

Folio 01

Book 02

Archive 23

Ali Osman Mert Kilicsoy

Gradient-enhanced neural

networks: applications in linear

and nonlinear mechanics,

Master thesis

Nr. 003.01

2023

Gradient-enhanced neural networks:

applications in linear and nonlinear

mechanics

To obtain an academic degree

from the Faculty of Mechanical Engineering

at the Technical University of Dortmund

presented by

Ali Osman Mert Kilicsoy, B.Sc.

from

Duisburg, Germany

Dortmund, 2023

© Copyright Technische Universität Dortmund

Without the prior written consent of both the promoter(s) and the author(s), copying, using or

realizing this publication or parts thereof is prohibited. For applications regarding the acquisition

and/or use and/or realization of parts of this publication, you can contact Prof. Dr. Matthias G.R.

Faes, Chair for Reliability Engineering, TU Dortmund, Leonhard – Euler Straße 5, D-44227,

Dortmund, +49 231 755 6830 or via email matthias.faes@tu-dortmund.de

Prior written consent of the supervisor(s) is also required for the use of the (original) methods,

products, circuits, and programs described in this master's thesis for industrial or commercial use

and for the submission of this publication for participation in scientific prizes or competitions.

mailto:matthias.faes@tu-dortmund.de

Abstract I

Abstract

Neural networks provide alternative models to approximate complex numerical models for

regression. Improving approximation capabilities through use of gradient data with respect to the

inputs is explored experimentally by applying them to linear and non-linear mechanics of 2D

elasticity of a hook object attached to a wall. The training data is generated by a finite element

model, an approximation of the hook object itself. Various metrics to compare the increase or

decrease in performance are analyzed to show that gradient data with respect to the inputs does

improve performance. This increase in performance comes two-fold, for one the quality of ap-

proximation improves and secondly less data and training time is required to approximate as well

as a basic neural network. By introducing gradient information into the loss function of the neural

network the loss of the model is expanded by addends. A method to blend the additional losses

with the original model loss for this weighting problem is explored experimenting with ways of

adjusting scale difference between training data, even after standardization has occurred. Com-

parisons are done, mainly with loss and relative 𝑙2 error of the model outputs and processing times

are also observed to gauge viability of gradient enhanced neural networks replacing other approx-

imation methods. This work will show an improvement of performance when incorporating gra-

dient data with respect to the inputs. The various methods to solve the weighting problem show

worse or equal performance than the basic gradient enhanced model, however certain potential

improvable tendencies are observed. Many different dimensions for neuron number, layer num-

ber, training data size are considered, but still leave room for greater dimensions to be analyzed.

Furthermore, the applied methods to solve the weighting problem in this work are very simplistic

and few, which can be expanded on under consideration of the scale difference between output

and its gradient with respect to the inputs.

Keywords:

neural networks, gradient-enhanced, sobolev, linear and non-linear elasticity, loss weights, finite

element model

Table of contents II

Table of contents

Abstract ... I

Table of contents ... II

List of abbreviations ... III

List of figures ... IV

List of Tables ... VI

1 Introduction .. 1

2 Literature Review .. 4

2.1 Neural Networks ... 4

2.1.1 General Function ... 4

2.1.2 Information and Statistical Theory .. 5

2.2 Types of Neural Networks .. 8

2.2.1 Artificial Neural Network (ANN) ... 9

2.2.2 Convolutional Neural Network (CNN) ... 10

2.2.3 Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)

 .. 11

2.3 Neural Network Parts and Subparts .. 12

2.3.1 Input, Output and Hidden Layer .. 12

2.3.2 Neurons ... 14

2.3.3 Activation Function ... 14

2.3.4 Types of Activation Functions .. 15

2.3.5 Weights and Biases ... 18

2.3.6 Training ... 18

2.3.7 Loss Functions ... 19

2.3.8 Training Algorithms .. 21

2.3.9 Data Preprocessing .. 36

2.4 Neural Network Enhancements .. 37

2.4.1 Physics Informed Neural Network (PINN) ... 38

2.4.2 Gradient-Enhanced Physics Informed Neural Network (gPINN) 39

2.5 Finite Element Method, Sensitivity Analysis and Uncertainty Quantification 40

2.5.1 Finite Element Method .. 40

2.5.2 Sensitivity Analysis ... 41

2.5.3 Uncertainty Quantification .. 42

3 Methodology ... 45

3.1 Research goal .. 45

3.2 Gradient Enhanced Neural Network Model ... 46

3.3 First Variation – Expanding Model Output .. 47

Table of contents II

3.4 Second Variation – Loss addend .. 50

3.4.1 Neural Network Model Generation ... 52

3.4.2 Loss Function .. 55

3.4.3 Backpropagation per Automatic Differentiation ... 60

3.4.4 Loss Weight Methods .. 61

4 Analysis ... 64

4.1 Overview of Models ... 64

4.1.1 Finite Element Model .. 64

4.1.2 Model Hyperparameters .. 65

4.2 Results .. 66

4.2.1 Training and Prediction times ... 67

4.2.2 Comparisons – Linear Case ... 69

4.2.3 Comparison – Weighing of Losses .. 79

4.3 Discussion ... 83

5 Conclusion .. 85

List of References .. VI

Appendix/Appendices .. VII

Affidavit .. VIII

List of abbreviations III

List of abbreviations

Adam Adaptive moment estimation method

ANN Artificial neural network

CNN Convolutional neural network

ELU Exponential linear unit

FEM Finite element model

gPINN Gradient enhanced physics informed neural network

gNN Gradient enhanced neural network

LSTM Long short-term memory

MAE Mean-absolute error

MPE Mean percentage error

MSE Mean-squared error

NAG Nesterov accelerated gradient

NN Neural network

PDE Partial differential equation

PINN Physics informed neural network

ReLU Rectified linear unit

RMS Root-mean square error

RNN Recurrent neural network

SANN Sobolev neural network

List of figures IV

List of figures

Figure 2-1: The first perceptron by Rosenblatt (figure by author) ... 8

 Figure 2-2: 2D linear hyperplane splitting data into two classes. The weight vector runs

perpendicular to the hyperplane (figure by author) ... 9

Figure 2-3: Simplified neural network model, a black box model mapping input to output

(figure by author) ... 9

Figure 2-4: Application of feature mask onto input array (figure by author) 10

Figure 2-5: Recurrent feedback in a model with one neuron 𝒂 (figure by author) 11

Figure 2-6: A simple LSTM unit. The hidden state stores previous values, the cell state

stores long term previous values. The parameters inside this unit are part of the

neural network model parameters (figure by author) .. 12

Figure 2-7: A visual representation of input, hidden and output layer (figure by author) ... 13

Figure 2-8: The general calculation occurring inside a neuron, which is very similar to the

perceptron (figure by author) ... 14

Figure 2-9: The rectified linear unit (figure by author) .. 15

Figure 2-10: The leaky rectified linear unit (figure by author) .. 16

Figure 2-11: The exponential linear unit (figure by author) .. 16

Figure 2-12: The hyperbolic tangent (figure by author) .. 17

Figure 2-13: The sigmoid function (figure by author) ... 17

Figure 2-14: Generalized difference between the three methods of differentiation.

Illustrated by using the function 𝒇𝒙 = 𝐜𝐨𝐬⁡(𝒙 + 𝐜𝐨𝐬𝒙) (figure by author) 22

Figure 2-15: A feed-forward neural network model with 2 hidden layers with 3 neurons

each. It has 2 inputs and 1 output. Neuron outputs are defined as 𝒂 and the linear

part of the neuron output as are defined as 𝒛 (figure by author) 27

Figure 2-16: All 3 Paths for only 𝒘𝟏𝟏𝟎 shown with each distinct color (figure by author)

 31

Figure 2-17: A Simple structure of a PINN. The PDEs are simply an extension to the basic

neural network model, specifically the loss function. Denoted are the model

output 𝒖 and the true output 𝒖 and the PDE residual 𝑹(∙) (figure by author) 39

Figure 2-18: The gPINN is an expanded PINN structure. The additional loss of the gradient

of the PDE is now added to the total loss (figure by author) 40

Figure 2-19: Propagation of uncertainty through a deterministic method. The input

parameter x defines the response y through the probability distributions

file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410563
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410563
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410565
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410565
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410568
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410568

List of figures IV

𝒇(𝒙𝒊).The deterministic method is creating samples of response to generate

probability distributions 𝒇(𝒚𝒊) (figure by author) ... 43

Figure 3-1: Previous example of a neural network expanded to have 2 outputs (figure by

author) .. 47

Figure 3-2: Red marked lines are newly introduced connections in the neural network

(figure by author) ... 49

Figure 3-3: Information Flow Chart of the MATLAB Program Code (figure by author) ... 52

Figure 4-1: Sketch of the hook system approximated by the finite element model. The

design parameters 𝒙𝟏, 𝒙𝟐 = [−𝟏, 𝟏] adjust the blue marked nodes along the

green axis (figure by author).. 65

Figure 4-2: gNN vs. NN, 𝒍𝟐 error (figure by author) ... 69

Figure 4-3: gNN vs. NN, loss (figure by author) ... 69

Figure 4-4: gNN with different number of hidden layers, 𝒍𝟐 error (figure by author) 70

Figure 4-5: gNN with different number of hidden layers, loss (figure by author) 70

Figure 4-6: gNN with different number of neurons per hidden layer, 𝒍𝟐 error (figure by

author) .. 71

Figure 4-7: gNN with different number of neurons per hidden layer, loss (figure by author)

 71

Figure 4-8: gNN with different training data sizes, 𝒍𝟐 error (figure by author)................... 72

Figure 4-9: gNN with different training data sizes, loss (figure by author) 72

Figure 4-10: Confusion chart, FEM vs. gNN in red and FEM vs. NN in blue. The black

diagonal represents a perfect fit (figure by author) .. 73

Figure 4-11: Exceedance curve, FEM vs. NN. The means of both FEM and NN are drawn

in as vertical lines (figure by author) ... 73

Figure 4-12: Exceedance curve, FEM vs. gNN. The means of both FEM and gNN are

drawn in as vertical lines (figure by author) .. 74

Figure 4-13: : gNN vs. NN, 𝒍𝟐 error (figure by author) ... 74

Figure 4-14: gNN vs. NN, loss (figure by author) ... 75

Figure 4-15: gNN with different number of hidden layers, 𝒍𝟐 error (figure by author) 75

Figure 4-16: gNN with different number of hidden layers, loss (figure by author) 76

Figure 4-17: : gNN with different number of neurons per hidden layer, 𝒍𝟐 error (figure by

author) .. 76

Figure 4-18: gNN with different training data sizes, 𝒍𝟐 error (figure by author)................. 77

Figure 4-19: gNN with different training data sizes, loss (figure by author) 77

Figure 4-20: Confusion chart, FEM vs. gNN in red and FEM vs. NN in blue. The black

diagonal represents a perfect fit (figure by author) .. 78

Figure 4-21: : Exceedance curve, FEM vs. NN. The means of both FEM and NN are drawn

in as vertical lines (figure by author) ... 78

Figure 4-22: Exceedance curve, FEM vs. gNN. The means of both FEM and gNN are

drawn in as vertical lines (figure by author) .. 79

Figure 4-23: Fixed weight variants of gNN, 𝒍𝟐 error, linear (figure by author) 80

Figure 4-24: Fixed weight variants of gNN, loss, linear (figure by author) 80

Figure 4-25: Dynamic weight variants of gNN, 𝒍𝟐 error, linear (figure by author) 81

Figure 4-26: Dynamic weight variants of gNN, loss, linear (figure by author) 81

Figure 4-27: Fixed weight variants of gNN, 𝒍𝟐 error, nonlinear (figure by author) 82

Figure 4-28: Fixed weight variants of gNN, loss, nonlinear (figure by author) 82

Figure 4-29: Dynamic weight variants of gNN, 𝒍𝟐 error, nonlinear (figure by author) 83

Figure 4-30: Dynamic weight variants of gNN, loss, nonlinear (figure by author) 83

file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410568
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410568
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410569
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410569
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410570
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410570
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410571
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410573
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410574
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410575
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410576
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410577
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410577
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410578
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410578
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410579
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410580
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410581
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410581
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410582
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410582
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410583
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410583
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410584
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410585
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410586
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410587
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410588
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410588
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410589
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410590
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410591
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410591
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410592
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410592
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410593
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410593
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410594
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410595
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410596
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410597
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410598
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410599
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410600
file:///C:/Users/Mert/Desktop/Adjustments.docx%23_Toc145410601

List of Tables VI

List of Tables

Table 2-1: Variables and their definition (representation by author) 24

Table 4-1: Hyperparameter initialization values (representation by author) 66

Table 4-2: Hyperparameter adjustment for training data size variation results

(representation by author) .. 66

Table 4-3: Learnrate update table (representation by author) .. 66

Table 4-4: Prediction and Training times for linear elasticity, Time is in seconds

(representation by author) .. 68

Table 4-5: Prediction and Training times for non-linear elasticity, Time is in seconds

(representation by author) .. 68

Table 4-6: Fixed loss weights table (table by author) .. 79

Table 4-7: Dynamic Weight Table (table by author) ... 80

Introduction 1

1 Introduction

Machine learning and neural networks cover a wide net [1] of different fields of study,

whereby through a combination of the knowledge of the various fields they are capable of tasks,

such as classification or regression, as well as more complex functions, such as image recognition

or language recognition [1][2][3][4][5]. Although for a time neural networks were still behind

alternative preexisting methods in many cases [6][7], neural networks have shown great progress

in recent years with breakthroughs in many topics [8][9][10]. Furthermore new research has al-

lowed neural networks to tackle issues of very complex structure, like conversing with a human

through language and speech processing [11][12]. Other factors lending to these breakthroughs

include technological advancements of available hardware [13][14], but also the coordination be-

tween scientific fields, that were previously working parallel to each other [9][15]. Plenty of re-

search has been done and is still underway on further enhancing neural networks [16][17][18].

While there is plenty of research on a neural network’s activation functions [19][20], other re-

search tackles the general architecture of layers [21], the loss function of the model [22][23], the

optimization algorithm [24][25] and many others [26][27]. While neural networks have shown

great error ranges after the training process is completed [28][29][30], the amount of data neces-

sary to train a model, as well as training time are factors to consider for improvement [31][32].

There are a variety of tools available to engineers to solve problems of different nature. Cur-

rent numerical methods dominate the engineering market for problem solving, like finite element

method, finite difference method, Runge-Kutta methods, Monte-Carlo method and many more

[33][34][35]. These methods allow for the analysis of systems from simple to very complex na-

ture. While neural networks are more than capable after training to output results with very small

error margins, numerical methods are often faster for a few calculations and have a deeper back-

ground of research behind them. However there are certain fields and use cases, where neural

networks have been shown to be equal to numerical methods or provide an even better model for

problem solving [36][37][38]. In the case of uncertainty quantification, where it is necessary to

have multiple various results for a scenario/use case to be able to proceed with the calculations

and analysis of uncertainty, methods such as Monte-Carlo are the main tools for engineers [39].

Through Monte-Carlo simulation engineers can generate many datapoints necessary for uncer-

tainty quantification. The Monte-Carlo method however can be tedious, slow, and ineffective, as

well as inaccurate with its approximations, when dealing with large and complex data [40]. This

is one of the possible avenues in which neural networks can deliver an edge to current numerical

methods. Since numerical methods are very processing heavy and time consuming, the more com-

plex the system is and depending on the degree of accuracy the model should have, numerical

methods prove themselves very taxing [35]. Furthermore, for uncertainty quantification, where it

is necessary to produce a great dataset through deterministic methods, replacing those methods

with trained neural networks could help reduce the time necessary to produce large datasets. A

neural network model, provided it has enough training data and enough prior time to train, can

output satisfying results for multiple cases of the same scenario very quickly. If data of the system

that is to be approximated by a model is available and the data itself contains the underlying

Introduction 2

information and patterns necessary that describe that system, neural networks have been shown

to be able to approximate and generalize any such system [41][42]. Therefore, one could make

use of a neural network trained on sparse data, to generate and fill out the sparse data of a system

or model to then use the generated large data in uncertainty quantification to evaluate the system

or model. Some papers are already a step further where they use neural networks do directly

estimate uncertainty [43][44]. A neural network in its most basic form can be used for many tasks,

but there are a variety of different designs and architectures employed for various tasks and func-

tions. Still, adaptation of neural networks instead of current numerical methods is slow or unnec-

essary, as often neural networks only improve productivity by a little or not at all depending on

the use case and the available data. In addition, neural networks take time to train and need great

datasets to train accurately.

Another important part of research in neural networks concerns itself with the enhancement

of the existing designs of the models. Various enhancements of neural networks have shown that

the general idea of providing more information to the neural network model to constrain it often

improves accuracy and speed [45][46][47][48], possibly giving it an additional edge over basic

neural networks and possibly over widely used numerical methods. One such enhancement that

this work will present is through the addition of derivative information in the dataset used for

training a neural network model. By using available gradient data with respect to the inputs during

the training process the neural network model is now constrained on its output as well as the

derivative of the output resulting in quicker and more accurate training. Additionally, such neural

network enhancement can help alleviate the issue of the size of the training dataset necessary for

an accurate model. This is because many numerical methods and models use so called adjoint

methods which allow the calculation of derivatives without strongly affecting the processing time

[49][50].Figure 2-17

This work will concern itself with enhancing a basic regression neural network, that is a feed

forward neural network, through constraining the model loss function to be optimized by addi-

tional use of gradient information. Gradient information here means the partial derivatives of the

output value of our dataset with respect to inputs, not to be confused with the gradient descent

training method where the loss functions gradient is used to optimize the model parameters. The

general loss function that is formulated in regression neural networks and optimized through al-

gorithms is modified, by adding the loss of the gradient of the model consisting of the mean-

squared error of the residual of the gradient with respect to inputs of the model and the true gra-

dient with respect to inputs to the original mean squared error of the model output and the true

output. This approach of expanding the loss and adding new constraints has been used in other

papers concerning physics informed neural networks, PINNs, where they call it a gradient en-

hanced physics informed neural network, gPINN [48]. Other examples include a Sobolev neural

network, SANN, and a gradient enhanced neural network applied to uncertainty quantification.

The former goes into a detailed theoretical framework for using gradient information during train-

ing. The latter gives a theoretical framework for a basic 2 layer neural network. In this work the

loss function does not contain any partial differential equations or formulae constraints where the

output of the model is a parameter of a partial differential equation expressed as residuals. There-

fore, only the data and its underlying information will provide the constraints for the neural net-

work. Furthermore, the data used to train the neural network model will be generated by a finite

Introduction 3

element model of linear and nonlinear elasticity, which will be expanded on in section 2.5.1 and

4.1.1. This work will also apply different weight schemes to the losses of the neural network and

compare results [51].

Concerning the sections of this work, it proceeds as follows: First, the current state of the art

concerning neural networks as well as various model enhancements will be examined. This will

cover the basics of neural networks pertaining to this work, which includes their general functions

and use cases, a list of parts and subparts and their general functions, the process and theory of

training a model and the different algorithms and loss functions in use for training neural net-

works. Brief theoretical explanations of some parts are included as well. The section will also

include a detailed example of calculations for a regression neural network model similar to the

one used in this work for analysis. This example will focus on automatic differentiation, as in the

forward and backwards propagation of the model during training. Afterwards research of current

enhancements of neural networks and a brief focus on papers which cover enhanced neural net-

work models through use of gradient information is discussed. Lastly a succinct discussion on

finite element models in general and the theory behind the finite element model used for this

works analysis is addressed. Additionally, an overview on sensitivity analysis and uncertainty

quantification is included to clarify the use case for neural networks.

The next section will describe the gradient enhancement used in this work in detail and the

neural network architectures applied to the data of the linear and nonlinear systems generated by

the finite element model. The previously made calculations for the base neural network are revis-

ited and expanded on the gradient enhancement part. As the neural network will be programmed

in MATLAB, a concise presentation of the calculations and flow of information occurring inside

the program will be showcased. Then, the linear and nonlinear examples that are approximated

by the finite element model are presented and described. Following this, the generation of the

training data through the finite element model will be expanded on. This will include a short

descriptive summary of the finite element model’s attributes and code. Lastly the methodologies

used to analyze the results in the following section are elaborated on.

In the third section, the results will be visualized and analyzed. A concise presentation of all

results for each example and the variations will be showcased.

The fourth section will be a conclusion and summary of the work, where its results will be

evaluated. Furthermore, possible future developments and further research of interest following

this work are discussed.

Literature Review 4

2 Literature Review

2.1 Neural Networks

A neural network is a general model capable of representing or characterizing different func-

tions used for a multitude of applications in many different fields. Neural network models are

capable of approximating mathematical expressions, so if a task can be construed as such, a neural

network can achieve that task. While there is a great variety of neural networks when it comes to

their function and capabilities, every neural network follows a general design. Their earliest de-

sign lends itself to the system of biological neurons found in humans. Compared to other model-

based methods neural networks are mainly data driven models that self-adapt. This means a neural

network model has less assumptions before it is trained on data. The models use algorithms and

optimization of an objective function defined by the engineer to adapt itself to the data given to it

for training. Therefore, a neural network simply approximates whatever the data represents in the

form of the desired output, nothing else [52]. Through multiple interconnected nodes and different

parameters attributed to various mathematical processes, the model can produce an output by a

given input. Through a training process defined by an algorithm and a dataset of input/output

pairs, the model adjusts its accuracy for a given objective function. In contrast to regular pro-

gramming models, where “rules” are defined and with given inputs the model produces certain

desired outputs, a neural network model consists of a defined “ruleset” which through use of

algorithms during the training process is adjusted given the input/output pair dataset. This process

is comparable to the process of how humans adjust their ability of a task, given their experience,

hence the term “learning” is used as well for neural network training. Neural networks are capable

of simple tasks like regression and classification. More complex tasks, such as speech and image

recognition, involve more complex neural networks, but are also achievable [53].

2.1.1 General Function

A neural network is comprised of a collection of units, usually called neurons. These neurons

are linked together in structured layers, with a concrete flow of information. Depending on the

design, a neural network is capable of accomplishing tasks like regression or classification. There

are variations of these tasks, like binary classification and multivariable classification. The task

of the neural network is important when it comes to designing the model and its hyperparameters.

Hyperparameters are any adjustable attribute of a neural network. This includes how many neu-

rons or other parts are used, what algorithms and which parameters are used, etc. Mathematically,

a neural network is a series of nested functions which contain a vast array of parameters. How the

functions are nested is defined by the structure of the model, another hyperparameter. The func-

tions themselves are simple mathematical equations and its parameters in general are weight pa-

rameters and bias parameters. Because of the simplicity of a neural networks and their associated

mathematical equations, the models are quick and efficient at learning from data and once trained,

outputting correct results. By using a training dataset, the model learns the datasets patterns. This

Literature Review 5

training process involves algorithms that vary depending on the desired task or the available da-

taset and its mathematical space.

As an example, in the case of a regression task there are various simple or rigorous numerical

methods available to create a model which approximates a dataset. However, with a neural net-

work, the model would only use the available dataset to learn its underlying pattern through train-

ing algorithms, which once trained results in faster evaluation. While most of the structure of a

neural network is usually defined by the engineer, the set of parameters that make up the mathe-

matical process of the model are adjustable by the model itself during the training process. This

allows the model to find an optimal solution for the task “on its own”. Rephrased that means,

while in classical computer science and engineering approaches one uses predefined rules that are

then applied to data to obtain results, neural networks use datasets of input/output pairs to “create

its own rules”. They generalize and approximate the data and its patterns and information. These

models are then able to be applied to new data, given that it follows the same underlying pattern

and information of the used training data. The models can then output satisfactory results on data

they have never seen [53]. Mathematically, neural networks are general approximators, meaning

under certain conditions an adequately sized neural network is capable of approximating any

function [42]. Therefore, a dataset needs to contain an underlying pattern that can be “learned”

by the model. For example, in the case of binary classification of the very first proven concept of

a neural network, the perceptron, the data was dividable through a linear mathematical expression,

which the model approximates by adjusting its parameters [54].

2.1.2 Information and Statistical Theory

In general, the trained models are functions capable of mapping a given input to an output.

Through the training process, the likelihood of mapping an input to an output occurring correctly

is increased, which is why neural networks are very dependent on the used training data. The

theory of this machine learning process is the same behind adjusting a probability distribution to

correctly mirror a desired distribution of probabilities. By varying the likelihood of an expectation

of an event, our model’s probability distribution can copy the probability distribution of the da-

taset which optimally would be equal to the phenomena our dataset represents. The maximum

likelihood method allows exactly this. By minimizing the dissimilarities between the distribution

of our dataset and the model’s distribution of output values, cross-entropy is reduced. Information

theory gives us a broader understanding behind machine learning and cross-entropy. Since bits

are used to communicate information, one topic information theory concerns itself with is the

storage that is necessary for an observed event of a probability distribution. Intuitively, the rarer

an observed event is, the more bits should be “reserved” for such an event, as their information is

transferred less frequently. In short, the lower the probability of an observed event, the higher its

information. The information 𝐼(𝑥) of an observed event 𝑥 is defined through the probability 𝑃(⋅)

as follows:

𝐼(𝑥) = ⁡−𝑙𝑜𝑔⁡(𝑃(𝑥)) (2-1)

Literature Review 6

The entropy 𝐻(𝑥) is defined as the average number of bits necessary to transfer the infor-

mation of an event. It is expressed as:

𝐻(𝑥) = ⁡−∑𝑃(𝑥)log⁡(𝑃(𝑥)) (2-2)

The more even the probabilities in a probability distribution the higher the entropy. Entropy

here relates to how surprising the general events are. Following entropy, cross-entropy is called

the difference between two probability distributions for a given input. In the case of neural net-

works, our training algorithm aims at reducing the cross-entropy between the dataset and the

model’s predictions. Relating to information theory, cross-entropy expresses the average amount

of bits necessary to transfer data of the true distribution 𝑃 gained from the dataset, with the

model’s distribution 𝑄. For discrete probability distributions cross-entropy 𝐻(𝑃, 𝑄) is defined as:

𝐻(𝑃, 𝑄) = ⁡−∑𝑃(𝑥)log⁡(𝑄(𝑥)) (2-3)

In the case of continuous probability distributions, the expression changes to take the integral

across the events instead of the sum:

𝐻(𝑃, 𝑄) = ⁡−∫𝑃(𝑥)log⁡(𝑄(𝑥))𝑑𝑥 (2-4)

In the case of a neural network, the most used loss function is the mean-squared error. Per

theory, the mean-squared error is the cross-entropy between the dataset and the model’s distribu-

tion. The following is going to briefly summarize the theory explaining why the mean-squared

error loss function works for machine learning.

If 𝛩 is a parameter defining a probability distribution function and its parameters and X is the

joint probability of our dataset, to increase the probability 𝑃(𝑋⁡|⁡𝛩), means to find 𝛩, so that the

likelihood of 𝑋 being observed increases. Therefore, it is called likelihood 𝐿(𝑋; ⁡𝛩). 𝑋 can be split

into its various samples leading to 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛; ⁡𝛩). This joint probability distribution is de-

fined as the product of the probability of the sample given 𝛩 for all samples. This product over

many probabilities can lead to numerical underflow, therefore the natural logarithm log is taken.

The log does not change the argmax of the likelihood but transforms it into a sum, which is more

convenient and simpler. Since a loss function is phrased as being minimized, one transforms the

Literature Review 7

likelihood 𝐿 and is left with the minimization of the negative log-likelihood. In the case of ma-

chine learning, one uses the conditional probability of the output given the input, given the model,

so:

argmax
𝜃

(𝐿(𝑦|𝑋; ⁡𝜃)) = ⁡ argmax
𝜃

(∑log⁡(𝑃(𝑦|𝑋; ⁡𝜃)) (2-5)

𝑂𝑅

argmin
𝜃

(−𝐿(𝑦|𝑋; ⁡𝜃)) = ⁡argmin
𝜃

(−∑log⁡(𝑃(𝑦|𝑋; ⁡𝜃)) (2-6)

Whereby 𝐿(𝑦|𝑋; ⁡𝜃) expresses the likelihood of the probability distribution of 𝑋 producing

the probability distribution 𝑦 for given model parameters 𝜃. Through a handful of additional

mathematical operations, these equations are transformed into a mean-squared error. A typical

regression loss function is the half-mean squared error with the additional denominator 𝑁, the

number of samples. This shows why maximum likelihood estimation forms a basis for (super-

vised) machine learning models. The maximum likelihood estimation framework leads to the

mean-squared error in the case of a regression task, and the cross-entropy loss function in the case

of a classification task [55][56][57].

In this sense the study of machine learning neural networks is tightly connected to statistical

theory and information theory. In statistical theory the concern is about datapoints and their pat-

terns. The focus is on understanding how these features inside of datasets can be modeled. Espe-

cially when it comes to the optimization and training process of neural networks, statistical theory

plays a great role in the design of the optimization function. Methods like the previously discussed

maximum likelihood estimation method are used to optimize the neural network function, alt-

hough they are not referred to as such in the machine learning community [58]. Information theory

studies the information stored inside of data and how to quantify it. It also concerns itself with the

flow of information and how this can occur. In neural networks, information theory helps under-

stand the effect of input features onto the outputs. The study also defines the uncertainty and

randomness in a model’s output as entropy and applies methods to reduce this entropy to increase

a model’s accuracy. Therefore, both theories are an integral part of neural networks and machine

learning [59]. If the training data is too biased, it can result in unusable results. In the case of

regression, a neural network excels at outputting correct values inside the range of a dataset.

However outside of the dataset, depending on the mathematical function the dataset represents, a

neural network can have difficulties approximating correctly. It has been shown through the Uni-

versal Approximation Theorem, that neural networks are theoretically capable of mapping any

Literature Review 8

input to an output, as in, neural networks are universal. Therefore, neural networks can approxi-

mate the results of any function, no matter its complexity, so long as the network is sufficiently

designed to mirror that complexity [42].

2.2 Types of Neural Networks

There has been considerable progress on neural network architecture in the last few decades.

The very first neural networks were ultimately performing worse compared to their contemporary

methods of optimization and solution finding [60], however newer types of neural networks have

proven to be just as good, if not considerably better [61][62]. Early neural networks were very

simple in their design, mainly made up of a single neuron/unit. The most known and earliest

practical neural network was the perceptron by Frank Rosenblatt in 1958 [54]. The perceptron is

a binary classifier, meaning it can classify information into two classes.

Figure 2-1: The first perceptron by Rosenblatt (figure by author)

Figure 2-1 illustrated Rosenblatt’s perceptron. It uses the weighted sum of its inputs and ap-

plies a step function. This step function introduces non-linearity and is usually called an activation

function. The training process is very similar to today’s neural networks training process. Through

use of data of input and output pairs, the neural network produces an output given the input and

its output is then compared to the dataset output. The difference of these values is then used in an

optimization algorithm. To minimize this difference, the perceptron parameters are adjusted by

the perceptron learning rule, which is a very simple iterative process.

If the model prediction is false, the model parameters are adjusted by the difference of the

outputs multiplied with a learning rate and the inputs. This is akin to a hyperplane rotation to split

the data into two classes in the data space, which is why the perceptron is only capable of simple

Literature Review 9

linear classification tasks and has trouble classifying more complex binary data, where the hyper-

plane is non-linear. The perceptron represents an important milestone in the study of neural net-

works, proving that a neural network model can be trained effectively using data [54].

 Figure 2-2: 2D linear hyperplane splitting data into two classes. The weight vector runs perpendic-

ular to the hyperplane (figure by author)

 Figure 2-2 shows the hyperplane that is rotated to split the data into two classes. The vector

of the weights is perpendicular to the hyperplane.

2.2.1 Artificial Neural Network (ANN)

An artificial neural network is a simple feed forward neural network. The term is usually used

for neural networks in general, although they are also called multilayer perceptron. The most

widely used ANN is the multi-layer feedforward network. In ANNs the flow of information is

unidirectional.

Figure 2-3: Simplified neural network model, a black box model mapping input to output (figure by

author)

Figure 2-3 illustrates the simple design of a neural network. It is a black box model, where

the training algorithm adjusts parameters of the model to approximate the data. The process of

mapping input to output occurs in a “concealed” manner. The model consists of multiple neurons

ordered in layers, with an input and output layer at each end of the model. Each neuron contains

an activation function. These neural networks are used for a variety of tasks as they represent a

Literature Review 10

basic form of neural networks and can be found in slightly altered ways in other types of neural

networks. The network maps a fixed-size input to a fixed-size output. A neural network is simply

a black box model. The information propagates through weighted connections between neurons

and layers. Each neuron takes a weighted sum of its inputs and passes it through a non-linear

function to generate its output [52].

2.2.2 Convolutional Neural Network (CNN)

A convolutional neural network is a special type of artificial neural network that is preceded

by at least one convolutional layer. Some convolutional neural networks can be split up resulting

in simple multilayer feedforward networks in between layers, however the convolutional layer is

its core part. The convolutional layer is a kind of compression layer. Whereas a normal hidden

layer in a simple artificial neural network takes the weighted sum of its inputs and together with

a bias passes it through a non-linear function to provide an output, a convolutional layer takes an

input in parts, where each part is a meld of inputs. A CNN is capable of processing multiple arrays

of inputs which is useful for image classification, where an image is split and combined by, for

example its pixels. The convolutional layer units are ordered in feature maps, also called kernels.

Figure 2-4: Application of feature mask onto input array (figure by author)

Figure 2-4 demonstrates the process of convolution. The depicted feature mask is able to

discern vertical edges. As can be seen from the input array and the output array, the feature mask

allows the model to extract features the engineer designing the neural network deems relevant. A

feature map allows the highlighting of certain patterns in those multiple arrays of input data. Each

unit of a feature map is attached to a local part in the feature map of the previous layer through a

set of weights. Just like with an ANN, a unit takes the weighted sum of the information from that

connection and passes it through a non-linear function. Inside a feature map, all its units share the

same weights, because in certain array data inputs like images, local values highly correlate and

form clear local patterns that can be observed. Furthermore, these patterns are often invariant to

location. Since this process of filtering through feature maps is called discrete convolution, neural

networks employing such layers are called convolutional neural networks [63]. To allow the neu-

ral network to learn features of hierarchical order, multiple convolutional layers with distinct fea-

ture maps are stacked. A convolutional layer is usually followed by a pooling layer which merges

Literature Review 11

thematically similar features together. They reduce the dimensions of the input data capturing

only the most important information and reducing the complexity of the network computation.

One way of pooling is max pooling, where only the maximum value of a given space of the input

data is used. CNNs are mainly used for image recognition [61] and language processing [64].

2.2.3 Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM)

In the case of sequential data or data that has temporal dependencies simple feed forward

networks and convolutional networks are inadequate. Recurrent neural networks are capable of

processing input one sequence at a time through storing the history of processed information from

previous sequences. This stored history of processed information is relayed through recurrent

connections. A recurrent neural network is a deep feed forward neural network, where the weights

over the sequences are the same for each individual layer [10]. In a recurrent neural network, each

neuron can store and process information from previous runs. This creates a feedback loop where

previous sequences can influence later sequences.

Figure 2-5: Recurrent feedback in a model with one neuron 𝒂 (figure by author)

A simple recurrent network with only 1 neuron is depicted in Figure 2-5. In the figure, 𝑡

denotes the current sequence and in such a model, the previous neuron output also influences the

following sequence. By combining the previous sequence information with the current sequence

input of the neuron and passing it through a non-linear function an output is produced. This output

is then used to adjust the memory stored in the neuron. Basic recurrent neural networks had the

issue of vanishing gradients leading to difficulties in storing long-term sequence history. The

discovery of the long short-term memory unit and gated recurrent unit have solved this issue. A

long short-term memory unit consists of multiple smaller units. The first unit relays to itself in

the next sequence, with a weight of 1, its own information. This relaying connection is controlled

by a second unit which learns to decide whether the information should be relayed or not [65].

For the training process the automatic differentiation backpropagation occurs unfolded through

time. Recurrent neural networks are used for language processing [64], speech recognition [66],

machine translation [67] and other time dependent tasks [68][69].

Literature Review 12

Figure 2-6: A simple LSTM unit. The hidden state stores previous values, the cell state stores long

term previous values. The parameters inside this unit are part of the neural network model param-

eters (figure by author)

The general design of the LSTM can be seen in Figure 2-6. The LSTM has a hidden state and

a cell state. While the hidden state carries previous sequence information of short-term nature, the

cell state collects long-term information.

2.3 Neural Network Parts and Subparts

A neural network consists of multiple units, called neurons. These neurons are ordered in

structures called layers, with each layer having a defined number of neurons. Between every layer

there are connections between the neurons. In general, these connections visualize the flow of

information, in the case of a unidirectional flow of information it would mean that the outputs of

neurons in previous layers are passed to the input of the neurons in the next layers [70].

2.3.1 Input, Output and Hidden Layer

The input layer of a neural network is the very first layer. It is the layer where the input data

is inserted into the model. For each feature or parameter there is an input neuron. The output layer

is the last layer of a neural network. Its neurons output the final prediction of the model. The input

layer and its number of neurons are defined according to the training data and depending on the

use case, the output layer varies. A general illustration of the layers can be seen in Figure 2-7.

Literature Review 13

Figure 2-7: A visual representation of input, hidden and output layer (figure by author)

For a simple one output regression network the output would have one neuron, which would

be the value to be approximated. For a simple classification network, the output layer would con-

sist of as many outputs as there are classes to identify. In the example of an image recognition

network for numbers, the model would have an array of possible classes, 0⁡𝑡𝑜⁡9, to identify the

numbers in the image. Each of these classes would have an output value representing the proba-

bility of the class being the correct output, where the most likely class is picked. Most of the

abstraction and work of a neural network occurs in the hidden layer. The hidden layer lies between

input and output layers. The hidden layer consists of one or more layers and the number of neurons

is not predefined. The purpose of the hidden layers is to extract and learn information from the

data. Some hidden layers operate as encoder and decoder layers in certain neural networks like

recurrent neural networks. An encoder layer compresses the data, reducing or removing unim-

portant information, leaving only the important information. The decoder layer then takes the

encoder layers compressed information and transforms it into usable data for the task of the neural

network. This helps remove noise and other issues from the dataset. While a simple network con-

sisting of a handful of layers and neurons can solve simple tasks, more complex tasks require

deeper networks. Deep learning networks have a sizeable hidden layer and neuron count. In the

hidden layer one can find the model parameters, which are called weights and biases, of the neural

network [70]. The hidden layer contains the main portion of calculations of a neural network.

Besides the weights and biases, there are also the non-linear functions like the rectified linear unit

or the sigmoid that are used to process and pass the neuron information to the next layer.

Literature Review 14

2.3.2 Neurons

Figure 2-8: The general calculation occurring inside a neuron, which is very similar to the percep-

tron (figure by author)

Neurons are the core unit of a neural network. Their first designs follow biological neurons

found in the nervous system of animals and research since then has provided adjustments and

variations improving them. As depicted in Figure 2-8, a general neuron is a unit that consists of

an input and an output. Inside the neuron a mathematical calculation is applied onto the input to

generate its output. A neuron can get its input from multiple neurons of the previous layer and

thereby a neuron can also output to multiple neurons in the next layer. Its input is the weighted

sum of all incoming values, each with its own weight and bias. In some neural networks, like

Recurrent Neural Networks, this flow of information is not strictly unidirectional. The calcula-

tions inside the neuron and the connections do vary between different neural network architec-

tures. However, in general incoming values are multiplied with a weight and a bias is added. The

weighted sum of all these inputs is then passed through a non-linear function introducing non-

linearity to the neuron, where its value is then passed on to the next layer. The non-linear function

allows the neuron to transform its output to a desired form. Depending on the task the neural

network is supposed to do, this varies.

2.3.3 Activation Function

Activation functions are different types of mathematical operations to adjust the output of

neurons. The desired function of the neural network often dictates an array of suitable activation

functions. While basic calculations of a neuron are linear, the activation function usually serves

as a non-linearity in the neural network to make the approximation of non-linear functions possi-

ble, but also to increase the networks efficiency as approximating with only linear functions is

difficult for certain datasets. In general, an activation function is part of every neuron. A neural

network model usually uses the same activation function for all its neurons. However, some neural

networks use different activation functions for certain layers or certain neurons do not use them

at all. For example, for image recognition, a combination of a convolutional neural network and

a recurrent neural network has been used effectively. In this case the CNN and the RNN might

Literature Review 15

have different activation functions as their tasks in the combined neural network are different. In

the case of a LSTM network, where memory is stored for its algorithm, the memory units may

vary from the general neuron structure [65]. In the case of classification, a bounded range for the

output of neurons works better. Since classification neural networks calculate probabilities of

multiple classes given an input, it makes sense to limit the predicted probabilities ranges between

0⁡𝑎𝑛𝑑⁡1 like any probability, or −1⁡𝑎𝑛𝑑⁡1 to allow a greater degree or range of non-probability

for the output classes.

2.3.4 Types of Activation Functions

Rectified Linear Unit

The rectified linear unit (ReLU) is the most popular activation function in use for machine

learning nowadays. The rectified linear unit is a simple half-wave rectifier, where any negative

value returns 0⁡and any positive value is returned.

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 (2-7)

Figure 2-9: The rectified linear unit (figure by author)

The first general idea behind the ReLU was to mimic biology, as human neurons depending

on their input decide to “fire” an output or not. For gradient descent purposes the derivative of the

ReLU is often separately defined at the discontinuity. The ReLU activation function is very useful

for regression [71] and provides better results than other activation functions [72]. Since neural

networks have had a sudden boost in progress again, new research into ways of optimizing neural

network structure is being conducted, like the activation functions used in a model.

Literature Review 16

Leaky Rectified Linear Unit

Figure 2-10: The leaky rectified linear unit (figure by author)

The leaky rectified linear unit is an adjustment of the ReLU for values of negative space. Any

negative values are returned multiplied with a predefined factor 𝑎, usually a very small number.

𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑥 > 0
𝑎𝑥, 𝑥 ≤ 0

 (2-8)

This allows neurons to not completely turn off, leading to a less sparse neuron layout of the

model.

Exponential Linear Unit (ELU)

Figure 2-11: The exponential linear unit (figure by author)

𝐸𝐿𝑈(𝑥) = {
𝑥, 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1), 𝑥 < 0
 (2-9)

Literature Review 17

The exponential linear unit behaves similar to the ReLU, but for negative values it is defined

as an exponential, allowing for faster learning. A scaling factor 𝛼 is introduced [73].

Hyperbolic Tangent

Figure 2-12: The hyperbolic tangent (figure by author)

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2-10)

The hyperbolic tangent activation function ranges from −1⁡𝑡𝑜⁡1. It is especially useful when

a model is classifying between two classes.

Sigmoid

Figure 2-13: The sigmoid function (figure by author)

The sigmoid activation function returns a value between 0⁡𝑎𝑛𝑑⁡1. Its main use is for classifi-

cation, where the model must predict the probability of multiple classes/outputs.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (2-11)

The sigmoid function is a very important function historically. It was the most widely used

activation function for neural networks in general. Now it is mainly used for classification tasks

or in neural network parts like the long short-term memory unit [42].

Literature Review 18

2.3.5 Weights and Biases

In a neural network, each unit is connected to a previous unit. These connections represent

the flow of information inside the model. Depending on the type of neural network, the directions

vary. For a simple feed forward neural network like the multilayer perceptron, information flows

from layer to layer chronologically, that is from input to output. In the case of recurrent neural

networks, the model works with sequential input arrays. In the case of its long short-term memory

units, information from previous sequences can flow to previous layers of current sequences.

Each of the neurons in a neural network passes information to its next layer. When infor-

mation is passed forward, a weight and a bias is attributed to that information. These two param-

eters are the main model parameters of a neural network and are adjustable by the model itself.

The input to a neuron is processed as:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑𝐼𝑛𝑝𝑢𝑡𝑖 ∗ 𝑤𝑖 + 𝑏𝑖
𝑖

)
(2-12)

With 𝑓(∙) denoting the activation function and 𝑤𝑖, 𝑏𝑖 the weights and biases of each input

𝐼𝑛𝑝𝑢𝑡𝑖, with 𝑖 denoting the current input. Each neurons output, including the input layers neurons,

are multiplied with a weight that represents their importance in the mapping of input to output for

our neural network model. Same goes for the bias. The weighted sum itself is a simple linear

function, allowing neural networks to propagate information quickly with efficient use of pro-

cessing power. Furthermore, as will be discussed later, this simple expression allows for fast op-

timization through gradient based methods where calculations of derivatives play an important

role.

2.3.6 Training

The basic principle of machine learning and neural networks is the idea that they are trainable

with a dataset, that is, learn the patterns inherent to a dataset and through training the model is

capable of discerning the important information of the dataset, while removing the unimportant

information. The dataset represents the phenomena and its patterns and distinct information the

model is supposed to approximate. The training of a neural network can occur supervised and

unsupervised, although there is also semi-supervised learning as well. In an unsupervised training

method, the dataset provided to the model during its training is not labeled. This means that while

input data is provided, usually there is no specific output data labeling. In the case of regression

this is useless, which is why unsupervised learning is generally used for classification tasks and

its variations. Through unsupervised learning the model learns the dataset and its patterns, allow-

ing for new observations that could not be observed by the engineer themselves, like clustering

data points or reducing the input data sets dimensionality by discarding unimportant information

and compressing the given information. In the supervised training method, our dataset is labeled

correctly, that is each input is paired with an output and therefore guiding the model on the correct

answer. The model then learns the desired pattern inherent to the paired dataset one wants to

Literature Review 19

approximate. The goal of supervised learning is to build a model capable of handling new input

data, that was not previously part of the used training data, simply through training the model on

patterns and structures inherent to the training data. Most use cases of neural networks are through

supervised learning. Semi-supervised learning uses part unlabeled data, part labeled data. The

idea is to alleviate the learning process through labeled data, allowing the model to have a small

guiding hand during training while using the unlabeled data. This allows the use of huge unlabeled

datasets to be used in combination with small or sparse labeled datasets to create a good model

compared to just training a model on the sparse labeled dataset[74][70].

The main process of training a neural network with methods such as gradient descent, is done

through a computational algorithm called automatic differentiation. Automatic differentiation al-

lows for simple and efficient calculation of derivatives of the neural network model. This is done

without relying on numerical approximations or manual derivations. Automatic differentiation is

applied mainly to the loss function of the model however the process propagates through the

whole model. The training of a neural network occurs over the whole training dataset however

the data is sometimes split into parts. There are varying types of training algorithms used in ma-

chine learning that access automatic differentiation. More details on this topic are discussed later

in this work, see section 2.3.8.

2.3.7 Loss Functions

A loss function represents the accuracy of a neural network to approximate a given dataset.

Its value is the error between the model’s output and the correct output of the dataset. The loss

function and its loss serve as an observable metric of the model’s accuracy to predict outputs

given inputs. Depending on the model’s task certain loss functions operate better than others.

When designing the neural network, the loss function is an important aspect to consider. The goal

of the training is to minimize this loss function, thereby also minimizing the difference between

the model’s output and the datasets output. As previously shown, by adjusting the model’s pa-

rameters, the model converges towards a probability distribution equal to the probability distri-

bution given by dataset. The loss function design follows statistical and information theory.

In the following types of loss functions, �̂� denotes the model’s prediction and 𝑦 denotes the

true output from the training dataset. Each loss is generally divided by the amount of data used,

denoted as 𝑁. This is necessary when training occurs over multiple input/output pairs, called

batches/minibatches [53][70].

Mean-Absolute Error (MAE)

A regression loss which considers the mean of the absolute residual of prediction and ex-

pected result. All predictions have even weight in this loss function. It is expressed as:

𝑀𝐴𝐸 =
1

𝑁
∑�̂�𝑖 − 𝑦𝑖

𝑁

𝑖=1

 (2-13)

With function value 𝑦 and model output �̂�. 𝑁 denotes the sample size used.

Literature Review 20

Mean-Squared Error (MSE)

The mean-squared error is the most used loss function in the case of regression, as it has

shown the best results, refer to the statistical framework discussed earlier. Compared to the mean

absolute error, the mean-squared error considers the size of the residuals for each data sample and

the model’s prediction. The loss is the squared residual between predictions and expected results.

The mean-squared error is applied to a factor of 0.5 to simplify its derivatives for the gradient

descent optimization, called half mean-squared error, but simply referred to as the former.

Through the squaring operation training data that produces greater residuals for the current model

and its parameters have more weight/influence on the loss function and therefore during optimi-

zation. It is expressed as:

(𝐻)𝑀𝑆𝐸 =
1

2𝑁
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 (2-14)

With function value 𝑦 and model output �̂�. 𝑁 denotes the sample size used.

Root Mean-Squared Error (RMS)

The root mean-squared error is an extension of the mean-squared error loss function.,

whereby the root of it is used instead. The root mean-squared error allows for a direct comparison

between loss value and target output, as it has the same unit. This is done while retaining the

weighting of bigger residuals from the mean-squared error. It is defined as:

𝑅𝑀𝑆 =⁡√
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑁
𝑖=1

𝑁
 (2-15)

With function value 𝑦 and model output �̂�. 𝑁 denotes the sample size used.

Cross-Entropy

The cross-entropy loss function is mainly used for classification, see statistical framework

discussed earlier. It is the difference of probability distributions 𝑃⁡𝑎𝑛𝑑⁡𝑄, with 𝑃 being the prob-

ability distribution of the training dataset and 𝑄 being the probability distribution of the model’s

predictions. The cross-entropy 𝐶𝐸 is defined as:

𝐶𝐸 = ⁡−∑𝑃(𝑥) ∗ log⁡(𝑄(𝑥)) (2-16)

Rewritten as a loss function for a neural network model, one gets:

Literature Review 21

𝐶𝐸 =⁡−
1

𝑁
∑𝑦𝑖 ∗ log⁡(�̂�𝑖)

𝑁

𝑖=1

(2-17)

A loss function can be extended by a weight regularization term, also called weight decay.

When a neural network model is trained with a dataset, just like with any data task, overfitting

and underfitting are potential issues. In the case of neural networks, a model’s parameters can

become very big to fit the training data, resulting in instability of the model, also called overfit-

ting. Just small changes in inputs can lead to great variation in outputs in such networks. To

penalize these potential large weights and keep a neural network model simpler a weight regular-

ization term is added to the loss function. Two wide known regularizations are 𝑙1 and 𝑙2. In the

case of 𝑙1 regularization weights tend towards 0 leading to sparse weight distribution. In a 𝑙2

regularization large weights are penalized, however there is less sparse weight distribution. The

terms include the sum of all model parameter weights. The 𝑙2 regularization usually squares the

weights to simplify the gradient calculation. 𝑙1 and 𝑙2 weight regularization terms can be ex-

pressed as:

𝐿𝑙1 =
𝜆

𝑁
∗∑∑∑|𝑤𝑖𝑗|

[𝑙]

𝐽

𝑗=1

𝐼

𝑖=1

𝐿

𝑙=1

 (2-18)

𝐿𝑙2 =
𝜆

𝑁
∗∑∑∑𝑤𝑖𝑗

2 [𝑙]

𝐽

𝑗=1

𝐼

𝑖=1

𝐿

𝑙=1

 (2-19)

The parameter 𝜆 is a predefined regularization factor. Every weight 𝑤𝑖𝑗 is defined by its con-

nection to the previous layer and the following layer. Throughout this work, 𝑖 denotes the neuron

of the following layer and 𝑗 denotes the neuron of the previous layer. Each weight of every layer

𝑙 is then combined according to one of the above weight regularization equations. As can already

be seen, denotations through sub- and superscripts become overwhelming when dealing with neu-

ral networks because of the great dimensionality introduced to the model parameters through

multiple layers and samples. A set denotation will be discussed in following section 2.3.8. While

the 𝑙2 regularization has found general use for neural networks, which of the two regularization

terms is used depends on the use case of the model and its dataset [53][55][57][70].

2.3.8 Training Algorithms

The process of training a model follows a predefined algorithm. The algorithm chooses how

the model adjusts its model parameters to minimize the objective function, that is its defined loss

function. Such algorithms can come with their own hyperparameters in addition to the models

Literature Review 22

own. By converging towards a minimum of the loss function, the training produces a potential

array of the model parameters which approximate the correct output with very small error, mean-

ing an optimal minimum of the loss function. The most used optimization process is the gradient

descent method. Although there are other derivative-free methods, the gradient descent method

remains quite popular. This lends itself to the automatic differentiation technique, allowing for

very simple and quick neural network models even for large and complex data. The gradient

descent algorithm faces issues like spurious local minima, where the trained model does not ap-

proximate well, and further training is not possible as the model parameters are stuck in the local

minima, hence called spurious [76][77]. Still, some papers discuss this issue of local minima and

their optimality for a neural network model [75][78][79][80][81][82][83]. Another issue are sad-

dle points, since their gradients are zero as well, a model can also become “stuck” on them during

the training process, leading to bad models [84]. However, there is research discussing these is-

sues and potential solutions [85]. Other papers show local minima to be less prevalent in deeper

neural networks. Research has also shown that local minima are less of an issue than the saddle

points in the case of gradient descent algorithms. These saddle points have been shown to mostly

“curve up” in most dimensions, with the rest “curving down” [10][86][87].

The main technique used for training neural networks through gradient descent is called au-

tomatic differentiation [88][89]. Automatic differentiation is split into two modes which are for-

ward and reverse mode. It is a technique to calculate all partial derivatives of a model with respect

to a chosen model parameter. Automatic differentiation differs from the other methods of differ-

entiation, namely symbolic and numerical. Figure 2-14 demonstrates the general difference be-

tween symbolic, numerical, and automatic differentiation. Numerical differentiation relies on the

definition of the derivative and numerical calculation of the derivative by an approximation

through numerical methods. Symbolic differentiation reformulates a derivative expression

through simple and well-known derivatives and use of mathematical operations like the product

rule to then calculate the derivative. Symbolic differentiation is considered slow and faces more

issues when calculating higher and more complex derivatives compared to automatic differentia-

tion. Same issues occur for numerical differentiation, in addition to computation inaccuracies.

Figure 2-14: Generalized difference between the three methods of differentiation. Illustrated by us-

ing the function 𝒇(𝒙) = 𝐜𝐨𝐬⁡(𝒙 + 𝐜𝐨𝐬(𝒙)) (figure by author)

Literature Review 23

Automatic differentiation combines aspects of symbolic and numerical differentiation. Its differ-

entiation occurs recursively through the chain rule, whereby the observed function is simplified

into multiple partial derivatives. This recursiveness is an important aspect of any programming

task. Instead of manipulating symbolic expressions to simplify and express the observed function

differently, to then derive the final derivative of said simplified function through known simple

derivatives, automatic differentiation instead recursively derives all partial derivatives of the ob-

served function and then evaluates the observed function and all its partial derivatives at specific

points through use of numerical values. Thereby, the final derivative of the observed function is

evaluated accurately and efficiently, combining the best aspects of symbolic and numerical dif-

ferentiation. There are newer papers suggesting that symbolic differentiation and automatic dif-

ferentiation are equivalent [90]. While the methods of symbolic differentiation and automatic

differentiation are similar, the latter operates through numerical values whereas the latter through

expressions/symbols, making automatic differentiation more efficient for programming and es-

pecially for machine learning gradient based methods where differentiation must be applied re-

petitively.

In both modes of automatic differentiation, the process occurs according to the chain rule of

partial derivatives of a function. In forward mode, the partial derivatives of the model are calcu-

lated starting from the input and ending at the output. In the reverse mode it is the opposite way.

The reverse automatic differentiation is widely called backpropagation. Backpropagation refers

to the second phase of reverse automatic differentiation. In the first phase the model runs a given

input forward through itself to populate parameters and trace dependencies. Once this is done, in

the second phase the algorithm propagates all derivatives by use of chain rule or propagates the

adjoints starting at the output up until the input. When it comes to deep neural networks with large

datasets, reverse automatic differentiation is the preferred method over forward mode. With for-

ward automatic differentiation the process of calculating the derivative by propagation with the

chain rule needs to occur multiple times. Each independent input variable needs its own inde-

pendent pass to calculate its partial derivatives. In contrast the reverse automatic differentiation

only requires a forward pass and a single backpropagation pass to calculate all its partial deriva-

tives, independent of the amount of input variables.

The following will briefly cover the equations for reverse mode automatic differentiation,

which includes the forwards and backwards propagation during training. Keep in mind, these

expressions may vary according to the defined model design. The following expressions will par-

allel the formulation used in the program of this work.

First, let us denote the following in Table 2-1:

Literature Review 24

Table 2-1: Variables and their definition (representation by author)

Variable Denotes the following term

𝑥 input

𝑤 weight

𝑏 bias

𝑧 linear neuron output

𝑔(∙) activation function

𝑎 non-linear neuron output

𝑦 true output

�̂� model output

Furthermore, the current layer of any of these will be denoted as a superscript inside []-brack-

ets, not to be confused with the power function, with superscript [𝑙] denoting the current layer.

Since each layer has its own predefined number of neurons, to discern variables shared between

neurons of different layers they will be denoted with subscripts⁡𝑖⁡𝑎𝑛𝑑⁡𝑗, with the former referenc-

ing the current layer [𝑙] and the latter referencing the previous layer⁡[𝑙 − 1]:

𝑤𝑖𝑗
[𝑙]
, 𝑏𝑖𝑗

[𝑙]
, 𝑧𝑖

[𝑙]
, 𝑎𝑖

[𝑙]

To begin automatic differentiation, the algorithm forward propagates with the following def-

initions:

The activation function 𝑎 of any layer 𝑙:

𝑎𝑖
[𝑙]
= 𝑔(𝑧𝑖

[𝑙]) (2-20)

With the linear neuron output 𝑧 of any layer 𝑙:

𝑧𝑖
[𝑙]
=∑𝑎𝑗

[𝑙−1] ∗ 𝑤𝑖𝑗
[𝑙−1] + 𝑏𝑖𝑗

[𝑙−1]

𝑗

(2-21)

With 𝑖 = {1,… , 𝐼} and 𝑗 = {1,… , 𝐽}.⁡𝐼 is the number of neurons in layer 𝑙 and 𝐽 is the number

of neurons in layer 𝑙 − 1. Additionally the output of the model �̂� is defined as:

�̂� = ⁡ 𝑎[𝐿] = 𝑧[𝐿] =∑𝑎𝑗
[𝐿−1] ∗ 𝑤𝑗

[𝐿−1] + 𝑏[𝐿−1]

𝑗

(2-22)

Literature Review 25

With [𝐿] denoting the final layer of the neural network, the output layer, where no activation

function is applied to its linear term, although this can vary depending on the used programming

library/program.

Once the forward propagation is done, the model has filled all necessary variables and traced

them for the backpropagation. For a simple regression loss function defined as the half mean-

squared error it follows:

𝐿 = ⁡
1

2𝑁
∑(�̂�𝑛 − 𝑦𝑛)

2

𝑁

𝑛=1

 (2-23)

With 𝑛 = 1,2,… ,𝑁 denoting the training sample. The model parameters are the weights 𝑤

and biases 𝑏, which are expressed as 𝛩. The loss function 𝐿 is minimized according to its argu-

ment 𝛩 in the following expression:

argmin
𝜃

𝐿 = argmin
θ

1

2𝑁
∑(�̂�𝑛 − 𝑦𝑛)

2

𝑁

𝑛=1

 (2-24)

The partial derivatives
𝛿𝐿

𝛿𝜃[𝑝]
 which are calculated during backpropagation, are defined by the

chain rule, with 𝑝 being the layer of referred parameter 𝛩. The general expression is:

𝛿𝐿

𝛿𝜃[𝑝]
=
𝛿𝐿

𝛿�̂�

𝛿�̂�

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
𝛿𝑎[𝐿−1]

𝛿𝑧[𝐿−1]
∗ …∗

𝛿𝑎[𝑝+1]

𝛿𝑧[𝑝+1]
𝛿𝑧[𝑝+1]

𝛿𝜃[𝑝]

(2-25)

With layer 𝑙 = {𝑝,… , 𝐿}. All partial derivatives are then expressed according to the following

general expressions. For the partial derivative of the loss 𝐿 with respect to the model output �̂�,
𝛿𝐿

𝛿�̂�
,

we simply differentiate (2-14) and get:

𝛿𝐿

𝛿�̂�
=
1

𝑁
(�̂� − 𝑦) (2-26)

For the partial derivative of the model output �̂� with respect to the activation function 𝑎[𝐿],
𝛿�̂�

𝛿𝑎[𝐿]
, the expression follows from the detail that no activation function is applied in this work on

the last layer:

Literature Review 26

𝛿�̂�

𝛿𝑎[𝐿]
= 1⁡ (2-27)

For the partial derivative of the activation function 𝑎[𝐿], with respect to the linear neuron

output 𝑧[𝐿],
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
, differentiating (2-20) gives:

𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
= 𝑔′(𝑧[𝐿]) (2-28)

with 𝑔′(∙) being the derivative of the predefined activation function. For the partial derivative

of the linear neuron output 𝑧[𝐿] with respect to the previous activation function 𝑎[𝐿−1],
𝛿�̂�

𝛿𝑎[𝐿]
 it

follows from (2-21):

𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
=∑𝑤[𝐿−1] (2-29)

Subsequently, this can be applied to any point inside the neural network during backpropaga-

tion, that is any layer and any connection between neurons. These computations are done for each

sample 𝑛 = {1,2,… ,𝑁} and standard chain rule procedure applies when partial derivatives split

according to the neural network design. To clarify this point a simple neural network will be

designed in the following paragraphs.

Lastly, the final partial derivative of the chain rule term in (2-25) is computed differently

according to which model parameter the backpropagation currently occurs for, through differen-

tiating (2-21) again.

In the case of the model parameter 𝜃[𝑝] = 𝑤[𝑝] the final partial derivative is:

𝛿𝑧[𝑝+1]

𝛿𝜃[𝑝]
= 𝑎[𝑝−1]⁡ (2-30)

In the case of the model parameter 𝜃[𝑝] = 𝑏[𝑝] the final partial derivative is instead:

𝛿𝑧[𝑝+1]

𝛿𝜃[𝑝]
= 1 (2-31)

Literature Review 27

The following equations will demonstrate forward and backward propagation for a simple

regression neural network with 2 hidden layers, each with 3 neurons. The neural network will

have 2 input neurons and 1 output neuron and is illustrated in Figure 2-15.

Figure 2-15: A feed-forward neural network model with 2 hidden layers with 3 neurons each. It has

2 inputs and 1 output. Neuron outputs are defined as 𝒂 and the linear part of the neuron output as

are defined as 𝒛 (figure by author)

The parameters of the model between each layer, denoted by superscript, are 𝜃[0], 𝜃[1], 𝜃[2].

They are defined as following:

𝜃[0] = {

𝑤11
[0] 𝑤21

[0]

𝑤12
[0] 𝑤22

[0]

𝑤13
[0] 𝑤23

[0]

,

𝑏11
[0] 𝑏21

[0]

𝑏12
[0] 𝑏22

[0]

𝑏13
[0] 𝑏23

[0]

} (2-32)

𝜃[1] = {

𝑤11
[1] 𝑤21

[1] 𝑤31
[1]

𝑤12
[1] 𝑤22

[1] 𝑤32
[1]

𝑤13
[1] 𝑤23

[1] 𝑤33
[1]

,

𝑏11
[1] 𝑏21

[1] 𝑏31
[1]

𝑏12
[1] 𝑏22

[1] 𝑏32
[1]

𝑏13
[1] 𝑏23

[1] 𝑏33
[1]

} (2-33)

Literature Review 28

𝜃[2] = {

𝑤1
[2]

𝑤2
[2]

𝑤3
[2]

, 𝑏[2]} (2-34)

Again, the subscripts attribute the weight to firstly the current layer neuron and secondly the

previous layer neuron. This means that, for example, 𝑤12
[0]

 is the weight of the area between input

layer and first hidden layer, which connects the first neuron of the first hidden layer with the

second neuron of the input layer. Each neuron of the current layer is connected to each neuron of

the previously layer. Each connection is accompanied with its own weight and bias. In this exam-

ple the neuron count can be written down as 2x3x3x1, that is 2 input neurons, 3 hidden layer one

neurons, 3 hidden layer two neurons, 1 output neuron. Therefore there is 6 weights and 6 biases

for the first model parameters, 𝜃[0], 9 weights and 9 biases for the second model parameters, 𝜃[1].

For the last model parameters, 𝜃[2], there are 3 weights, and the number of biases is reduced to 1

bias instead of 3 biases. This is because there is no activation function applied to the linear neuron

terms, therefore the potential 3 biases can be summarized to 1 bias. The subscripts for the last

model parameter also do not include the denotation for the output layer since there is only 1 output

in this example.

First, according to the general equations above, beginning (2-20) for the forward propagation,

the model equations are expressed as the following:

𝑎𝑖
[0]

= 𝑥𝑖, 𝑖 = 1,2 (2-35)

𝑧𝑖
[1]

=∑𝑎𝑗
[0] ∗ 𝑤𝑖𝑗

[0] + 𝑏𝑖𝑗
[0]

2

𝑗=1

, 𝑖 = 1,2,3; ⁡𝑗 = 1,2 (2-36)

𝑎𝑖
[1]

= 𝑔 (𝑧𝑖
[1]) , 𝑖 = 1,2,3 (2-37)

𝑧𝑖
[2]

=∑𝑎𝑗
[1] ∗ 𝑤𝑖𝑗

[1] + 𝑏𝑖𝑗
[1]

3

𝑗=1

, 𝑖 = 1,2,3; ⁡𝑗 = 1,2,3 (2-38)

𝑎𝑖
[2]

= 𝑔 (𝑧𝑖
[2]) , 𝑖 = 1,2,3 (2-39)

Literature Review 29

𝑧[3] =∑𝑎𝑗
[2]

∗ 𝑤𝑗
[2]

+ 𝑏[2]
3

𝑗=1

, 𝑗 = 1,2,3 (2-40)

𝑎[3] = 𝑧[3] = �̂� (2-41)

𝐿 = ⁡
1

2𝑁
∑(�̂� − 𝑦)2

𝑛

, 𝑛 = 1,2, … ,𝑁
(2-42)

Then it follows for backpropagation, that the partial derivatives are defined according to equa-

tion beginning (2-23):

𝛿𝐿

𝛿�̂�
=
1

𝑁
(�̂� − 𝑦) (2-43)

𝛿�̂�

𝛿𝑎𝑗
[2]

=
𝛿𝑎[3]

𝛿𝑎𝑗
[2]

=
𝛿𝑧[3]

𝛿𝑎𝑗
[2]

= 𝑤𝑗
[2], 𝑗 = 1,2,3⁡

(2-44)

𝛿𝑎𝑖
[2]

𝛿𝑧𝑖
[2]

= 𝑔′ (𝑧𝑖
[2]) , 𝑖 = 1,2,3 (2-45)

𝛿𝑧𝑖
[2]

𝛿𝑎𝑗
[1]

=∑𝑤𝑖𝑗
[1]

3

𝑗=1

, 𝑖 = 1,2,3; 𝑗 = 1,2,3 (2-46)

𝛿𝑎𝑖
[1]

𝛿𝑧𝑖
[1]

= 𝑔′ (𝑧𝑖
[1]
) , 𝑖 = 1,2,3 (2-47)

These expressions can then be used to formulate the partial derivative of any model parameter

𝛩. The final derivative term again varies depending on which model parameter, weight or bias, is

referred to with the partial derivative. The following is an example for the first 6 weights con-

necting the input layer with the first hidden layer. For 𝑤𝑖𝑗
[0]

 the general equation is:

Literature Review 30

𝛿𝐿

𝛿𝑤𝑖𝑗
[0]

=
𝛿𝐿

𝛿�̂�

𝛿�̂�

𝛿𝑎[2]
𝛿𝑎[2]

𝛿𝑧[2]
𝛿𝑧[2]

𝛿𝑎[1]
𝛿𝑎[1]

𝛿𝑧[1]
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

= 𝑃𝑎𝑡ℎ1 + 𝑃𝑎𝑡ℎ2 + 𝑃𝑎𝑡ℎ3 (2-48)

With 𝑃𝑎𝑡ℎ1, 𝑃𝑎𝑡ℎ2, 𝑃𝑎𝑡ℎ3 defined as:

𝑃𝑎𝑡ℎ1 =
1

𝑁
(�̂� − 𝑦)

∗ 𝑤1
[2]

∗ 𝑔′ (𝑧1
[2]
) ∗ (𝑤11

[1]
∗ 𝑔′ (𝑧1

[1]
) ∗

𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤12
[1] ∗ 𝑔′ (𝑧2

[1]) ∗
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤13
[1] ∗ 𝑔′ (𝑧3

[1]) ∗
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]
)

(2-49)

𝑃𝑎𝑡ℎ2 =
1

𝑁
(�̂� − 𝑦)

∗ ⁡𝑤2
[2]

∗ 𝑔′ (𝑧2
[2]
) ∗ (𝑤21

[1]
∗ 𝑔′ (𝑧1

[1]
) ∗

𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤22
[1]

∗ 𝑔′ (𝑧2
[1]
) ∗

𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤23
[1]

∗ 𝑔′ (𝑧3
[1]
) ∗

𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]
)

(2-50)

𝑃𝑎𝑡ℎ3 =
1

𝑁
(�̂� − 𝑦)

∗ 𝑤3
[2] ∗ 𝑔′ (𝑧3

[2]) ∗ (𝑤31
[1] ∗ 𝑔′ (𝑧1

[1]) ∗
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤32
[1] ∗ 𝑔′ (𝑧2

[1]) ∗
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

+𝑤33
[1] ∗ 𝑔′ (𝑧3

[1]) ∗
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]
)

(2-51)

With the final term
𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0], the partial derivative of the linear neuron output of layer 1 with

respect to the weights of layer 0, defined as one of the two inputs, depending on the connection:

Literature Review 31

𝛿𝑧[1]

𝛿𝑤𝑖𝑗
[0]

= 𝑥𝑗

(2-52)

Visually, for 𝑤11
[0]

, the equation according to 𝑃𝑎𝑡ℎ1 + 𝑃𝑎𝑡ℎ2 + 𝑃𝑎𝑡ℎ3 can be seen in Figure

2-16, in green, red, blue respectively. For each partial derivative with respect to the chosen model

parameter, the chain rule follows the structure of the neural network along the designed architec-

ture. As per the rules of derivation, a summation of each derivative path occurs during computa-

tion.

Through these equations, the neural network backpropagates to calculate all partial deriva-

tives of the model with respect to the model parameters. These values are then used in the next

step of the training algorithm, where a parameter update rule is defined to adjust the model pa-

rameters.

 In the following, different types of training algorithms will be discussed. The algorithms are

all based on the gradient descent method and are ordered chronologically to their discovery/crea-

tion. Other algorithms will not be discussed as derivative-free algorithms are very task specific

Figure 2-16: All 3 Paths for only 𝒘𝟏𝟏
[𝟎]

 shown with each distinct color (figure by author)

Literature Review 32

and do not make use of automatic differentiation, therefore being generally outperformed. Since

this work will make use of minibatch stochastic gradient descent with momentum, other types of

training algorithms will only be briefly shown, while the focus will be on the former and its pre-

decessors.

Gradient Descent

The gradient descent algorithm calculates the direction for steepest decline of the model’s

loss function with respect to the model’s parameters. Depending on the size of the neural network

this can result in a gradient of great dimensions. The gradient is then used together with its hy-

perparameters like the learning rate assigned to the algorithm and the model’s weights to update

the current model parameters. The gradient descent algorithm is very suitable for convex optimi-

zation problems of a model loss function, where it is guaranteed to converge to the global mini-

mum. In non-convex cases, the optimization is guaranteed to fall onto a local minimum. Other

potential issues for converging towards a solution are saddle points, vanishing gradients and ex-

ploding gradients. As previously discussed, there is active research focused on tackling these is-

sues, although there are already certain solutions available, like regularization or use of specific

activation functions such as the rectified linear unit.

Batch Gradient Descent

Batch gradient descent is the most basic version of gradient descent, that introduces the defi-

nition of the training samples used to train a model as a batch. In this method the batch consists

of our whole training dataset. During each training loop, called epoch, the batch is used for train-

ing. This means that the optimization calculations average over the batch, in this case all training

samples. This leads to a redundancy, as for large datasets the optimization process is recalculating

gradients for similar data samples before it updates the parameters. Depending on the size of the

dataset this can be very time consuming. Furthermore, memory storage issues can arise depending

on the datatype as well. Since many deep learning neural networks use great datasets, this method

has fallen out of favor. The batch gradient descent is simply defined as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜆 ∗ 𝐺𝑟𝑎𝑑𝜃(𝐿) (2-53)

With 𝐺𝑟𝑎𝑑𝜃(𝐿) being the gradients
𝛿𝐿

𝛿𝜃
 of the model’s loss function 𝐿 and 𝜆 the learn rate of

the neural network. 𝜃𝑡+1 is the updated model parameter of sequence/iteration 𝑡 + 1.

Stochastic Gradient Descent

The stochastic gradient descent algorithm operates just like the batch gradient descent algo-

rithm. The improvement lies in the difference of the parameter update. For this method, the pa-

rameter adjustment is calculated and done for each individual training data pair of input/output.

Since this method does one update at a time, it performs the adjustment more frequently than

batch gradient descent, however with greater variance. It doesn’t have the redundancy problem

of batch gradient descent. Furthermore its greater variance, allows the optimization of the loss

Literature Review 33

function to fluctuate out of potential local minima, while also increasing the difficulty of conver-

gence to a precise minimum. To remedy this issue, the learn rate hyperparameter is usually slowly

reduced to decrease the overshooting of the minimum. With (𝑥𝑖, 𝑦𝑖) denoting the current training

data sample of the training iteration, the stochastic gradient descent is expressed as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜆 ∗ 𝐺𝑟𝑎𝑑𝜃(𝐿(𝑥𝑖 , 𝑦𝑖)) (2-54)

Minibatch Stochastic Gradient Descent

Minibatch stochastic gradient descent is a combination of the basic batch gradient descent

and the stochastic gradient descent algorithms. For the calculation of parameter updates, the train-

ing data is shuffled and split into multiple equally sized pieces, called minibatches. The calcula-

tions and parameter adjustments are done for each minibatch instead. An iteration covers one

minibatch and does one parameter update. Once all minibatches have been iterated through, one

epoch has passed. Usually, the minibatches are shuffled after an epoch. This leads to a lower

variance than in stochastic gradient descent, but it is still a faster and less redundant procedure

than gradient descent. This method has been extended with an additional hyperparameter called

momentum. The momentum is an added variable to help support the minibatch stochastic gradient

descent algorithm to converge to a minimum. The hyperparameter momentum is used to adjust

the model parameter update value. Mathematically, it adds a fraction of the parameter update

vector of the previous minibatch update to the current one. This accelerates the optimization gra-

dient in relevant directions in the loss function space and reduces fluctuation of the gradient.

Minibatch stochastic gradient descent is defined as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜆 ∗ 𝐺𝑟𝑎𝑑𝜃(∑𝐿(𝑥𝑖, 𝑦𝑖)) (2-55)

Considering the momentum 𝜂, the expression changes to:

𝜃𝑡+1 = 𝜃𝑡 − 𝜈𝑡 ⁡

𝜃𝑡+1 = 𝜃𝑡 − (𝜂 ∗ 𝜈𝑡−1 ⁡+ ⁡𝜆 ∗ 𝐺𝑟𝑎𝑑𝜃 (∑𝐿(𝑥𝑖 , 𝑦𝑖)))

(2-56)

With the subscript 𝑡 denoting the current iteration of the training. The variable 𝜈𝑡 refers to the

update vector adjusting the model parameter.

Literature Review 34

Nesterov Accelerated Gradient (NAG)

The Nesterov accelerated gradient method is an adjustment to the minibatch stochastic gradi-

ent descent method with momentum. By using an approximation of the location where the gradi-

ent would move the parameters to by using the momentum term, the model can adjust “ahead”.

The method then calculates the actual gradient not with respect to the parameters but to the ap-

proximated future parameters, 𝐺𝑟𝑎𝑑𝜃−𝜂∗𝜈𝑡−1. This prevents the gradient from overshooting and

increases the performance of neural networks through higher responsiveness to the data [91]. The

equation then are defined as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜈𝑡 ⁡

𝜃𝑡+1 = 𝜃𝑡 − (𝜂 ∗ 𝜈𝑡−1 ⁡+ ⁡𝜆 ∗ 𝐺𝑟𝑎𝑑𝜃−𝜂∗𝜈𝑡−1 (∑𝐿(𝑥𝑖, 𝑦𝑖)))
(2-57)

Adagrad

The Adagrad method can adjust the learning rate used for the optimization of the model pa-

rameters depending on the frequency of features inside the dataset. If the current minibatch con-

tains features that occur less frequently the model updates parameters with a greater learning rate

compared to a minibatch containing features that occur more frequently. This makes the Adagrad

method well suited for sparse data but generally improves the training. However, its learning rate

vanishes with long training time as it collects all previously calculated gradients to adjust each

individual learning rate in its denominator. The final equation is defined as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜈𝑡 ⁡

𝜃𝑡+1 = 𝜃𝑡 − (
𝜆

√𝑑𝑖𝑎𝑔(𝐺𝑡) + 𝜀
)⊙ 𝑔𝑡

(2-58)

The variable 𝜀 is a smoothing term to prevent dividing by zero. 𝐺𝑡 is a matrix where the

diagonal contains the sum of the squared past gradients with respect to 𝜃 up to iteration 𝑡, 𝑔𝑡 is a

vector containing the past gradients with respect to 𝜃 up to iteration 𝑡. The equation performs an

element-wise matrix-vector product ′ ⊙ ′. While the general equation uses the whole matrix 𝐺𝑡,

a simplified version only applies the diagonal elements of 𝐺𝑡, where each diagonal element of 𝐺𝑡

refers to the sum of the squared gradients with respect to 𝜃 of the respective model parameter 𝜃.

In this simplified equation we simply have an element wise vector product, also called Hadamard

product, between the elements of
𝜆

√𝑑𝑖𝑎𝑔(𝐺𝑡)+𝜀
 and the elements of 𝑔𝑡.

Adadelta

The Adadelta method is an adjustment to the Adagrad method to eliminate the vanishing learn

rate. This is done by restricting the number of gradients accumulated in the denominator to a

defined amount. The sum of gradients is instead defined as a decaying average of all previous

squared gradients. Its final equation is defined as:

Literature Review 35

𝜃𝑡+1 = 𝜃𝑡 + 𝜈𝑡 ⁡

𝜈𝑡 = −(
𝑅𝑀𝑆(𝜈𝑡−1⁡)

𝑅𝑀𝑆(𝑔𝑡)
) ∗ 𝑔𝑡

(2-59)

With 𝑅𝑀𝑆 being the root mean-square and 𝑔𝑡 a vector containing all past gradients with re-

spect to 𝜃 up to iteration 𝑡.

Adam

The adaptive moment estimation method also adjusts learning rates for each individual pa-

rameter. It does so by storing the exponentially decaying average of past squared gradients and

past gradients. The Adam method has been shown to work well and compared to other methods

[92]. The Adam update equation is defined as:

𝜃𝑡+1 = 𝜃𝑡 − (
𝜆

√𝑣𝑡 + 𝜀
) ∗ �̂�𝑡 ⁡ (2-60)

With �̂�𝑡 being the bias-corrected first moment estimate:

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
⁡ (2-61)

And the decaying average of past gradients 𝑚𝑡:

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡 (2-62)

Where 𝛽1 is the first decay rate and 𝑔𝑡 is the past gradients with respect to 𝜃. Analog for the

bias corrected second moment estimate 𝑣𝑡:

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
 (2-63)

And the decaying average of past gradient 𝑣𝑡:

Literature Review 36

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 (2-64)

Where 𝛽2 is the first decay rate and 𝑔𝑡
2 is the squared past gradient with respect to 𝜃. There

is of course many more types of training algorithms used for neural networks such as AdaMax

[92], Nadam [93]. There is also new methods being researched like AdamW [24], QUAdam [94],

AggMo [95].

2.3.9 Data Preprocessing

When training a neural network an important part of the process is the data used. The dataset

contains information that the model is supposed to learn. Therefore, the more data there is the

better. However, if our data does not include many examples of certain features, the model will

not be able to learn those features well enough. Furthermore, the data must include the underlying

pattern the model is supposed to approximate. The data itself is split into three parts of training,

validation, and testing data. However, usually data is only split into training and testing. The

training data is used to train the model using the algorithm chosen for the neural network. The

training data should include a wide array of examples expressing the information the model

should learn. The validation data is used to adjust hyperparameters in between training, as they

are not adjustable by the training algorithms. These hyperparameters are hand engineered to im-

prove the training. The testing data is used in the final step of the training. While the model has

been trained on the training data it is not supposed to have seen the testing data once. The testing

data allows a blind test on the trained model. By evaluating how our trained model performs on

data expressing the same information as the training data, but having never integrated this data

into its optimization, it is possible to grade the trained neural network. The ratio of the data split

into training and testing is predefined like other hyperparameters. Usually, the training data is the

biggest data set to cover a wide range of information [53].

Even more important is the preparation of the data for training. While some papers suggest

that there is no need to pre-process the dataset used for training [96][97], generally datasets are

prepared by cleaning up strong outliers and non-processable data like values of 0. Furthermore,

normalization and standardization are important to for example hinder exploding gradients which

lead to a model not converging [53][70]. With training data of input 𝑥𝑖 and output 𝑦𝑖 for 𝑁 sam-

ples, for standardization, the mean 𝜇, standard deviation 𝜎, and the final processed data 𝑥𝑠, 𝑦𝑠, are

as follows to basic standardization formula:

The mean 𝜇𝑥 of training data 𝑥 and the mean 𝜇𝑦 of training data 𝑦 are expressed as the sum

of all samples 𝑥𝑖, 𝑦𝑖 divided by the sample size 𝑁:

𝜇𝑥 =
∑𝑥𝑖
𝑁

 (2-65)

Literature Review 37

𝜇𝑦 =
∑𝑦𝑖
𝑁

 (2-66)

The standard deviation of training data x and y, 𝜎𝑥 and 𝜎𝑦 are expressed as the square root of

the sum of squared difference of each sample 𝑥𝑖, 𝑦𝑖 to its mean 𝜇𝑥 , 𝜇𝑦 divided by 𝑁 − 1:

𝜎𝑥 = √
∑(𝑥𝑖 − 𝜇𝑥)

2

𝑁 − 1
 (2-67)

𝜎𝑦 = √
∑(𝑦𝑖 − 𝜇𝑦)

2

𝑁 − 1
 (2-68)

And lastly it then follows for the standardized training data 𝑥𝑖𝑠 and 𝑦𝑖𝑠, where the mean 𝜇𝑥 , 𝜇𝑦

is subtracted from each sample 𝑥𝑖, 𝑦𝑖 and then divided by the standard deviation 𝜎𝑥 , 𝜎𝑦:

𝑥𝑖𝑠 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

 (2-69)

𝑦𝑖𝑠 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

(2-70)

2.4 Neural Network Enhancements

The enhancement of neural networks seeks to improve current structures of models, by ex-

tending or adding new parts to the model or replacing them completely. There are various types

of enhancement for various types of neural networks. This can often include the combination of

two neural networks, like for the first image recognition neural networks where a convolutional

neural network is coupled with a recurrent neural network allowing therefore splitting the main

task of image recognition into smaller tasks. In this case the convolutional neural network extracts

the features from the data array, that is, the image, and the recurrent neural network transforms

this information into something useable like a sentence describing the image. In this process the

convolutional neural network would be the encoder and the recurrent neural network the decoder.

Other enhancements may adjust or replace subparts of a neural network like its layers, neurons,

activation function or loss function. Certain enhancements are specific to certain use cases, where

Literature Review 38

the enhanced neural network does perform better for its inherent task but is not applicable to other

tasks [98][99].

In general, neural network enhancements allow for increasing speed and accuracy during

training, reduced processing power necessary, increased information extraction or noise reduction

of the given dataset, etc. The multiple training algorithms that have been developed can be con-

sidered such enhancements. The introduction of minibatches, decay of learn rate and others are

enhancement methods that are applicable to any neural network based on gradient descent opti-

mization. Similarly residual networks which apply skips to the backpropagation during the opti-

mization to mend issues like vanishing gradients, can be applied to a multitude of neural networks,

even though it is mainly used for image classification. There are many more enhancements for

general use like Gated Recurrent Units [100], Long Short-Term Memory [65], Dropout [101],

Batch Normalization[16], Ensemble Learning [102] and many more that improve certain capabil-

ities of neural networks. The following sections will briefly cover physics informed neural net-

works and its gradient enhanced variation. There are also Sobolev trained neural networks and

finite-element-informed neural networks, which all operate in a similar manner of loss function

expansion[47][103].

2.4.1 Physics Informed Neural Network (PINN)

A physics informed neural network, called PINN, is an enhanced regression neural network

model that incorporates partial differential equations (PDE) governing the dataset that the model

is supposed to approximate. A simplistic sketch of a PINN can be seen in Figure 2-17, which

shows the PINN being an expansion of the basic neural network design. In addition to the basic

loss function of a neural network, like the mean squared error, the loss is extended in a PINN by

the partial differential equations:

𝐿𝑃𝐼𝑁𝑁 = 𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑀 + 𝐿𝐹 + 𝐿𝐶 (2-71)

Where the total loss 𝐿𝑇𝑜𝑡𝑎𝑙 is the sum of the basic neural network model loss 𝐿𝑀, the loss of

the residual of the partial differential equation 𝐿𝐹 and the loss of the boundary and initial con-

straints 𝐿𝐶. By formulating a residual of this PDE, where the output of the neural network is a

parameter inside of the equation, the model is being constrained by the PDE. In addition to the

PDE, initial and boundary constraints can be added as additional loss expressions of residuals.

Doing so allows a PINN to outperform its basic neural network counterpart in multiple ways.

Literature Review 39

Figure 2-17: A Simple structure of a PINN. The PDEs are simply an extension to the basic neural

network model, specifically the loss function. Denoted are the model output �̂� and the true output 𝒖

and the PDE residual 𝑹(∙) (figure by author)

For one, a PINN is more accurate with the same dataset. Additionally, the PINN is able to

approximate faster, potentially being able to achieve the same results with less data as the basic

neural network with more data. They offer a great improvement when trying to analyze engineer-

ing problems of thermodynamics, structural integrity, etc. As these problems are always governed

by PDEs, introducing them to the neural network that approximates solutions for those problems

improves them. PINNs face the issue of these governing PDEs, and the initial and boundary con-

ditions being formulated and integrated into the neural network. Depending on the complexity of

the problem and its solution, including the equations governing them into the loss function can be

quite a difficult task[46].

2.4.2 Gradient-Enhanced Physics Informed Neural Network (gPINN)

The gradient enhanced physics informed neural network, gPINN, is an enhancement of the

PINN, see Figure 2-18. Similar to the PINN, the gPINN incorporates partial differential equations

in the neural network optimization of its loss. In addition to the basic partial differential equations

governing the physics of system, the gPINN also makes use of the derivatives of those partial

differential equations and incorporates them in the loss in the form of residuals as well:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑃𝐼𝑁𝑁 + 𝐿𝐺 (2-72)

Where 𝐿𝐺 is the loss of the residual of the gradient of the original partial differential equation

that governs the physics of the observed system. By including a constraint on the model’s output

Literature Review 40

through incorporation of the derivative of the partial differential equations which govern the phys-

ical system of the data the model is supposed to approximate, the neural network performs gen-

erally better.

Figure 2-18: The gPINN is an expanded PINN structure. The additional loss of the gradient of the

PDE is now added to the total loss (figure by author)

The gPINN is faster and more efficient than the base PINN, which is already an improvement

to base neural networks. However just as it is the case with PINNs, gPINNs face issues when it

comes to formulating the partial differential equations. On top of this, the derivatives of the partial

differential equations need to be formulated as well. In the case of complex systems with great

dimensionality, this can be a very difficult task [48].

2.5 Finite Element Method, Sensitivity Analysis and
Uncertainty Quantification

2.5.1 Finite Element Method

The finite element method is a numerical method employed to approximate models of differ-

ent fields of engineering. In this method, the system to be analyzed is divided into multiple smaller

and simpler parts. These parts are called finite elements. These are usually triangles or quadran-

gles for 2D systems and tetrahedra or hexahedra in the case of 3D systems. Because of their simple

design it is possible to numerically solve the weak form of equilibrium equation governing the

physics of a problem through use of shape functions. The weak form of equilibrium in structural

mechanics is generally defined as:

𝑅(𝑢; 𝑣) = ∫𝑃𝐾(𝑢): 𝐺𝑟𝑎𝑑𝑣⁡𝑑𝑉 − ∫𝑏0 ∗ 𝑣⁡𝑑𝑉 − ∫𝑡0 ∗ 𝑣⁡𝑑𝐴 = 0 (2-73)

Literature Review 41

Where 𝑃𝐾 is the Piola-Kirchoff stress tensor. Depending on the use case, other stress tensors

can be used. The vectors 𝑏0 and 𝑡0 are the body and traction forces. The displacement field is

denoted as 𝑢 and the test function as 𝑣. In this equation the forces of internal and external nature

should equalize, turning the residual to zero. Through use of various test functions 𝑣, the finite

element model can find a solution for the displacement field 𝑢. The purpose of the weak form,

compared to the strong form, is to simplify the equilibrium equation for easier approximation

through the finite element model. For a more detailed explanation see the referenced paper [51].

The process of dividing a system into finite elements happens through use of a defined dis-

cretization in space of the object to be analyzed. This yields a mesh of the object made up of all

the finite elements with multiple equations and boundary conditions for each finite element. These

equations are then combined to create a general set of equations, the finite element model, which

approximates a solution of the original object through numerical methods. The finite element

method is a widely used tool. The method allows for the approximation of many systems by

simplification into finite elements. Since numerical methods of equation solving are fast, the finite

element method allows for quick and precise solution finding. They can solve linear and nonlinear

problems, as well as time dependent problems. The difficulties of a finite element model are var-

ious. For one the generation of a mesh through discretization can prove difficult. Depending on

the complexity of the original object, finding a mesh that accurately represents it while minimiz-

ing the number of finite elements is a balancing task. The more finite elements there are, the more

nodal points exist and need to be considered in the calculations, leading to longer processing time.

Another issue is numerical instability of numerical methods [104][49].

2.5.2 Sensitivity Analysis

Sensitivity analysis concerns itself with methods to discern the rate of change of mathematical

models given variations of their governing parameters. In other words, the goal of such analysis

is to understand how changes in certain values like input values affect the output of a model. In a

wide range of engineering problems understanding the root of the difference in a model’s output

compared to the desired output can help fine tune a model. In this regard, sensitivity analysis is

most useful to quantify the effect of aleatoric or epistemic uncertainty. Sensitivity analysis is also

used as part of uncertainty quantification [105]. This can be applied onto a finite element model.

To analyze the response sensitivity of such a model, it is possible to determine the change of the

residual under certain parameter changes. The following equation defines multiple properties:

𝛿𝑅 = 𝛿𝑢𝑅 + 𝛿𝑠𝑅 + 𝛿ℎ𝑛𝑅 = 0

= 𝑘(𝑣, 𝛿𝑢) + 𝑝(𝑣, 𝛿𝑠) + ℎ(𝑣, 𝛿ℎ𝑛)
(2-74)

Where the slight variations of the weak form of the equilibrium are summarized as variations

through changes in displacement 𝑘(𝑣, 𝛿𝑢), design parameters 𝑝(𝑣, 𝛿𝑠) and deformation history

ℎ(𝑣, 𝛿ℎ_𝑛) respectively. For a more detailed explanation on the response sensitivity calculation,

see the referenced source [51].

Literature Review 42

2.5.3 Uncertainty Quantification

Uncertainty quantification is the analysis of uncertainty in data, systems, and models. In any

real-world event or model prediction there is a degree of uncertainty because of unknown param-

eters, bias, etc. These are divided into aleatoric and epistemic uncertainty, although a combination

of both is usually the case. Aleatoric uncertainty describes the inherent randomness of any given

system that is being approximated. Random variations such as process fluctuations or errors in

measurements are some examples of aleatoric uncertainty. Epistemic uncertainty covers uncer-

tainty of unknown nature. Any information not available to the model which approximates a sys-

tem is epistemic. In contrast to aleatoric uncertainty, epistemic uncertainty can be reduced through

better datasets, better models, etc. Uncertainty quantification tries to understand the likelihood of

certain events to occur under these uncertainties and therefore quantify them. To quantify uncer-

tainty there needs to be a considerable amount of data to extract the necessary information. This

information is synthesized into probability distributions, that characterize the unknown parame-

ters of a certain model. Then, it is necessary to propagate this uncertainty through the model, to

determine the uncertainty associated with the response of a given model. This step is usually

known as “forward uncertainty propagation”. One of the mainly used methods for this forward

uncertainty propagation is the Monte Carlo simulation. The Monte Carlo method is a technique

to create many random numerical results of a system through repeated simulation for different

realizations of the uncertain parameters of a model. The general pattern of the Monte Carlo sim-

ulation is to define a domain of potential inputs via its probability distribution and generate out-

puts. This propagation of the uncertainty is done through a deterministic method like a finite

element model, see . The Monte Carlo method is considered very time consuming, especially with

large, complex systems and technically its results are only approximations. When trying to quan-

tify such systems, acquiring the necessary data for this through Monte Carlo can turn into a bot-

tleneck [106]. Other techniques are the Latin Hypercube Sampling, which is a form of Monte

Carlo Simulation, and Polynomial Chaos Expansion [107]. The produced output samples allow

us to analyze them statistically with various methods. For example, to calculate the mean 𝜇 of the

response of a model, the equation follows as:

𝜇 = 𝐸{𝑟} ≈
∑ 𝑟𝑖
𝑁
𝑖=1

𝑁
 (2-75)

Literature Review 43

With 𝐸{𝑟} being the expectation of the response 𝑟 and 𝑁 being the number of samples. The

variance 𝑉𝑎𝑟{𝑟} of the response 𝑟, or squared standard deviation 𝜎2, is expressed as:

𝑉𝑎𝑟{𝑟} = 𝜎2 = 𝐸{(𝑟 − 𝜇)2} ≈
∑ (𝑟𝑖 − 𝜇)2𝑁
𝑖=1

𝑁 − 1
 (2-76)

Another metric to analyze data is the probability of exceedance, also called probability of

failure. The probability of exceedance compares various metrics of analyzed data to glean if a

defined value of failure will be exceeded and with which probability. The probability of exceed-

ance can be observed visually by plotting all generated samples sorted over a probability axis

from 0⁡𝑡𝑜⁡1 and marking the value of exceedance, for example the mean of the generated data

together with its variance, and then noting the intersection. The probability of exceedance can be

calculated through integration as well. This can be done analytically, numerically, or through

other methods like a cumulative distribution function [108][109]. Formally, the probability of a

model’s response 𝑟 exceeding a predefined threshold 𝑏 is defined as:

𝑃{𝑟 ≥ 𝑏} = ∫ 𝐼(𝑟(𝜃) ≥ 𝑏)𝑓Θ(𝜃)𝑑𝜃
𝜃∈Θ

≈
1

𝑁
∑𝐼(𝑟(𝜃(𝑗)) ≥ 𝑏)

𝑁

𝑗=1

 (2-77)

Figure 2-19: Propagation of uncertainty through a deterministic method. The input parameter x

defines the response y through the probability distributions 𝒇(𝒙𝒊).The deterministic method is cre-

ating samples of response to generate probability distributions 𝒇(𝒚𝒊) (figure by author)

Literature Review 44

Where 𝜃 denotes the uncertain input parameters of a model, which belong to a set Θ and

whose uncertainty is characterized by the joint probability distribution 𝑓Θ(𝜃) and 𝐼() is an indi-

cator function whose value is equal to 1 in case that the expression contained in parentheses is

true and zero, otherwise. Additionally, 𝜃(𝑗), 𝑗 = 1, … , 𝑁 denoted 𝑁 independent, identically dis-

tributed samples of 𝜃 distributed according to 𝑓Θ(𝜃).

Methodology 45

3 Methodology

During this chapter the general question of how and why concerning gradient data and its

incorporation in neural networks is addressed. In the following sections, the theory and method-

ology behind the gradient enhanced neural network are discussed. A brief overview of how to

take advantage of gradient data during the training of a neural network is discussed considering

two different variations, including advantages and disadvantages of the two mentioned variations.

The final used variation in this work will be elaborated and current state of the art is explored. In

addition expansion on this current state of the art is discussed as further motivation and reason of

this work.

3.1 Research goal

The goal of this work is to take advantage of additional gradient information of a given dataset

during the training of a neural network and compare its performance with its base neural network

counterpart. Many neural networks still do not employ the use of gradient information for training.

For one, computing additional gradient information of a system to be observed can be quite costly

depending on the method used. Secondly, the difference of scale and magnitude between function

value and gradient value can lead to numerical issues when training a neural network. There have

been a handful of papers [111][112] in which the use of gradient information has been exploited

for better performance of the neural network. In this paper, the research on this topic will be

expanded, by using a variety of design hyperparameters, that is, varying designs of a neural net-

work referring to its layers, neuron count and others. The observations are done using data gen-

erated by a finite element model using sensitivity analysis, instead of simple academic function

evaluations. In cases where gradient information is readily available, applying it to the training of

a neural network should lead to performance improvement. Through specific numerical methods,

gradient information can be obtained for certain cases. Sensitivity analysis, previously discussed

in section 2.5.2, computes this gradient information at a relatively efficient numerical cost, thus

opening a potential avenue to train neural networks by taking advantage of this available gradient

information. The gradient information will be applied during training of the neural network sim-

ilar to Sobolev-Training [111], whereby the neural networks output and its derivative with respect

to input are optimized via an expanded loss function. In this work specifically, the data used for

the training of the neural network is generated by a finite element model for linear and nonlinear

elasticity through sensitivity analysis, thereby applying the neural networks observed in this work

to linear and nonlinear mechanics. Any PDEs governing the system will not be used for training,

making any performance strictly data based. The neural networks are also compared to the finite

element model for accuracy and processing time, to gauge if replacing the finite element model

with the gradient enhanced neural network is viable. This goal is particularly relevant for uncer-

tainty quantification, where uncertainty needs to be propagated and replacing the finite element

model with a gradient enhanced neural network could potentially solve issues such as long pro-

cessing times. These comparisons are applied to different designs of neural networks. Through a

Methodology 46

variation of predefined hyperparameters, like training data size, layer number, neuron number,

etc., results will be compared. Lastly, the issue of weighting the different losses will be explored.

As the loss function will be expanded with additional addends and these addends contain different

information, function and gradients respectively, each of these loss addends have varying im-

portance for the optimization of the neural network during training. Therefore, each loss should

be weighed differently. In a previous paper [112], weights had been applied to the gradient infor-

mation addends in the loss function of a Sobolev-Training model. In short, the weight of the loss

addends containing the gradient information was linearly increased over the training time or to

slowly introduce the gradient information to the training. The target in this work will be instead,

to analyze various methods of solving this weighting problem instead of a simple linear increase

of weighting, whereby the weighing of the gradient loss will slowly increase from 0 to 1. This

will be done by adjusting the redefined loss function of the gradient enhanced neural network,

whereby a weight factor will be added to the respective loss terms in the model loss function and

varied through various methods. First, fixed weights will be observed to understand correlations

of weighing to performance of the models. Secondly, dynamic weighing will be experimented

with, whereby the gradient loss weight will be linearly decreased from 1 to 0 and another variation

whereby the weight of the output loss will be linearly increased from 1 to 2. Another last variation

of dynamic loss weights will consider weights for the model output loss and the gradient loss,

which are expressed as cumulative distribution functions to bound the weight values. The weights

will then be trained by the model itself for optimization.

3.2 Gradient Enhanced Neural Network Model

When given a dataset containing function values mapped to specific inputs, a neural network

can approximate the probability relationship between these inputs and outputs. Through express-

ing the approximation error of our model through a loss function and using and optimization

algorithm to minimize it in relation to the model parameters, the models can obtain accurate out-

put capabilities mirroring the presented data. When given additional information of any system,

optimization tasks can become easier. However this can also have the opposite effect of turning

the optimization problem very complex and thus reducing optimization performance. When try-

ing to take advantage of gradient data in neural networks, this needs to be kept in mind. Whatever

method is applied, needs to reduce complexity, and increase performance.

There is a variety of ways to include gradient data with respect to the inputs in a neural net-

work. For one, the model could be expanded to include an additional output which would hold

the gradient information, thereby forcing the model to also approximate the gradient. This would

be a simple neural network with bigger dimensionality. The second variation is to expand the loss

function of the model, by including an additional loss addend which holds the gradient infor-

mation, thereby taking advantage of the gradient information during the training process. This

would differ from the general design of loss functions, where usually only the output residual is

computed including any regularization addend. In the following, both variations will be analyzed

to determine which variation is better.

Methodology 47

3.3 First Variation – Expanding Model Output

The first variation of expanding a model’s output size is just a simple neural network, whereby

none of the previously equations change drastically. The only difference is that now there are

additional loss addends for each additional output. In the case of expanding the outputs of the

model, thereby increasing the output layer neurons from for example 1 to 2, the model would

approximate the output values 𝑦1, 𝑦2. In this specific case of function values and gradient data,

𝑦1 would be the function value and 𝑦2 the gradient value, as can be seen in Figure 3-1.

This is usually called a multi-output neural network, where the vector of model parameters

𝜃 = {𝑤, 𝑏} would be adjusted to approximate the training data of 𝑦 and
𝛿𝑦

𝛿𝑥
. The loss 𝐿 would then

be a simple addend expansion of the basic neural network loss defined in (2-23) , now expressed

as:

Figure 3-1: Previous example of a neural network expanded to have 2 outputs (figure by author)

Methodology 48

𝐿 =
1

2𝑁
∑(�̂�1 − 𝑦1)

2

𝑛

+
1

2𝑁
∑(�̂�2 − 𝑦2)

2

𝑛

(3-1)

As will be seen later, when the partial derivatives of the used gradient enhanced model are

explored in this section, this gradient computed through automatic differentiation for this loss

function is different. With applying the chain rule to this loss, its gradient would be expressed as:

𝛿𝐿

𝛿𝜃[𝑝]
=

𝛿𝐿

𝛿�̂�1

𝛿�̂�1

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
𝛿𝑎[𝐿−1]

𝛿𝑧[𝐿−1]
∗ …∗

𝛿𝑎[𝑝+1]

𝛿𝑧[𝑝+1]
𝛿𝑧[𝑝+1]

𝛿𝜃[𝑝]

+
𝛿𝐿

𝛿�̂�2

𝛿�̂�2

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
𝛿𝑎[𝐿−1]

𝛿𝑧[𝐿−1]
∗ …∗

𝛿𝑎[𝑝+1]

𝛿𝑧[𝑝+1]
𝛿𝑧[𝑝+1]

𝛿𝜃[𝑝]

(3-2)

⁡, 𝑤𝑖𝑡ℎ⁡𝑙 = {𝑝,… , 𝐿}

With 𝑝 denoting the layer of the parameter 𝜃 with respect to which the derivative is computed.

Here the exact same dependencies can be observed for both partial derivative terms.

In MATLAB, neural networks are designed by the following general expressions:

𝛿�̂�𝑖

𝛿𝑎[𝐿]
= 1 (3-3)

𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
= 1 (3-4)

The only difference therefore between the two loss derivatives
𝛿𝐿

𝛿�̂�1

𝛿�̂�1

𝛿𝜃[𝑝]
 and

𝛿𝐿

𝛿�̂�2

𝛿�̂�2

𝛿𝜃[𝑝]
 would

be the terms
𝛿𝐿

𝛿�̂�1

𝛿�̂�1

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
 and

𝛿𝐿

𝛿�̂�2

𝛿�̂�2

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
, expressed as:

𝛿𝐿

𝛿�̂�1

𝛿�̂�1

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
= (

1

𝑁
∑�̂�1 − 𝑦1
𝑛

⁡) ∗ 𝑤1𝑗
[𝐿]

 (3-5)

Methodology 49

𝛿𝐿

𝛿�̂�2

𝛿�̂�2

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
= (

1

𝑁
∑�̂�2 − 𝑦2
𝑛

) ∗ 𝑤2𝑗
[𝐿]

 (3-6)

In the case of 𝑝 = (𝐿 − 1), the expressions change to:

𝛿𝐿

𝛿�̂�1

𝛿�̂�1

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝜃[𝑝]
= (

1

𝑁
∑�̂�1 − 𝑦1
𝑛

⁡) ∗ 𝑎𝑗
[𝑝]

 (3-7)

𝛿𝐿

𝛿�̂�2

𝛿�̂�2

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝜃[𝑝]
= (

1

𝑁
∑�̂�2 − 𝑦2
𝑛

) ∗ 𝑎𝑗
[𝑝]

 (3-8)

Figure 3-2: Red marked lines are newly introduced connections in the neural network (figure by

author)

Methodology 50

As can be seen visually in Figure 3-2, when the previous neural network is expanded to now

have 2 outputs, there is new connections added only between the last hidden layer and the output

layer. These connections do not affect the first output 𝑦1. Therefore the only difference of the two

loss terms of this model’s loss function expressed in (3-5), (3-6), (3-7), (3-8) only derive from

this area. With 𝑤1𝑗
[𝐿]
, 𝑤2𝑗

[𝐿]
 being the weights used for the weighted sum of the linear output of the

last hidden layer and 𝑎𝑗
[𝑝]

 being the non-linear output of the neuron 𝑗 of layer 𝑝. Therefore, the

only difference of influence on the gradient descent method and therefore the update rule for the

model parameters besides the error term, like the one in (2-55) or (2-56), would derive from the

variation of the last layer weights 𝑤1𝑗
[𝐿]
, 𝑤2𝑗

[𝐿]
. This means the addition of a second output which

would be the gradient data
𝛿𝑦

𝛿𝑥
 in this case, would add the additional weights 𝑤2𝑗

[𝐿]
 to the optimiza-

tion as well as the additional bias 𝑏2
[𝐿]

, separate from the model parameters used to determine the

first output value which is the value 𝑦1. These weights and bias would not affect our first output

at all, therefore being an additional computation with no gain in performance concerning the ap-

proximation of 𝑦1. An additional output therefore means more computation for approximating the

wrong output 𝑦2.

Since neural network neurons in a simple feed-forward regression model are interconnected

layer to layer unidirectionally and chronologically, this model architecture would have the rest of

the model parameters be shared between the two outputs, see Figure 3-1. While a function and its

derivative are connected mathematically, approximating both as two separate outputs means ap-

proximating two different functions. While a model is most certainly capable of approximating

both values, this is unlikely to increase the performance of the model and rather decrease the

processing performance concerning the desired approximation of data 𝑦, as was said previously.

The shared model parameters will generalize between the functions of 𝑦 and its derivative
𝛿𝑦

𝛿𝑥
,

instead of optimizing the model parameters solely for data 𝑦. Furthermore, since the model pa-

rameters are now used to approximate 2 outputs instead of just 1 output, according to the discussed

universal approximation theorem in section 2.1.2, the model would have to be expanded in di-

mensions, underlining the decrease in performance.

3.4 Second Variation – Loss addend

Instead of adding a second output to approximate the derivative data
𝛿𝑦

𝛿𝑥
, the model could

simply compute its own derivative with respect to its own input and add an additional loss term

to the loss function. This would also not expand the output layer of the model and therefore the

model does not compute anything new on top of previous computation of the basic neural network

without gradient enhancement. This has various advantages. For one, because of automatic dif-

ferentiation, see section 2.3.8, most partial derivatives used to calculate the gradient of the defined

loss function are also used when calculating the partial derivatives of the model output with re-

spect to its inputs. Even if certain partial derivatives are not retained originally, when they are

retained, then the processing time is not affected too much by additional calculations, as they are

still fundamentally part of the automatic differentiation process and thereby still calculated. The

additional memory needed is therefore negligible. Furthermore, the model does not split its model

Methodology 51

parameters to approximate 2 different function values like in the multi-output model. Instead it

adjusts its own mathematical derivative with respect to the inputs, all the while approximating the

desired output 𝑦. The model’s partial derivatives
𝛿�̂�

𝛿𝑥
 of its output �̂� with respect to its inputs do

not introduce new model parameters like the multi output neural network variation does in the

last layer of the neural network. Rather and only does it give the model additional information to

adjust its preexisting model parameters to better approximate the data 𝑦. This is similar to regu-

larization addends of the loss function, like the 𝑙2 regularization, where only preexisting model

weights are used to regulate weights so as to avoid vanishing and exploding gradients, see section

2.3.7. Another loss addend method to enhance the optimization process that is quite similar in

nature is the Lipschitz continuity regularization [110]. The Lipschitz continuity defines the degree

or range of change of a function’s value with respect to its input parameters. When applying

Lipschitz continuity as a regularization addend to the loss of a neural network, the optimiza-

tion/training is constrained or rather bounded to a predefined range or value in its gradient with

respect to the model’s inputs. A general expression of Lipschitz continuity is:

|𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝐾|𝑥1 − 𝑥2| (3-9)

Whereby 𝐾 is the predefined Lipschitz constant that defines the rate of change of the function.

This Lipschitz regularization occurs without gradient data. It simply puts a bound on rate of

change of the loss function of a neural network. Similarly, but with use of gradient information,

the Sobolev-trained neural network, or SANN for Sobolev artificial neural network, applies an

additional loss addend to the loss of a neural network model. Since the data 𝑦 and its derivative

𝛿𝑦

𝛿𝑥
 are connected mathematically, so should also the model output �̂� and its derivative

𝛿�̂�

𝛿𝑥
 have

that same mathematical connection. This enables the gradient enhanced model to not only ap-

proximate on the given data 𝑦, but also on unseen data, as the inherit patterns and structures of

the data 𝑦 are constrained by its derivative
𝛿𝑦

𝛿𝑥
 , limiting the possibilities of approximation solu-

tions of data 𝑦 to a great degree. In general, this use of gradient data can be proven through use

Sobolev spaces, that is, through the adjusted or expanded loss function by exploiting gradient

information, it is possible to reduce the error of a neural network’s approximation in Sobolev

spaces [111].

Therefore, gradient enhanced neural network models have the same general architecture as

basic neural network models, when it comes to layers, neurons and other hyperparameters. How-

ever the difference in the gradient enhanced model will be the expansion of its loss function

through the simple addition of a gradient loss 𝐿𝑑𝑌 and with it, the few additional computations

inside the automatic differentiation to acquire the partial derivatives with respect to the inputs and

their retention for further computations. The equations governing the gradient enhanced model

are elaborated in the next section.

Methodology 52

3.4.1 Neural Network Model Generation

The MATLAB program code used for the neural network models is illustrated in Figure 3-3,

which details the general flow and processing of information through a flow chart. Going step by

step through the flow chart in Figure 3-3, first, the generated data is split into training and valida-

tion data after being standardized according to the equations in section 2.3.9. An important issue

with using a gradient enhanced neural network relates to the standardization of the data. The

magnitude or scale difference between the datasets of output 𝑦 and its derivative
𝛿𝑦

𝛿𝑥
 have direct

effects on the performance of the training of the neural network. When training a neural network

model it is common knowledge in machine learning to normalize/standardize the training data for

various reasons. Generally, it improves convergence as it reduces scale differences between sam-

ples, thereby also increasing gradient stability.

This can also improve the weight regularization implemented in the loss function, as adjusting

the scale of data samples allows the weight penalty to be applied uniformly. Especially when

using derivative data to enhance a neural network, it needs to be preprocessed, because of the

potential large scale difference between function value and derivatives. Additionally, to standard-

ize the derivative data, simply using the same equation procedure as for the input data 𝑥 and the

output data 𝑦 is not possible. Doing so destroys and changes the gradient information contained

in the data. When using the standard deviation 𝜎𝛿𝑦

𝛿𝑥

 and the mean 𝜇𝛿𝑦
𝛿𝑥

 of the derivative data to

calculate the standardized derivative data (
𝛿𝑦

𝛿𝑥
)𝑠, the following equation, similar to (2-69) (2-70),

would follow:

Figure 3-3: Information Flow Chart of the MATLAB Program Code (figure by author)

Methodology 53

(
𝛿𝑦

𝛿𝑥
)𝑠 =

𝛿𝑦
𝛿𝑥

− 𝜇𝛿𝑦
𝛿𝑥

𝜎𝛿𝑦
𝛿𝑥

 (3-10)

Here, the calculated value of this equation has lost the information that relates the derivative

𝛿𝑦

𝛿𝑥
 to the output 𝑦. To illustrate this, using an example like a simple quadratic function of 𝑓(𝑥) =

𝑦 = 𝑥2, one has the following values for the given 𝑥:

𝑥 = {−1,0,1}, 𝑦 = {1,0,1} and
𝛿𝑦

𝛿𝑥
= {−2,0,2}

By applying basic normalization to each data set, the values change to:

𝑥𝑛 = {0,0.5,1}, 𝑦𝑛 = {1,0,1} and (
𝛿𝑦

𝛿𝑥
)𝑛 = {0,0.5,1}

As can be observed, the normalized derivative data (
𝛿𝑦

𝛿𝑥
)𝑛 has lost certain gradient infor-

mation, like the correct position of the global minima. It no longer has the correct gradients, and

this means it does not contain the derivative of the normalized output 𝑦𝑛. When training a gradient

enhanced neural network with gradient data normalized according to (3-10) the training is not

able to correctly converge to a solution and leads to numerous numerical instabilities. The nor-

malized derivative data must contain the gradient information of the derivative of 𝑦𝑛 with respect

to 𝑥𝑛 instead. Thus, the correctly standardized derivative data
𝑑𝑦𝑖𝑠

𝑑𝑥𝑖𝑠
 is calculated according to the

following written equations. Previously, in equations (2-69) and (2-70), the following equations

for the standardized input 𝑥𝑖𝑠 and output 𝑦𝑖𝑠 were given:

𝑥𝑖𝑠 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

 (3-11)

𝑦𝑖𝑠 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

(3-12)

With
𝑑𝑦𝑖𝑠

𝑑𝑥𝑖𝑠
 being the derivative of the standardized output 𝑑𝑦𝑖𝑠 with respect to the standardized

input 𝑑𝑥𝑖𝑠, the value of
𝑑𝑦𝑖𝑠

𝑑𝑥𝑖𝑠
 will still contain the gradient information while simultaneously ad-

justing the derivative data to the standardized input 𝑥𝑖𝑠 and output 𝑦𝑖𝑠 data, thereby standardizing

it as well.

Methodology 54

First, an expression for 𝑑𝑥𝑖𝑠 is formulated by differentiating (3-11), which is the general de-

rivative of the standardized input 𝑥𝑖𝑠:

𝑑𝑥𝑖𝑠 =
𝑑𝑥𝑖
𝜎𝑥

(3-13)

Similarly, differentiating (3-12), it follows:

𝑑𝑦𝑖𝑠 =
𝑑𝑦𝑖
𝜎𝑦

(3-14)

By combing these two and adjusting for
𝑑𝑦𝑖𝑠

𝑑𝑥𝑖𝑠
, the final expression changes to:

𝑑𝑦𝑖𝑠
𝑑𝑥𝑖𝑠

=

𝑑𝑦𝑖
𝑑𝑥𝑖
𝜎𝑥
𝜎𝑦

(3-15)

And finally the correct standardized derivative data
𝑑𝑦𝑖𝑠

𝑑𝑥𝑖𝑠
 is:

𝑑𝑦𝑖𝑠
𝑑𝑥𝑖𝑠

=
𝜎𝑥
𝜎𝑦

∗
𝑑𝑦𝑖
𝑑𝑥𝑖

(3-16)

Without this correct preprocessing, the neural network will not accurately converge or not

converge at all. Not using this equation leads to the case where the optimization algorithm tries

to minimize the loss of the output and its derivative with respect to its input, the loss of the deriv-

ative will not apply to the same data as the loss of the output, meaning the two loss terms will

define two completely different functions which the neural network model then tries to approxi-

mate, which is not possible. To expand on the previous example, going back to the simple quad-

ratic function, the correctly normalized data now is:

𝑥𝑛 = {0,0.5,1}, 𝑦𝑛 = {1,0,1} and
𝑑𝑦𝑛

𝑑𝑥𝑛
= {−4,0,4}

As can be observed, the correctly normalized derivative data contains the global minimum at

(0.5,0). The derivative has also increased in scale, which is correct since the normalized output

Methodology 55

𝑦𝑛 has been compressed into the smaller range of the normalized input 𝑥𝑛. Still, after standardiz-

ing the output and the derivative data, a difference in scale between them remains. To determine

if the remaining scale difference is an issue, a model variation with the loss weights is introduced

and analyzed with a variation of fixed values, as mentioned previously in this section.

Returning to the flow chart in Figure 3-3, once the training data has been preprocessed, it is

split into minibatches of a predefined size. Then the neural network model is initialized with

predefined options for all its hyperparameters. After this, the training loop is initiated, whereby

according to the predefined options, through automatic differentiation, a unique loss function is

used after forward and backward propagation, to calculate all gradients. The gradients are then

parsed into the update rule of the stochastic gradient descent momentum algorithm and the model

parameters are updated. This is repeated for each iteration until an epoch has passed. After each

iteration 𝑡, the program updates the new learning rate 𝜆𝑡 inside the update rule with the decay rate

𝑐, a predefined hyperparameter, according to the time-based decay:

𝜆𝑡+1 =
𝜆𝑡

(1 + 𝑐 ∗ 𝑡)

(3-17)

Afterwards, the order of the minibatches is shuffled and the process repeats until the training

is stopped or has reached the maximum epochs. During each iteration, metrics, such as loss and

relative 𝑙2 error, are computed and stored. All results are stored to then be used in various calcu-

lations to provide metrics for the analysis of the results. This time-based decay of the learning

rate will be replaced with a more streamlined learning rate update rule. More on this in section 4.

3.4.2 Loss Function

The regression gradient enhanced neural network approximates an output according to the

training data through use of an optimization algorithm like gradient descent. A neural network

does this through adjusting its model parameters 𝜃 = {𝑤, 𝑏} iteratively. These parameters are

used in its nested non-linear neuron output functions to calculate the output for each layer to then

predict the final output �̂�. Through defining an objective function, that is, the loss function for the

optimization algorithm to optimize, the neural network model is capable of converging towards

an optimal solution. The solution is only an approximation, and the optimization algorithm only

adapts itself according to the residual of its output �̂� to the true output 𝑦. By adding another

additional loss in the form of the gradient of 𝑦, the optimization algorithm has more information

during the training process. The gradient
𝛿�̂�

𝛿𝑥
 of the model output �̂� with respect to the model input

𝑥, adds new information to the optimization problem and thereby removes a certain amount of

previously possible solutions of model parameter variations and combinations that worked for the

basic neural network. With this new information, these variations and combinations of model

parameters can no longer reduce the total loss of our model, as they now must consider a constel-

lation of model parameters that reduces the gradient loss. This allows the optimization to converge

easier along the space of the loss function. Because the gradient
𝛿𝑦

𝛿𝑥
 defines rate and direction of

Methodology 56

how the function value 𝑦 moves through its function space, it limits the model function obtained

through training to a certain shape more in line with the to be approximated function . The total

loss 𝐿 of the gradient enhanced neural network is defined as:

𝐿 = 𝐿𝑌 + 𝐿𝑑𝑌 + 𝐿𝑅 (3-18)

With the basic neural network loss 𝐿𝑌 being the error of our model output �̂� to the true output

𝑦:

𝐿𝑌 =⁡
1

2𝑁
∑(�̂� − 𝑦)2

𝑛

(3-19)

And the gradient loss 𝐿𝑑𝑌, which is the error of the gradient
𝛿�̂�

𝛿𝑥
 of our model output �̂� with

respect to the input 𝑥, to the true gradient
𝛿𝑦

𝛿𝑥
 of the true output 𝑦 with respect to the input 𝑥:

𝐿𝑑𝑌 =⁡
1

2𝑁
∑(

𝛿�̂�

𝛿𝑥
−
𝛿𝑦

𝛿𝑥
)2

𝑛

(3-20)

With the sum over 𝑛 = [1,… ,𝑁] training data samples of the predefined minibatch. Whereby

depending on the number of inputs,
𝛿�̂�

𝛿𝑥
 and

𝛿𝑦

𝛿𝑥
 are vectors of size 𝑁𝑥𝐼. In this case each residual

for each individual partial derivative is computed and squared before being summed up together.

In the case of multiple model outputs and model inputs these two equations can be expressed as:

𝐿𝑌 =⁡
1

2𝑁
[∑(�̂�1 − 𝑦1)

2

𝑛

+∑(�̂�2 − 𝑦2)
2

𝑛

+⋯+∑(�̂�𝑜 − 𝑦𝑜)
2

𝑛

] (3-21)

Methodology 57

𝐿𝑑𝑌 =⁡
1

2𝑁
[(∑(

𝛿�̂�1
𝛿𝑥1

−
𝛿𝑦1
𝛿𝑥1

)2

𝑛

+∑(
𝛿�̂�2
𝛿𝑥1

−
𝛿𝑦2
𝛿𝑥1

)2

𝑛

+⋯+∑(
𝛿�̂�𝑜
𝛿𝑥1

−
𝛿𝑦𝑜
𝛿𝑥1

)2

𝑛

)

+ (∑(
𝛿�̂�1
𝛿𝑥2

−
𝛿𝑦1
𝛿𝑥2

)2

𝑛

+∑(
𝛿�̂�2
𝛿𝑥2

−
𝛿𝑦2
𝛿𝑥2

)2

𝑛

+⋯

+∑(
𝛿�̂�𝑜
𝛿𝑥2

−
𝛿𝑦𝑜
𝛿𝑥2

)2

𝑛

) +⋯

+ (∑(
𝛿�̂�1
𝛿𝑥𝑖

−
𝛿𝑦1
𝛿𝑥𝑖

)2

𝑛

+∑(
𝛿�̂�2
𝛿𝑥𝑖

−
𝛿𝑦2
𝛿𝑥𝑖

)2

𝑛

+⋯

+∑(
𝛿�̂�𝑜
𝛿𝑥𝑖

−
𝛿𝑦𝑜
𝛿𝑥𝑖

)2

𝑛

)]

(3-22)

With 𝑖 denoting the number of inputs and 𝑜 denoting the number of outputs. These equations

are used with standardized data. Reasons for preprocessing of training data are discussed in sec-

tion 2.3.9. The loss of weight regularization 𝐿𝑅, which is a 𝑙2 regularization of all weights 𝑤𝑖
[𝑙]

 of

the model parameters 𝜃:

𝐿𝑅 =⁡
1

2𝑁
∑∑𝑤𝑖

[𝑙]2

𝑖𝑙

(3-23)

Whereby the weights 𝑤𝑖
[𝑙]

 denote the model parameter weights used for each linear part for

each layer 𝑙. They are the weights of each of the model’s neurons 𝑖, used in the weighted sum

calculation as defined in section 2.3.2. All these weights are squared and summed together for the

𝑙2 regularization to apply a weight penalty.

The partial derivative of the output with respect to the input parameters
𝛿�̂�

𝛿𝑥
 is calculated by

automatic differentiation. Per the chain rule, it is expressed as:

𝛿�̂�

𝛿𝑥
=

𝛿�̂�

𝛿𝑎[𝐿]
𝛿𝑎[𝐿]

𝛿𝑧[𝐿]
𝛿𝑧[𝐿]

𝛿𝑎[𝐿−1]
𝛿𝑎[𝐿−1]

𝛿𝑧[𝐿−1]
∗ …∗

𝛿𝑎[1]

𝛿𝑧[1]
𝛿𝑧[1]

𝛿𝑎[0]
⁡ , 𝑤𝑖𝑡ℎ⁡𝑙 = {0,… , 𝐿} (3-24)

All partial derivatives, except the last, follow the same expressions as shown in section 2.3.8

starting from equation (2-26) onwards. For the last partial derivative
𝛿𝑧[1]

𝛿𝑎[0]
 it follows from this

previous section:

Methodology 58

𝛿𝑧[1]

𝛿𝑎[0]
=⁡𝑤[0] (3-25)

To extend with this on the previous simple regression neural network example with 2 hidden

layers with 3 neurons each, detailed in section 2.3.8, the following is obtained:

𝛿�̂�

𝛿𝑥
=

𝛿�̂�

𝛿𝑎[2]
𝛿𝑎[2]

𝛿𝑧[2]
𝛿𝑧[2]

𝛿𝑎[1]
𝛿𝑎[1]

𝛿𝑧[1]
𝛿𝑧[1]

𝛿𝑥

= 𝑤1
[2]

∗ 𝑔′ (𝑧1
[2]
) ∗ (𝑤11

[1]
∗ 𝑔′ (𝑧1

[1]
) ∗

𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤12
[1] ∗ 𝑔′ (𝑧2

[1]) ∗
𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤13
[1]

∗ 𝑔′ (𝑧3
[1]
) ∗

𝛿𝑧[1]

𝛿𝑥𝑖
)

+𝑤2
[2] ∗ 𝑔′ (𝑧2

[2]) ∗ (𝑤21
[1] ∗ 𝑔′ (𝑧1

[1]) ∗
𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤22
[1] ∗ 𝑔′ (𝑧2

[1]) ∗
𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤23
[1]

∗ 𝑔′ (𝑧3
[1]
)) ∗

𝛿𝑧[1]

𝛿𝑥𝑖
)

+𝑤3
[2] ∗ 𝑔′ (𝑧3

[2]) ∗ (𝑤31
[1] ∗ 𝑔′ (𝑧1

[1]) ∗
𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤32
[1] ∗ 𝑔′ (𝑧2

[1]) ∗
𝛿𝑧[1]

𝛿𝑥𝑖

+𝑤33
[1] ∗ 𝑔′ (𝑧3

[1])) ∗
𝛿𝑧[1]

𝛿𝑥𝑖
)

(3-26)

With the final part of each term defined as one of the two inputs, depending on the connection:

𝛿𝑧[1]

𝛿𝑥𝑖
=
𝛿𝑧[1]

𝛿𝑎[0]
= 𝑤𝑖𝑗

[0]
 (3-27)

For 𝑤11
[0]

, one of the first 6 weights connecting the first neuron of the input layer with the first

neuron of the first hidden layer, (3-26) shows the chain rule path for computation. The path is the

exact same in this case. The difference now is that the model outputs gradient with respect to its

inputs is differentiated with respect to the model parameter as well. Then, making use of the

Methodology 59

previously defined expression of
𝛿�̂�

𝛿𝑥
, one concludes the following simplified expression for

𝛿�̂�

𝛿𝑥

𝛿𝑤11
[0] ,

the partial derivative with respect to 𝑤11
[0]

:

𝛿�̂�
𝛿𝑥

𝛿𝑤11
[0]

= 𝑤1
[2]

∗ 𝑔′ (𝑧1
[2]
) ∗ 𝑤11

[1]
∗ 𝑔′ (𝑧1

[1]
)

+𝑤2
[2]

∗ 𝑔′ (𝑧2
[2]
) ∗ 𝑤21

[1]
∗ 𝑔′ (𝑧1

[1]
)

+𝑤3
[2]

∗ 𝑔′ (𝑧3
[2]
) ∗ 𝑤31

[1]
∗ 𝑔′ (𝑧1

[1]
)

(3-28)

A simpler derivation explanation is by observing (3-26). Any term in which the final part is

defined as
𝛿𝑧[1]

𝛿𝑥𝑖
= 𝑤11

[0]
, is simply dropped, thereby concluding to (3-28). For the connection be-

tween the first and second hidden layer, the partial derivative with respect to the weight 𝑤11
[1]

 is

computed and it is expressed as:

𝛿�̂�
𝛿𝑥

𝛿𝑤11
[1]

= 𝑤1
[2] ∗ 𝑔′ (𝑧1

[2]) ∗ 𝑔′ (𝑧1
[1]) ∗

𝛿𝑧[1]

𝛿𝑥𝑖

𝑤𝑖𝑡ℎ⁡
𝛿𝑧[1]

𝛿𝑥1
= 𝑤11

[0]
⁡⁡𝑂𝑅⁡⁡

𝛿𝑧[1]

𝛿𝑥2
= 𝑤21

[0]

(3-29)

Simply put, observing (3-26), any term which does not include 𝛿𝑤11
[1]

 is simply dropped. And

the partial derivative with respect to the weight 𝑤1
[2]

, which is between the final hidden layer and

the output layer, is expressed as:

𝛿�̂�
𝛿𝑥

𝛿𝑤1
[2]

= 𝑔′ (𝑧1
[2]) ∗ 𝑤11

[1] ∗ 𝑔′ (𝑧1
[1]) ∗

𝛿𝑧[1]

𝛿𝑥𝑖

𝑤𝑖𝑡ℎ⁡
𝛿𝑧[1]

𝛿𝑥1
= 𝑤11

[0]⁡⁡𝑂𝑅⁡⁡
𝛿𝑧[1]

𝛿𝑥2
= 𝑤21

[0]

(3-30)

Again, simply put, observing (3-26), any term which does not include 𝛿𝑤1
[2]

 is simply

dropped. These exemplary partial derivatives with respect to model parameters 𝜃 show the inter-

connected nature of using the partial derivative
𝛿�̂�

𝛿𝑥
 of the model output �̂� with respect to the inputs,

just like with the partial derivatives of the model output �̂� with respect to model parameters 𝜃. It

shows precisely why there is no additional computation occurring when previously computed

partial derivatives are traced and retained. Each of the terms in the equations above are already

part of the computations for a non-gradient enhanced neural network. For the partial derivative

Methodology 60

𝛿�̂�

𝛿𝑥
, the expressions also do not include any non-linear neuron outputs 𝑎𝑖

[𝑙]
, making them com-

pletely linear and simple in design. This lends itself to the basic idea behind neural networks,

where its calculations are simple mathematical functions. In other terms, this means less compu-

tational load when using automatic differentiation. Of course, depending on the chosen activation

function, this may not be the case, however in this work the ReLU is used.

3.4.3 Backpropagation per Automatic Differentiation

When backpropagation occurs, for the gradient of the loss function
𝛿𝐿

𝛿𝜃
, the first equation is:

𝛿𝐿

𝛿𝜃
=
𝛿𝐿𝑌
𝛿𝜃

+
𝛿𝐿𝑑𝑌
𝛿𝜃

+
𝛿𝐿𝑅
𝛿𝜃

 (3-31)

The gradient
𝛿𝐿𝑌

𝛿𝜃
 is the same as the gradient for the basic neural network discussed in section

2.3.8, equation (2-25). Next, the other terms need to be defined. When calculating the gradient of

the loss function 𝐿𝑑𝑌 with respect to a model parameter 𝜃, one obtains:

𝛿𝐿𝑑𝑌
𝛿𝜃

=
𝛿𝐿𝑑𝑌
𝛿�̂�
𝛿𝑥

𝛿�̂�
𝛿𝑥
𝛿𝜃

 (3-32)

Depending on the number of inputs, the loss 𝐿𝑑𝑌 and therefore its loss gradients
𝛿𝐿𝑑𝑌

𝛿𝜃
 are

vectors. Computationally, this only means that each element of this vector is treated as an addi-

tional addend to the loss term, meaning the vector is summed up elementwise. And for the gradi-

ent of the loss 𝐿𝑑𝑌 with respect to the gradient of the output with respect to the input parameters

𝛿�̂�

𝛿𝑥
, the expression is:

𝛿𝐿𝑑𝑌
𝛿�̂�
𝛿𝑥

=
1

𝑁
∑

𝛿�̂�

𝛿𝑥
−
𝛿𝑦

𝛿𝑥
𝑛

(3-33)

This follows the same derivative structure as (2-23). For the regularization term 𝐿𝑅, the fol-

lowing equation follows from differentiating (3-36), for its gradient
𝛿𝐿𝑅

𝛿𝜃
:

Methodology 61

𝛿𝐿𝑅
𝛿𝜃

=
𝛼

𝑁
∗ 𝜃 (3-34)

3.4.4 Loss Weight Methods

As mentioned earlier, because of the scale and magnitude difference between function value

𝑦 and its gradient
𝛿𝑦

𝛿𝑥
 even after standardization/normalization, weight factors of the loss addends

are considered. The goal of these loss weights is to improve the weights of each loss to increase

training convergence performance.

Since the function value 𝑦 and the gradient data
𝛿𝑦

𝛿𝑥
 contain different information for the same

function space, both have differing importance for the optimization of the model through training.

Furthermore standardization/normalization is not always optimally reducing the scale and mag-

nitude difference between function value and its gradient. This can again, greatly affect the train-

ing process and the accuracy of the neural network model obtained after training. In (3-18) the

losses 𝐿𝑌 and 𝐿𝑑𝑌 can vary greatly in magnitude, leading to numerical issues or to a certain loss

to dominate the optimization process. An adjusted ratio of function value loss to gradient loss in

the total loss function could improve the training process. In one published application, the gra-

dient data is gradually introduced to the training process by adding a weight factor to the gradient

loss which is then linearly increased over the training period [112]. The aspect of weight factors

added to each loss addend can still be expanded. For one, instead of only 1 weight factor for the

gradient loss, 2 weight factors defining the ratio of basic loss and gradient loss could improve

performance, since depending on the data one or the other could dominate the optimization pro-

cess. Secondly, instead of simple predefined weight factors, including these weight factors of the

loss addends in the optimization algorithm, treating them like any other model parameter, could

also improve performance. Third and lastly, the behavior of the optimization performance and the

accuracy of the final trained model could be heavily dependent on the data and function the model

is approximating. In the previously mentioned publication, [112], only a linear increase of the

gradient information weight factor occurs for simple academical functions. This behavior should

be replicable when applied to linear and non-linear mechanics such as elasticity or behave com-

pletely differently. Further research could reveal previously unknown correlation between perfor-

mance and increase/decreased/adjustment of these loss weights. These are several reasons to im-

prove the optimization process through new and different methods of loss weights.

First, let us describe the loss weight implementation of this work. When considering the

weights given to each component of the total loss function of our model, they are also included

in the regularization term, which regulates all model weights in the model layers. The loss weight

of the output error is denoted as 𝑤𝑌, and the loss weight of the gradient error is denoted as 𝑤𝑑𝑌.

The total loss 𝐿 is then expressed as:

Methodology 62

𝐿 = 𝑤𝑌𝐿𝑌 +𝑤𝑑𝑌𝐿𝑑𝑌 + 𝐿𝑅 (3-35)

And the regularization term 𝐿𝑅, previously discussed in 2.3.7, is now expanded with these

loss weights and defined as:

𝐿𝑅 =⁡
𝛼

2𝑁
((∑∑𝑤𝑖

[𝑙]2

𝑖𝑙

) + 𝑤𝑌
2 +𝑤𝑑𝑌

2)
(3-36)

With 𝛼 being a predefined regularization factor.

First, fixed loss weights are applied to the model and the various metrics, like loss and relative

l2 error, are observed. The first variant will apply a weight 𝑤𝑌 of 0.1 gradient loss 𝐿𝑑𝑌, while the

output loss 𝐿𝑌 will have a weight 𝑤𝑑𝑌 of 1. The second variant will swap the weight values. The

goal of this is to observe the correlation of loss weight values to the overall performance of the

gradient enhanced neural network. By applying a linear set of different loss weights, the results

should provide a general overview of any correlation.

Then, two variations with training algorithms updating the loss weights just like all other

model parameters are updated through stochastic gradient descent, are observed. The first varia-

tion will have no constraints on the loss weights, initializing both 𝑤𝑌 and 𝑤𝑑𝑌 as 1. Only its loss

will be analyzed. The second variation will use an equation of a normal cumulative distribution

for the loss weights. The reason for this is to constrain the loss weights into a desired range, in

this case 0 and 1, thus attributing importance along this range to each loss addend. Since the

optimization process’s goal is to minimize the loss function, these factors will naturally tend to

lower values. By limiting them to this range, the goal is to avoid negative values and numerical

instability. The loss weights are then defined as:

𝑤𝑌 =
1

2
∗ (1 − erf (−

𝑟1

√2
))

𝑤𝑖𝑡ℎ⁡ erf (−
𝑟1

√2
) =

2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

−
𝑟1
√2

0

(3-37)

And

𝑤𝑑𝑌 =
1

2
∗ (1 − erf (−

𝑟2

√2
)) (3-38)

Methodology 63

𝑤𝑖𝑡ℎ⁡ erf (−
𝑟2

√2
) =

2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

−
𝑟2
√2

0

⁡

Where both loss weight parameters 𝑟1 and 𝑟2 are initialized as 0, which results in a value of 1

through the expressions (3-37) and (3-38) for the final weights attached to each loss term. The

gradient of the loss with respect to these two parameters is used to update them. The learning rate

of these loss weights is separate from the model parameters learning rate. This second variation

will be compared to the fixed weight model and the gradient enhanced model by loss and 𝑙2 error.

Analysis 64

4 Analysis

4.1 Overview of Models

The neural network will be designed in MATLAB through a combination of predefined func-

tions of libraries and self-defined functions. The gradient enhanced neural network models can

have any number of inputs and outputs. In general, the application of the discussed methods is

independent of the dimensions of a model and can be applied or extended to any model dimen-

sionality. When using high dimensional models, it should be noted that the design of the model

would need to be adjusted accordingly [42]. For simplicity, the neural network models used in

this work are feed-forward regression models with 2 inputs and 1 output. The activation function

for all neurons will be the ReLU activation function. The gradient enhanced neural network will

be compared with the basic neural network with 1000 training points, 2 hidden layers and 10

neurons in each hidden layer. Afterwards, the gradient enhanced neural network will be analyzed

for 2, 4 and 6 hidden layers, with 10 neurons each and 1000 training points. Then, the fixed loss

weight models will be compared to the gradient enhanced model with 1000 training points, 2

hidden layers and 10 neurons in each hidden layer. The training data will be generated by the

finite element model, the input parameters will be generated randomly in a range of -1 and 1. The

validation data will cover 1000 data points. Finally, the gradient enhanced neural network will be

analyzed across increasing training data sizes. The training data will vary to 1000, 500, 100. These

last models will use 2 hidden layers with 10 neurons each.

The analysis metrics will consist of the defined loss of the models over the iterations, the

relative 𝑙2 error over the iterations, execution times for the finite element model, the training of

the neural network models, the prediction time of the neural network models, a confusion chart

comparing all three and lastly the probability of exceedance curve of the neural network predic-

tions and the finite element model outputs. The loss and relative 𝑙2 error will allow the comparison

of approximation performance between models. Processing times will allow the comparison of

time performance between models. The probability of exceedance curve will be used as an exem-

plary metric for output data assessment, in which the neural network models are compared to the

finite element model they are based on. The confusion chart will serve as a visualization of areas

of difference between the finite element model and the neural networks.

4.1.1 Finite Element Model

The finite element model computes the response and the response sensitivity information of

a linear elastic 2D mechanical system and a non-linear elastic 2D mechanical system. The core

parameters of the finite element model are:

• 𝑥: design parameters

• 𝑜𝑝𝑡: options

• 𝑈: structural response (displacement)

• 𝑑𝑈: response sensitivity

Analysis 65

• 𝑠𝑣𝑀: von Mises stresses (integration points)

• 𝑑𝑠𝑣𝑀: von Mises stresses sensitivity

• 𝐶: compliance

• 𝑑𝐶: compliance sensitvity

• 𝑉: volume

• 𝑑𝑉: volume sensitivity

Figure 4-1: Sketch of the hook system approximated by the finite element model. The design pa-

rameters 𝒙𝟏, 𝒙𝟐 = [−𝟏, 𝟏] adjust the blue marked nodes along the green axis (figure by author)

The hook system is illustrated in Figure 4-1. The non-linear variation of the finite element

model can specify the material used for the system. The von Mises stresses are derived from the

second Piola-Kirchoff stress tensor, which are predefined in the reference configuration. The fi-

nite element model will be used to generate training data for one, the linear case and second, the

non-linear case for the St. Venant-Kirchoff material in the plane stress state, whereby this plane

stress state is an approximation in contrast to an exact solution of a plane strain state.

4.1.2 Model Hyperparameters

Afterwards, the model applies the minibatch stochastic gradient descent method with momen-

tum to update the model parameters each minibatch iteration. The following options are applied

to all neural network models:

Analysis 66

Table 4-1: Hyperparameter initialization values (representation by author)

Hyperparameter Initialization value

Minibatch size 250

𝛼 0.1

Initial learn rate 0.1

Momentum 0.9

Total number of epochs 100

The neural network models are coded in MATLAB. Models which are compared use the same

training data and validation data to avoid undesired performance difference through randomly

generated data. A multitude of models for each setup are performed and the average of these

models is used to remove randomness of results introduced by model parameter initialization and

the stochastic gradient descent training. With 100 epochs, a training data size of 1000 samples

and a minibatch size of 250, there are 4 iterations per epoch. In the case of the comparison of the

gradient enhanced neural network for different training data sizes the minibatch size and valida-

tion data size are adjusted accordingly, see Table 4-2.

Table 4-2: Hyperparameter adjustment for training data size variation results (representation by

author)

Training data size Minibatch size Validation data size

1000 250 1000

500 125 500

100 25 100

The learnrate is updated according to Table 4-3. The time-based decay learnrate update rule

was replaced with this fixed case update rule. The reason for this is that the results showed the

learnrate decreasing too fast. To make sure the training would create workable results, this fixed

update rule was introduced.

Table 4-3: Learnrate update table (representation by author)

Epoch Learnrate

0 0.1

50 0.05

150 0.01

300 0.005

4.2 Results

The analysis of the linear and nonlinear models will happen in this section. In the following,

all the various results are presented. As mentioned previously, a confusion chart between finite

Analysis 67

element and neural network, as well as between finite element and gradient enhanced neural net-

work have been done. Furthermore there is various tables concerning the processing and training

times. Since the gradient-enhanced network has a larger loss because of its additional gradient

loss addends, comparing models by loss is inconclusive, see equation (2-23) and equations start-

ing (3-18). Therefore, the loss metric can be discarded in the analysis, however the graphs will be

included for completeness and discussed. The most significant graphs follow the relative 𝑙2 error.

The relative 𝑙2 error is a good metric to compare the neural network models to the finite element

model. This is done by validation of the prediction of trained models to unseen predictions of the

finite element model.

⁡𝑙2 ⁡=
‖�̂� − 𝑦‖2
‖𝑦‖2

(4-1)

It is an expression using the 𝑙2-norm. The analysis will also cover an evaluation of the distri-

bution and extremes of the model’s predictions via probability exceedance curves.

4.2.1 Training and Prediction times

The Table 4-4 shows the time results of all models for the linear elasticity case. For the FEM,

the validation data size is the generated data of the FEM. The training data size is what the models

use to train. As can be seen, the processing times for the neural network models after they have

been trained is immensely smaller than the time it takes the finite element model to compute its

outputs. It can also be observed that the gradient enhanced neural network is not slower at reach-

ing the final number of training epochs, even though it technically computes more expressions

than the basic neural network.

For the linear case it is necessary to mention, that the trained neural network models, basic or

gradient enhanced, only compute a single output, whereas the finite element model computes

multiple various outputs as mentioned in section 4.1.1. Therefore the comparison between the

times of FEM, NN and gNN with each other should be considered biased and unequal. When

considering training data size, the training time does not seem affected by it. The data size does

not slow down or speed up the gradient neural networks training. Same can be said about the time

it takes to predict 1000 validation values.

Increasing the number of layers positively correlated with training time. This is explained

because each layer adds additional model parameters. Since a neural network is a big collection

of nested functions including weighted sums, more layers can quickly lead to exponential increase

of computation effort, as each individual neuron in the new additional layer provides 2xN new

model parameters, with N being the number of neurons in the previous layer, and 2xP new model

parameters, with P being the number of neurons in the next layer. While the training time in-

creased, the time it took to predict 1000 validation data was not affected at all. The same obser-

vation can be made for the change of the number of neurons in each layer. However increasing

the number of neurons affects the training time stronger than increasing layer size. The times of

Analysis 68

the table clearly show that once a neural network is trained, it is extremely quick compared to the

finite element model. The training time of the neural network models however is considerably

longer. This does not take into consideration however the time it takes to setup and derive a finite

element model. In the case of neural networks, having the data available, a neural network of

simple design can immediately be trained.

Table 4-4: Prediction and Training times for linear elasticity, Time is in seconds (representation by

author)

Table 4-5: Prediction and Training times for non-linear elasticity, Time is in seconds (representa-

tion by author)

Model Hidden
Layer Size

Neurons per
Hidden
Layer

Training
Data Size

Validation
Data Size

Prediction
Time

Training
Time

FEM - - - 100 12s -

 - - - 500 58s -

 - - - 1000 117s -

NN 2 10 1000 1000 0.0053s 142s

gNN 2 10 1000 1000 0.0054s 147s

 4 10 1000 1000 0.0051s 313s

 6 10 1000 1000 0.0086s 494s

 2 20 1000 1000 0.0058s 403s

 2 30 1000 1000 0.0060s 843s

 2 10 500 500 0.0054s 140s

 2 10 100 100 0.0052s 138s

Model Hidden
Layer Size

Neurons per
Hidden
Layer

Training
Data Size

Validation
Data Size

Prediction
Time

Training
Time

FEM - - - 100 88s -

 - - - 500 439s -

 - - - 1000 881s -

NN 2 10 1000 1000 0.0069s 141s

gNN 2 10 1000 1000 0.0066s 145s

 4 10 1000 1000 0.0072s 304s

 6 10 1000 1000 0.0071s 490s

 2 20 1000 1000 0.0062s 404s

 2 30 1000 1000 0.0063s 841s

 2 10 500 500 0.0069s 142s

 2 10 100 100 0.0064s 138s

Analysis 69

When looking at the nonlinear elasticity case in Table 4-5, we can observe the same behav-

iors. The finite element model takes considerably longer to compute the nonlinear case. Just in-

creasing the training data size tenfold leads to a tenfold increase of computing time for the finite

element model. Meanwhile, the training time of the neural networks does not seem as affected by

the nonlinear nature of the data. What this shows is that in the case of complex non-linear systems,

a neural network can be trained and output results faster, than the finite element model can output

results. Just like in the linear case, increasing layer size or neuron number results in longer training

times. This is, again, for the same reasons as mentioned for the linear case. The prediction times

of the neural network models seems to have increased as well compared to the linear timetable.

4.2.2 Comparisons – Linear Case

Figure 4-2: gNN vs. NN, 𝒍𝟐 error (figure by author)

Figure 4-3: gNN vs. NN, loss (figure by author)

Analysis 70

In Figure 4-2 and Figure 4-3 the 𝒍𝟐 error and the loss are plotted over the training iterations.

It can be observed that the loss of the gradient enhanced neural network is larger than the loss of

the basic neural network as expected. Concerning the 𝒍𝟐 error, the gNN is outperforming the NN

by a slight margin. This shows that the gradient enhanced neural network performs better than the

base neural network.

In Figure 4-4 and Figure 4-5 the gNN is compared with different number of hidden layers.

Most notable is the 6 hidden layer model taking more iterations to converge. The early iterations

it is very unstable. It also shows the highest loss of all three variations. However when observing

the 𝒍𝟐 error the 6 hidden layer model performs better than the 2 hidden layer model. The best

performance is achieved by the 4 hidden layer model. More than likely for the linear case and the

provided training data, 4 hidden layers is closer to the optimal layer design than 2 or 6 hidden

Figure 4-4: gNN with different number of hidden layers, 𝒍𝟐 error (figure by author)

Figure 4-5: gNN with different number of hidden layers, loss (figure by author)

Analysis 71

layers. This shows that an oversized neural network model reduces performance just like an un-

dersized model, refer to the universal approximation theorem [42].

When changing the number of neurons per layer, one can observe in Figure 4-6 and Figure

4-7 that increasing the number of neurons improves the performance of 𝒍𝟐 error. The losses do

not differ too much.

Figure 4-6: gNN with different number of neurons per hidden layer, 𝒍𝟐 error (figure by author)

Figure 4-7: gNN with different number of neurons per hidden layer, loss (figure by author)

Analysis 72

In Figure 4-8 and Figure 4-9 one can observe that the variant with 500 training samples per-

forms the best when it comes to the 𝒍𝟐 error. However since the variants are trained on different

sized training data, the potential issue arising is that certain training and validation samples are

not included in one or the other variation. In this case, observing the loss holds more insight in

the performance of the training. It can be seen that the more training data is provided, the lower

and better the loss converges, with the 1000 training data size variant having a very small edge

compared to the 500 training data size variant.

Figure 4-8: gNN with different training data sizes, 𝒍𝟐 error (figure by author)

Figure 4-9: gNN with different training data sizes, loss (figure by author)

Analysis 73

As can be observed in Figure 4-10, the gNN is closer to the optimal fit, represented by the

black diagonal line, than the basic neural network. The basic neural network seems to have accu-

racy trouble especially at the edges of the data range. The gradient information provided in the

gNN allows a certain degree of extrapolation from the range of given training values, which is

why the gNN is not showing this same behavior at the edges of the data range.

Figure 4-10: Confusion chart, FEM vs. gNN in red and FEM vs. NN in blue. The black diagonal

represents a perfect fit (figure by author)

Figure 4-11: Exceedance curve, FEM vs. NN. The means of both FEM and NN are drawn in as ver-

tical lines (figure by author)

Analysis 74

Both Figure 4-11 and Figure 4-12 also confirm this observation. The exceedance curve of the

gNN is closer to the exceedance curve of the FEM, compared to the exceedance curve of the NN.

In both cases the mean is nearly equal.

Comparisons – Nonlinear Case

Figure 4-12: Exceedance curve, FEM vs. gNN. The means of both FEM and gNN are drawn in as

vertical lines (figure by author)

Figure 4-13: : gNN vs. NN, 𝒍𝟐 error (figure by author)

Analysis 75

In the nonlinear case, when comparing the gNN with the NN in Figure 4-13 and Figure 4-14,

the results show the gNN again outperforming the NN. While the loss of the gNN is again greater

and more unstable than that of the NN, its 𝑙2 error is considerably lower. Taking advantage of

gradient information seems more essential in more complex systems.

Next, variation of hidden layer amount can be seen in Figure 4-15 and Figure 4-16. Again the

6 hidden layer variant shows great instability and difficulty to converge at the beginning of the

training. However it does not improve and performs the worst. The 2 hidden layer variant has a

slight edge to the 4 hidden layer variant when observing the 𝑙2 error. Its loss is lower as well.

Figure 4-14: gNN vs. NN, loss (figure by author)

Figure 4-15: gNN with different number of hidden layers, 𝒍𝟐 error (figure by author)

Analysis 76

When varying the number of neurons per hidden layer, see Figure 4-16 and Figure 4-17, 20

neurons per hidden layer perform the best in the case of 𝑙2 error. However all three variants are

close in their performance. It can be seen that the optimal amount of neurons per hidden layer

seems to lie around 20 neurons per layer. The loss of variant with 30 neurons per layer seems very

unstable at the beginning of training.

Figure 4-16: gNN with different number of hidden layers, loss (figure by author)

Figure 4-17: : gNN with different number of neurons per hidden layer, 𝒍𝟐 error (figure by author)

Analysis 77

Lastly, results of varying the training data size for then nonlinear case can be seen in Figure

4-18 and Figure 4-19. Here one can clearly see a positive correlation between performance and

training data size when observing the loss. Again, since the training data size varies, the validation

data used to determine the 𝑙2 error may differ, making this metric not as decisive as the other

model variation results. The loss is therefore a more unbiased indicator of performance.

Figure 4-18: gNN with different training data sizes, 𝒍𝟐 error (figure by author)

Figure 4-19: gNN with different training data sizes, loss (figure by author)

Analysis 78

The confusion chart in Figure 4-20 shows the gNN having a better fit with the FEM predic-

tions than the NN. The NN again shows greater accuracy errors at the edges, but also close to the

middle. When observing the exceedance curves in Figure 4-21 and Figure 4-22 the same can be

seen. The gNN conforms better to the FEM, than the NN does. The mean of the gNN is also closer

to the mean of the FEM, than the NN mean is.

Figure 4-20: Confusion chart, FEM vs. gNN in red and FEM vs. NN in blue. The black diagonal

represents a perfect fit (figure by author)

Figure 4-21: : Exceedance curve, FEM vs. NN. The means of both FEM and NN are drawn in as

vertical lines (figure by author)

Analysis 79

4.2.3 Comparison – Weighing of Losses

In this section, the different variations of weights attached to the losses in the loss function

will be presented. For the fixed weight variants, the gNN will be presented according to Table

4-6.

Table 4-6: Fixed loss weights table (table by author)

Variant 𝒘𝒀 𝒘𝒅𝒀

A 1 1

B 1 0.55

C 1 0.1

D 0.55 1

E 0.1 1

The results of these 5 variants for the linear case can be seen in Figure 4-23 and Figure 4-24.

Concerning the loss, all variants are rather close to each other. Variant B performs best on loss,

while variant A, where the weights are not changed at all, performs worst. However when con-

sidering the 𝑙2 error, Variant A again performs worst, and Variant C performs best. Concerning

the dynamic weight variations, there is the linear increase of the weight attributed to the base loss,

𝑤𝑌. and the other variation, the linear decrease of the weight attributed to the gradient loss, 𝑤𝑑𝑌.

Their values can be seen in Table 4-7. The last variation is the cumulative distribution variant,

from here on refer to with NORM, detailed previously in 3.4.4.

Figure 4-22: Exceedance curve, FEM vs. gNN. The means of both FEM and gNN are drawn in as

vertical lines (figure by author)

Analysis 80

Table 4-7: Dynamic Weight Table (table by author)

Variant 𝒘𝒀 𝒘𝒅𝒀

LI 1, 1.2, 1.4, 1.6, 1.8, 2 1

LD 1 1, 0.8, 0.6, 0.4, 0.2, 0

Figure 4-23: Fixed weight variants of gNN, 𝒍𝟐 error, linear (figure by author)

Figure 4-24: Fixed weight variants of gNN, loss, linear (figure by author)

Analysis 81

From Figure 4-25 and Figure 4-26 it can be observed that the no weight change gNN performs

worst. The LI variant performs best with the NORM and LD variant close behind. The loss also

shows the better loss converges for LI and NORM variants. However important to note is the very

low loss of the LD variant. This is because the decrease of the one loss weight automatically

reduces the total loss, which does necessarily not coincide with optimization performance in-

crease. From these results it can be seen that the weights attached to the losses of the loss function

can improve performance.

The same tables Table 4-6 and Table 4-7 are used for the nonlinear case. The results in Figure

4-27 and Figure 4-28show variant B performing worst and variant A performing best. Variant B

shows the lowest loss, which has more to do with the smaller weights reducing the total loss value

and not necessarily coinciding with an increase in performance. But variant E shows highest loss.

When considering the dynamic weights in Figure 4-29 and Figure 4-30, the LD variants performs

Figure 4-25: Dynamic weight variants of gNN, 𝒍𝟐 error, linear (figure by author)

Figure 4-26: Dynamic weight variants of gNN, loss, linear (figure by author)

Analysis 82

worst in relation to the 𝑙2 error. Meanwhile the basic gNN performs best, close or equal to the LI

variant. For the loss, the LD variant is lowest, which is mainly because of the decrease of the

weight and not because of better performance. The other variants are very close to each other

concerning the loss. These results show a very different behavior than the linear case. Potentially

there might have been simulations errors for the basic gNN for the linear case, or some simulation

error during the nonlinear case. The previously mentioned paper, [112], shows improvement of

results by linear increase of the weight of the gradient loss. This does not coincide with the results

of the linear case, since the linear decrease of 𝑤𝑑𝑌 and the linear increase of 𝑤𝑌 should have the

opposite effect of the linear increase of 𝑤𝑑𝑌. Still, the nonlinear results of dynamic weights show

that the LI and LD variant are not equal. Concerning the NORM variant, in both linear and non-

linear cases it performs relatively close to the best variant.

Figure 4-27: Fixed weight variants of gNN, 𝒍𝟐 error, nonlinear (figure by author)

Figure 4-28: Fixed weight variants of gNN, loss, nonlinear (figure by author)

Analysis 83

4.3 Discussion

The results show certain clear tendencies, but in other aspects are rather unclear. Starting from

the top of the results, it has been shown that taking advantage of gradient information during

training improves the training of a neural network. In both linear and nonlinear cases, the accuracy

of the gradient enhanced neural network is better and thereby closer to the FEM it approximates,

reaching error values of <2%, with the best models that were trained going to <0.6% error. This

is also shown strongly in the exceedance curves and the confusion charts. If the possibility exists

to obtain gradient information, training a neural network with it, together with the usual function

values, should always be considered. The training times or prediction times do not seem to be

Figure 4-29: Dynamic weight variants of gNN, 𝒍𝟐 error, nonlinear (figure by author)

Figure 4-30: Dynamic weight variants of gNN, loss, nonlinear (figure by author)

Analysis 84

affected at all by the additional gradient information. This is mainly because through automatic

differentiation no new computations are done. Any additional computation of the gNN was part

of the automatic differentiation of the NN to begin with. When adjusting layer size, neuron num-

bers or training data size there were clear correlations. There seems to be an optimal range of

hyperparameters or design variables of the neural network model, that improve its performance

substantially. However adjusting these hyperparameters seems to greatly influence training time.

The only exception was the training data size. Since the minibatch size was adjusted according to

the training data used, the time it took to train the models was no affected. In general however the

universal approximation theorem holds true. Since the models in this work are only 2 input 1

output neural networks, the largest variations observed showed worse performance because of

overparameterization. When considering the time it took each model to predict the 1000 valida-

tion data compared to the FEM, in both linear and nonlinear cases the neural networks are incred-

ible quick compared to the FEM. This difference of prediction/generation time is especially great

for the nonlinear case. Extrapolation the time it took the FEM to generate 1000 training samples

for the nonlinear case, it would take ~9000 seconds, or 2 and a half hours, to generate 10000

training samples. Meanwhile a neural network could produce these values in under a second. Of

course the training would not take considerably longer, as adjusting the minibatch size shows that

it has no effect on the training time.

Concerning the weighing of the losses, the fixed weight variations showed that loss weights

can have an impact on the performance of the trained model. However linear and nonlinear case

showed different results making it rather inconclusive. It is not clear from the obtained results,

which weight combination is best. Perhaps linear and nonlinear case behave completely differ-

ently concerning the weights of the losses. Similarly, the dynamic weight variants showed the

same potential impact on the performance of a model. But again, linear and nonlinear case results

behaved differently. Especially the comparison to the other published work, [112], could not be

seen in the results exactly. While there was no results for a similar slow linear increase of the

weight of the gradient loss in this work, the linear decrease was expected to not show any im-

provement as it did in the linear case.

Related to this is the issue of scale and magnitude difference between function value and

gradient value. The results show mixed interpretations, when considering the fixed weight results.

In the linear case, reducing the function value or the gradient value in the loss function improved

results. In the case of the nonlinear elasticity results, none of the reduced weights performed best.

This leaves the question whether the scale and magnitude difference is an actual issue for optimi-

zation besides the preprocessing for the case of vanishing or exploding gradients. More notably

in all results, the decreased or increase value of the loss function through the adjusted weights

rather influences the size of the gradient of the model, which ultimately adjusts the model param-

eters.

Conclusion 85

5 Conclusion

The main goal of this work was to analyze if gradient enhanced neural networks perform

better than the basic neural networks. This was to be done by applying the models to linear and

non-linear systems of elasticity. Additionally, the performance of the gradient enhanced model

under different loss weighting methods was to be observed. Just as in the case of gPINN and

SANN, the incorporation of gradient data improves performance. Furthermore, the gradient en-

hanced neural network in this thesis does not include tedious partial derivative expressions but

relies simply on the provided data and its inherent structure and patterns. Combined with the

simplistic design of neural networks, adding the gradients with respect to the inputs as a loss

addend is an obvious choice. The comparison of basic neural network and gradient enhanced

neural network was done through various metrics applied to the data of the finite element model

and the data of the neural networks, like the loss and the relative 𝑙2 error. An additional goal was

to assess the feasibility of gradient enhanced neural networks as surrogate models replacing tedi-

ous numerical models like the finite element model used in this thesis to compute the training

data. For this training and prediction times were compared. For fields of study like uncertainty

quantification, a large number of samples need to be computed for its various uncertainty assess-

ment methods. By visualizing exceedance probability curves of neural networks and the finite

element model together, a comparison could be made to evaluate this feasibility. Lastly, the scale

difference between training data 𝑦⁡𝑎𝑛𝑑⁡
𝑑𝑦

𝑑𝑥
 was considered as an issue for gradient enhanced neu-

ral networks, which is why weights were applied to each loss term in the loss function. To remedy

this scale difference standardization was applied. This however still left a considerable scale dif-

ference between both training data 𝑦⁡𝑎𝑛𝑑⁡
𝑑𝑦

𝑑𝑥
. Therefore, weight factors according to described

weight methods were applied to the losses and the results compared, to gauge the effect of these

weights on the performance. Since choosing the weight factors could be potentially challenging,

an additional late goal of this work was weight optimization algorithms akin to the training algo-

rithms of a neural network. The goal was to allow the models to optimize these weight factors to

see if a simple optimization design would allow a neural network to optimize them on its own.

The results show that incorporating the gradient data during loss optimization greatly im-

proves performance of a neural network. While the total loss is bigger because of the additional

gradient losses, the relative 𝑙2 error shows better approximation for the gradient enhanced neural

network to the finite element model’s output. Because of this, the loss is considerably less valua-

ble as a metric when comparing between basic neural network and gradient enhanced neural net-

work. When looking at the exceedance probability curves, the gradient enhanced neural network

shows great potential for substituting the finite element model. The gradient enhanced model ad-

heres extensively well to the FEM computations, compared to the basic model. Since this is done

with previously unseen data for the neural network models, this shows how well the models are

able to approximate the inherent structure of the computed FEM data. The dimensions used in

this work for the gradient enhanced neural network are rather small (layer size, neuron number)

leading to relative 𝑙2 errors well above 10−3. In general, a neural network approximation with a

Conclusion 86

relative 𝑙2 error of smaller than 10−3 can be considered usual. Besides the dimensions, other

issues arise from hyperparameters. The learn rate schedule used in this work, a time based decay,

coupled with the decay hyperparameter led to quickly decreasing learning rates the bigger the

training data was, thereby constraining the potential of the chosen dimensions of models. Which

is why it was swapped with a more basic case based learn rate update rule. The results also showed

that for most models, the most optimal state during training was always the last or close to the

last epoch, meaning if the models had been trained longer, they could have achieved greater ac-

curacy. The results show the gradient enhanced neural network is already approximating the

finite element model very well, even with the hyperparameters used in this work. Especially the

processing times are promising in this regard. If a model is trained once, it is then capable of

propagating large uncertainties necessary for uncertainty quantification. In the non-linear case,

the finite element model takes considerable time to compute values. The processing time for all

models after training are very small in contrast. Of course it needs to be considered that the models

in this work are 1 output regression models, whereas the finite element model computes a multi-

tude of values, making direct comparisons difficult, however the models of this work can be ex-

panded for more dimensionality. Still, it has been shown that a gradient enhanced neural network

performs better than a basic neural network. The gradient enhanced model does so by using less

time and training points. In addition, considering the graphs of probability of exceedance, even

with the given relative 𝑙2 error values, the gradient enhanced neural network compares relatively

well to the finite element model.

Further research should be done on greater dimensionality of gradient enhanced neural net-

works. If current results are possible with low dimensioned neural networks, an adequately sized

model, with fine-tuned hyperparameters to allow for longer training of the model could converge

to a more optimal state, even if there is greater input and output vectors. Models with more layers

and more neurons per layer could potentially show the limits of gradient enhancement, which

were not explored to such a degree in this work. Here, it would be important to consider the effects

of the scale of the model on the necessary training time for optimal results, as oversizing the

model leads to loss of performance. In addition, an adjusted learning rate schedule together with

increased training data could allow for better performance as well. Another aspect to consider are

multiple output gradient enhanced neural networks against a combination of multiple single out-

put gradient enhanced neural networks. It could be interesting to consider optimizing the training

time of these single potential models. In the case of multiple single output gradient enhanced

neural networks, the possibility of training a model on a single output and then using this trained

model to retrain for the other outputs could reduce any increase of training time introduced by

greater dimensionality. Since the outputs are part of the same function structure, perhaps the re-

training of a trained model is faster than the complete training of a new model. Furthermore var-

ying activation functions could potentially help reduce the error of the models. Since the data in

this work was standardized around a mean of 0, the ReLU might potentially not be an optimal

function to consider. Instead, leaky ReLU or other activation functions that include negative val-

ues should be considered as well for increasing the model accuracy.

Addressing the loss weights that were used, coming to a solution for the difference of scale

between model output and its gradient with respect to input needs to be explored. Since the func-

Conclusion 87

tion value and gradient value could potentially out scale each other in the loss function, this po-

tentially limits the improvement of performance through incorporation of gradient information.

Various methods could be explored to avoid this, such as using a relative based loss function

instead of the MSE, like the mean percentage error (MPE), or even a combination of the MPE

and the MSE. There is of course many more ways of varying a neural network, of which many

were not considered in this work because of scope.

Lastly and in addition to this, the fixed and dynamic weight methods have shown potential in

adjusting the loss terms in the loss function through use of predefined fixed weights and dynamic,

trained weights. However this was rather inconclusive in many points. More data and results are

necessary to make clear conclusions on the effects of loss weights on the performance of neural

networks. Especially exploring the use of multiple different use cases, experimental data, or sim-

ulation data for training, or simply academical function evaluations could provide insight to this.

Concerning the dynamic weight methods, the use of different optimization algorithms could pro-

vide interesting results. As it is, the weights tend towards 0 or -Inf, as they try to minimize the

loss function and they are simply factors attached to the loss terms. This was fixed by defining

the weights as the output of normal cumulative distribution functions. Perhaps a different function

expression for the weights could lead to performance improvement. Lastly, while in this work,

the weight of the losses were optimized according to the gradient of the loss function, perhaps

optimizing the weights according to the gradient of the gradient of the loss function with respect

to the model parameters is more logical for improving performance.

With all of this said and to summarize, taking advantage of gradient information for regres-

sion tasks should always be done as it clearly improves performance of trained neural networks.

Furthermore weights can potentially increase performance and a method of finding optimal pre-

defined hyperparameters, such as layer size, neuron count, activation function, etc., can also im-

prove the performance. And approximating a finite element model with a neural network, like a

gradient enhanced neural network, to use as replacement for arduous and time consuming com-

putations is possible with an acceptable error of <10−2.

List of References VI

List of References

[1] L. Zhang, L. Zhang and B. Du, "Deep Learning for Remote Sens-

ing Data: A Technical Tutorial on the State of the Art," in IEEE

Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 22-

40, June 2016, doi: 10.1109/MGRS.2016.2540798

[2] Riccardo Miotto and others, Deep learning for healthcare: re-

view, opportunities and challenges, Briefings in Bioinformatics,

Volume 19, Issue 6, November 2018, Pages 1236–1246,

https://doi.org/10.1093/bib/bbx044

[3] Kaleem, Eemaan & Vallecillo, Cinthia & Al-Nasser, Heba &

Haweyou, Melad & Sharma, Mitali & Abdelnour, Mena. (2020).

Structural Health Monitoring Using A Numerical Model And An

Artificial Neural Network For Damage Detection

[4] Runge, J.; Zmeureanu, R. Forecasting Energy Use in Buildings

Using Artificial Neural Networks: A Review. Energies 2019, 12,

3254. https://doi.org/10.3390/en12173254

[5] Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep Learning in

Medical Image Analysis. Adv Exp Med Biol. 2020;1213:3-21.

doi: 10.1007/978-3-030-33128-3_1. PMID: 32030660; PMCID:

PMC7442218

[6] Thrun, Sebastian. “Learning to Play the Game of Chess.” NIPS

(1994).

[7] Schraudolph, Nicol & Dayan, Peter & Sejnowski, Terrence.

(1994). Temporal Difference Learning of Position Evaluation in

the Game of Go. Advances in Neural Information Processing. 6.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,

David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua

Bengio. 2014. Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing

Systems - Volume 2 (NIPS'14). MIT Press, Cambridge, MA,

USA, 2672–2680.

[9] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for

Image Recognition," 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016,

pp. 770-778, doi: 10.1109/CVPR.2016.90

[10] LeCun, Yann & Bengio, Y. & Hinton, Geoffrey. (2015). Deep

Learning. Nature. 521. 436-44. 10.1038/nature14539.

[11] Vinyals, Oriol & Le, Quoc. (2015). A Neural Conversational

Model. ICML Deep Learning Workshop, 2015.

List of References VI

[12] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever,

I. (2019). Language Models are Unsupervised Multitask Learn-

ers.

[13] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,

Bajwa, R., ... & Yoon, D. H. (2017, June). In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings of the

44th annual international symposium on computer architecture

(pp. 1-12).

[14] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. 2009. Large-

scale deep unsupervised learning using graphics processors. In

Proceedings of the 26th Annual International Conference on Ma-

chine Learning (ICML '09). Association for Computing Machin-

ery, New York, NY, USA, 873–880.

https://doi.org/10.1145/1553374.1553486

[15] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian.

(2016). Identity Mappings in Deep Residual Networks. 9908.

630-645. 10.1007/978-3-319-46493-0_38.

[16] Ioffe, Sergey & Szegedy, Christian. (2015). Batch Normaliza-

tion: Accelerating Deep Network Training by Reducing Internal

Covariate Shift.

[17] G. Huang, Z. Liu, L. Van Der Maaten and K. Weinberger,

"Densely Connected Convolutional Networks," in 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI, USA, 2017 pp. 2261-2269.

doi: 10.1109/CVPR.2017.243

[18] Zhang, Hongyi & Cisse, Moustapha & Dauphin, Yann & Lopez-

Paz, David. (2017). mixup: Beyond Empirical Risk Minimiza-

tion

[19] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units

improve restricted boltzmann machines. In Proceedings of the

27th International Conference on International Conference on

Machine Learning (ICML'10). Omnipress, Madison, WI, USA,

807–814.

[20] Ramachandran, Prajit & Zoph, Barret & Le, Quoc. (2017).

Swish: a Self-Gated Activation Function.

[21] Tan, Mingxing & Le, Quoc. (2019). EfficientNet: Rethinking

Model Scaling for Convolutional Neural Networks.

[22] T. -Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal

Loss for Dense Object Detection," in IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318-

327, 1 Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

List of References VI

[23] Li, Xiaoya & Sun, Xiaofei & Meng, Yuxian & Liang, Junjun &

Wu, Fei & Li, Jiwei. (2020). Dice Loss for Data-imbalanced NLP

Tasks. 465-476. 10.18653/v1/2020.acl-main.45.

[24] Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay reg-

ularization. arXiv preprint arXiv:1711.05101

[25] Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy

Ba. 2019. Lookahead optimizer: k steps forward, 1 step back.

Proceedings of the 33rd International Conference on Neural In-

formation Processing Systems. Curran Associates Inc., Red

Hook, NY, USA, Article 861, 9597–9608.

[26] Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel,

C. A., ... & Li, C. L. (2020). Fixmatch: Simplifying semi-super-

vised learning with consistency and confidence. Advances in

neural information processing systems, 33, 596-608.

[27] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He and P. Dollár,

"Designing Network Design Spaces," 2020 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Se-

attle, WA, USA, 2020, pp. 10425-10433, doi:

10.1109/CVPR42600.2020.01044.

[28] Glowinski, R. & Pan, T. (2022). Numerical Simulation of Incom-

pressible Viscous Flow: Methods and Applications. Berlin, Bos-

ton: De Gruyter. https://doi.org/10.1515/9783110785012

[29] Sahin, I., Moya, C., Mollaali, A., Lina, G., & Paniagua, G.

(2023). Deep Operator Learning-based Surrogate Models with

Uncertainty Quantification for Optimizing Internal Cooling

Channel Rib Profiles.

[30] Stefania Fresca, Luca Dede’, and Andrea Manzoni. 2021. A

Comprehensive Deep Learning-Based Approach to Reduced Or-

der Modeling of Nonlinear Time-Dependent Parametrized PDEs.

J. Sci. Comput. 87, 2 (May 2021).

https://doi.org/10.1007/s10915-021-01462-7

[31] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,

and Oriol Vinyals. 2021. Understanding deep learning (still) re-

quires rethinking generalization. Commun. ACM 64, 3 (March

2021), 107–115. https://doi.org/10.1145/3446776

[32] Papernot, Nicolas & McDaniel, Patrick & Jha, Somesh & Fred-

rikson, Matt & Celik, Z. Berkay & Swami, Ananthram. (2016).

The Limitations of Deep Learning in Adversarial Settings. 372-

387. 10.1109/EuroSP.2016.36.

[33] LeVeque, R. J. (2007). Finite difference methods for ordinary

and partial differential equations: steady-state and time-depend-

ent problems. Society for Industrial and Applied Mathematics.

List of References VI

[34] William H. Press, Saul A. Teukolsky, William T. Vetterling, and

Brian P. Flannery. 2007. Numerical Recipes 3rd Edition: The Art

of Scientific Computing (3rd. ed.). Cambridge University Press,

USA.

[35] Hoffman Joe D. 2001. Numerical Methods for Engineers and

Scientists 2Nd ed. rev. and expanded ed. New York: Marcel Dek-

ker.

[36] Raissi, M., Perdikaris, P., & Karniadakis, G.E. (2017). Physics

Informed Deep Learning (Part I): Data-driven Solutions of Non-

linear Partial Differential Equations. ArXiv, abs/1711.10561.

[37] Raissi, Maziar & Perdikaris, Paris & Karniadakis, George.

(2017). Physics Informed Deep Learning (Part II): Data-driven

Discovery of Nonlinear Partial Differential Equations.

[38] Blechschmidt, Jan & Ernst, Oliver. (2021). Three Ways to Solve

Partial Differential Equations with Neural Networks -- A Re-

view.

[39] Montomoli, Francesco & Carnevale, Mauro & Massini, Michela

& D'Ammaro, Antonio & Salvadori, Simone. (2015). Uncer-

tainty Quantification in Computational Fluid Dynamics and Air-

craft Engines. 10.1007/978-3-319-92943-9.

[40] Ghanem, R.G., Higdon, D.M., & Owhadi, H. (2017). Handbook

of Uncertainty Quantification.

[41] Schoenholz, Samuel & Gilmer, Justin & Ganguli, Surya & Sohl-

Dickstein, Jascha. (2016). Deep Information Propagation.

[42] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer

feedforward networks are universal approximators. Neural net-

works, 2(5), 359-366

[43] José Miguel Hernández-Lobato and Ryan P. Adams. 2015. Prob-

abilistic backpropagation for scalable learning of Bayesian neu-

ral networks. In Proceedings of the 32nd International Confer-

ence on International Conference on Machine Learning - Volume

37 (ICML'15). JMLR.org, 1861–1869.

[44] Lee, Minhyeok & Seok, Junhee. (2020). Estimation with Uncer-

tainty via Conditional Generative Adversarial Networks.

[45] Scaman, Kevin & Virmaux, Aladin. (2018). Lipschitz regularity

of deep neural networks: analysis and efficient estimation.

[46] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-

informed neural networks: A deep learning framework for solv-

ing forward and inverse problems involving nonlinear partial dif-

ferential equations. Journal of Computational physics, 378, 686-

707.

List of References VI

[47] Czarnecki, W. M., Osindero, S., Jaderberg, M., Swirszcz, G., &

Pascanu, R. (2017). Sobolev training for neural networks. Ad-

vances in neural information processing systems, 30.

[48] Yu, J., Lu, L., Meng, X., & Karniadakis, G. E. (2022). Gradient-

enhanced physics-informed neural networks for forward and in-

verse PDE problems. Computer Methods in Applied Mechanics

and Engineering, 393, 114823.

[49] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite

element method: its basis and fundamentals. Elsevier.

[50] Larson, M. G., & Bengzon, F. (2013). The finite element method:

theory, implementation, and applications (Vol. 10). Springer Sci-

ence & Business Media.

[51] Liedmann, J., & Barthold, F. J. (2020). Variational sensitivity

analysis of elastoplastic structures applied to optimal shape of

specimens. Structural and Multidisciplinary Optimization, 61(6),

2237-2251.

[52] Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with

artificial neural networks:: The state of the art. International jour-

nal of forecasting, 14(1), 35-62.

[53] Chollet, Francois. 2017. Deep Learning with Python. New York,

NY: Manning Publications.

[54] Rosenblatt, F. (1958). The perceptron: a probabilistic model for

information storage and organization in the brain. Psychological

review, 65(6), 386.

[55] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learn-

ing. MIT press.

[56] Murphy, K. P. (2018). Machine learning: A probabilistic per-

spective (adaptive computation and machine learning series). The

MIT Press: London, UK.

[57] Reed, R., & MarksII, R. J. (1999). Neural smithing: supervised

learning in feedforward artificial neural networks. Mit Press.

[58] Bartlett, P. L., Montanari, A., & Rakhlin, A. (2021). Deep learn-

ing: a statistical viewpoint. Acta numerica, 30, 87-201

[59] Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information

bottleneck method. arXiv preprint physics/0004057.

[60] Deng, L., Hinton, G., & Kingsbury, B. (2013, May). New types

of deep neural network learning for speech recognition and re-

lated applications: An overview. In 2013 IEEE international con-

ference on acoustics, speech and signal processing (pp. 8599-

8603). IEEE.

[61] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet

classification with deep convolutional neural networks. Ad-

vances in neural information processing systems, 25.

List of References VI

[62] Silver, David & Huang, Aja & Maddison, Christopher & Guez,

Arthur & Sifre, Laurent & Driessche, George & Schrittwieser,

Julian & Antonoglou, Ioannis & Panneershelvam, Veda & Lanc-

tot, Marc & Dieleman, Sander & Grewe, Dominik & Nham, John

& Kalchbrenner, Nal & Sutskever, Ilya & Lillicrap, Timothy &

Leach, Madeleine & Kavukcuoglu, Koray & Graepel, Thore &

Hassabis, Demis. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature. 529. 484-489.

10.1038/nature16961.

[63] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradi-

ent-based learning applied to document recognition. Proceedings

of the IEEE, 86(11), 2278-2324.

[64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you

need. Advances in neural information processing systems, 30.

[65] Hochreiter, Sepp & Schmidhuber, Jürgen. (1997). Long Short-

term Memory. Neural computation. 9. 1735-80.

10.1162/neco.1997.9.8.1735

[66] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., El-

sen, E., ... & Ng, A. Y. (2014). Deep speech: Scaling up end-to-

end speech recognition. arXiv preprint arXiv:1412.5567.

[67] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Mache-

rey, W., ... & Dean, J. (2016). Google's neural machine transla-

tion system: Bridging the gap between human and machine trans-

lation. arXiv preprint arXiv:1609.08144.

[68] Jordao, A., Nazare Jr, A. C., Sena, J., & Schwartz, W. R. (2018).

Human activity recognition based on wearable sensor data: A

standardization of the state-of-the-art. arXiv preprint

arXiv:1806.05226.

[69] Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T.

(2020). DeepAR: Probabilistic forecasting with autoregressive

recurrent networks. International Journal of Forecasting, 36(3),

1181-1191.

[70] Burkov, A. (2019). The hundred-page machine learning book

(Vol. 1, p. 32). Quebec City, QC, Canada: Andriy Burkov.

[71] Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013, June). Rectifier

nonlinearities improve neural network acoustic models. In Proc.

icml (Vol. 30, No. 1, p. 3).

[72] Kamalov, F., Nazir, A., Safaraliev, M., Cherukuri, A. K., &

Zgheib, R. (2021, November). Comparative analysis of activa-

tion functions in neural networks. In 2021 28th IEEE Interna-

tional Conference on Electronics, Circuits, and Systems (ICECS)

(pp. 1-6). IEEE.

List of References VI

[73] Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and

accurate deep network learning by exponential linear units (elus).

arXiv preprint arXiv:1511.07289.

[74] Meena, K. & Suriya, Santhi. (2020). A Survey on Supervised and

Unsupervised Learning Techniques. 10.1007/978-3-030-24051-

6_58.

[75] Freeman, C. D., and Bruna, J. 2016. Topology and geometry of

half-rectified network optimization. arXiv preprint

arXiv:1611.01540

[76] Safran, I., and Shamir, O. 2017. Spurious local minima are com-

mon in two-layer relu neural networks. arXiv preprint

arXiv:1712.08968.

[77] Yun, Chulhee, Suvrit Sra, and Ali Jadbabaie. “A Critical View of

Global Optimality in Deep Learning.” arXiv preprint

arXiv:1802.03487 (2018).

[78] Choromanska, A.; Henaff, M.; Mathieu, M.; Arous, G. B.; and

LeCun, Y. 2015. The loss surfaces of multilayer networks. In Ar-

tificial Intelligence and Statistics, 192–204.

[79] Kawaguchi, K. 2016. Deep learning without poor local minima.

In Advances in Neural Information Processing Systems, 586–

594.

[80] Nguyen, Q., and Hein, M. 2017. The loss surface of deep and

wide neural networks. arXiv preprint arXiv:1704.08045.

[81] Yun, C.; Sra, S.; and Jadbabaie, A. 2017. Global optimality con-

ditions for deep neural networks. arXiv preprint

arXiv:1707.02444.

[82] Du, S. S.; Lee, J. D.; Tian, Y.; Poczos, B.; and Singh, A. 2017b.

Gradient descent learns one-hidden-layer cnn: Don’t be afraid of

spurious local minima. arXiv preprint arXiv:1712.00779.

[83] Laurent, T., and Brecht, J. 2018. Deep linear networks with arbi-

trary loss: All local minima are global. In International Confer-

ence on Machine Learning, 2908–2913.

[84] Du, S. S.; Jin, C.; Lee, J. D.; Jordan, M. I.; Singh, A.; and Poczos,

B. 2017a. Gradient descent can take exponential time to escape

saddle points. In Advances in Neural Information Processing

Systems, 1067–1077.

[85] Lee, J. D., Simchowitz, M., Jordan, M. I., & Recht, B. (2016).

Gradient descent converges to minimizers. arXiv preprint

arXiv:1602.04915.

[86] Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.;

and Bengio, Y. 2014. Identifying and attacking the saddle point

problem in high-dimensional non-convex optimization. In Ad-

vances in neural information processing systems, 2933–2941.

List of References VI

[87] Jin, C.; Ge, R.; Netrapalli, P.; Kakade, S. M.; and Jordan, M. I.

2017. How to escape saddle points efficiently. arXiv preprint

arXiv:1703.00887.

[88] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M.

(2018). Automatic differentiation in machine learning: a survey.

Journal of Marchine Learning Research, 18, 1-43.

[89] Margossian, C. C. (2019). A review of automatic differentiation

and its efficient implementation. Wiley interdisciplinary reviews:

data mining and knowledge discovery, 9(4), e1305.

[90] Laue, S. (2019). On the Equivalence of Automatic and Symbolic

Differentiation. arXiv preprint arXiv:1904.02990.

[91] Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2013,

May). Advances in optimizing recurrent networks. In 2013 IEEE

international conference on acoustics, speech and signal pro-

cessing (pp. 8624-8628). IEEE.

[92] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

[93] Dozat, T. (2016). Incorporating nesterov momentum into adam.

[94] Ma, J., & Yarats, D. (2018). Quasi-hyperbolic momentum and

Adam for deep learning. arXiv preprint arXiv:1810.06801.

[95] Lucas, J., Sun, S., Zemel, R., & Grosse, R. (2018). Aggregated

momentum: Stability through passive damping. arXiv preprint

arXiv:1804.00325.

[96] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., ... & De Freitas, N. (2016). Learning to learn

by gradient descent by gradient descent. Advances in neural in-

formation processing systems, 29.

[97] Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017, March). Very

deep convolutional neural networks for raw waveforms. In 2017

IEEE international conference on acoustics, speech and signal

processing (ICASSP) (pp. 421-425). IEEE.

[98] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556.

[99] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., ... & Rabinovich, A. (2015). Going deeper with convolutions.

In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1-9).

[100] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical

evaluation of gated recurrent neural networks on sequence mod-

eling. arXiv preprint arXiv:1412.3555.

[101] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Sa-

lakhutdinov, R. (2014). Dropout: a simple way to prevent neural

List of References VI

networks from overfitting. The journal of machine learning re-

search, 15(1), 1929-1958.

[102] Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 8(4), e1249.

[103] Le-Duc, T., Nguyen-Xuan, H., & Lee, J. (2023). A finite-ele-

ment-informed neural network for parametric simulation in

structural mechanics. Finite Elements in Analysis and Design,

217, 103904.

[104] Klein, B. (2005). FEM: Grundlagen und Anwendungen der Fi-

nite-Element-Methode im Maschinen-und Fahrzeugbau.

Springer-Verlag.

[105] Saltelli, Andrea & Annoni, Paola. (2010). Sensitivity Analysis.

10.1007/978-3-642-04898-2_509.

[106] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,

Gatelli, D., ... & Tarantola, S. (2008). Global sensitivity analysis:

the primer. John Wiley & Sons.

[107] Yang, S., Xiong, F., & Wang, F. (2017). Polynomial chaos ex-

pansion for probabilistic uncertainty propagation. Uncertainty

Quantification and Model Calibration, 13.

[108] Schueller, G. I. (2007). On the treatment of uncertainties in struc-

tural mechanics and analysis. Computers & structures, 85(5-6),

235-243.

[109] Miller, J. D. (2017). Statistics for data science: Leverage the

power of statistics for data analysis, classification, regression,

machine learning, and neural networks. Packt Publishing Ltd.

[110] Gouk, H., Frank, E., Pfahringer, B., & Cree, M. J. (2021). Regu-

larisation of neural networks by enforcing lipschitz continuity.

Machine Learning, 110, 393-416.

[111] Son, H., Jang, J. W., Han, W. J., & Hwang, H. J. (2020). Sobolev

training for the neural network solutions of pdes.

[112] Bouhlel, M. A., He, S., & Martins, J. R. (2020). Scalable gradi-

ent–enhanced artificial neural networks for airfoil shape design

in the subsonic and transonic regimes. Structural and Multidisci-

plinary Optimization, 61, 1363-1376.

Appendix/Appendices VII

Appendix/Appendices

Appendix A: MATLAB Program Code

Appendix B: Raw Data

Affidavit VIII

Affidavit

	c20b3add24972b6deeaab0944f12dd02746701aef53a59780c25c343033c9e5b.pdf
	c20b3add24972b6deeaab0944f12dd02746701aef53a59780c25c343033c9e5b.pdf

