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Abstract 

This contribution proposes a novel approach to estimate the first excursion probability and its sensitivity, leveraging 

the multidomain Line Sampling methodology to assess the reliability sensitivity of large-scale finite element models. 

The work is focused on linear structural systems subjected to a Gaussian loading, where the sensitivity is calculated 

with respect to deterministic structural parameters. The results indicate that the proposed framework excels in 

certain cases in terms of both accuracy and efficiency when compared to a similar method. 
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1. Introduction 

In the context of structural dynamics, the safety 

level can be quantified by means of the so-called first 

excursion probability. This quantity measures the 

probability of one or more responses of interest 

exceeding a prescribed threshold as a result of a 

stochastic excitation [1]. The specific case where the 

behavior of the system remains linear and the stochastic 

loading is modelled as a Gaussian process brings 

important advantages, which have been addressed 

through several methods. Examples of the latter include 

a very efficient Importance Sampling (EIS) approach 

[2], the Domain Decomposition Method (DDM) [3], 

Directional Importance Sampling (DIS) [4] and lastly, 

multidomain Line Sampling (mLS) [5]. 

First excursion probabilities may, however, be 

highly sensitive to changes in structural properties, 

such as alterations in mass, stiffness, or geometrical 

dimensions of structural members. Therefore, 

quantifying the influence of these parameters on the 

first excursion probability becomes paramount for 

reliability assessment purposes [6]. Such information 

can be very useful in the context of risk evaluation, 

decision making, as well as reliability-based design 

optimization problems [7]. A possible means to 

quantify this sensitivity is calculating the gradient of the 
failure probability with respect to structural properties. 

The estimation of the gradient of the failure probability 

is a challenging task that has been explored in the 

literature in the past, see e.g. [8] and [9]. Within this 

research branch, the gradient of the failure probability 

can be calculated with respect to two different types of 

parameters [10]. First, it can be calculated with respect 

to distribution parameters of random variables, which 

are linked with the description of uncertain structural 

properties [11]. Second, it can be calculated with 

respect to deterministic structural behavior-related 

parameters [6,12], which is the focus of this work. 

This paper introduces a framework for estimating 

the first excursion probability and its sensitivity based 

on multidomain Line Sampling, with emphasis on 

assessing the reliability sensitivity of large-scale finite 

element models. The investigation concentrates on 

linear structural systems subjected to a Gaussian 

loading, where sensitivity is calculated with respect to 

changes in deterministic structural parameters. In this 

regard, the use of multidomain Line Sampling plays a 

key role to obtain a precise estimator of sensitivity. That 

stems from the way the sampling method approaches 

the limit state hypersurface, demonstrating a notable 

enhancement when contrasted with a comparable 

method [13]. Furthermore, the sensitivity estimator is 

achieved as a byproduct of the reliability analysis [14] 

together with a sensitivity analysis of the spectral 

properties of the system [15]. For illustration purposes, 

the scheme is applied to a large-scale finite element 

model. 
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2. Problem Statement 

2.1. Gaussian Loading 

Assume that the dynamic loading acting on a given 

structural system is modeled as a discrete Gaussian 

process of duration 𝑇, discretized in 𝑛𝑇 time instants of 

duration Δt, where the 𝑘-th time instant is defined as 

𝑡𝑘 = (𝑘 − 1)Δ𝑡, 𝑘 = 1, … , 𝑛𝑇 . The loading is 

represented as a Karhunen-Loève expansion (see e.g. 

[16] and [17]) and is expressed as: 

𝑝(𝑡𝑘, 𝒛) = 𝜇𝑘 + 𝝍𝑘
𝑇𝒛, (1) 

where 𝑝 represents the load at time 𝑡𝑘; 𝒛 is a realization 

of a standard Gaussian random variable vector 𝒁  of 

dimensions 𝑛𝐾𝐿 × 1, being 𝑛𝐾𝐿 the order of truncation 

of the expansion (𝑛𝐾𝐿 ≤ 𝑛𝑇); 𝜇𝑘 is the mean value of 

the stochastic process at time 𝑡𝑘 (assumed as zero); and 

𝝍𝑘 is a 𝑛𝐾𝐿 × 1 vector containing the information on 

the covariance of the Gaussian process. 

2.2.  Structural System 

The equation of motion associated with a linear 

elastic and classically damped structural system [19] is 

given by: 

𝑴(𝒚)�̈�(𝑡, 𝒚, 𝒛) + 𝑪(𝒚)�̇�(𝑡, 𝒚, 𝒛) + 𝑲(𝒚)(𝑡, 𝒚, 𝒛)
= 𝒈(𝒚)𝑝(𝑡, 𝒛), 𝑡 ∈ [0, 𝑇], (2) 

where 𝒙 , �̇�  and �̈�  are vectors representing the 

displacement, velocity and acceleration, respectively, 

all with dimensions 𝑛𝐷 × 1; the matrices of mass 𝑴, 

damping 𝑪 and stiffness 𝑲, are of dimension 𝑛𝐷 × 𝑛𝐷; 

the coupling vector of the loading with the degrees-of-

freedom is 𝒈, which has dimensions 𝑛𝐷 × 1; and the 

vector 𝒚  of dimension 𝑛𝑌 × 1  comprises the 

parameters representing the structural properties of the 

system, which may be subject to potential changes 

influenced by practical design decisions [18]. For 

example, parameters contained in 𝒚 could be related to 

the geometry of structural members (such as cross 

section or length), or material properties (such as 

Young's Modulus), among others. 

Effectively managing certain dynamic responses, 

like displacements, accelerations, and internal stresses, 

is of utmost importance. These responses of interest are 

defined as 𝜂𝑖(𝑡, 𝒚, 𝒛), 𝑖 = 1, … , 𝑛𝜂 , and are calculated 

using the convolution integral [19]: 

𝜂𝑖(𝑡, 𝒚, 𝒛) = ∫ ℎ𝑖(𝑡 − 𝜏, 𝒚)𝑝(𝜏, 𝒛)𝑑𝜏,
𝑡

0

𝑖 = 1, … , 𝜂𝜂 , (3) 

where ℎ𝑖 is the unit impulse of the 𝑖-th interest response 

function, which can me calculated by modal analysis 

[19]. Equation (3) is deduced under the assumption of 

null initial conditions. 

Considering the time discretization defined in Section 

2.1, the responses of interest are given by: 

𝜂𝑖(𝑡𝑘 , 𝒚, 𝒛) = 𝒂𝑖,𝑘(𝒚)𝑇𝒛, (4) 

where 𝒂𝑖,𝑘(𝒚) is a vector of dimension 𝑛𝐾𝐿 × 1 which 

is defined as: 

𝒂𝑖,𝑘(𝒚) = ∑ Δ𝑡𝜖𝑚ℎ𝑖(𝑡𝑘 − 𝑡𝑚, 𝒚)𝝍𝑚,
𝑘

𝑚=1
 

(5) 

where 𝜖𝑚  is chosen according to the adopted 

integration rule [20]. For example, using the trapezoidal 

rule 𝜖𝑚 = 1/2 if 𝑚 = 1 or 𝑚 = 𝑘; otherwise 𝜖𝑚 = 1. 

2.3. First Excursion Probability 

The design criteria vector 𝒃 has dimensions 𝑛𝜂 ×

1, where 𝑏𝑖  is its 𝑖-th element and correspond to the 

prescribed threshold for the 𝜂𝑖  response of interest. 

Therefore, the performance function 𝑔(𝒚, 𝒛) indicates 

whether the response of interest 𝜂𝑖 exceeds a prescribed 

threshold 𝑏𝑖  within the duration of the stochastic 

loading, and is given by: 

𝑔(𝒚, 𝒛)

= 1 − max
𝑖=1,…,𝑛𝜂

( max
𝑘=1,…,𝑛𝑇

(
|𝜂𝑖(𝑡𝑘 , 𝒚, 𝒛)|

𝑏𝑖
)), 

(6) 

where |∙| denotes absolute value. It is worth noting that 

the event in which a single response of interest 𝜂𝑖 

exceeds the prescribed threshold 𝑏𝑖  at a specific time 

instant  𝑡𝑘  defines the elementary failure event 𝐹𝑖,𝑘 . 

Furthermore, the failure domain can be formally 

defined as 𝐹 = {𝒛 ∈ ℝ𝑛𝐾𝐿 : 𝑔(𝒚, 𝒛) ≤ 0} , which 

corresponds to the union of all the elementary failure 

domains. The probability associated with the failure 

domain can be quantified by means of the so-called first 

excursion probability [1]: 

𝑝𝐹(𝒚) = ∫ 𝑓𝒁(𝒛)𝑑𝒛
𝑔(𝒚,𝒛)≤0

, (7) 

being 𝑓𝒁(∙) the standard Gaussian probability density 

function in 𝑛𝐾𝐿 dimensions. Equation (7) corresponds 

to an 𝑛𝐾𝐿-dimensional integral which does not have a 

closed-form solution and cannot be calculated 

analytically. Indeed, Equation (6) comprises a 

composition of 𝑛𝜂  ×  𝑛𝑇  linear elementary failure 

domains with significant degree of overlap between 
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them, as discussed in detail in [21]. Various simulation 

techniques have been developed to address this 

challenging problem, taking advantage of the system 

linearity; see, indicatively, [2,3,4]. 

2.4. Sensitivity of First Excursion Probability 

The first excursion probability, as shown in 

Equation (7), has a clear dependency on the design 

parameters vector 𝒚 . Therefore, it is of paramount 

interest to determine the sensitivity of this failure 

probability with respect to the design parameters. One 

potential approach to measure that sensitivity is to 

calculate the gradient of the first excursion probability 

with respect to a design parameter 𝑦𝑗 , which can be 

written as [23]: 

∂𝑝𝐹(𝒚)

∂𝑦𝑗

= − ∫
∂𝑔(𝒚, 𝒛)

∂𝑦𝑗𝑔(𝒚,𝒛)=0

1

‖∇𝒛𝑔(𝒚, 𝒛)‖
𝑓𝒁(𝒛)𝑑𝑆, 

(8) 

 

where 𝑝𝐹(𝒚)  denotes the first excursion probability, 

𝑔(𝒚, 𝒛) is the performance function, and 𝒛 represents a 

realization of a standard Gaussian random variable 𝒁. 

Additionally, ‖⋅‖ denotes the Euclidean norm; ∇𝑧 is the 

Nabla operator; 𝑓𝒁(𝒛)  is the standard Gaussian 

probability density function; and 𝑑𝑆  denotes a 

differential element of the limit state hypersurface, that 

is 𝑔(𝒚, 𝒛) = 0. Although Equation (8) does not have an 

analytical solution for most cases, different advanced 

simulation methods can be used to calculate it. 

3. Multidomain Line Sampling  

3.1. First Excursion Probability by means of mLS 

The elementary failure domains described in 

Section 2.4, as shown in [21], correspond to a series of 

hyperplanes, where each failure domain 𝐹𝑖,𝑘  can be 

decomposed into the positive part of the domain 𝐹𝑖,𝑘
+ , 

and in the negative part of the domain 𝐹𝑖,𝑘
− . Any of them 

takes place if the response of interest exceeds the 

prescribed threshold in the positive direction, where 

𝜂𝑖,𝑘 ≥ 𝑏𝑖 ; or in the negative direction, where 𝜂𝑖,𝑘 ≤

−𝑏𝑖. In each case, the resulting hypervolume associated 

with the failure region is bounded by a hyperplane, 

which is a consequence of the system linearity. For 

further clarification of the aforementioned idea, Figure 

1 illustrates a two-dimensional representation of the 

failure domain geometry for the case where 𝑛𝜂 = 1 and 

𝑛𝑇 = 𝑛𝐾𝐿 = 2 . Here, 𝐹1,1  and 𝐹1,2  are elementary 

failure domains which are decomposed in their positive 

and negative symmetric subdomains. In this example, 

it is straightforward to note that the failure domain is 

𝐹 = 𝐹1,1 ∪ 𝐹1,2 , and the overlap between the 

elementary failure domains is represented by the dark 

red color in the interacting regions. 

The estimation of the failure probability, 

leveraging the linearity of the system, has been 

addressed by several methods in the literature [2,3,4], 

and lastly by multidomain Line Sampling [5]. It has 

been demonstrated that the failure probability 𝑝𝐹 

showed in Equation (7) can be written as:  

𝑝𝐹(𝒚) = ∑ ∑ 𝑝𝑖,𝑘(𝒚)
𝑛𝑇

𝑘=1
,

𝑛𝜂

𝑖=1
 

(9) 

where 𝑝𝑖,𝑘  denotes the effective contribution to the 

failure probability of the failure event 𝐹𝑖,𝑘, which can 

be calculated as it follows: 

𝑝𝑖,𝑘(𝒚) = ∫
1

∑ ∑ 𝐼𝐹𝑙,𝑚

𝑛𝑇
𝑚=1

𝑛𝜂

𝑙=1

𝑓𝒁(𝒛)𝑑𝒛
𝒛∈𝐹𝑖,𝑘

, 
(10) 

where 𝐼𝐹𝑖,𝑘
(𝒚, 𝒛) is an indicator function which is equal 

to 1 if 𝒛 ∈ 𝐹𝑖,𝑘and 0 in other case.   

 

Figure 1: Two-dimensional representation of the 

failure domain geometry. 

The effective contributions can be efficiently calculated 

by means of Line Sampling [22]. The estimation of 𝑝1,1 

is illustrated schematically in Figure 2 following the 

same two-dimensional case showed before. It can be 

seen that 𝜶𝟏  represents the so-called important 

direction and is pointing towards 𝐹1,1
+ , which can be 

calculated based on the discretized response of interest 

shown in Equation (4). From this vector, the 

coordinates 𝑧1
∥ and 𝒛1

⊥ can be defined, where 𝑧1
∥ points 

in the direction parallel to the important direction 𝜶1, 

and 𝒛1
⊥  points in the orthogonal direction to the 

important direction 𝜶1 . The way Line Sampling 

estimates the effective contribution 𝑝1,1  is through 

simulation. It generates a random sample from to the 

coordinate set 𝒛1
⊥ (denoted as 𝒛1in Figure 2), and then 
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calculates the integral along the green line (parallel to 

𝜶1). It is important to note that the integral calculation 

is performed over the elementary failure domain 𝐹1,1, 

represented by the solid part of the green line. Moreover, 

the calculation of the responses of interest along a line 

involves two dynamic analyses, one associated with the 

parallel component and one with the perpendicular 

component [5]. 

 

Figure 2: Application of Line Sampling for estimating 

the effective contribution 𝑝1,1 

In practical implementation of multidomain Line 

Sampling, instead of explicitly calculating all effective 

contributions 𝑝𝑖,𝑘  as outlined in Equation (9), the 

summation is estimated via simulation [3] by 

incorporating the weights 𝜔𝑖,𝑘 . A very convenient 

choice of the weights is to be proportional to the 

probability of occurrence of the event 𝐹𝑖,𝑘, as depicted 

in [2]. The weights can be calculated as: 

𝜔𝑖,𝑘 =
𝑃[𝐹𝑖,𝑘]

∑ ∑ 𝑃[𝐹𝑙,𝑚]
𝑛𝑇
𝑚=1

𝑛𝜂

𝑙=1

, 
(11) 

where 𝑃[𝐹𝑖,𝑘]  is the probability of failure associated 

with the elementary failure event 𝐹𝑖,𝑘. It can be noted 

that the denominator corresponds to an upper bound for 

the failure probability [2]. Therefore, Equation (9) can 

be written as follows: 

𝑝𝐹(𝒚) = ∑ ∑ (
𝑝𝑖,𝑘(𝒚)

𝜔𝑖,𝑘
) 𝜔𝑖,𝑘

𝑛𝑇

𝑘=1
.

𝑛𝜂

𝑖=1
 

(12) 

The incorporation of the weights 𝜔𝑖,𝑘  can be 

interpreted as the probability mass function of a discrete 

random variable. Therefore, combining the last 
definitions it is possible to calculate the failure 

probability by means of simulation as: 

𝑝𝐹(𝒚) ≈ �̃�𝐹(𝒚)

=
1

𝑁
∑ (

1

𝜔𝑖,𝑘
{𝑗}

𝑝𝑖,𝑘
{𝑗}

(𝒚, 𝒛⊥,{𝑗}))
𝑁

𝑗=1
, 

(13) 

where the pair(𝑖, 𝑘)  associated with the sample {𝑗} is 

randomly selected with probability proportional to the 

weights, and 𝑁 is the total number of samples. 

3.2. Sensitivity of First Excursion Probability by 

means of mLS 

The sensitivity of the first excursion probability is 

directly related to the sensitivity of the limit state 

hypersurface associated with the failure domain. To 

exemplify how changes in the vector 𝒚  affects its 

geometry, a two-dimensional case is considered, where 

the failure domain is constructed by the union of two 

elementary failure domains, with a single design 

parameter involved. In the Figure 3, 𝑔(𝑦𝑗 , 𝒛) < 0 

represents the failure domain, and 𝑔(𝑦𝑗 , 𝒛) > 0 the safe 

domain, where the limit state function (red line) is 

perturbed (blue line) due to a change 𝛥𝑦𝑗 in the design 

parameter 𝑦𝑗 . The sensitivity estimator represents the 

quantification of the potential change in the failure 

probability resulting from this perturbation.  

 
Figure 3: Two-dimensional representation of the 

sensitivity of the limit state function 

In the case of multidomain Line Sampling, the 

dashed lines in Figure 3 illustrate how the exploration 

is performed. For a realization 𝒛  of 𝒁 , the failure 

domain is explored along a line that is perpendicular to 

one of the independent limit state functions, as is 

showcased in Section 3.1. Moreover, this change has an 

evident impact on the calculation of the effective 

contribution 𝑝𝑖,𝑘 , and consequently, in the first 

excursion probability estimator. 

The sought sensitivity can be calculated taking the 

derivative of Equation (12) with respect to a design 

parameter yj, j = 1, … , nY, resulting in: 
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𝜕𝑝𝐹(𝒚)

𝜕𝑦𝑗
= ∑ ∑ (

1

𝜔𝑖,𝑘

𝜕𝑝𝑖,𝑘(𝒚)

𝜕𝑦𝑗
) 𝜔𝑖,𝑘

𝑛𝑇

𝑘=1

𝑛𝜂

𝑖=1
, 

(14) 

where the term 𝜕𝑝𝑖,𝑘(𝒚)/𝜕𝑦𝑗  can be calculated using 

Leibniz’ rule [23], primarily involving the derivative of 

the responses of interest. In turn, the convolution 

integral is involved, as shown in Equation (3) and its 

discretized form, as shown in Equation (4), which 

implies calculating the derivatives of the impulse 

response functions. These derivatives entail 

differentiating the spectral properties of the system 

(natural frequencies and mode shapes), a task widely 

explored in literature [24]. One advantageous approach 

from the computational effort standpoint is proposed by 

[15], which involves solving systems of linear 

equations associated with the structural matrices and 

their derivatives.  

 Ultimately, Equation (14) can also be computed 

through simulation, and its formulation is as follows: 

𝜕𝑝𝐹(𝒚)

𝜕𝑦𝑗
≈

𝜕�̃�𝐹(𝒚)

𝜕𝑦𝑗

=
1

𝑁
∑ (

1

𝜔𝑖,𝑘
{𝑗}

𝜕𝑝𝑖,𝑘
{𝑗}

(𝒚, 𝒛⊥,{𝑗})

𝜕𝑦𝑗
)

𝑁

𝑗=1
, 

(15) 

where the pair (𝑖, 𝑘) associated with the sample {𝑗} is 

randomly selected with probability proportional to the 

weights, and 𝑁  is the total number of samples. It is 

worth noting that the level of precision of the sensitivity 

estimator can be quantified in terms of its coefficient of 

variation (see, e.g. [25]). 

4. Numerical Example 

The numerical example corresponds to a 3-D finite 

element model of a curved bridge which comprises 

10068 degrees-of-freedom. The model is based on an 

example presented in [4]. The superstructure is 

modeled as a monolithic box girder which is 

represented through shell and beam elements. 

Regarding its geometry, is curved in the plane 𝑥-𝑦 with 

a total length of 119 [m], composed of five spans of 

length 24 [m], 20 [m], 23 [m], 25 [m], 27 [m], 

respectively. The substructure is modeled by means of 

four columns with diameter 1.6 [m] and height 8 [m]. 

Each of the columns is supported by four piles of 35 

[m] length and diameter 0.6 [m]. The interaction 

between the piles and soil is modeled by means of linear 

springs with translational stiffness in 𝑥 and 𝑦 direction. 

A sketch of the curved bridge model is shown in Figure 

4, where the columns are denoted as 𝐶𝑘, 𝑘 ∈ [1,2,3,4]. 
The stiffness of the above-mentioned springs varies 

linearly from 𝑘𝑠 = 112 [MN/m] at the deepest point of 

the pile up to 0 [MN/m] at the ground level. All the 

superstructure and substructure elements are modeled 

with the same material properties, being reinforced 

concrete with Young’s modulus 𝐸 = 2.09 × 1010 

[N/m²], Poisson ratio 𝜈 = 0.2  and density 𝜌 = 2500 

[kg/m³]. The classical damping considered is equal to 

3% for all mode shapes. 

The excitation acting on the bridge is modeled as 

a discrete white noise process of spectral intensity 𝑆 =
5 × 10−4 [m²/s³], with a duration of 𝑇 = 10  [s], 

discretized in 1001 time instants of duration Δ𝑡 = 0.01 

[s]. It is applied with an angle of 45 degrees as is shown 

in Figure 2.b. In addition, the white noise passes 

through a Clough-Penzien filter [26] and is modulated 

by the following function 𝑚(𝑡): 

 

𝑚(𝑡) = {
(

𝑡

5
)

2
0 ≤ 𝑡 ≤ 5 [s]

1 5 ≤ 𝑡 ≤ 6 [s]

𝑒−(𝑡−6)2
𝑡 > 6 [s]

. (16) 

 

 

Figure 4: Curve bridge finite element model. (a) 

Perspective view; (b) Plan view 

The assumption is made that the structure starts 

from a position of rest. The failure event is defined as 
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the drift of the columns (in either 𝑥  or 𝑦  direction) 

exceeding a threshold of 𝑏 = 0.02  [m] within the 

duration of the stochastic excitation. It is a challenging 

problem which involves a large number of individual 

criteria (1001-time instants and 8 interest responses, a 

total of 8008 elementary failure domains). Moreover, 

for the dynamic analysis, a truncation to 100 mode 

shapes has been realized to ensure a correct 

representation of the response. The first excursion 

probability associated with this problem is calculated 

using mLS resulting in �̃�𝐹
𝑚𝐿𝑆 ≈ 3.0 × 10−3 . The 

objective is, by using mLS, determining the sensitivity 

of the first excursion probability with respect to vector 

𝒚 = [𝑦1, … , 𝑦4]𝑇 , where 𝑦𝑗 , 𝑗 ∈ [1,2,3,4]  denotes the 

diameter of the 𝑗 -th column. The sensitivities 

calculation offers key information for assessing the 

bridge columns design to fulfill the serviceability 

requirements.

 

Figure 5: Estimators for the gradient of the first 

excursion probability 

 

Figure 6: Coefficient of variation of the sensitivity 

estimators of the first excursion probability 

 

The sensitivities of the first excursion probability 

with respect to the parameters 𝑦𝑗 are calculated by both 

The evolution of the four estimates ∂�̃�𝐹(𝒚)/ ∂𝑦𝑗, and 

their associated coefficients of variation δ𝑦𝑗
, with 

respect to the number of the performed dynamic 

analyses, are shown in Figure 5 and Figure 6. It can be 

observed that stable estimates can be achieved with a 

reduced number of dynamic analyses, reaching values 

close to a coefficient of variation of 20% with 4000 

dynamic analyses in the worst case. After a large 

number of simulations, it is possible to identify the most 

recurrent failure mode, which involves a rotation of the 

bridge in a point between columns 1 and 2. In this 

regard, the results show that increasing the diameter of 

the columns 𝐶3  and 𝐶4 , decreases the failure 

probability, which can be interpreted physically as 

opposing a potential rotation of the bridge (and 

reducing the drifts). On the other hand, increasing the 

diameter of columns 𝐶1  and 𝐶2 , increases the failure 

probability, which can be interpreted as contributing a 

potential rotation of the bridge (and increasing the 

drifts). 

 

Figure 7: Sensitivity estimator with respect to 

design parameter y4 

 

Figure 8: Coefficient of variation of sensitivity 

estimator with respect to design parameter y4 

 

Furthermore, in Figure 7 and Figure 8, a 

comparative analysis of the sensitivity estimator related 

to 𝑦4  is depicted, showcasing the outcomes obtained 

through both mLS and Directional Importance 

Sampling (DIS) [13]. DIS serves as a comparable 

method, as it is also a simulation-based approach for 

gradient estimation. The comparison is presented in 

terms of the number of dynamic analyses needed to 

obtain a single value of the sensitivity estimator and its 

corresponding coefficient of variation. It is worth 
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noting that mLS requires two dynamic analyses and 

two sensitivity analyses for simulation, while DIS 

requires one dynamic analysis and one sensitivity 

analysis for simulation. Our findings reveal that the 

sensitivity estimator calculated using mLS requires 

fewer dynamic analyses to achieve a determined 

precision level when compared to the estimator 

calculated using DIS. Moreover, it is evident that mLS 

produces a more stable estimator than DIS, for the 

example under consideration. 

5. Conclusions 

This paper has examined the application of 

multidomain Line Sampling for estimating the 

sensitivity of the first excursion probability of a linear 

system subject to a Gaussian loading. The sensitivity of 

the first excursion probability is calculated as a 

byproduct of the reliability analysis. Additionally, the 

calculation involves the sensitivity analysis of the unit 

impulse response functions, as well as the spectral 

properties of the system. 

 The calculation of the sought sensitivities using 

multidomain Line Sampling is achieved with a reduced 

number of dynamic analyses, demonstrating improved 

efficiency and stability when compared with 

Directional Importance Sampling. One advantage of 

mLS over DIS is how the failure domain exploration is 

performed. Each exploration line in mLS contributes 

information on the derivative of each elementary failure 

domain, while DIS, along one direction, provides 

information on just the derivative of the union of all 

elementary failure domains. 

Future extensions of the presented research could 

explore: 

• Efficiency improvement by designing a modified 

Importance Sampling Density function.  

• An extension to more general types of Gaussian 

excitation. 

• The sensitivity calculation with respect to 

excitation parameters, i.e., frequencies of the 

Clough-Penzien model filters. 

The above-mentioned issues are currently being 

investigated by the authors. 
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