method with respect to the vector y = [y1, . . . , y8]

T , where
yq denotes the thickness of the reinforced concrete shear wall core of the (2q − 1)-th and (2q)-th floors. For
instance, y2 represents the thickness of the shear walls from the reinforced concrete core on the 3rd and 4th
floors.

The sensitivity estimates were calculated as a byproduct of the reliability analysis, offering a significant
advantage in terms of computational effort. Furthermore, it is important to note that the results are presented
based on the number of samples, with each sample involving one dynamic analysis and one sensitivity
analysis.

Figure 5: Evolution of the estimator of the partial derivative of the probability with respect to yq, q = 1, 2, 3, 4
and its coefficient of variation with respect to the number of samples, using DDM.

The results of the sensitivity estimates are presented in Figures 5 and 6. The left side of the first figure shows
the evolution of the sensitivity estimates associated with the design parameters yq, for q = 1, 2, 3, 4 with
respect to the number of samples, while the right side shows the evolution of the coefficient of variation
associated with the same estimates with respect to the number of samples. The second figure shows the same
situation as before, but the curves are associated with the remaining design parameters yq, for q = 5, 6, 7, 8.
It is possible to observe that stable estimates can be obtained with a reduced number of samples. The
authors have verified the performance compared with Monte Carlo simulation (using finite differences),
which requires generating a large number of samples of the order of millions, to achieve stable estimates,
while DDM requires approximate 5000 samples for most estimators. Monte Carlo Simulation results are
not shown for the sake of brevity. Furthermore, the results presented in Figures 5 and 6 indicates that for
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Figure 6: Evolution of the estimator of the partial derivative of the probability with respect to yq, q = 5, 6, 7, 8
and its coefficient of variation with respect to the number of samples, using DDM.

q = 1, 2, 3, 4, 5, the sensitivity estimates are negative. The interpretation is that increasing the shear wall’s
thickness from the first floor to the tenth floor results in a decrease in the failure probability. Hence, it reduces
the maximum displacements of the building. Then, for q = 6, 7, 8, the sensitivity estimates are positive. The
latter means that increasing the shear wall’s thickness from the eleventh to the sixteenth floor, increases the
failure probability. This occurs due to a stiffening in the upper floors, which tends to behaves as a rigid body,
and as a consequence, produces an increasing in the maximum displacements of the building. While some
results may seem intuitive, it is important to note that the magnitude associated with y4 is larger than y1,
y2, and y3. These conclusions highlight the complexity of the influence of design parameters on the failure
domain and emphasize the importance of studying sensitivities.

5 Conclusions

This contribution has explored the application of Domain Decomposition Method for estimating the sen-
sitivity of the first excursion probability of a linear system subject to a Gaussian loading. The sensitivity
corresponds to the partial derivative with respect to design parameters that affect the structural response.
The calculation of the sought sensitivities is achieved with a reduced number of samples, demonstrating
high efficiency and stability. The proposed framework gathers vauable information of the failure domain, by
exploring the failure domain in a directional way. For each line explored, the information of the effective
contribution of the failure probability and its gradient for each elementary failure domain is incorporated into
both estimators. Furthermore, the sensitivities are estimated as a byproduct of the reliability analysis.

Future extensions of the presented research could explore:

• An extension to more general types of Gaussian excitation.

• Designing a modified Importance Sampling Density function, for efficiency purposes.

• The sensitivity calculation with respect to excitation parameters, i.e., frequencies of the Clough-
Penzien model filters.

• Application of the framework in the context of reliability based design optimization (RBO) problems.

The above-mentioned issues are currently being investigated by the authors.
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