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Abstract 

Reliability assessment of the structures plays a vital role in the design and construction phases as 
well as the lifetime of the system. For efficiency and lower computational costs, some real-world 
application systems are simplified using assumptions of linearity of the structure and/or Gaussi-
anity of the applied loading. Reliability assessment, specifically first excursion probability eval-
uation, for the cases with such simplifications might be performed using various efficient methods 
that do not demand a large number of simulations and are therefore recognized to be efficient and 
accurate enough. 

However, in some real-world applications, systems’ responses are described as non-Gaussian, 
and some systems might have a non-linear behavior. In such cases, all the developed approaches 
for linear structures under Gaussian loadings cannot be applied anymore. Therefore, more general 
approaches should be applied, but these methods are known for high computational costs and 
lower efficiency. 

In order to estimate the first excursion probability of linear systems under non-Gaussian load-
ing, a new method has been developed. This method is based on the Importance Sampling proce-
dure but at the same time also applies Gaussian approximation of the stochastic dynamic loading. 
Three different examples are presented for the validation of the developed method’s accuracy and 
efficiency. Obtained results are compared with the results obtained by Monte Carlo Simulation. 
Non-Gaussian loading is modeled as Student’s t distribution. One of the examples has a practical 
meaning for manufacturing and is related to the machining. 
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1 Introduction 

1.1 Motivation 

In real-world engineering applications, the reliability of the structures and machines is critical for 
ensuring safe and performance-based design. This is the most relevant to fields such as construc-
tion, manufacturing, and the building industry, where the structural failures might appear due to 
stochastic and sometimes not predictable loading conditions. Estimation of the failure probability 
is a key approach to gain understanding of the system response under prescribed loading [1]. 

In the past years, research results have provided some efficient and accurate methods for the 
evaluation of failure probability of the linear systems under Gaussian loadings [2]. Such assump-
tions of system linearity or Gaussianity of the loading conditions provide a simplified model of 
real-world practical models, which make the evaluation of probabilities more efficient and easier 
[3]. However, in many realistic applications, the assumption about Gaussian loading may not 
hold, since observed structural responses are described as non-Gaussian. It leads to the conclusion 
that either external loading is non-Gaussian, or the structure has non-linearities, or both. These 
changes in the models bring more complexity, and consequently, methods valid for Gaussian 
loading may provide inaccurate results when applied to non-Gaussian loads [4]. As a result, en-
gineers are forced to apply more general approaches, such as Monte Carlo Simulation (MCS) or 
Subset Simulation (SS), which stand out as a universally applicable methods capable of providing 
accurate solutions even for cases with non-linearity and non-Gaussianity [3, 5]. 

These limitations in reliability analysis highlight the demand for the new efficient and accu-
rate approaches. 

1.2 Objective 

The main objective of this work is the development of a method for assessment of the reliability 
of structures subjected to uncertain loadings. This method takes Importance Sampling as a basis 
and applies Gaussian approximation to approach non-Gaussianity of the loading, while providing 
higher efficiency than the traditional methods such as Monte Carlo Simulation. 

This work aims to present the applicability and efficiency of this method based on three prac-
tical examples, one of which demonstrates an industrial application in manufacturing. In addition, 
the accuracy of the method is going to be validated by comparing it with the results obtained using 
Monte Carlo Simulation. 
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2 State of the Art 

The implementation of up-to-date methods for the evaluation of failure probabilities of the system 
plays an important role. New methods bring higher efficiency, time savings, and a wider range of 
applications. From the practical point of view, it means a longer lifetime of the structures and 
machines, and lower maintenance costs. This chapter provides an overview of the state of the art 
in the field of reliability assessment. Recent methods as well as basic approaches are reviewed in 
this section of the work. The efficiency of the mentioned methods, in addition to their applications, 
is discussed. 

The chapter explains the purpose of the thesis by means of a literature review. Firstly, section 
2.1 gives an overview of the recent approaches being used for the estimation of the failure prob-
ability of the linear systems under Gaussian loading. Section 2.2 discusses more general methods 
for applications involving non-linear systems and non-Gaussian loading, while also highlighting 
relevance of this thesis. 

2.1 Failure probability of linear systems subjected to Gaussian 
loading 

Linear systems are characterized by simplified relationships between the loading that is applied 
to the system and the response of the system [3]. Linearity helps to avoid the complexities intro-
duced by nonlinear behavior, simplifying the problem significantly. At the same time, when the 
system is subjected to a loading that can be described as a Gaussian distribution, the system’s 
output remains Gaussian [3]. This kind of distribution is mathematically elegant, since it is fully 
characterized by the mean and (co)variance. 

In recent years, several approaches have been developed to evaluate the first excursion prob-
ability of the system. For instance, importance sampling techniques [6, 7, 8, 9] have been 
developed with the aim of shifting the distribution closer to the failure region, so as to produce 
more samples lying in the failure region and therefore increase the efficiency [3, 10]. The im-
portance sampling approach is able to estimate small first excursion probabilities (e.g., 10'( or 
less) while keeping the number of simulations of the dynamic response relatively small (e.g., a 
few hundreds) [2]. The main aspect of the method is the choice of the importance sampling density 
(ISD). In cases when the dimensionality of the problem is not too large and the region of failure 
is relatively simple to describe, several different schemes for constructing the importance 
sampling density, such as those based on design points [8, 11, 12, 13, 14, 15] or adaptive 
presamples [16, 17, 18, 19], are found to be applicable. The design points, or presamples, are 
usually obtained numerically by means of optimization or simulation with the integrand function 
being directly used. When it comes to large dimensions and the problem becomes more complex, 
however, it may be challenging to obtain sufficient knowledge in order to construct an apropriate 
importance sampling density [3, 10, 20]. This was proved in [21], showing that Importance 
Sampling (IS) does generally not work in high dimensions unless some very specific conditions 
are met. On the contrary, an algorithm referred to as Adaptive Linked Importance Sampling 
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(ALIS) has been introduced in [22]. The main idea of this algorithm is to replace the fixed 
importance sampling density used in conventional importance sampling with a family of 
intermediate distributions that gradually converge to the target optimal importance sampling 
density associated with the conditional probability given the failure event. The general 
formulation of adaptive linked importance sampling enables a wider choice of intermediate 
importance sampling densities. It has been demonstrated on examples that ALIS offers significant 
improvements over techniques such as Subset Simulation. Specifically, it has been shown that the 
choice of intermediate importance sampling densities prescribed by Subset Simulation may not 
be optimal. Numerical examples presented in the paper show the efficiency and accuracy of the 
proposed method [22]. 

In addition, [23] shows an Importance Sampling scheme that was deduced in an alternative 
manner using the concept of Domain Decomposition and enhanced by taking averages along a 
given sampling direction. At the same time, the application of Directional Importance Sampling 
has been investigated [24, 25]. This method has been used to determine small first excursion 
probabilities of linear structures subject to dynamic Gaussian loading [2]. 

2.2 Non-linear systems and non-Gaussian loading 

As soon as the system is characterized as non-linear or the applied load as non-Gaussian, methods 
discussed in section 2.1 cannot be applied anymore. In this case, more general approaches and 
methods such as Monte Carlo and its more advanced variants [2, 26, 27] may be applied for the 
evaluation of the failure probability of the system. Monte Carlo Simulation [6, 28] is considered 
to be a reliable approach regardless of the type and dimension of the problem. The main 
disadvantage, however, is that this method is not efficient when dealing with small probabilities 
(e.g., 𝑃% ≤ 10'() because the amount of samples, and therefore the large scale of numerical mod-
els required to obtain a specified accuracy, is proportional to 1/𝑃%. As a matter of fact, in order 
to find small probabilities, information from rare samples lying in the failure region is required. 
It means that in most cases many samples would be needed before a failure occurs [10]. 

To obtain higher efficiency while at the same time keeping the robustness of MCS to the 
dimensionality of the problem and the complexity of the failure region, another simulation 
method, called Subset Simulation has been developed. This method is used to evaluate small 
failure probabilities encountered in reliability analysis of engineering systems. The main idea of 
this method is to express the failure probability of the system as a product of larger conditional 
failure probabilities. This is achieved by introducing intermediate failure events. If the conditional 
events are chosen sufficiently, the conditional failure probabilities can be made large enough so 
that they may be estimated by means of simulation using a small number of samples. By applying 
this method, the problem of high calculational effort for the calculation of a small failure 
probability is now approached by calculation of a sequence of conditional probabilities, which 
can be estimated by means of simulation with a higher efficiency [10]. 

Obviously, there is a lack of efficient methods to deal with non-linear systems and non-Gauss-
ian loads. This thesis focuses on the development of a new method for the assessment of the 
reliability of structures subjected to stochastic dynamic loading. To be more specific, this ap-
proach deals with non-Gaussian loading by means of Gaussian approximation, while giving 
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higher efficiency than conventional methods such as MCS. This work shows the application of a 
newly developed method to the reliability assessment of machines operating under prescribed 
loading, which has a practical meaning for manufacturing. 
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3 Theoretical  Background 

3.1 Problem formulation 

This chapter provides an overview of the fundamental concepts relevant to the problems ad-
dressed in this work, with a particular focus on calculating the first excursion probability of a 
linear mechanical system subjected to non-Gaussian loading. 

This section starts with the definition of the system structural model in sub-section 3.1.1. 
After the definition of the system model, system loading is defined in sub-section 3.1.2. Then in 
sub-section 3.1.3 response of a system is discussed, and sufficient formulations are presented. 
After the response formulation, sub-section 3.1.4 represents system failure under the loading. 

3.1.1 System model 

Let us take into account a linear model of a structural system, which is considered to be elastic 
and with classical damping. The structural system is considered to be under loading 𝑝(𝑡), which 
is assumed to be scalar. The equation of motion for the system [29, 30]: 

𝑴𝜼̈(𝑡) + 𝑪𝜼̇(𝑡) + 𝑲𝜼(𝑡) = 𝒒𝑝(𝑡) (3-1) 

where 𝜼̈(𝑡), 𝜼̇(𝑡) and 𝜼(𝑡) are vectors for acceleration, velocity, and displacement, respectively. 
Mentioned vectors have a dimension of 𝑛) × 1, where 𝑛) stands for the number of degrees of 
freedom of the system. The modeled system is characterized by the mass matrix	𝑴, (classical) 
damping matrix 𝑪, and stiffness matrix 𝑲 – all of dimension 𝑛) × 𝑛). Loading	𝑝(𝑡) and the cor-
responding degrees of freedom of the structure are coupled by means of a vector 𝒒 of dimension 
𝑛) × 1. The system is assumed to be initially at rest: 𝜼(0) = 𝜼̇(0) = 0  [29]. 

3.1.2 System loading 

The dynamic loading 𝑝(𝑡) is described as a discrete process whose discrete time realizations are 
collected in vector p of a duration T and dimension 𝑛*, where 𝑛* is the total number of time 
discretization steps over the duration T, so that 𝑛* = 𝑇/∆𝑡 + 1, where Δ𝑡 denotes the time step. 
In this work, 𝑝(𝑡) is modeled by non-Gaussian white noise. It means that p is also non-Gaussian. 
By means of the inverse-normal transformation, 𝒑 can be expressed as [29]: 

𝒑 = 𝐹+',[Φ𝒛(𝒛)] (3-2) 

where 𝒛 is a vector that consists of random standard Gaussian variables of a dimension 𝑛* × 1; 
𝐹𝒑(∙) and Φ𝒛(∙) are the cumulative distribution functions (CDFs) associated with 𝒑 and 𝒛, respec-
tively. 
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3.1.3 System response 

The response of interest of the system 𝑥.(𝑡, 𝒑), 𝑖 = 1,… , 𝑛/, can be calculated through the con-
volution integral [29, 31]: 

𝑥.(𝑡, 𝒑) = M ℎ.(𝑡 − 𝜏)
0

1
𝑝(𝜏)𝑑𝜏, 𝑖 = 1,… , 𝑛/ (3-3) 

where ℎ.(∙) represents the unit impulse response function of the 𝑖th response 𝑥.(𝑡, 𝒑). For the case 
with multi degree of freedom system, where 𝑥.(𝑡, 𝒑) is a linear combination of the displacement 
vector constituents, ℎ.(∙) represented as [29]: 

ℎ.(𝑡) =R
𝜸.*𝝓2𝝓2

*𝒒
𝝓2
*𝑴𝝓2

1
𝜔3,2

𝑒'4!5!0 sinZ𝜔3,2𝑡[
6"

27,

 (3-4) 

where 𝜸. is a constant vector; 𝝓2 is the eigenvector (mode shape) corresponding to the r-th mode; 
𝜔2 is the natural frequency of the 𝑟-th mode; 𝜁2 is the damping ratio of the 𝑟-th mode; and 𝜔3,2 =

𝜔2^1 − 𝜁28 is the 𝑟-th damped frequency. This representation of Eq. (3-4) only holds true for the 
underdamped case when the damping ratio is below 1 (𝜁 < 1). For the overdamped cases when 
the damping ratio is larger than 1 (𝜁 > 1), an equation for the impulse response function would 
look like [32]: 

ℎ.(𝑡) =R
𝜸.*𝝓2𝝓2

*𝒒
𝝓2
*𝑴𝝓2

1
2𝜔6,2^𝜁8 − 1

b𝑒'5#,!94':4
%',;0 − 𝑒'5#,!94<:4

%',;0c
6"

27,

 (3-5) 

For the critically damped case when the damping ratio is around 1 (𝜁 = 1), the impulse response 
function would be expressed as follows [32]: 

ℎ.(𝑡) = R
𝜸.*𝝓2𝝓2

*𝒒𝑡
𝝓2
*𝑴𝝓2

6"

27,

𝑒'5#,!0 (3-6) 

Considering the discrete time representation, the response at the 𝑘-th time instant 𝑥.(𝑡= , 𝒑) is: 

𝑥.(𝑡= , 𝒑) =R∆𝑡𝜖>ℎ.(𝑡= − 𝑡>)
=

>7,

𝑝(𝑡>) = 𝒉.(𝑡=)𝒑 (3-7) 

where 𝒉.(𝑡=) is a vector of a dimension 1 × 𝑛*, with the 𝑙-th element of 𝒉.(𝑡=) equal to 
∆𝑡𝜖>ℎ.(𝑡= − 𝑡>) for 𝑙 ≤ 𝑘 and 0 for 𝑙 > 𝑘. In this work, 𝜖> is selected in accordance with the 
trapezoidal integration rule [33], stating 𝜖> = 1/2 if 𝑙 = 1 or 𝑙 = 𝑘; and 𝜖> = 1 otherwise. Con-
sidering the mentioned above, the response vector can be represented in a matrix form such as: 

𝒙& =

⎩
⎪
⎨

⎪
⎧
𝑥&(𝑡')
𝑥&(𝑡()
𝑥&(𝑡))
⋮

𝑥&,𝑡*!-⎭
⎪
⎬

⎪
⎫

= ∆𝑡

⎣
⎢
⎢
⎢
⎡

𝜖'ℎ&(0) 0 0 0 … 0
𝜖'ℎ&(∆𝑡) 𝜖(ℎ&(0) 0 0 … 0
𝜖'ℎ&(2∆𝑡) 𝜖(ℎ&(∆𝑡) 𝜖)ℎ&(0) 0 … 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝜖'ℎ&,(𝑛+ − 1)∆𝑡- … … … … 𝜖*!ℎ&(0)⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑝(𝑡')
𝑝(𝑡()
𝑝(𝑡))
⋮

𝑝,𝑡*!-⎭
⎪
⎬

⎪
⎫

 (3-8) 
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The transformation matrix 𝑨𝒊 might be called here, so that the response equation simplifies to the 
following form: 

𝒙. = 𝑨.𝒑 (3-9) 

where 𝒙. is a vector of dimension 𝑛* × 1, 𝑨. is a matrix of dimension 𝑛* × 𝑛* and 𝒑 is a vector 
of dimension 𝑛* × 1. Using Eq. (3-9), it is possible to establish a linear relationship between the 
load 𝒑 and all the responses at all time instants, that is: 

𝒙 = j
𝒙,
⋮
𝒙6,

l = m
𝑨,
⋮
𝑨6,

n 𝒑 (3-10) 

3.1.4 System failure 

The response of the system must not exceed the prescribed threshold in order to fulfill specific 
practical design requirements. An elementary failure event of the system at time instant 𝑡=, which 
corresponds to the 𝑖-th response of interest, is denoted as 𝐹.,= and defined by the following ex-
pression [29]: 

𝐹.,= = 𝐹.,=,,o𝐹.,=,8 (3-11) 

where 𝐹.,=,, and 𝐹.,=,8 correspond to upper and lower excursion at time instant 𝑡= for the 𝑖-th 
response of interest, respectively. Each of the upper and lower excursions are defined as follows 
[29]: 

𝐹.,=,, = p𝒑 ∈ Ω𝒑: 𝑔.,,(𝑡= , 𝒑) ≤ 0u, 𝐹.,=,8 = p𝒑 ∈ Ω𝒑: 𝑔.,8(𝑡= , 𝒑) ≤ 0u (3-12) 

𝑔.,,(𝑡= , 𝒑) = 𝑏.,, − 𝑥.(𝑡= , 𝒑), 𝑔.,8(𝑡= , 𝒑) = 𝑥.(𝑡= , 𝒑) − 𝑏.,8 (3-13) 

where 𝑔.,,(𝑡= , 𝒑) and 𝑔.,8(𝑡= , 𝒑) are the performance functions for upper and lower excursions, 
respectively, at time instant 𝑡= for the 𝑖-th response of interest. Thresholds for upper and lower 
excursions for the 𝑖-th response of interest are denoted as 𝑏.,, and 𝑏.,8 respectively. Domain of the 
load 𝒑 is noted as Ω𝒑 [29]. 
Failure of the structure over the time range [0, T], denoted as F, is defined as the union of ele-
mentary failure events 𝐹.,=,@. Considering Eq. (3-11), failure of the structure is defined as [29]: 

𝐹 =oo𝐹.,= =ooo𝐹.,=,@

8

@7,

6-

=7,

6,

.7,

6-

=7,

6,

.7,

 (3-14) 
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3.2 Methodology 

This chapter gives an explanation of some available methods used to solve the kind of problem 
that is approached in this work. Not only is the theoretical part explained, but also some algorith-
mic implementation details are discussed. First, Monte Carlo Simulation is presented in sub-sec-
tion 3.2.1, where its application for the calculation of first excursion probability is explained as 
well. Then, sub-section 3.2.2 covers an approach based on Importance Sampling. After that, sub-
section 3.2.3 introduces a more efficient approach denoted as Efficient Importance Sampling. 
Sub-section 3.2.4 presents an application of Importance Sampling using a Gaussian approxima-
tion for non-Gaussian loading, which is the main contribution of this thesis. 

3.2.1 Monte Carlo Simulation 

Practical implementation of the Monte Carlo method starts with the generation of the samples of 
the uncertain parameters in the standard normal space, which are: 

𝒛(B), 𝑗 = 1, 2, … ,𝑁 (3-15) 

where 𝒛(B) represents independently generated samples based on the probability density function 
𝑓𝒛(𝒛), which is represented in Figure 3-1. Number of samples is represented by 𝑁. The next step 
is to project samples into the physical space of uncertain variables using the transformation from 
Eq. (3-2). After that, for each of the samples in the physical space, a deterministic analysis is 
carried out, and the response(s) of interest are determined. Then, for each sample, system failure 
event is investigated following the performance function in Eq. (3-13), and the failure indicator 
function is defined as [34]: 

𝐼%(𝒛) = {1			if	𝒛 ∈ 𝐹0			if	𝒛 ∉ 𝐹 (3-16) 

 

Figure 3-1: Probability density function of the normal distribution [34] 
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The failure probability of the system can be estimated as follows: 

𝑃[𝐹] = M 𝐼%(𝒛)𝑓𝒛(𝒛)𝑑𝒛
	

𝒛∈F%
≈ 𝑃�[𝐹] =

1
𝑁
R𝐼%Z𝒛(B)[
G

B7,

 (3-17) 

where 𝑃�[∙] represents an estimator of the failure probability 𝑃[𝐹]. Therefore, there is an uncer-
tainty about how close the estimator is to the real failure probability. One approach to determine 
this uncertainty is to calculate the coefficient of variation. The coefficient of variation associated 
with the Monte Carlo Method is calculated as follows [34]: 

𝛿HI" = �
1 − 𝑃�[𝐹]
𝑁𝑃�[𝐹]

 (3-18) 

The estimator 𝑃�[𝐹] is considered to be reliable when 𝛿HI" < 10%. A reasonable estimator 𝑃�[𝐹] 
should have a coefficient of variation such that 𝛿HI" < 30% [34]. 

3.2.2 Importance Sampling 

The previously discussed Monte Carlo method is considered as a reliable approach and is used as 
a reference point for the results validation. On the contrary, it does not show high efficiency re-
quiring a large number of samples in order to achieve stable results. This is due to the fact that 
the center of mass of the cloud of points (realizations of the vector of uncertain variables) associ-
ated with the Monte Carlo method is far away from the failure event, as shown in Figure 3-2 for 
an arbitrary two-dimensional performance function. One possible way to increase the frequency 
of failure samples generation is to shift the center of mass of the cloud of points towards the 
failure region, as shown in Figure 3-3. This approach has been named as Importance Sampling 
[8, 35]. 

 

Figure 3-2: Realizations of the vector of uncertain variables associated with the Monte Carlo 
method [35] 
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Figure 3-3: Realizations of the vector of uncertain variables associated with the Importance Sam-
pling method [35] 

In order to implement the Importance Sampling method, a probability density function 𝑓!",𝒛(𝒛) 
has to be considered. This function is called as Importance Sampling density function and has the 
following characteristics to take into account [35]: 

• The function 𝑓!",𝒛(𝒛) is greater than zero throughout the failure domain. 
• Most of the mass (or all of the mass) of the function 𝑓!",𝒛(𝒛) lies in the failure domain. 
• The integral of 𝑓!",𝒛(𝒛) over the failure domain is close (or ideally equal) to 1. 
• The probability density functions 𝑓!",𝒛(𝒛) and 𝑓𝒛(𝒛) are similar to each other (propor-

tional). 

Practical implementation of the Importance Sampling method starts with the identification of the 
design point. The design point 𝒛∗ is the realization of the vector 𝒛 that belongs to the failure event 
and has the smallest Euclidean norm with respect to the origin. Alternatively, the design point 𝒛∗ 
can be interpreted as the realization of the vector 𝒛 that belongs to the failure event and that 
maximizes the value of the probability density function associated with 𝒛. An example of a sche-
matic representation of the design point 𝒛∗ associated with a performance function (whose limit 
state function is linear) is illustrated in Figures 3-4 and 3-5 [35]. 
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Figure 3-4: Example of schematic representation of the design point [35] 

 

Figure 3-5: Example of schematic representation of the design point (isometric view) [35] 

In order to determine the design point for a particular failure event, an optimization problem has 
to be solved: 

min ||𝐳|| 
subject to 
𝑔(𝒛) ≤ 0 

(3-19) 

where 𝑔(𝒛) represents the performance function. In Eq. (3-19), || ∙ || represents the Euclidean 
norm, which is also considered to be the reliability index and is denoted as 𝛽. 

Before coming to the next step, an Importance Sampling probability density function 𝑓!",𝒛(𝒛) 
has to be defined. As can be seen from Figure 3-5, the neighborhood of the design point is the one 
that has the most impact on the probability integral, but this holds true only for a relatively small 
number of dimensions. Thus, the probability integral is re-defined as follows: 
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𝑃[𝐹] = M
𝑓𝒛(𝒛)
𝑓!",𝒛(𝒛)

𝑓!",𝒛(𝒛)
	

K(𝒛)L1
𝑑𝒛 (3-20) 

Taking into account that the neighborhood of the design point in the standard normal space has 
the most impact on the probability integral, it makes sense to center the Importance Sampling 
probability density function at this point. Importance Sampling probability density function can 
be constructed in multiple ways. Nevertheless, a simple and effective way is to choose a normal 
distribution function centered at the design point with unit variance whose components are inde-
pendent [21, 35]. In this case, the Importance Sampling probability density function has a distri-
bution such that [36]: 

𝑓!",𝒛(𝒛)~𝑁(𝝁,∑) (3-21) 

where the symbol 𝑁 denotes a multivariate normal distribution function, 𝝁 is the expected value 
vector, and ∑ is the covariance matrix of the distribution, which are defined as follows: 

𝝁 = 𝒛∗ (3-22) 

∑ = 𝑰 =

⎝

⎜
⎛
1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1⎠

⎟
⎞

 (3-23) 

where 𝑰 is the identity matrix. 
When the problem involves 𝑛+ design points, initially 𝑛+ distribution functions associated 

with Importance Sampling are introduced that have the form defined in Eq. (3-21). 

𝑓!",𝒛
(=)(𝒛)~𝑁(𝑧=∗ , 𝑰), 𝑘 = 1,… , 𝑛+ (3-24) 

However, it is necessary to remember that the Importance Sampling probability density function 
must integrate to one. Therefore, this function is considered to be constructed based on a weighted 
sum of the distributions shown in Eq. (3-24). 

𝑓!",𝒛(𝒛) = 𝜔!"
(,)𝑓!",𝒛

(,)(𝒛) + ⋯+𝜔!"
(6.)𝑓!",𝒛

M6.N(𝒛) (3-25) 

This Importance Sampling probability density function presented in Eq. (3-25) is a superposition 
of several normal distributions with different expected values. In graphical representation and for 
the specific case where 𝑛+ = 2, the probability density function associated with the discussed 
Importance Sampling probability density function could have an appearance similar to that which 
is shown in Figure 3-6. 
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Figure 3-6: Graphical representation of possible appearance of the function 𝑓!",𝒛(𝒛) [8] 

In Eq. (3-25), 𝜔!"
(=), 𝑘 = 1,… , 𝑛+ represents a weight with respect to the Importance Sampling 

probability density function, which is associated with each design point. The role of this weight 

𝜔!"
(=), 𝑘 = 1,… , 𝑛+ is to ensure that the integral of the distribution function 𝑓!",𝒛(𝒛) is equal to 1 

over the domain of the uncertain variables. Integrals of the Importance Sampling probability den-

sity functions associated with each design point 𝑓!",𝒛
(=)(𝒛), 𝑘 = 1,… , 𝑛+ separately are equal to 1 

(since they are normal distribution functions). However, when added together, the integral will 

differ from 1. The weight 𝜔!"
(=), 𝑘 = 1,… , 𝑛+ has to fulfill the following conditions [36]: 

𝜔!"
(=) ≥ 0, 𝑘 = 1,… , 𝑛+ (3-26) 

R𝜔!"
(=)

6.

=7,

= 1 (3-27) 

One possible way to choose the weight 𝜔!"
(=), 𝑘 = 1,… , 𝑛+ is to select it as being proportional to 

the probability associated with the reliability indices of each design point [8]: 

𝜔!"
(=) =

Φ(−𝛽=)
∑ Φ(−𝛽=)
6.
=7,

, 𝑘 = 1,… , 𝑛+ (3-28) 

where Φ(∙) is the cumulative probability density function associated with the standard normal 
distribution. To generate samples of 𝒛 distributed according to the Importance Sampling proba-
bility density function, it is necessary to consider the weights associated with each distribution.  
To be more specific, a random number 𝑢, has to be generated uniformly distributed between 0 
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and 1 (𝑢,~𝑈[0,1]) and the distribution associated with the 𝑞-th design point is selected such that 
it meets the following conditions [36]: 

𝜔!"
(,) +𝜔!"

(8) +⋯+𝜔!"
(O'8) +𝜔!"

(O',) ≤ 𝑢, (3-29) 

𝜔!"
(,) +𝜔!"

(8) +⋯+𝜔!"
(O',) +𝜔!"

(O) > 𝑢, (3-30) 

where 𝑞 represents an integer less than or equal to the number of existing design points. Graph-
ically, the number 𝑞 can be represented as shown in Figure 3-7. 

 

Figure 3-7: Graphical representation of the number q [36] 

Once that a specific importance sampling density function has been selected, it is straightforward 
to generate one sample distributed according to that selected distribution. Then the whole proce-
dure is repeated 𝑁 times. 

After that, a failure probability has to be estimated. The failure event can be expressed as 
[35]: 

𝐹 = {𝒛 ∈ ℝ6/ ∶ 𝑔(𝒛) ≤ 0} (3-31) 

where 𝑛& stands for the number of dimensions. Using Importance Sampling it can be defined as: 

𝑃[𝐹] = M 𝐼%(𝒛)𝑓𝒛(𝒛)
	

𝒛∈ℝ#/
𝑑𝒛 (3-32) 

= M 𝐼%(𝒛)
𝑓𝒛(𝒛)
𝑓!",𝒛(𝒛)

	

𝒛∈ℝ#/
𝑓!",𝒛(𝒛)𝑑𝒛 (3-33) 

≈
1
𝑁
R𝐼%Z𝒛(B)[
G

B7,

𝑓𝒛Z𝒛(B)[
𝑓!",𝒛(𝒛(B))

, 𝒛(B)~𝑓!",𝒛(𝒛), 𝑗 = 1,… ,𝑁 (3-34) 

Alternatively, the last equation can be expressed as follows: 
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𝑃[𝐹] ≈ 𝑃�[𝐹] =
1
𝑁
R𝐼%Z𝒛(B)[
G

B7,

𝑤!"Z𝒛(B)[, 𝒛(B)~𝑓!",𝒛(𝒛), 𝑗 = 1,… ,𝑁 (3-35) 

where 𝑤!"Z𝒛(B)[ is the weight associated with the 𝑗-th sample of the uncertain parameters and is 
defined such as: 

𝑤!"Z𝒛(B)[ =
𝑓𝒛Z𝒛(B)[
𝑓!",𝒛(𝒛(B))

 (3-36) 

It is important to note that this weight 𝑤!"(𝒛) has no relation to the weight 𝜔!"
(=) from Eq. (3-25). 

In addition, it is important to keep in mind that the above presented weight of a sample 𝑤!"(∙) is 
a scalar quantity that is equal to the joint probability density function of the standard normal 
variables divided by the Importance Sampling joint probability density function. From the last 
equations presented above, the main idea behind Importance Sampling becomes clear. The main 
idea is to generate samples of the vector 𝒛 that are distributed with respect to the distribution 
function 𝑓!",𝒛Z𝒛(B)[. Following this procedure, failure samples are generated with a higher fre-
quency. A weight function is included in the calculation of the failure estimator in Eq. (3-35) in 
order to weight the fact that the samples of 𝒛 are not generated with respect to the original distri-
bution. This weight function serves as a quotient between the original distribution function and 
the distribution function associated with Importance Sampling [35].  

The probability density function associated with the original distribution can be expressed as 
follows: 

𝑓𝒛(𝒛) =
1

^|𝚺|(2𝜋)6-/8
𝑒'

,
89(𝒛'𝝁)

-𝚺01(𝒛'𝝁); (3-37) 

Considering Eq. (3-21), Eq. (3-22), and Eq. (3-23), the expression for the Importance Sampling 
probability density function is defined as: 

𝑓!",𝒛(𝒛) = R𝜔=𝑓(𝒛, 𝝁= = 𝒛𝒌∗ , 𝑰)

6.

=7,

 (3-38) 

=R
𝜔=

(2𝜋)6-/8

6.

=7,

𝑒
',8UM𝒛'𝒛2

∗ N-𝑰M𝒛'𝒛2
∗ NW

 (3-39) 

Substituting Eq. (3-37) and Eq. (3-39) into Eq. (3-36) as well as considering that the Σ in this case 
is an identity matrix, the expression for the calculation of the weight 𝑤!"Z𝒛(B)[ would be: 
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𝑤!"Z𝒛(B)[ =

1
(2𝜋)6/ 𝑒

',8𝒛
(5)-𝒛(5)

∑ 𝜔=
(2𝜋)6/

67
=7, 𝑒

',8UM𝒛
(5)'𝒛2

∗ N
-
𝑰M𝒛(5)'𝒛2

∗ NW
 (3-40) 

=
𝑒'

,
8𝒛

(5)-𝒛(5)

∑ 𝜔=
6.
=7, 𝑒

',8UM𝒛
(5)'𝒛2

∗ N
-
𝑰M𝒛(5)'𝒛2

∗ NW
 (3-41) 

Presented in Eq. (3-41) quotient 𝑤!"Z𝒛(B)[ can be calculated directly in low-dimensional spaces. 
As soon as the analysis is performed in high-dimensional spaces, some significant numerical is-
sues might arise due to properties of exponential functions in the numerator and denominator. In 
high dimensions, values inside the exponential terms might increase or decrease rapidly, which 
leads to overflowing (exponentials become too large) or underflowing (exponentials become too 
small). 
In order to address these computational challenges, the whole expression for the calculation of 
the quotient from Eq. (3-41) can be simplified by taking the natural logarithm of 𝑤!"Z𝒛(B)[. After 
implementation of the simplifying logarithm properties, the expression is exponentiated to return 
to the original form: 

𝑤!"Z𝒛(B)[ = 𝑒𝑥𝑝�−
1
2
𝒛(B)

*
𝒛(B) − log	 ¡R𝜔=

6.

=7,

𝑒
',8UM𝒛

(5)'𝒛2
∗ N
-
𝑰M𝒛(5)'𝒛2

∗ NW
¢£ (3-42) 

Applying properties of the logarithm, products of exponential terms are converted into sums, 
which means less probability of overflowing or underflowing. Expression of Eq. (3-42) can be 
simplified even more by applying the definition of the Euclidean norm such that: 

𝒛(B)
*
𝒛(B) = ¤𝒛(B)¤

8
 (3-43) 

Respectively: 

Z𝒛(B) − 𝒛=∗ [
*
𝑰Z𝒛(B) − 𝒛=∗ [ = ¤𝒛(B) − 𝒛=∗¤

8
 (3-44) 

Following, Eq. (3-42) would be: 

𝑤!"Z𝒛(B)[ = 𝑒𝑥𝑝�−
1
2
¤𝒛(B)¤

8
− log	 ¡R𝜔=

6.

=7,

𝑒'
,
8X𝒛

(5)'𝒛2
∗ X

%

¢£ (3-45) 

In Eq. (3-45), both 𝑒𝑥𝑝 and log are present, which might introduce some additional numerical 
instabilities when exponentiating large values or when taking the logarithm of small values. 
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Specifically, the logarithm of the summation of small values might cause some serious computa-
tional challenges. In order to address these challenges arising from taking logarithm of small val-
ues, a so-called “log-sum-exp” trick might be applied [37]. 

For the introduction of the “log-sum-exp” trick, let us take the following term from Eq. (3-
45): 

log	 ¡R𝜔=

6.

=7,

𝑒'
,
8X𝒛

(5)'𝒛2
∗ X

%

¢ (3-46) 

For the simplicity of the derivation, let us rewrite it as: 

𝑦 = log	¡Rexp	(𝑎=)

6.

=7,

¢ (3-47) 

Solving the logarithm would give: 

𝑒Y =Rexp	(𝑎=)

6.

=7,

 (3-48) 

Introducing 𝑠 as an arbitrary constant would give: 

𝑒Y = 𝑒@Rexp	(𝑎= − 𝑠)

6.

=7,

 (3-49) 

Taking the logarithm to obtain 𝑦: 

𝑦 = 𝑠 + logRexp	(𝑎= − 𝑠)

6.

=7,

 (3-50) 

The biggest advantage of this approach is that the arbitrary constant 𝑠 is shifting the values in the 
exponent while still giving the same result. Arbitrary constant 𝑠 is set to be: 

𝑠 = 𝑚𝑎𝑥 {𝑎,, ⋯ , 𝑎6.¬ (3-51) 

Applying this “log-sum-exp” trick into Eq. (3-45) would give the following expression: 

𝑤!"Z𝒛(B)[ = 𝑒𝑥𝑝

⎝

⎜
⎛
−
1
2
¤𝒛(B)¤

8
− �𝑠 + log	 ¡R𝜔=

6.

=7,

𝑒'
,
8X𝒛

(5)'𝒛2
∗ X

%
'@¢£

⎠

⎟
⎞

 (3-52) 
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Since this study focuses on the simulations in high dimensions, implementation of the discussed 
logarithmic simplification as well as “log-sum-exp” trick is essential in the scope of this work. 

After the failure probability has been estimated, the uncertainty related to the Importance 
Sampling probability estimator can be defined by means of the coefficient of variation 𝛿!" [35]: 

𝛿!" =
­𝑉¯𝑃�[𝐹]°

𝑃�[𝐹]
 (3-53) 

≈
1

𝑃�[𝐹]
±

1
𝑁(𝑁 − 1)

RZ𝐼%(𝒛(B))𝑤!"(𝒛(B)) − 𝑃�[𝐹][
8

G

B7,

 (3-54) 

where 𝑉[∙] is the variance of the argument inside the square brackets. 

3.2.3 Efficient Importance Sampling 

In order to achieve greater efficiency, an alternative Importance Sampling probability density 
function might be designed. This new Importance Sampling probability density function is de-
noted as 𝑓Z!",𝒛(𝒛), where 𝐸𝐼𝑆 denotes Efficient Importance Sampling. However, it should be noted 
that EIS is only applicable whenever the performance function is linear with respect to Gaussian 
random variables. As this is not the case for the class of problems studied in this thesis, EIS is not 
applicable within the current study. Nevertheless, this technique is still presented in this thesis as 
it is a seminal work which has shed light on the development of many simulation schemes. 

The whole procedure starts with the identification of the design points and reliability indices 
associated with the basic performance functions. Assuming linearity of these functions, the fol-
lowing formulas can be used [38, 39]: 

𝒛=∗ = −𝑔=(𝟎)
∇𝑔=(𝟎)

‖∇𝑔=(𝟎)‖8
 (3-55) 

𝛽= =
𝑔=(𝟎)

‖∇𝑔=(𝟎)‖
 (3-56) 

After the design points and reliability indices have been identified, the Efficient Importance Sam-
pling Density Function has to be constructed. First of all, let us take a look at the probability of 
one failure domain. Let us consider the elemental performance functions 𝑔=(𝑧), 𝑘 = 1,… , 𝑛+. 
The elemental failure with respect to each of them is represented as follows [40]: 

𝐹= = {𝒛 ∈ ℝ6/ ∶ 𝑔=(𝒛) ≤ 0}, 𝑘 = 1,… , 𝑛+ (3-57) 

Then, the failure event 𝐹 is the union of the elementary failure events: 
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𝐹 =o𝐹=

6.

=7,

 (3-58) 

The probability of occurrence of the basic failure event 𝑃[𝐹=] can be estimated analytically (with-
out the need for simulation techniques). In order to demonstrate this, take into account 𝑘-th per-
formance function in Eq. (3-59) and assume that number of dimensions 𝑛& = 2 for simplicity: 

𝑔=(𝒛) = 𝑔=(𝟎) + 𝑎,=𝑧, + 𝑎8=𝑧8 (3-59) 

where 𝑎,= and 𝑎8= are constants and 𝑔=(𝟎) stands for the performance function evaluated at the 
origin of the standard normal space. Then, the probability 𝑃[𝐹=] is expressed as follows: 

𝑃[𝐹=] = 𝑃[𝑔=(𝒛) ≤ 0] 

= 𝑃¯𝑔=(𝟎) + 𝑎,=𝑧, + 𝑎8=𝑧8 ≤ 0° 

= 𝑃¯𝑎,=𝑧, + 𝑎8=𝑧8 ≤ −𝑔=(𝟎)° 

(3-60) 

(3-61) 

(3-62) 

The expression 𝑎,=𝑧, + 𝑎8=𝑧8 contains the sum of 2 independent normal distributions multiplied 
by a constant. Considering properties of the normal distribution, this sum is equal to another ran-

dom variable 𝑧" with expected value 0 and standard deviation ­Z𝑎,=[
8 + Z𝑎8=[

8. 

𝑧"	~	𝑁(0, Z𝑎,=[
8 + Z𝑎8=[

8) (3-63) 

The mentioned random variable 𝑧" can be represented by means of a standard normal variable 𝑧 
using the following equation: 

𝑧" = 𝑧­Z𝑎,=[
8 + Z𝑎8=[

8 (3-64) 

Substituting will give the following expression: 

𝑃[𝐹=] = 𝑃 ·𝑧­Z𝑎,=[
8 + Z𝑎8=[

8 ≤ −𝑔=(𝟎)¸ (3-65) 

= 	𝑃

⎣
⎢
⎢
⎡
𝑧 ≤ −

𝑔=(𝟎)

­Z𝑎,=[
8
+ Z𝑎8=[

8
⎦
⎥
⎥
⎤
 (3-66) 

Eq. (3-66) shows that in order to determine the probability, it is necessary to determine the prob-
ability that a standard normal random variable 𝑧 is less than a certain number or equal to it. This 
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can be determined using the cumulative probability density function Φ(∙). Subsequently, the prob-
ability can be expressed as follows: 

𝑃[𝐹=] = Φ

⎝

⎛−
𝑔=(𝟎)

­Z𝑎,=[
8
+ Z𝑎8=[

8
⎠

⎞ (3-67) 

It is important to remember that the term 𝑔=(𝟎)/­Z𝑎,=[
8 + Z𝑎8=[

8 represents the distance from 

the origin of the standard normal space to the limit state function associated with 𝑔=(𝒛). Accord-
ingly: 

𝛽= =
𝑔=(𝟎)

­Z𝑎,=[
8
+ Z𝑎8=[

8
 

𝑃[𝐹=] = Φ(−𝛽=) 

(3-68) 

(3-69) 

The next step is to define a standard normal probability density function condition on one failure 
event. This function can be expressed using Bayes’ theorem [40]: 

𝑓&(𝒛|𝐹=) =
𝑃[𝒛 ∩ 𝐹=]
𝑃[𝐹=]

=
𝐼%2(𝒛)𝑓𝒛(𝒛)
𝑃[𝐹=]

 (3-70) 

where 𝐼%2(𝒛) represents the indicator function associated with the failure event 𝐹=. Considering 
also Eq. (3-69), the conditional probability density function can be expressed as follows: 

𝑓&(𝒛|𝐹=) =
𝐼%2(𝒛)𝑓𝒛(𝒛)
Φ(−𝛽=)

 (3-71) 

This Eq. (3-71) can be interpreted as follows: from one side, it has a similar shape to a standard 
normal distribution, but from another point of view, it is truncated. The truncation is introduced 
through the indicator function 𝐼%2(𝒛). The constant Φ(−𝛽=) is used to ensure that the cumulative 
distribution function integrates to 1. 

The efficient importance sampling density function is constructed using a weighted sum of 
the distributions in Eq. (3-71) [40]. 

𝑓Z!",&(𝒛) = 𝜔!"
(,)𝑓&(𝒛|𝐹,) + ⋯+𝜔!"

M6.N𝑓& À𝒛Á𝐹6.Â = R𝜔!"
(=) 𝐼%2(𝒛)𝑓𝒛(𝒛)

Φ(−𝛽=)

6.

=7,

 (3-72) 

where 𝜔!"
(=), 𝑘 = 1,… , 𝑛+ is a weight that corresponds to the functions 𝑓&

(=)(𝒛|𝐹=), 𝑘 = 1,… , 𝑛+ 
associated with each design point. This weight is selected proportional to the probability associ-
ated with the reliability indices of each design point as shown in Eq. (3-28) [40]. 

After that, in order to generate a samples from the importance sampling density function, one 
of the importance sampling density functions conditioned on a specific failure event 𝐹= is chosen. 
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This is done following the procedure presented earlier for the importance sampling in Eq. (3-29) 
and Eq. (3-30). Once a density function associated with a particular design point is chosen, a 
sample distributed according to 𝑓&(𝒛|𝐹=) is generated. This procedure is quite particular and is 
described in the following. It starts with the generation of a sample of 𝒛(B) distributed according 
to 𝑓𝒛(𝒛). The next step is to subtract from the sample generated in the previous step the projection 
in the direction of the design point. It can be expressed mathematically as follows [38]: 

𝒛[
(B) = 𝒛(B) − (𝒛(B) ∙ 𝒖∗)𝒖∗ (3-73) 

where 𝒖∗ is the unit vector pointing in the direction of the design point and is calculated as: 

𝒖∗ =
𝒛∗

||𝒛∗||
 (3-74) 

After the operation of subtraction, a sample 𝒛∥
(B) has to be generated, which is parallel to the design 

point and is distributed according to a truncated normal distribution. This can be done following 
the next steps: 

(a) Generate a number 𝑢, which is uniformly distributed between 0 and 1. 
(b) Calculate a number 𝛼, which is distributed according to a truncated standard normal 

probability density function. This number 𝛼 is calculated by the following formula: 

𝛼 = Φ',(𝑢 + (1 − 𝑢)Φ(𝛽)) (3-75) 

where Φ',(∙) represents the inverse standard normal cumulative density function. 

(c) The sample 𝒛∥
(B) is equal to: 

𝒛∥
(B) = 𝛼𝒖∗ (3-76) 

Finally, the resulting samples can be found as the sum of the samples in orthogonal and parallel 
directions to the design point. 

𝒛%
(B) = 𝒛[

(B) + 𝒛∥
(B) (3-77) 

The described procedure is illustrated schematically in Figure 3-8 for the case 𝑛& = 2. 
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Figure 3-8: Schematic illustration of the described procedure for generating samples 𝑧%~𝑓&(𝑧	|	𝐹) 
[38] 

Taking into account Eq. (3-35), Eq. (3-36), and Eq. (3-72), the estimator of the failure probability 
is defined as [40]: 

𝑃[𝐹] ≈ 𝑃�[𝐹] =
1
𝑁
R𝐼%Z𝒛(B)[
G

B7,

𝑓𝒛Z𝒛(B)[
𝑓Z!",𝒛(𝒛(B))

, 𝒛(B)~𝑓Z!",𝒛(𝒛) (3-78) 

The main advantage of the Efficient Importance Sampling probability density function 𝑓Z!",𝒛(𝒛) 
over the Importance Sampling density function using design points 𝑓!",𝒛(𝒛) is that it is defined 
exclusively over the failure domain, as shown in Figure 3-9. It means that all generated samples 
fall within the failure domain such that 𝐼%(𝒛) = 1. Then [40]: 

𝑃�[𝐹] =
1
𝑁
R

𝑓𝒛Z𝒛(B)[

∑ 𝜔!"
(=) 𝐼%2(𝒛

(B))𝑓𝒛(𝒛(B))
Φ(−𝛽=)

6.
=7,

G

B7,

 (3-79) 

=
1
𝑁
R

𝑓𝒛Z𝒛(B)[

∑ Φ(−𝛽=)
∑ Φ(−𝛽=)
6.
=7,

𝐼%2(𝒛
(B))𝑓𝒛(𝒛(B))
Φ(−𝛽=)

6.
=7,

G

B7,

 (3-80) 

=
1
𝑁
R

Z∑ Φ(−𝛽=)
6.
=7, [

∑ 𝐼%2(𝒛
(B))6.

=7,

G

B7,

 (3-81) 

If it is defined: 
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𝑃�% = RΦ(−𝛽=)

6.

=7,

 (3-82) 

the estimator of the failure probability is reduced to: 

𝑃�[𝐹] =
1
𝑁
R

𝑃�%
∑ 𝐼%2(𝒛

(B))6.
=7,

G

B7,

 (3-83) 

The coefficient of variation is calculated as: 

𝛿Z!" =
1

𝑃�[𝐹]
±

1
𝑁(𝑁 − 1)

RÅ
𝑃�%

∑ 𝐼%2(𝒛
(B))6.

=7,

− 𝑃�[𝐹]Æ
8G

B7,

 (3-84) 

 

Figure 3-9: Realizations of the vector of uncertain variables associated with the Efficient Im-
portance Sampling method [40] 

In principle, EIS as presented in this Section 3.2.3 seems to be much more convenient that im-
portance sampling using design points as shown in Section 3.2.2. The later holds true whenever 
the performance functions involved are linear with respect to the standard normal random varia-
bles 𝒛. However, such assumption does not hold in this thesis, as it is considered that the loading 
𝒑 follows a non-Gaussian discrete white noise model, as discussed in detail in Eq. (3-2). 
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3.2.4 Importance Sampling for non-Gaussian loading 

Boundary of the failure domain is defined by means of the limit state functions. In the reliability 
analysis of linear systems under Gaussian loading, limit state functions are linear. On the contrary, 
this thesis concentrates on the non-Gaussian loading, which is described in sub-section 3.1.2 and 
specifically in Eq. (3-2), where loading 𝒑 is non-linear with respect to 𝒛. Therefore, taking into 
account Eq. (3-9), response of the system 𝒙 can be described as non-Gaussian. Thus, limit state 
functions are no longer linear as can be seen from Fig. 3-10. 

 

Figure 3-10: Graphical representation of the true limit states and approximate limit states 

Since, the limit state functions are no longer linear, Efficient Importance Sampling cannot be 
applied, but Importance Sampling using design points is still applicable. It is important to note 
that finding design points by solving an optimization problem from Eq. (3-19) in high-dimen-
sional spaces and non-linear performance functions is challenging. Therefore, applying Im-
portance Sampling for non-Gaussian loading, instead of finding design points, a so-called “refer-
ence points” are defined. Reference points do not represent precisely design points, but sampling 
density can be still centered around them as graphically shown in Fig. 3-11. 
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Figure 3-11: Graphical representation of the sampling density around reference point 

In order to define reference points, non-Gaussian loading applied to the system needs to be Gauss-
ianised. It means that the mean and standard deviation values of the original non-Gaussian loading 
and Gaussianised loading need to be as close to each other as possible. Such a matching between 
original non-Gaussian loading and Gaussianised loading can be seen in Fig. 3-12 and 3-13. These 
figures represent a visual examples of the probability density functions of non-Gaussian and 
Gaussian distributions, which might help to understand the approximation. Figure 3-12 depicts 
the PDF of a log-normal random variable and its Gaussianised counterpart, that is, a Gaussian 
variable with mean and variance identical to those of the log-normal random variable. Figure 3-
13 is similar, except that it refers to a random variable following a Student’s t distribution. 

 

Figure 3-12: Probability Density Function (PDF) of log-normal and Gaussian distributions 
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Figure 3-13: PDF of Student’s t and Gaussian distributions 

Performing an approximation, the non-Gaussian loading is now expressed in terms of a Gaussi-
anised equivalent load, such as: 

𝒑] = 	𝝁 + 𝝈@0.3_`.𝒛 (3-85) 

where 𝝁 and 𝝈@0.3_`. are the mean vector and standard deviation matrix (which is a diagonal 
matrix due to the assumption of non-Gaussian white noise) of the non-Gaussian loading. If the 
loading is Gaussianised, the displacement of the system is also described as Gaussianised and can 
be expressed as follows: 

𝒙.] = 𝑨.𝒑]  (3-86) 

= 𝑨.(𝝁 + 𝝈@0.3_`.𝒛) (3-87) 

= 𝒄. +𝑫.𝒛 (3-88) 

Graphical representation of Gaussianisation of the original non-Gaussian response is shown in 
Fig. 3-14. As observed from the Figure, the Gaussianised response is expected to approximate the 
non-Gaussian response. The quality of such approximation depends on how non-Gaussian the 
loading is. 
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Figure 3-14: Graphical representation of Gaussianisation of the original non-Gaussian response 

Taking Eq. (3-13) and Gaussianised displacement of the structure, performance functions for up-
per and lower excursions, respectively, at time instant 𝑡= for the 𝑖-th response of interest are: 

𝑔.,,] (𝑡= , 𝒑]) = 𝑏.,, − 𝑥.](𝑡= , 𝒑]), 𝑔.,8] (𝑡= , 𝒑]) = 𝑥.](𝑡= , 𝒑]) − 𝑏.,8 (3-89) 

Then, the reference points 𝒛=∗]  are defined with respect to Eq. (3-55) using the following formula: 

𝒛=∗] = −𝑔=](𝟎)
∇𝑔=](𝟎)

¤∇𝑔=](𝟎)¤
8 (3-90) 

Considering Gaussianisation of the loading, the Importance Sampling probability density func-
tions from Eq. (3-24) now has a distribution such that: 

𝑓!",𝒛
(=),](𝒛)~𝑁Z𝒛=∗] , 𝑰[, 𝑘 = 1,… , 𝑛+ (3-91) 

Respectively, weighted sum of the distributions from Eq. (3-91) is: 

𝑓!",𝒛] (𝒛) = 𝜔!"
(,),]𝑓!",𝒛

(,),](𝒛) + ⋯+𝜔!"
M6.N,]𝑓!",𝒛

M6.N,](𝒛) (3-92) 

where the weight 𝜔!"
(=),]  with respect to Eq. (3-28) is now defined as: 
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𝜔!"
(=),] =

Φ(−𝛽=])
∑ Φ(−𝛽=])
6.
=7,

, 𝑘 = 1,… , 𝑛+ (3-93) 

where 𝛽=]  is the Euclidean norm of the reference point. Presented in Eq. (3-93) reliability indices 
are now defined using the following expression with respect to Eq. (3-56): 

𝛽=] =
𝑔=](𝟎)

¤∇𝑔=](𝟎)¤
 (3-94) 

Referring to the Eq. (3-35), the failure probability can be estimated as: 

𝑃[𝐹]] ≈ 𝑃�[𝐹]] =
1
𝑁
R𝐼%Z𝒛(B)[
G

B7,

𝑤!"] Z𝒛(B)[, 𝒛(B)~𝑓!",𝒛] (𝒛), 𝑗 = 1,… ,𝑁 (3-95) 

where the quotient 𝑤!"] Z𝒛(B)[ is now expressed with respect to Eq. (3-36) as: 

𝑤!"] Z𝒛(B)[ =
𝑓𝒛Z𝒛(B)[
𝑓!",𝒛] (𝒛(B))

 (3-96) 

Taking into account Eq. (3-37) – Eq. (3-52), the weight 𝑤!"] Z𝒛(B)[ can be expressed as: 

𝑤!"] Z𝒛(B)[ = 𝑒𝑥𝑝

⎝

⎜
⎛
−
1
2
¤𝒛(B)¤

8
−�𝑠 + log	 ¡R𝜔=]

6.

=7,

𝑒'
,
8X𝒛

(5)'𝒛2
∗8X

%
'@¢£

⎠

⎟
⎞

 (3-97) 

Coefficient of variation from Eq. (3-54) is now defined as: 

𝛿!"] ≈
1

𝑃�[𝐹]]
±

1
𝑁(𝑁 − 1)

RZ𝐼%(𝒛(B))𝑤!"] (𝒛(B)) − 𝑃�[𝐹][
8

G

B7,

 (3-98) 
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4 Practical Examples 

Practical implementation of the theoretical background and methodologies discussed in the pre-
vious chapter is represented in this chapter by means of practical examples. Presented examples 
include a case with a single degree of freedom system (SDOF), a case with a two degrees of 
freedom system (TDOF), and a case with a multiple degrees of freedom system (MDOF). These 
examples are used in order to show the efficiency and accuracy of the developed method. All the 
reliability problems in this chapter are solved by means of implementation a newly developed 
Importance Sampling Using Reference Points (ISURP). 

4.1 Single degree of freedom (SDOF) system 

For the first example, a one-story shear beam model is taken [29], which is subjected to a non-
Gaussian white noise following a Student’s t distributed force (Figure 4-1). The considered system 
has a mass 𝑚 = 1𝑘𝑔, stiffness 𝑘 = 4𝜋8𝑁/𝑚, and a classical damping ratio 𝑑 = 2%. Displace-
ment of the beam related to the ground is taken as a response of interest. The force applied to the 
system is modeled as Student’s t distribution with the spectral intensity 𝑆 = 1𝑚8/𝑠(, duration 
𝑇 = 15𝑠, and a discrete time step ∆𝑡 = 0.01𝑠, that corresponds to the spectral density 2𝜋𝑆/∆𝑡. 
Applied force is characterized by a mean value 𝜇 = 70 and a standard deviation 𝜎@03.3_`. =

^2𝜋𝑆/∆𝑡. Estimation of the first excursion probability of the system is considered to be the main 
objective. 

 

Figure 4-1: Graphical representation of the system used in example 1 [29] 
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4.1.1 Non-Gaussian loading 

In this work, 𝑝(𝑡) is modeled by Student’s t distribution, and therefore 𝒑 is non-Gaussian. The 
Student’s t distribution is characterized by three parameters [41]: 
• mean 𝜇 
• scale 𝜎@ 
• degrees of freedom 𝜈 

Therefore, loading 𝒑 modeled as a Student’s t distribution, can be expressed as follows: 

𝑝(𝑡)~𝑡a(𝜇, 𝜎@) (4-1) 

Scale parameter 𝜎@ relates to the standard deviation as presented below: 

𝜎@0.3_`. = 𝜎@­
𝜈

𝜈 − 2
 (4-2) 

The main parameter is a number of degrees of freedom 𝜈. This parameter defines the shape of the 
Student’s t distribution. In general, t-distribution has symmetric bell-shaped form, but different 
from the standard normal distribution curve, the t-distribution curve is flatter, has a lower height 
and has a wider spread [42]. The influence of each parameter on the distribution is presented in 
Figures 4-2, 4-3, and 4-4 [41]. 

 

Figure 4-2: Graphical representation of the influence of mean parameter 𝝁 on the Student’s t distri-
bution 
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Figure 4-3: Graphical representation of the influence of scale parameter 𝝈 on the Student’s t distri-
bution 

 

Figure 4-4: Graphical representation of the influence of the degrees of freedom parameter 𝝂 on the 
Student’s t distribution 

It is important to note that the larger the number of degrees of freedom 𝜈, the more similar Stu-
dent’s t distribution is to the normal distribution, so they tend to be the same provided that 𝜈 →
∞. 
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4.1.2 Obtained results’ discussion 

First of all, input parameters for the characterization of the Student’s distribution have to be dis-
cussed. The value of the scale parameter is calculated based on Eq. (4-2): 

𝜎@ =
𝜎@0.3_`.

­ 𝜈
𝜈 − 2

 
(4-3) 

Then, the number of degrees of freedom 𝜈 has to be defined. As discussed previously, this param-
eter defines how similar Student’s t distribution to a normal distribution. The following figures 
below are presented to show graphically how parameter 𝜈 influence a probability density function 
of the Student’s distribution. 

 

Figure 4-5: Comparison of probability density function of the normal distribution and Student’s t 
distribution for different values of 𝜈 
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Figure 4-6: Zoomed comparison of probability density function of the normal distribution and Stu-
dent’s t distribution for different values of 𝜈 

The next step is to analyze Gaussianisation accuracy for different parameters 𝜈 of Student’s t 
distribution. In order to do so, one sample of uniformly distributed random numbers 𝒖~𝑈[0; 1] 
is generated. Using this generated sample and different values of 𝜈, both responses of the system 
are now calculated – exact non-Gaussian response and Gaussianised response. Exact non-Gauss-
ian response of the system can be calculated by means of Eq. (3-9) and a Gaussianised response 
of the system is calculated by means of Eq. (3-88). Since one generated sample 𝒖 is used for the 
calculation of both responses, equation for the calculation of the exact non-Gaussian loading 
would obtain the following appearance: 

𝒙. = 𝑨.𝒑(𝒖) (4-4) 

where loading 𝒑 is calculated by means of the inverse-uniform transformation such as: 

𝒑 = 𝜇 + 𝜎@ ∙ 𝐹+',(𝒖, 𝜈) (4-5) 

where 𝐹+',(𝒖, 𝜈) represents the inverse cumulative distribution function of the Student’s t distri-

bution associated with 𝒖 and with respect to degrees of freedom 𝜈. 
Respectively, the Gaussianised response is calculated with respect to Eq. (3-88), where 𝒛 is 

calculated as: 

𝒛 = 𝐹𝒛',(𝒖) (4-6) 
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where 𝐹𝒛', is a inverse cumulative distribution function associated with 𝒛. 
On the following Figures, non-Gaussian response of the system as well as Gaussianised re-

sponse of the system are compared to each other with respect to different parameters of 𝜈 in order 
to evaluate the accuracy of the Gaussian approximation. 

 

Figure 4-7: Comparison of the system response under Gaussian and non-Gaussian loadings for 𝜈 =
𝟑 

 

Figure 4-8: Comparison of the system response under Gaussian and non-Gaussian loadings for 𝜈 =
𝟓 

0 5 10 15
Time, s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Re

sp
on

se
 o

f t
he

 s
ys

te
m

Gaussian
non-Gaussian

0 5 10 15
Time, s

0

0.5

1

1.5

2

2.5

3

3.5

Re
sp

on
se

 o
f t

he
 s

ys
te

m

Gaussian
non-Gaussian



  35 

 

Figure 4-9: Comparison of the system response under Gaussian and non-Gaussian loadings for 𝜈 =
𝟏𝟎 

 

Figure 4-10: Comparison of the system response under Gaussian and non-Gaussian loadings for 
𝜈 = 𝟑𝟎 
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Figure 4-11: Comparison of the system response under Gaussian and non-Gaussian loadings for 
𝜈 = 𝟏𝟎𝟎 

As can be seen from the Figures above, the larger value of parameter 𝜈, the more accurate Gauss-
ian approximation becomes. This can be explained by the fact that at low 𝜈 values Student’s t 
distribution has heavier tails compared to the Gaussian distribution. Respectively, as the degrees 
of freedom parameter increases, the Student’s t distribution’s tails become less heavy, and the 
distribution increasingly resembles a Gaussian distribution. As might be deduced from the figures 
above, starting from 𝜈 = 30, Student’s t distribution and a normal distribution tend to converge. 
Since the main idea is to approximate non-Gaussian loading accurately enough, in the presented 
examples the number of degrees of freedom is set to 30. 

The thresholds for up-crossing and down-crossing are set to be 𝑏, = 4.3𝑚 and 𝑏8 = −0.8𝑚, 
respectively. 

Applying the procedure of Importance Sampling Using Reference Points as discussed in sub-
section 3.2.4, weights for every time instance are obtained as presented in Figure 4-12. Weights 
with such small values indicate that at the majority of time steps the system is far away from the 
specified failure thresholds, which also means that they contribute minimally to the failure. 
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Figure 4-12: Weights in logarithmic representation 

Then, the samples are generated, and the failure event of the system is investigated with respect 
to the specified thresholds 𝑏, and 𝑏8. After that, weights for every one of the 𝑁 = 10b samples 
are calculated with the implementation of the “log-sum-exp” trick discussed in sub-section 3.2.4 
and specifically Eq. (3-97). For the specified input data and set parameters, the failure probability 
of the system is estimated as 5.49 × 10'( with the coefficient of variation being equal to 1.95%. 
To validate the accuracy of obtained results using ISURP, Monte Carlo Simulation is also per-
formed with 10c samples being generated. Failure probability obtained from Monte Carlo Simu-
lation is 5.20 × 10'(. Comparison and the evolution of the obtained results are shown in Figure 
4-13. 

 

Figure 4-13: Evolution of the failure probability using ISURP and MCS for SDOF system 
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For illustration purposes, thresholds are modified, such as 𝑏, = 0.022𝑚 and 𝑏8 = 0.006𝑚 to 
enable the sample generation in two-dimensional space. This allows to visually represent limit 
state functions, reference points, and generated samples at time step 𝑡 = 2∆𝑡 = 0.02𝑠. Samples 
are generated both in Gaussian and Physical spaces, which is shown in the figures below.  

 

(a) Gaussian space (b) Physical space 

 

(c) Zoomed Gaussian space 

Figure 4-14: Samples generated in example 1 

Presented above Figure 4-14 demonstrates obtained limit state functions for the 2D case, defined 
reference points and generated samples. Since the non-Gaussianity of the Student’s t loading is 
weak due to the selected parameter 𝜈 = 30, reference points just slightly deviate from the limit 
state, as shown in Figure 4-14 (c). 

4.1.3 Influence of non-Gaussianity 

As discussed previously, the main parameter of the Student’s t distribution is a number of degrees 
of freedom 𝜈, that defines the non-Gaussianity of the distribution. In order to investigate the 
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influence of non-Gaussianity on the estimation of the failure probability of the system, Importance 
Sampling Using Reference Points is performed using 10b samples for different values of 𝜈 pa-
rameter mentioned in sub-section 4.1.2. To be more specific, simulations are performed for the 
same thresholds 𝑏, = 4.3𝑚 and 𝑏8 = −0.8𝑚, and for different values of 𝜈, such as 3, 5, 10, 30, 
and 100. For the validation of the obtained results, Monte Carlo Simulation is also performed for 
the specified values of 𝜈 using 10c samples. Obtained results and their comparison are shown in 
Table 4-1. Specifically, Probability of Failure (PF) and a Coefficient of Variation (COV) obtained 
by ISURP method as well as PF obtained by MCS are presented in the table. 

Table 4-1: Results of SDOF example obtained by ISURP and MCS 

Result 𝝂 = 𝟑 𝝂 = 𝟓 𝝂 = 𝟏𝟎 𝝂 = 𝟑𝟎 𝝂 = 𝟏𝟎𝟎 
PF - ISURP 1.23 × 10'( 6.13 × 10') 5.57 × 10') 5.49 × 10') 5.47 × 10') 
PF - MCS 1.28 × 10'( 5.83 × 10') 5.32 × 10') 5.20 × 10') 5.24 × 10') 

COV 7.95% 3.25% 2.03% 1.95% 1.95% 

Only for 𝜈 = 3, the simulation using ISURP is performed with 10c samples since 10b was not 
enough to see the stabilization of the failure probability. This is due to strongly non-Gaussian 
behavior explained by small number of degrees of freedom (𝜈 = 3) of the Student’s t distribution. 
In general, as can be seen from the obtained results, the lower the value of ν parameter - the higher 
the value of failure probability and the worse ISURP performs, meaning that there is more varia-
bility in the estimates, which is the consequence of the Gaussianisation. Graphical comparison of 
the obtained evolution of failure probabilities is presented in Fig. 4-15 (a-e). Additionally, Fig. 4-
16 (a-e) presents evolution of COV using ISURP for every specified value of 𝜈 parameter. Figure 
4-16 (a) confirms that the ISURP performs not so good for small values of 𝜈 parameter and spe-
cifically 𝜈 = 3. Given the sudden jumps in COV, it means that the importance sampling density 
is not the optimal one. In comparison with the other COV figures, for higher 𝜈 parameters the 
evolution of coefficient of variation is quite smooth, showing that for higher 𝜈 parameters ISURP 
performs better due to reasonable Gaussianisation. 
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(c) 𝜈 = 10 (d) 𝜈 = 30 

 

(e) 𝜈 = 100 

Figure 4-15: Evolution of the failure probability for different values of 𝜈 parameter for SDOF sys-
tem 
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(c) 𝜈 = 10 (d) 𝜈 = 30 

 

(e) 𝜈 = 100 

Figure 4-16: Evolution of the coefficient of variation for different values of 𝜈 parameter for SDOF 
system 

4.2 Two degree of freedom (TDOF) system 

The second example is focused on the two degree of freedom system and specifically the two-
story shear beam structure shown in Fig. 4-17 [29]. The masses, stiffness, and the classical damp-
ing ratios of two floors are assumed to be equal and have the values 𝑚, = 𝑚8 = 30 × 10(𝑘𝑔,  
𝑘, = 𝑘8 = 18 × 10d𝑁/𝑚 and 𝑑, = 𝑑8 = 4%. Relative displacement of the first and second 
floors with respect to the ground, as well as the interstory displacement, are taken as responses of 
interest. The system is subjected to a non-Gaussian white noise following a Student’s t distributed 
force with the spectral intensity 𝑆 = 10'b	𝑚8/𝑠(, duration 𝑇 = 15𝑠, and a discrete time step 
∆𝑡 = 0.01𝑠 that corresponds to the spectral density 2𝜋𝑆/∆𝑡. Applied force is characterized by a 

mean value 𝜇 = 0.7 and a standard deviation 𝜎@03.3_`. = ^2𝜋𝑆/∆𝑡. Estimation of the first excur-
sion probability of the system is considered to be the main objective. 
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Figure 4-17: Graphical representation of the system used in example 2 [29] 

4.2.1 Obtained results’ discussion 

The same as for example 1, the Student’s t distribution characterizing parameters and specifically 
degrees of freedom parameter 𝜈 have to be specified. In order to investigate the influence of 𝜈 on 
the accuracy of the Gaussianisation, a comparison between the Gaussian and non-Gaussian re-
sponses of the system is shown below. In this case, the first response of interest is considered. 
Following the procedure described in example 1, a sample of uniformly distributed random num-
bers 𝒖~𝑈[0; 1] is generated. Based on this generated sample, a non-Gaussian response as well 
Gaussianised response of the system are calculated. 
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Figure 4-18: Comparison of the first response of interest under Gaussian and non-Gaussian load-
ings for 𝜈 = 𝟑 

 

Figure 4-19: Comparison of the first response of interest under Gaussian and non-Gaussian load-
ings for 𝜈 = 𝟓 
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Figure 4-20: Comparison of the first response of interest under Gaussian and non-Gaussian load-
ings for 𝜈 = 𝟏𝟎 

 

Figure 4-21: Comparison of the first response of interest under Gaussian and non-Gaussian load-
ings for 𝜈 = 𝟑𝟎 
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Figure 4-22: Comparison of the first response of interest under Gaussian and non-Gaussian load-
ings for 𝜈 = 𝟏𝟎𝟎 

As can be seen from the Figures above, the larger value of parameter 𝜈, the more accurate Gauss-
ian approximation becomes. Therefore, 𝜈 is set to 30 as the optimum value to obtain accurate 
enough Gaussian approximation of the original non-Gaussian loading, and therefore, this value is 
used in simulations for this example. 

The thresholds for up-crossing and down-crossing are set to be 𝑏, = 0.0022𝑚 and 𝑏8 =
−0.009𝑚, respectively. 

Applying the procedure of Importance Sampling Using Reference Points as discussed in sub-
section 3.2.4, weights for every time instance are obtained as presented in Figure 4-23. As can be 
seen, values of the calculated weights are quite small. It means that for the most number of time 
steps the displacement of the system is far away from the specified failure thresholds, and there-
fore, their contribution to the failure is quite small. 
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Figure 4-23: Weights in logarithmic representation 

Based on all the obtained results, the failure probability of the system is estimated by means of 
Importance Sampling Using Reference Points with 10b samples and is equal to 3.95 × 10'( with 
coefficient of variation being equal to 2.07%. In order to validate the results, the failure probabil-
ity of the system is also estimated by means of Monte Carlo Simulation using 10d samples, which 
gives a result of 4.32 × 10'(. The evolution of the failure probability is presented in the figure 
below. 

 

Figure 4-24: Evolution of the failure probability using ISURP and MCS for TDOF system 
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4.2.2 Influence of non-Gaussianity 

This sub-section investigates the influence of non-Gaussianity on the estimation of the failure 
probability of the two degree of freedom system. To be more specific, simulation using ISURP 
with number of samples 10b is performed for the same thresholds 𝑏, = 0.0022𝑚 and 𝑏8 =
−0.009𝑚, and for different values of 𝜈, such as 3, 5, 10, 30, and 100. For the validation of the 
obtained results, a Monte Carlo Simulation using 10d samples is performed for the same thresh-
olds and for all the specified 𝜈 parameters. Obtained results and their comparison are presented 
in Table 4-2. 

Table 4-2: Results of TDOF example obtained by ISURP and MCS 

Result 𝝂 = 𝟑 𝝂 = 𝟓 𝝂 = 𝟏𝟎 𝝂 = 𝟑𝟎 𝝂 = 𝟏𝟎𝟎 
PF - ISURP 4.50 × 10'( 7.53 × 10') 4.30 × 10') 3.95 × 10') 3.90 × 10') 
PF - MCS 4.87 × 10'( 7.84 × 10') 4.72 × 10') 4.32 × 10') 4.27 × 10') 

COV 8.18% 4.77% 2.47% 2.07% 2.06% 

As was explained in example 1, for 𝜈 = 3 and 𝜈 = 5, the simulation using ISURP is performed 
with 10c samples. Obtained results show that the lower the value of ν parameter - the higher the 
value of failure probability and the worse ISURP performs, which is also seen and explained in 
example 1. Graphical comparison of the obtained evolution of failure probabilities is presented in 
Fig. 4-25 (a-e). Additionally, Fig. 4-26 (a-e) presents evolution of COV using ISURP for every 
specified value of 𝜈 parameter. As can be seen in Figure 4-26 (a) and 4-26 (b), ISURP performs 
not so good for small values of 𝜈 parameter due to poor Gaussianisation, which is explained in 
example 1. 
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(c) 𝜈 = 10 (d) 𝜈 = 30 

 

(e) 𝜈 = 100 

Figure 4-25: Evolution of the failure probability for different values of 𝜈 parameter for TDOF sys-
tem 
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(c) 𝜈 = 10 (d) 𝜈 = 30 

 

(e) 𝜈 = 100 

Figure 4-26: Evolution of the coefficient of variation for different values of 𝜈 parameter for TDOF 
system 

4.3 Multi degree of freedom (MDOF) system 

This example focuses on the multi degree of freedom system, which is presented in [43] and 
designed as a model of a milling machine tool. Therefore, in comparison to the first two examples, 
this example is more related to the field of manufacturing and practical applications. The pre-
sented model in Figure 4-27 is characterized by three degrees of freedom. The masses of each 
floor are considered to be as follows: 𝑚, = 11.857𝑘𝑔,𝑚8 = 6.280𝑘𝑔,𝑚( = 3.413𝑘𝑔, where 
𝑚, represents the mass of a bottom support together with the supporting table mass, 𝑚8 is taken 
as a mass of the vertical support, and 𝑚( is a mass of the spindle together with the upper arm 
parts mass. Stiffness values are taken as follows: 𝑘, = 8.81 × 10e	𝑁/𝑚, 𝑘8 = 5.22 × 10f	𝑁/
𝑚, 𝑘( = 5.17 × 10g	𝑁/𝑚. The system is characterized by the Rayleigh damping theory with the 
respective Rayleigh damping coefficients: 𝛼F = 121.7 and 𝛽F = 1 × 10'b. Relative displace-
ment of the first and the third floors with respect to the ground, as well as the interstory displace-
ments, are taken as responses of interest. The system is subjected to a non-Gaussian white noise 
following a Student’s t distributed force, which represents cutting force fluctuation during the 
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machining of ceramic matrix composites. Cutting force stochastic distribution comes from the 
stochasticity of fiber distribution in the material [44]. Applied to the system, force is modeled 
with duration 𝑇 = 0.15𝑠 and a discrete time step ∆𝑡 = 0.0001𝑠, since this time window is enough 
to capture the fluctuations of the cutting force in real cutting conditions [45, 46]. Applied in this 
example force is characterized by the mean value 𝜇 = 320 and a standard deviation 𝜎@03.3_`. =
0.003𝜇 [47] and a spectral intensity 𝑆 = 𝜎@03.3_`.8 ∙ 𝑑𝑡/(2𝜋). 

 

Figure 4-27: Graphical representation of the system used in example 3 [43] 

4.3.1 Obtained results’ discussion 

As already discussed and shown in example 1 and example 2, number of degrees of freedom for 
the characterization of Student’s distribution is set 30, which enables quite accurate Gaussianisa-
tion of the original loading. The thresholds for up-crossing and down-crossing are set to be 𝑏, =
6.792 × 10'd𝑚 and 𝑏8 = −1 × 10',1𝑚, respectively. 

Applying the procedure of Importance Sampling Using Reference Points as discussed in sub-
section 3.2.4, weights for every time instance are obtained as presented in Fig. 4-28. As can be 
seen, at the beginning of the 4th response of interest, there is a rapid increase of the weights. This 
can be explained by the drop of the reliability indices at the same time instants, where systems 
exhibits large displacement amplitude, which is close to the specified thresholds. 
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Figure 4-28: Weights in logarithmic representation 

Following, the failure probability of the system is estimated by means of ISURP using 10b sam-
ples and is equal to 1.42 × 10'( with the coefficient if variation being equal to 1.87% .Obtained 
results are validated using Monte Carlo Simulation using 10d samples, which gives a result of 
1.48 × 10'(. The evolution of the failure probability is presented in the figures below. 

 

Figure 4-29: Evolution of the failure probability using ISURP and MCS for MDOF system 
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is performed for the same thresholds 𝑏, = 6.792 × 10'd𝑚 and 𝑏8 = −1 × 10',1𝑚, and for dif-
ferent values of 𝜈, such as 3, 5, 10, 30, and 100. For the validation of the obtained results, a Monte 
Carlo Simulation using 10d samples is performed for the same thresholds and for all the specified 
𝜈 parameters. Obtained results and their comparison are presented in Table 4-3. 

0 2000 4000 6000 8000 10000 12000
Time Instance

10-250

10-200

10-150

10-100

10-50

100

W
ei

gh
t w

100 101 102 103 104 105 106

Number of Samples

10-4

10-3

10-2

10-1

P F

ISURP
MCS



  52 

Table 4-3: Results of MDOF example obtained by ISURP and MCS 

Result 𝝂 = 𝟑 𝝂 = 𝟓 𝝂 = 𝟏𝟎 𝝂 = 𝟑𝟎 𝝂 = 𝟏𝟎𝟎 
PF - ISURP 3.89 × 10') 2.44 × 10') 1.63 × 10') 1.42 × 10') 1.39 × 10') 
PF - MCS 4.38 × 10') 2.52 × 10') 1.69 × 10') 1.48 × 10') 1.43 × 10') 

COV 4.18% 2.69% 2.44% 1.87% 1.85% 

As already discussed in example 1 and example 2, for 𝜈 = 3 and 𝜈 = 5, the simulation using 
ISURP is performed with 10c samples. As can be seen from the obtained results, the lower the 
value of ν parameter - the higher the value of failure probability and the worse ISURP performs, 
which is also seen and explained in example 1. Graphical comparison of the obtained evolution 
of failure probabilities is presented in Fig. 4-30 (a-e). Additionally, Fig. 4-31 (a-e) presents evo-
lution of COV using ISURP for every specified value of 𝜈 parameter. As can be seen in Figure 4-
31 (a) and 4-31 (b), there are sudden jumps in coefficient of variation. Reasons of such an evolu-
tion of COV is presented in example 1. 
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(e) 𝜈 = 100 

Figure 4-30: Evolution of the failure probability for different values of 𝜈 parameter for MDOF sys-
tem 
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(e) 𝜈 = 100 

Figure 4-31: Evolution of the coefficient of variation for different values of 𝜈 parameter for MDOF 
system 
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5 Conclusions 

A new method for estimating failure probability has been developed, which is suitable for struc-
tural systems subjected to stochastic dynamic loading. The basic procedure of Importance Sam-
pling is modified and tailored to approximate non-Gaussian loadings as Gaussian.  

This method begins by approximating the structure’s response as Gaussian and then compar-
ing it to the actual non-Gaussian response of the system. Reliability indices for every response of 
interest are calculated, and reference points (approximated design points) are defined. Based on 
the calculated reliability indices, weights for every time step are calculated as well. Failure sam-
ples are generated firstly in Gaussian space, then transferred to physical space, and used for the 
calculation of the response of a system. Failure probability of a system is estimated with respect 
to the specified thresholds for up-crossing and down-crossing. The relationship between charac-
terization parameters, approximation accuracy, and failure probability is illustrated graphically. 

This study demonstrates the application of the developed method in three examples involving 
structures subjected to Student’s t-distributed loads. The multi degree of freedom example repre-
sents a practical application in machining and is highly related to manufacturing, where the Stu-
dent’s t distribution characterizes the force applied to the system. In this case, Student’s t distri-
bution models the cutting force fluctuation that occur during the machining of ceramic matrix 
composites, arising when the cutting tool interacts with the fiber inclusions. These stochastic cut-
ting force variations are a result of the stochastic distribution of fibers within the material. The 
proposed method achieves higher efficiency and lower computational effort compared to tradi-
tional, general approaches such as Monte Carlo Simulation. It has been investigated that the pro-
posed Importance Sampling Using Reference Points method is suitable and works well for the 
cases when the Gaussianisation of the original non-Gaussian loading is reasonable, e.g. non-
Gaussian loading is not too far away from a Gaussian loading. For the presented examples with a 
Student’s t loading, ISURP does not perform well for small values of 𝜈 parameter such as 𝜈 = 3 
and 𝜈 = 5. 

However, the proposed Importance Sampling Using Reference Points method has not been 
compared to the Subset Simulation. Consequently, conclusions regarding its efficiency and accu-
racy relative to SS cannot be drawn. Additionally, the method presented in this thesis may not be 
unique, and alternative strategies for generating Gaussian approximations could be explored. It is 
important to note that this study focuses solely on non-Gaussian white noise. Extending the ap-
proach to non-Gaussian colored noise with modulation remains a significant challenge. Future 
research could investigate the applicability of ISURP to larger and more complex structures. 
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