
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Technology

Design for crashworthiness
under epistemic uncertainty

Conradus van Mierlo

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Technology (PhD)

March 2023

Supervisors:
Prof. dr. ir. D. Moens
Prof. dr. M. Faes

(TU Dortmund)





Design for crashworthiness under epistemic
uncertainty

Conradus VAN MIERLO

Examination committee:
Prof. dr. ir. P. Leroux , chair
Prof. dr. ir. D. Moens, supervisor
Prof. dr. M. Faes, supervisor

(TU Dortmund)
Prof. dr. ir. D. Vandepitte
Prof. dr. ir. J. Ivens
Dr. P. Lava (MatchID)
Prof. dr.-ing. habil. F. Duddeck

(Technische Universität München)
Prof. dr. A. Sofi

(Mediterranean University of Reggio Calabria)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Technology (PhD)

March 2023



© 2023 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Conradus van Mierlo, Jan Pieter de Nayerlaan 5, B-2860 Sint-Katelijne-Waver,
B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



Preface

Since I can remember I’ve had a passion for technology. This passion probably
started while growing up surrounded by all kinds of technical devices and
machines. My grandparents had a barn filled with old mopeds and curiosities,
various old cars, and an uncle with a milling machine. So, it came as no surprise
that I wanted to learn how all of this worked. At Sint-Jansberg I started to
learn the basic techniques of manufacturing and production. However, it wasn’t
until I started at Thomas More that I really got excited to learn more about
the latest techniques in design and manufacturing, and I really got a taste
of creating products that operate at the cutting edge of technology. During
my master at KU Leuven, I was able to learn more about the concepts of
creating something that can reliably perform at a high level even under various
operating conditions. This concept interested me so much that it has become
the cornerstone of this thesis and I hope you enjoy reading it.

I’m quite proud of myself for having completed this research, as I never imagined
myself doing this during this whole journey. Of course, I could not have done it
alone, and I would like to use this preface to express my gratitude to several
key people that have been there along the road showing me the way, or who
were just there to listen.

First, I would like to express my gratitude towards David Moens. David without
you I would not have been able to conquer this mountain. Thank you for being
a source of inspiration, subtly saying the right things at the right moment.
Especially at those difficult moments where the road seemed to go down a
canyon. Above all, thank you for the opportunity to start this research and the
many valuable lessons learned along the way. I enjoyed the journey together,
thank you for this amazing experience!

Secondly, I would like to thank Matthias Faes, Matthias you are an endless well
of interesting ideas. I really enjoyed the discussions we had and sometimes a bit
less your always critical comments. In addition to being an academic inspiration,
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we have travelled together quite a bit and made many memories along the way,
thank you for these memories and for being an inspiration! Thirdly, I would
like to thank professor Fabian Duddeck for the nice collaboration, valuable
discussions and sharing of your extensive expertise in crash analysis, and finally
the fruitful exchanges between Munich and Leuven. In addition, I would also
like to thank the other members of the examination committee: professor Alba
Sofi, professor Dirk Vandepitte, professor Jan Ivens, dr. Pascal Lava. Thank
you for the thorough evaluation of my manuscript, the suggested improvements
have increased the clarity of this thesis significantly. In addition, I would like
to express my gratitude towards the doctoral committee for their constructive
feedback, discussions and concerns raised during the research period to ensure
that the work could be accumulated in this thesis. Finally, I would like to
express my gratitude to professor Paul Leroux for chairing the sessions.

Of course, I couldn’t have had such a nice time without my colleagues at Campus
the Nayer. I would like to thank Lars, Augustin, Maurice, Céderic, Kurt, Robin,
Konstantinos, Rafael, Bouwe, Miriam, and Damien, for the many fun, bizarre,
and just non-sense things that we have done during these years. Even though
it wasn’t always easy to keep in touch with each other, we found a way to enjoy
a nice cold beer at the end of a week working from home.

Ook wil ik mijn dankbaarheid uiten voor mijn familie en vrienden die er altijd
zijn geweest wanneer ik ze nodig had. De onvoorwaardelijke steun van mijn
ouders om mijn eigen pad te kiezen is een belangrijk element geweest om tot
dit resultaat te komen. Maar ook mijn vrienden die er steeds waren om voor
momenten van afleiding te zorgen. Ik hoop ook dat ik de kans krijg om deze
mijlpaal te vieren met degen die hier niet meer zijn. Bedankt voor de kleine
en grote dingen bewust of onbewust, zonder jullie was het maar een saaie reis
geweest. Uiteraard mag ik de belangrijkste persoon hierin niet vergeten Eveline,
bedankt dat je er altijd bent voor me en dat we deze reis samen hebben gemaakt.

“Life’s just one great journey. It’s a road we travel as we go from point A to
point B. What makes that journey worthwhile is the people we choose to
travel with, the people we hold close as we take steps into the darkness and
blindly make our way through life. They’re the people who matter.”

—dr. Seuss



Abstract

Driven by environmental challenges, current engineering systems are increasingly
designed to be more efficient. This is enabled using new materials,
material combinations, increased integration of functionality, and advanced
manufacturing processes. Moreover, to remain competitive in the global economy
a short time-to-market and high-quality standards are required. In the case of
the automotive industry, this challenge is further increased by the introduction
of new fuel sources, e.g., electric, hydrogen, hybrid solutions. Hence, the
development and design of these systems is increasingly more challenging.
A typical solution is to breakdown the complexity of the complete system
in smaller sub-problems. This approach is commonly described as Systems
Engineering, which allows multiple departments to develop a certain sub-system.
However, following the Systems Engineering approach, the overview of the
complete system performance is lost, as parts might not have been developed
yet. Therefore, system requirements are difficult to assess during development.

An example of such system is a passenger vehicle where safety requirements are
defined for the complete system, i.e., vehicle, and changes made to individual
components within the system could potentially impact this crash performance.
Furthermore, if the crashworthiness is deemed insufficient at the final stage of
development, the complete system should be redesigned, which is a very costly
operation. In addition to this challenge, these crashworthiness requirements
have been changing over the last decades to reflect the increase in vulnerable
road users, e.g., cyclists, pedestrians, motorcyclists. Ultimately, the goal of
these safety requirements is to limit the potential injuries to all involved parties,
not limited to the occupants of the vehicle. Decisions that are made in an
early development phase have the largest effect on the systems performance.
However, due to uncertainties at various system levels and loss of the overall
system during development these opportunities remain undiscovered.

To overcome these limitations in systems engineering, the work presented in this
thesis introduces a set of new computational concepts to integrate uncertainty
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effectively and efficiently throughout the system levels. The uncertainty at these
stages is mainly caused by a lack-of-knowledge about the actual component
or system layout. This information will only be available at a later or final
development stage. In literature, this type of uncertainty is described as
epistemic uncertainty, which means that the amount of non-determinism could
potentially be reduced. The only way to reduce the non-determinism is to
perform experiments or measurements that increase the available information.
However, this might be impossible, as the non-deterministic parameter is
not directly measurable, or the associated measurement error is too large.
Furthermore, experimental data might be very sensitive to environmental
changes. In the case of automotive development, impact or crash tests are quite
expensive, and the measurements made in these circumstances contain usually
high measurement errors. Therefore, during development a simulation-based
approach is preferred, instead of experimental developments. A second reason,
for the simulation-based approach, is that each test would require the vehicle
to already be manufactured in a final stage, which is not possible at an early
development stage and would be very expensive.

The developments presented in this work are based on the notion of creating
a robustness towards these uncertainties. In other words, although there are
several uncertain parameters, or uncertain interactions with other components,
the component under development should be insensitive to this. This is enabled
by the introduction of a robustness-based design optimisation strategy. To
enable this robustness-based approach, this work introduces the following
advancements: (1) an interval field framework that allows to represent non-
deterministic material data, which can be obtained from a set of measurements,
(2) a modelling approach that allows to model uncertainty about adjacent
components, and finally, (3) a robustness-based optimisation strategy that
allows to efficiently evaluate the former types of uncertainty. Each of these
developments are illustrated on several cases related to automotive industry with
a specific focus on crashworthiness. Moreover, it is shown that the robustness-
based optimisation strategy can identify an appropriate optimum under lack-
of-knowledge uncertainty, using only a very limited set of evaluations of the
underlying non-linear finite element model. The latter is even challenging for
the most advanced optimisation algorithms as the finite element analysis in
these applications often proves to behave as a stochastic black-box function. In
other words, even though the physics are well-understood the numerical solution
scheme experiences numerical inadequacies during the solution of the problem.
As such, the developed methods presented in this work present novel solutions
to assist in the design and development of complex engineering structures.



Beknopte samenvatting

Om de huidige ecologische uitdagingen aan te kunnen worden technische
systemen ontworpen om steeds efficiënter te zijn. Deze ontwikkelingen worden
mogelijk gemaakt door het gebruik van nieuwe materialen, materiaal combinaties,
geïntegreerde functionaliteit, en geavanceerde productieprocessen. Bovendien
om concurrerend te blijven in de globale economie is een korte tijd-tot-de-
markt en hoge kwaliteitseisen nodig. Deze uitdaging wordt extra lastig voor
de automobielindustrie door de introductie van nieuwe brandstoffen zoals:
elektrisch, waterstof, en hybride oplossingen. Hierdoor wordt de ontwikkeling en
het ontwerp van voertuigen een alsmaar complexere taak. Een typische oplossing
is om het complexe systeem op te splitsen in kleinere sub-problemen. Deze
methode wordt ook wel Systems Engineering genoemd. Het grote voordeel is
dat deze methode toelaat dat verschillende afdelingen onafhankelijk onderdelen
kunnen ontwikkelen. Het grote nadeel is echter dat het algemene overzicht
van het systeem verloren gaat. Hierbij kunnen verschillende onderdelen nog
niet ontwikkeld zijn. Hierdoor is het lastig om systeem vereisten te controleren
tijdens ontwikkeling. Het voorbeeld dat in deze thesis gebruikt wordt van
een complex systeem is een passagiers voertuig waarbij de veiligheidseisen
gedefinieerd worden op het complete voertuig. De crashbestendigheid is een
van deze veiligheidseisen welke beïnvloed wordt door kleine veranderingen aan
individuele componenten. Daarom als de crashbestendigheid onvoldoende wordt
geacht aan het einde van de ontwikkeling zal het hele systeem een herontwerp
moeten ondergaan, een erg kostelijke operatie. Deze veiligheidseisen worden ook
met enkele regelmaat herzien om het veranderende straatbeeld in rekening te
brengen. Zo is er in de afgelopen decennia een toename in het aantal kwetsbare
weggebruikers zoals: motorrijders, fietsers, en wandelaars. Het ultieme doel
van deze veiligheidseisen is om in het geval van een ongeluk alle betrokken
partijen zo min mogelijk schade oplopen. Hiervoor is het essentieel om in een
vroeg stadium van ontwikkeling de juiste beslissingen te kunnen nemen. Echter
door onzekerheden op de verschillende niveaus en gebrek aan overzicht van het
systeem tijdens ontwikkeling worden deze opportuniteiten vaak gemist.
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Om deze beperkingen van Systems Engineering te overkomen worden in dit
werk een aantal computationele concepten geïntroduceerd waarmee onzekerheid
op deze verschillende niveaus effectief en efficiënt in rekening gebracht kan
worden. De onzekerheid op deze niveaus komt vooral van een gebrek-aan-
kennis over de onderdelen en indeling die daadwerkelijk gebruikt gaan worden.
Deze informatie wordt namelijk pas duidelijk op een later stadium tijdens de
ontwikkeling. In de wetenschappelijke literatuur wordt dit type onzekerheid
omschreven als epistemische onzekerheid. De hoeveelheid niet-determinisme
van deze onzekerheid kan dus verminderd worden door het uitvoeren van
bijkomende testen en metingen die essentiële informatie toevoegen. Dit is echter
niet altijd mogelijk omdat bijvoorbeeld de parameter niet direct meetbaar is of
dat de meeting niet nauwkeurig genoeg uitgevoerd kan worden. Daarbij kan
experimentele data erg gevoelig zijn aan kleine variaties in de omstandigheden.
In het geval van voertuig ontwikkeling zijn crash testen zeer kostelijk en
bevatten de metingen vaak veel ruis. Daarom gaat de voorkeur uit naar een
modelgebaseerde ontwikkeling in plaats van een experimentele ontwikkeling.
Een bijkomend propleem is dat het voertuig pas na de ontwikkeling volledig
beschikbaar is, en hiervoor prototypes bouwen erg duur is.

De ontwikkelingen in dit werk zijn gebaseerd op het idee om een robuustheid
tegen deze onzekerheden in het ontwerp te bouwen. In andere woorden,
ook al zijn er onzekere parameters en interacties, het beste ontwerp heeft
het liefst een zo groot mogelijke ongevoeligheid hieraan. Deze ontwikkeling
wordt mogelijk gemaakt door de introductie van een robuustheid gebaseerde
ontwerp optimalisatie. Om dit mogelijk te maken zijn volgende vooruitgangen
gemaakt: (1) een interval veld methode waarmee niet-deterministische materiaal
gegevens kunnen voorgesteld worden, welke experimenteel bekomen kunnen
zijn, (2) een modelleer techniek om onzekerheid van aanliggende onderdelen in
rekening te brengen, en (3) een robuustheid gebaseerde ontwerp optimalisatie
waarmee de vorige punten efficiënt in rekening gebracht kunnen worden. Al
deze ontwikkelingen zijn gedemonstreerd op verschillende cases gerelateerd
aan de automobielindustrie met een focus op crashbestendigheid. Daarbij is
aangetoond dat de robuustheid gebaseerde ontwerp optimalisatie in staat was
om een voldoende robuust optimum te identificeren onder deze gebrek-aan-
kennis onzekerheid. Hiervoor zijn slechts enkele evaluaties van het onderliggende
niet-lineaire numerieke model nodig. Dit is zelfs voor de meest geavanceerde
optimalisatie technieken een grote opgave omdat het numerieke model zich
gedraagt als een stochastische “black box” functie. Dit houdt in dat zelfs als de
onderliggende fysica goed gekend is de numerieke oplossing een aantal fouten
doorrekend naar het uiteindelijke resultaat. Hierdoor dragen de voorgelede
ontwikkelingen in dit werk bij aan het ontwikkelen en ontwerpen van complexe
technische systemen.
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Chapter 1

Introduction

In face of the environmental challenges, industry has a major responsibility
to limit the ecological impact of their products during their entire lifetime.
Therefore, over the past decades, products were further optimised to enhance
the efficiency. This continuous improvement is enabled by the introduction
of new materials, manufacturing processes, and considering the end of life
potential of discarded products [143]. As such, due to changing policies, the
automotive industry has experienced a revolution over the last decades [24]
with the introduction of alternative fuel sources, e.g., electricity, hydrogen, and
bio-fuels, while simultaneously increasing the efficiency of vehicles with more
aerodynamic and lightweight designs. As a result of this revolution, modern day
vehicles are increasingly complex systems, where each component is optimised
to be as light as possible to reduce fuel and material consumption.

In addition to these environmental challenges faced by the automotive industry,
safety is another major concern, with an estimated 1.35 million casualties
per year worldwide due to accidents that involve passenger vehicles [178].
A disproportional amount of these casualties are among vulnerable road
users, e.g., cyclists, motorcyclists, and pedestrians. The amount of these
vulnerable road users has been increasing worldwide over the past years [117].
Presumably, a part of this can be attributed to initiatives that motivate people to
consider alternative modes of transport, which are more environmental friendly.
Therefore, to limit casualties, policy makers and automotive manufacturers are
enforcing ever stricter safety requirements. Typically, safety is increased in two
ways: active safety measures, e.g., antilock braking system (ABS), electronic
stability control (ESC), adaptive cruise control, line assist, and passive safety
systems that are built into the vehicle, e.g., cripple zones, crashboxes, other
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2 INTRODUCTION

energy absorbing structures. In essence, the idea is to first avoid a collision and,
when a collision occurs, provide sufficient safety to all involved parties.

The design of complex engineering systems is a common way to describe
the process of developing and designing a passenger vehicle. Following this
framework, the total design is divided over multiple specialised departments due
to complexity of the overall product, and some parts may even be outsourced to
external companies. However, at the end of the design phase, the product should
uphold the system requirements, which were set at the start of the design process.
In the case of vehicle development, various authorities will check the compliance
of the vehicle to the latest standards ranging from, e.g., emissions, safety, and
Noise, Vibration and Harshness (NVH). These requirements that are defined
on the complete system should be translated to design or optimisation goals for
each component, in a way that when the complete system is built the envisioned
performance is obtained. However, a complex engineering system, i.e., passenger
vehicle, is not easily sub-dividable especially as some quantities of interest can
only be assessed on the overall system, such as, the crashworthiness. The latter
is illustrated in Figure 1.1 where different components of the body-in-white,
i.e., the chassis, are shown in different colours. The component highlighted in
the detail above the vehicle is the crashbox, which is essential for the crash
performance of the vehicle. However, crash performance is not only determined
by the crashbox. The type of impact, the impact energy, and the weight of the
vehicle play a crucial role as well.

The focus of this work resides in the development and application of uncertainty
quantification (UQ) techniques. It is easy to imagine sources of uncertainty in
the case of an impact or crash analysis, as shown in Figure 1.1, which shows
a passenger vehicle on the left and on the right possible crash scenarios. In
each of these accident scenarios, the preferred outcome is that no injuries are
sustained by both the passengers of the vehicle, and other vulnerable road
users. Therefore, a large number of test cases are standardised to guide vehicle
development while ensuring road safety [64, 92, 175]. Most of these tests are
performed by insurance companies with test results being published as NCAP
ratings. It should be noted that these standards are regularly revised to reflect
changes in global or local trends in transportation, e.g., an increase in cyclists,
other small personal transportation methods, and new traffic situations. The
latest large change is the use of deformable barriers [120, 197] used in frontal
crash scenarios to more realistically represent a car-to-car collision.
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Figure 1.1: Illustration of the challenges in designing components for impact;
on the left: a passenger vehicle body in white, on the right: three possible road
users, e.g., cyclist, SUV and a semi-truck; on top: a detail of the crashbox (this
figure is created with the models from [175])

1.1 Simulation driven crashworthiness optimisation

To work efficiently and minimise operational costs, the development of new
products is usually steered based on computer simulations that assist in the
design decisions that are made during development. In the case of impact or
crash analysis, elaborated numerical codes are employed to provide detailed
insights in the performance of each component, or the system as a whole.
These numerical models are used to approximate a set of differential equations
describing the time-dependent physical behaviour of the component during
impact, e.g, crash. Without a doubt, the Finite Element method (FE) [15] is
the most indispensable tool used in engineering practice, providing accurate
predictions under given loading conditions. An additional method that has
gained a lot of interest over the years, and is worth mentioning, is Isogeometric
Analysis (IGA) [41], which can solve the set of differential equations without
explicit discretisation of the domain. The advantage over the FE method is that
changes made to the geometry can directly be analysed without re-discretisation
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of the domain. The latter makes this technique interesting to be used in design
optimisation [95, 146]. In this work, only the FE method will be used to
perform numerical simulations. Moreover, the majority of numerical simulations
discussed in this work are nonlinear simulations, meaning that the solution of
the system depends on the history to reach that point. In general, there are
three main types of non-linearities that are discussed in this work:

Material behaviour can only be approximated linearly in a limited region,
e.g., before plastic deformation, damage and failure sets in. For example,
metals are generally prone to plastic deformations when loaded beyond
the yield point. On the contrary, elastomers, e.g. rubbers, behave highly
non-linear under a load without plastic deformation. In every passenger
vehicle, a combination of various plastics, rubbers, and metals is used.

Geometric effects often described as large deformations are non-linearities
resulting from deformations, which are no longer correctly approximated
by the small strain approximation, which is typically the case during crash
analysis.

Boundary conditions The main contribution here is contact, which can mean
contact with other components, contact of the component itself, or both.
Especially in crash analysis, these contact conditions play an important
role as multiple components are crushed or a single component is collapsing
upon itself.

Furthermore, in the case of crash analysis, an explicit solution scheme is used
where the solution at time tn depends on the solution of the previous time tn−1
with n the time-step. The time step depends on the specific case, and typically
ranges from 10−7s to 10−9s, and is usually automatically calculated by the
numerical solver based on the Courant-Friedrichs-Lewy (CFL) condition [50].
Nevertheless a small error term is accumulated at each time-step of the solver
contributing to the numerical error [14, 15, 59, 223]. In addition, crash analysis
is well known to exhibit numerical inadequacies, i.e., dynamic- and numerical
instabilities that can cause a small (infinitesimal) change in the input to produce
a major change in the output [4, 59, 124, 148]. An example of a numerical
inadequacy is shown in Figure 1.2, which shows the deformation of a structural
member for repeated computations with the same input parameters [59]. The
reason for these inadequacies and errors can be caused by a number of reasons,
e.g., the hardware used to compute the simulation, the mesh, round-off errors.
Therefore, this work stresses that due to the combined error of both numerical
inadequacies and numerical error a deterministic crash simulation behaves like a
stochastic simulation model, despite its deceiving deterministic nature. In other
words, evaluation of the explicit numerical model returns different results for



THE ROLE OF UNCERTAINTY QUANTIFICATION 5

Figure 1.2: Example of a numerical inadequacy obtained by repeated
computations of a structural member during high-speed frontal crash [27]

the same set of input parameters. Therefore, this work is focused on including
this non-determinism in the design phase of impact critical structures.

1.2 The role of uncertainty quantification

The topic of Uncertainty Quantification (UQ) is very broad and can be applied
in many ways in multiple fields of research. In general, uncertainty quantification
is the practice of quantifying, assessing and reducing variations, defects,
and failures, resulting from variations caused by manufacturing processes,
environmental changes. Hereto, a number of tools have been developed that
analysts can use to describe and work with these vaguely described or variable
quantities. The most well-known tools are based on the axioms of probability
theory, which describe uncertainty by means of probability distributions. Here,
by assigning a probability to the occurrence of a certain event the analyst can
make an informed decision about the probability that the design is sufficiently
strong. Below, an example is given of how people make these decisions in their
daily lives.

On a Sunday evening, you might ask yourself ’Will it rain tomorrow?, or could
I take my bike to work?’. A first solution is to follow the weather forecast
during the eighth o’clock news, where the weather expectation is provided by
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meteorological services. However, the models used here are quite general and
usually cover a large area, e.g., province, country. Hence, there is quite some
uncertainty in these predictions. Therefore, if you are not satisfied with the
prediction, e.g., a 30% chance of rain in the morning, you might wait until the
morning to check the forecast on your phone, with models that are usually more
frequently updated, and predictions covering a shorter time frame. Therefore, a
more accurate prediction of rainfall is made.

Although simplistic, the example above illustrates the essential ingredients used
in UQ: input parameters, i.e., your location, a model, and the predicted rainfall
as output. In engineering practice other more complex questions are being
asked, e.g, how should a building be constructed to withstand an occasional
earthquake? How thick should the construction of a windmill be designed to
withstand a storm? The manufacturer specified the stiffness of the material to
be between 200GPa and 210GPa, what is the effect hereof on our products? In
an attempt to answer these questions, a more elaborate framework is needed to
quantify the uncertainty. The following categories of non-determinism are often
described in UQ [77]:

• Aleatory uncertainty which can be described as irreducible uncertainty.
In other words, this is the seemingly inherent variability of a system,
which appears to us as being random. Note that it depends on the
scale at which one looks at the system whether this is actually inherent
randomness. Modelling this type of uncertainty is best done following the
axioms of probability theory, which describes the randomness by means
of probabilities.

• Epistemic uncertainty can be described as reducible uncertainty, which
means that it stems from a lack-of-knowledge, incomplete data, unknown
correlations, limited sample sizes, or other vague or ambiguous sources of
data. Therefore this uncertainty is reducible as one could in theory reduce
the uncertainty by, e.g., collecting more data, doing more experiments, or
get more accurate sensors. However, capturing this data can be extremely
expensive and might not even be possible using the current state-of-the-art
methods. Since this uncertainty is not random, it is mainly described by
set-based approaches such as intervals, fuzzy numbers or convex sets.

• Mixed uncertainties refer to cases where epistemic and aleatory
uncertainty are combined, e.g., one knows the distribution of an input
variable but can only bound the mean and variance. This type of
uncertainty is described as imprecise probabilities or by possibility
theory [57], and can also be referred to as deep uncertainty, in the
literature.
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In the framework of Systems Engineering, the main cause for uncertainty is
the lack-of-knowledge about component or sub-system developments at other
departments, teams, or companies. Especially at an early design stage, where
the impact of, e.g., new materials, layouts, or components is not yet well
understood. Nevertheless, engineers and analysts must deal with this inherent
uncertainty to design the product with the desired properties. Only after
this initial design and production the actual performance can be assessed or
more detailed investigations can be initiated that provide sufficient data to
fully describe the naturally occurring variability. However, this is not trivial,
especially when only a limited set of tests can be performed. The limitations
are often the costs of these test campaigns, the time it takes to perform these
tests, or it might even simply be impossible to measure the quantity of interest.
Therefore the developments in this work rely on numerical models that are used
to predict the performance beforehand, while accounting for the uncertainty at
the current design stage.

1.3 Thesis objectives and outline

The objective of this thesis is to develop methods that allow for efficient and
effective design and optimisation of impact critical components under epistemic
uncertainty. In current engineering practice, designing these complex engineering
systems is a challenging task. Although major automotive manufacturers have a
legacy starting over a century ago, the introduction of new fuel sources, materials,
and safety requirements has led to a revolution in the industry. Furthermore,
in this global economy there is a general drive to shorten development times
and introduce new produces faster. To enable this the industry is increasingly
using advanced simulation methods, which reduce the number of physical tests
that are conducted. However, the following main challenges are encountered
during the design of impact critical systems:

• Data from tests is often scarce, difficult to interpret, and extremely costly
to obtain. Moreover, most commonly used data acquisition techniques,
e.g., load cells, accelerometers, influence the dynamics of the structure.
Furthermore, crashworthiness testing of an individual component provides
no guarantee towards meeting the system crashworthiness requirements.
The main reason for this are the interactions between components.

• The material of the component is essential to the performance of
system, especially as most energy is dissipated during plastic deformation.
Therefore the material models must be accurate to correctly estimate the
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amount of dissipated energy. Due to the non-linearity’s this is trivial to
model especially when new materials are being used.

• At an early design stage, other adjacent components might still be
under development, at another department, or even outsourced to other
companies. Nevertheless, in order to assess and guarantee overall system
performance, these components have to be accounted for.

• Currently used state-of-the-art numerical solvers for non-linear transient
dynamical analysis are known to experience numerical inadequacies and
the models that are used are often quite sensitive, e.g., a small change in
input parameter may result in a large difference in output

Therefore, the aim of this thesis is the development, implementation, and
application of epistemic uncertainty quantification techniques to capture,
propagate, and optimise the design of a complex system. As a benchmark
case, a non-linear transient numerical crash model is used to demonstrate the
proposed modelling techniques. Specifically three main contributions are made
in this work:

1. A novel interval field technique is developed to describe epistemic
uncertainty. This technique is then applied to describe non-linear material
behaviour, which can be used in FE simulations.

2. A method is developed to account for epistemic uncertainty of adjacent
components in an early design stage. The uncertainty of these adjacent
components stems from a lack-of-knowledge about these components as
they are under simultaneous development.

3. A robustness based optimisation method is introduced to optimise a
component with parameters subjected to epistemic uncertainty. In the
developed method numerical errors and inadequacies can be accounted
for.

The work in this manuscript is summarised as follows:

• Chapter 2 gives an overview of the current state-of-the-art methods that
are used in this thesis. The chapter starts with a detailed overview of
epistemic uncertainty modelling techniques followed by a description of
Gaussian process and robust optimisation techniques specifically used
with epistemic uncertainty. This chapter provides the foundations for the
following chapters.
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• Chapter 3 describes an interval technique with scaled basis functions. As
a result, the realisations of this interval field are kept within an envelope.
Based on an optimisation approach, the interval field realisations are
fitted to a set of experimentally obtained stress-strain curves. Epistemic
uncertainty in material data is often overlooked in modern day crash
analysis.

• Chapter 4 introduces a novel kind of interval field where the gradients at
control points are controlled. Opposed to the previous method here is
no need for optimisation while the control over the gradients is obtained.
The method is described for two ways of obtaining the gradients, first
from a set of measurements and second estimated form the data set.

• Chapter 5 is aimed at tackling a systems engineering problem, where the
performance of a component changes between standalone performance
to integrated performance. Therefore this work deals with assessing the
performance of a single component like it is integrated in the complete
system. For this the uncertainty of the adjacent components that
might still be under development is taken into account. This work also
demonstrates that these adjacent components have a significant influence
on the performance of the component.

• Chapter 6 introduces a robustness based design optimisation approach
capable of identifying a design that is robust towards sources of epistemic
uncertainty, which have been described in the previous chapters. The
optimisation method is based on an underlying Gaussian Process that
locally captures the functional relations between input and output
parameters. The method is presented on a set of analytical problems to
demonstrate the applicability

• Chapter 7 builds upon the previously introduced global optimisation
technique to work on stochastic functions, e.g., numerical impact
simulations. In this chapter it is demonstrated that the proposed method
is capable of identifying an appropriate design in case of crash analysis
with interval valued uncertainty.

• Chapter 8 is dedicated to exploring the valorisation potential of the
developments made in this research.

• Chapter 9 concludes the work presented in this thesis and provides an
outlook of future opportunities based on the knowledge gained in this
research project.





Chapter 2

Robust design of complex
systems

This chapter provides an overview of the methods that are used in the
developments made in the research project. In the first Sections 2.1 to 2.3
an introduction to the design of complex engineering systems is given. In the
second part, a detailed description about epistemic uncertainty and robustness
measures is provided in Sections 2.4 until 2.6. Finally Section 2.7 provides an
overview of stochastic emulators used in this work.

2.1 Design of complex systems under uncertainty

In engineering practice, complex systems are developed and optimised on a
daily basis, guided by the framework of Systems Engineering [201]. A central
aspect in systems engineering is System Thinking [97, 128], where a system is
considered a set of components that work together. By defining the relations
between the components, one can view each component as an individual system
as well. System thinking can be applied to many products in our daily lives,
e.g., toothbrushes, computers, and passenger vehicles. In this thesis, the main
example will be the development of a passenger vehicle. Although the basic
principles of automobiles have already been established over a century ago,
a revolution is happening within the modern-day automotive sector. This
revolution is driven by environmental challenges that require sophisticated
engineering solutions to create more efficient vehicles that are lighter, safer, and
provide the necessary comfort to users. Examples of recent innovations are,

11
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e.g., hybrid or electric vehicles, autonomous driving. In addition to the impact
of these innovations on the use and infrastructure, they also have an impact
on the body-in-white design of these vehicles, which is further amplified by
changing road conditions, with an increased attention for vulnerable road users.
Therefore, consumer agencies such as Euro-NCAP [64] or Global-NCAP [92]
are increasing passive safety requirements.

To successfully design complex engineering systems, such as a passenger vehicle,
the complex system is thought to be an assembly of multiple interconnected
systems, e.g., the body-in-white, engine, transmission. This idea is illustrated
in Figure 2.1, where the idea of systems engineering is applied to a passenger
vehicle where the doors, wheels, and exhaust system are dismantled, among
others. Note that each of these components can be further broken down, e.g.,
the door is composed out of exterior- and interior panels, a locking mechanism,
a window mechanism, and hinges. All of these sub-components are again
subjective to systems engineering, as they are composed out of a number of
sensors, components, and actuators [128]. A particular well-known systems
engineering method used in the development of complex systems is the V-model
approach [102], which is shown in Figure 2.2. Note that other methods exist and
a recent review can be found in [97]. The V-model approach is based on the idea
of decomposing the system requirements into sub-system requirements, which are
then further decomposed out of a number of components. By assembling verified
components, sub-systems are built, which can then be verified and hereafter
integrated into the complete system. Therefore, by allowing development of
individual components, the V-model enables design decisions to be made more
flexible and agile. Due to the breakdown of complexity, this method allows for
faster and more straightforward development. However, there are pitfalls to this
method, one of which is the loss of a general overview of the systems behaviour,
i.e., each decision made has an effect on the overall system performance that
is only assessed in hindsight. The crashworthiness is one of these system
performances that is typically assessed in hindsight. As crash analysis requires
to know the complete layout of the vehicle with all relevant components installed
at the correct location with the associated weight. Hence, optimisation of the
layout towards crash performance is challenging, as this would require all other
departments to redesign their systems, changing the layout, influencing the
crash behaviour. This design loop is usually avoided by using existing designs
and knowledge of previous products to guide developments.

2.2 Component solution spaces
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Figure 2.1: Illustration of a vehicle and some of the relevant parts seen from the
outside, note that the body in white is also made out of multiple sheet-metal
parts

A state-of-the-art method to break this iterative design loop is briefly described
and illustrated in this section. The component solution space method was
introduced [249] at BMW, as a means to break down the system requirements and
provide each designer with clear design targets while guaranteeing overall system
performance. The method starts from a high level energy based description
of the systems behaviour where the kinetic energy is absorbed by plastic
deformation of the parts. In addition, it is assumed that the parts deform in a
progressive order, i.e., the first section fully deforms before the second starts
deforming. A short example of the component solution spaces is provided below,
as given in[249]. Figure 2.3 shows the case of a frontal impact case. The impact
energy in this scenario is given by the kinetic energy of a vehicle of mass m
moving at an initial speed of v0. The total kinetic energy is then given as
1
2mv

2
0 . The deformation length of the first section is indicated as d1, and for

the second section as d2, and the sections can deform up to the deformation
limit d1c, and d2c respectively. The total deformation of the sections is given by
dc = d1c + d2c. Associated with this deformation, a force f1 and f2 for sections
1 and 2 is obtained. Therefore, the deformation energy in section one is given
as e1 = f1d1c. Figure 2.3 illustrates these two sections and the typical frontal
impact case.

The goal of the overall crash performance is to keep the deceleration below
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Figure 2.2: Schematic overview of the V-model, as adapted from [102]

a critical threshold ac, while assuming that a solution exists ac >
v2

0
2dc

. In
other words, the total deformation length should be sufficient to provide a
deceleration from the initial speed v0 until 0 without exceeding the critical
threshold. Additionally, a progressive order of deformation is assumed, which
means that section 1 fully deforms before section 2, i.e., f1 < f2. Taking these
two constraints into account the performance of the system z is given by:

z(f2) = (f2/m− ac)/ac (2.1)

while the following constraints should be respected:

1
2mv

2
0 < f1d1c + f2d2c (2.2)

f1 < f2 (2.3)
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Note that for this example the performance only depends on f2, as f1 is
determined by the constraints. The obtained solution space is shown in
Figure 2.4, where a lower and upper bound of the force f l and fu are given for
sections 1 and 2. The optimum is found at z( mv2

0
2dc

), which means a constant force
over both sections until reaching the deformation limit dc = d1c +d2c. Note that
this optimum is located right at the design limits and is therefore not very robust,
e.g., a small variation results in a violation of the constraints. Furthermore,
as components 1 and 2 should preferably be developed independently one has
to ensure that independent decisions still guarantee system performance. This
is shown with the green area, which contains the system behaviour allowing
for concurrent development of components. In essence, the component solution

Figure 2.4: Illustration of the component solution spaces for a frontal crash
example [249]

space method identifies the maximum volume hypercube, which would not
violate the imposed constraints. The method has been shown to be capable
of reducing costs and time during development [250] after having calibrated
the solution spaces to more realistic models for frontal impact, see, e.g., [82].
Moreover, the method was further improved by making it possible to couple
design decisions [46, 48], where the solution space is no longer restricted to be
box-shaped. The interested reader is referred to [45] for an overview of the
latest methods for creating component solution spaces. This framework already
introduces performance intervals to the designers that should ensure that the
component behaviour falls within these intervals. The main challenge is now to
correctly assess the components performance and the associated uncertainty
about this performance. Therefore the developments in this work can be used
to assess this uncertainty and ensure that there is no constraint validation.
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2.3 Verification and validation of complex systems

Following the approaches of systems engineering and the V-model, as shown in
Figure 2.2, each step in the implementation phase should be verified against
the requirements of that specific level. Seemingly straightforward, this is
an extremely delicate task especially for dynamic systems where the system
requirements at the highest level should be validated. These good practices and
implementation guidelines are well described the ASME V&V standards [5] in
which the essential question is:

"how trustworthy is the numerical model with respect to the intended use of the
model".

The general workflow to validate and verify this workflow is shown in Figure 2.5.
Note that this flowchart starts at a certain reality of interest, which might be at
a system or component level, e.g., the plastic behaviour of high-strength steels
in coupon tests, or full vehicle impact tests. Note that this depends on the
domain, and that depending on these domains other standards and guidelines
are provided, see, e.g., [6] for computational fluid dynamics. Furthermore,
V&V highlights the central role of UQ, as this is required for both simulation
and experimental activities. In this work the main discussion is about UQ
in numerical simulations, while it should be pointed out that experimental
work involves a significant amount of uncertainty, which stems from, e.g., noise
in measurements, variations in the experimental setup, or influences of the
measurement devices on the measurement, and even external influences might
contaminate the measurements. The quantitative comparison illustrates that
both the simulations and the experiments should be compared, including the
spread in results caused by the uncertainties.

2.3.1 Validation of numerical crashworthiness simulations

Validation of a crashworthiness simulation is a tremendous challenge, which
requires multiple challenges to be overcome. The main reason is the complexity
of the problem; with a typical vehicle consisting of thousands of components
made out of numerous materials, each of these components have a certain
variability due to the manufacturing processes. Furthermore, testing of these
vehicles is extremely expensive, with highly advanced setups. Nevertheless,
there will be differences between the experimental setup and the numerical
model of this setup, which are challenging to differentiate. Finally, it should be
noted that in real life accidents one rarely or never impacts a rigid wall, e.g,
accidents happen between cars, with a guardrail, or involve vulnerable road
users. Despite this complexity, validation of predictions based on numerical
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Figure 2.5: Verification and Validation activities as seen within the V&V
standard [5] covering all steps within the development phase of complex systems

models is a basic requirement in any engineering context, and therefore has to
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be addressed.

The crash-related simulations in this work have always been about protecting a
precious good. Therefore, during a car crash, the safety of the occupants is the
main concern, while at the same time considering the safety of vulnerable road
users. Details of these requirements and appropriate testing procedures are
defined by various authorities such as the United Nations Economic Commission
for Europe (UN-ECE) [60], or based on consumer tests, e.g., the New Car
Assessment Programmes (NCAP) like Euro NCAP [64] or Global NCAP [92].
These standards change quite regularly, as they should reflect a set of realistic
scenarios that correspond to the change in road use, e.g., increasingly number
of cyclists, the use of alternative energy sources, and novel infrastructure.

Injury criteria The main goal of crashworthiness optimisation is to keep people
safe. Hence, the requirements are mostly related to bio-mechanical injury criteria,
which relate multi-directional accelerations, velocities, deformations, forces, and
moments to the sustained injuries during a crash scenario. In experimental
procedures, these requirements are typically assessed using Anthropometric
Test Devices (ATD’s), commonly referred to as "dummies". Examples of these
criteria are shown below starting with the well-known and typically used Head
Injury Criterion (HIC) [226], empirically defined as:

HIC =
{

(t2 − t1)
[

1
t2 − t1

∫ t2

t1

a(t)dt
]2.5}

max

, (2.4)

with a(t) the resultant translational head acceleration measured at the heads
center of gravity and t2 − t1 a time interval over which HIC is typically
set at t2 − t1 = 15 ms as recommended by the International Organisation
for Standardisation (ISO). The downside of this measure is that it does
not account for rotational accelerations, impact force and has no directional
dependency. Therefore, the Generalized Acceleration Model for Brain Injury
Threshold (GAMBIT) [173] was introduced, which includes both translational
and rotational accelerations. The criterion is defined as:

GAMBIT =
[(

a(t)
ac

)n

+
(
α(t)
αc

)m] 1
s

, (2.5)

with a(t) and α(t) the instantaneous values of the translational and rotational
acceleration, ac and αc are the critical values for the translational and rotational
acceleration and n,m, s are empirical constants used to fit the data. A critical
parameter that is missing in GAMBIT is the duration of the impact. To mitigate
this, the author later proposed an extension of the HIC criterion, called the
Head Injury Power criterion (HIP)[174]. This extension relates the probability
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of an injury to the rate of change in kinetic energy, which is calculated for all
six degrees of freedom of a head, formally defined as:

HIP = max

∫
axdt+may

∫
aydt+maz

∫
azdt

+ Ixxαx

∫
αxdt+ Iyyαy

∫
αydt+ Izzαz

∫
αzdt, (2.6)

with m the mass, ai and αi the translational and rotational accelerations
along their respective axis and Iii the moments of inertia about the same axis,
respectively. A more comprehensive overview of the head injury criteria can be
found in [56], while a comparison of different predictors with real data is made
in [126].

The experimental results are inherently uncertain as these ATDs should represent
’the average user’, which typically contains high variations. Therefore, several
studies are conducted on the design and validity of ATDs [87, 144] and also the
loading conditions in which valid results are obtained [245]. An illustration of
the use of ATDs in a numerical model is given in Figure 2.6. However, based
on the details in this section and the experimental challenges in the use and
development of ATDs, it should be clear that these measurements are almost
impossible to directly link to the performance of a single component in the
front structure of the vehicle. Furthermore, the costs of performing these tests
and the time it would delay development are the main reasons that automotive
industry is working towards simulation based development, and certification of
vehicles.

2.3.2 Verification of crashworthiness simulations

For completeness this section briefly describes the idea behind verification steps
that should be taken as illustrated in Figure 2.5. In practice, most effort is
spend on code verification which should be performed by the user of the finite-
element software package. The main goal is to verify that the installation and
software code perform as intended. This verification is performed by comparing
a number of test cases to analytical solutions. Usually the software developer
provides these test cases to the user, which must execute these and compare
the results. In addition, a number of manufactured solutions exist for more
complex cases such as crash analysis. Where a well described case is simulated
and solutions are compared to an agreed result. In this work LS-DYNA is used
for the numerical simulations and the relevant verification steps can be found
in the LS-DYNA documentation, which is included by the software.
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Figure 2.6: Illustration of a crash simulation with inflated airbag systems and
ATD’s placed in the vehicle [93]

2.4 Model definitions

In this section, the mathematical conventions and symbols are introduced
that are used throughout this thesis. By convention, a vector is indicated
as lower-case boldface character x and matrices are expressed as upper-case
boldface characters X. A design is characterised by a set of design parameters
z ∈ Z ⊆ Rnz , with Z the set of admissible design parameters consisting of
nz ∈ N independent parameters. These parameters are controllable parameters,
e.g., plate thickness, hole diameters, which are set or controlled by the analyst.

Opposed to the controllable parameters a set of uncontrollable uncertain
parameters x ∈ X ⊆ Rnx , with X the set of admissible parameters and nx ∈ N
the number of independent uncertain variables. The type of uncertainty about
these parameters is indicated by subsequent superscripts or should be clear from
the context. The collection of design and uncertain parameters is indicated
by θθθ = {z1, . . . , znz , x1, . . . , xnx} and referred to as the input parameter vector,
with nθ = nz + nx the total number of input parameters.

The model m : Rnθ 7→ Rny maps the input vector to a set of ny system
responses y ⊆ Rny . In this work, a distinction is made between different types
of models, where analytical models are indicated as m, black-box models as G,
and numerical models as M.

Furthermore, the spatial coordinates are explicitly indicated by r ∈ Ω with
Ω ∈ Rnd the spatial domain of nd ∈ [1, 2, 3] physical dimensions. In the specific
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case where the finite element method is used, this spatial domain Ω is often
discretised to nk ∈ N elements.

design
parameters

z = {z1, . . . , znz }

uncertain
parameters

x = {x1, . . . , xnx
}

system
performance

models
m,M,G

output

y = {y1, . . . , yny
}

Figure 2.7: Diagram of a general model setup used in engineering

2.5 Interval techniques

The first application of interval arithmetic is traced back to Archimedes, who
bounded the value of π to lie within the interval [223/71; 22/7]. Modern day
interval use of interval techniques is based on Moore’s interval arithmetic [163],
who was one of the first to apply interval calculus to real problems. Independent
contributions were presented by Warmus [230] and Sunaga [216].

An interval or interval scalar is a convex subset of the domain of real numbers
R. An interval-valued parameter is indicated using apex I : xI . The interval is
closed when both the upper and lower bounds are a member of the interval. The
domain of closed real valued intervals is denoted as IR. Intervals are explicitly
defined as:

xI = [x, x] = {x ∈ R|x ≤ x ≤ x} (2.7)
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The centre or midpoint of an interval is defined as:

x̂ = x+ x

2 , (2.8)

and the corresponding interval radius as:

∆x = x− x

2 . (2.9)

An interval vector is defined as a vector in which each element is an interval:

xI =


xI

1
xI

2
...
xI

n

 = {x ∈ Rn|xi ∈ xI
i }, (2.10)

with xI ∈ IRn, the domain of closed real-valued interval vectors of size
n. Analogously, the interval matrices are defined on IRn×l. Note that all
elements of the interval vector and the matrices are independent. Therefore,
an n-dimensional interval vector describes an n-dimensional hypercube in n-
dimensional space. The vertices of this hypercube are determined by the
lower and upper bounds of the scalar interval entries in the interval vector or
matrix [159].

Let m be a continuous function on R. The function is then evaluated in the
interval sense as:

m(xI) =
[

inf
x∈xI

m(x); sup
x∈xI

m(x)
]
, (2.11)

with inf the infimum and sup the supremum, which can be replaced by the
minimum and maximum operators, if the interval is closed. Moreover, by
assuming that the model m is monotonically increasing with input x, the search
for the infimum and supremum can be replaced by:

m(xI) = [m(x);m(x)] , (2.12)

while for a monotonically decreasing function this becomes:

m(xI) = [m(x);m(x)] . (2.13)

These equations form the basis of the vertex method [101]. It is important to
note that the vertex method assumes the function to behave monotonically
towards an input x, which is rather strict and not true in general.

For completeness, it should be noted here that an alternative approach known as
"Info-gap theory" can be found in literature. It is especially useful in the domain
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of decision theory, when an actuator should make a choice among multiple
alternatives under deep-uncertainty [21, 22]. Applications of this method can
be found in [23, 127, 130]. The formulation of info-gap theory is very general
and is complementary to interval techniques.

2.5.1 Interval analysis

Let us consider a deterministic numerical model M that is used to approximate
y ∈ Rny , the solution of a (set of) differential equations, through a set of
(usually) real-valued function operators g = {gi|i = 1, . . . , ny}:

M(x) : yi = gi, gi : Rnx 7→ R, i = 1, . . . , ny, (2.14)

with x ∈ F ⊂ Rnx the vector of the model parameters and F the sub-domain
of feasible parameters. The main objective of the interval FE is to identify the
solution set ỹ containing the extreme realisations of yI , by propagation of xI ,
defined as:

ỹ = {y|y = M(x),x ∈ xI}, (2.15)
which reads as: ỹ is the set containing all output vectors y, obtained by
performing a deterministic numerical procedure to all vectors x, contained in xI .
In general, this set ỹ spans a non-convex manifold in Rny , since the numerical
model M provides a possibly nonlinear coupling between at least a subset of
yi. Figure 2.8 illustrates the hyper-cubic approximation yI of ỹ as a Cartesian
product of two arbitrary output vectors yi and yj . The hatched area illustrates
solutions that are not physical, whilst they are included in the solution set yI .
Therefore, neglecting the underlying dependency can result in over-conservative
output estimations.

A closed form solution to the problem of interval FE can only be obtained
when there is an explicit analytical solution for y = f(x). Nevertheless, even
in such a case, the dependency problem must be tackled. Note that a solution
to this problem using numerical solutions is NP-hard [66, 159]. Therefore, the
exact solution set ỹ is usually approximated by the construction of a uncertain
realisation set ỹs, which is obtained by propagating nq deterministic realisations
of the interval valued variable xI :

ỹs = {ysj |ysj = M(xj),xj ∈ xI ; j = 1, . . . , nq}, (2.16)

with ysj ∈ Rny a vector containing the ny model responses of the jth

deterministic model solution.

In practice, the response quantities that constitute ysj depend on the considered
model M. Furthermore, the nq realisations should represent the solution set
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Figure 2.8: Illustration of the cross-section on two arbitrary output quantities
yi and yj of the output vector y showing the hyper-cubic approximation yI of
the uncertain solution set ỹ, adapted from [71]

ỹ as close as possible. Therefore, the focus of recent works is put on finding
numerical procedures to find the smallest conservative convex approximation of
ỹ. Until now, two main strategies have been explored in this regard: Interval
arithmetic strategies and Global optimisation solutions, which are discussed in
more details below. Also, the extension of these interval techniques to fuzzy
analysis is briefly discussed hereafter.

Interval arithmetic strategies

A distinct or naive way of solving the interval FE is by direct application of
interval arithmetic techniques as described in Moore’s interval calculus [163,
164, 165] to the problem in equation (2.15). However, before elaborating
further on this method, one should first introduce a number of arithmetic
operations augmenting the standard arithmetic with definitions for the addition,
subtraction, multiplication, and division of intervals:

xI + yI =
[
x+ y;x+ y

]
(2.17)

xI − yI =
[
x− y;x− y

]
(2.18)

xI .yI =
[
min

(
xy, xy, xy, xy

)
; max

(
xy, xy, xy, xy

)]
(2.19)

xI/yI =
{
xI
[

1
y ; 1

y

]
if 0 /∈ yI

undefined if 0 ∈ yI
(2.20)
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Note that the addition and subtraction operations directly translate towards
interval vectors and matrices, provided that the dimensions of the operands
are compatible. One of the main shortcomings of interval arithmetic is the
dependency problem. Consider the following example xI = [a, b] = [1, 2] is
subtracted from itself in the following function f(x) = x−x the result [a−b; b−
a] = [−1; 1], is not as expected the interval [0; 0]. The issue here is that interval
arithmetic is unable to recognise that the interval variable x appears multiple
times in f = x− x [169]. Thus, this function is treated as the subtraction of
two independent interval variables. In a more general setting, the dependency
problem is expressed as:

xI(yI + zI) ≤ (xIyI) + (xIzI) (2.21)

The dependency problem prohibits the direct use of interval arithmetic to solve
the interval FE analysis. Therefore, multiple studies describe possible ways to
mitigate the dependency problem for the specific use of interval FE, see, e.g.,
[63, 169, 170, 210].

Affine interval arithmetic

The use of affine interval arithmetic is an alternative way of keeping track
of dependencies, with a more versatile extension to interval arithmetic, as
introduced by Comba and Stol [40] and further applied by Manson [139]. The
principal idea is to represent interval parameters by their affine form, which
allows tracking their dependency in operands and sub-formulae, which helps to
reduce the dependency problem. The affine form of an interval parameter is
defined as follows:

⟨xI⟩ = x0 +
nx∑
i=1

xiϵ̂
I
i + xeϵ̂

I
e, (2.22)

with ϵ̂Ii ∈ [−1, 1] unknown symbolic real independent interval parameters, which
allow tracking of the dependency through addition, subtraction and scalar
multiplication, and ϵ̂Ie is an error term introduced to account for possible
non-linear dependencies [53]. Muscolino and Sofi [172] extended the idea of a
symbolic interval variable by Manson and defined an extra unitary interval EUI,
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which is defined such that the following properties hold:

ϵ̂Ii − ϵ̂Ii = 0, (2.23)

ϵ̂Ii × ϵ̂Ii ≡ (ϵ̂Ii )2 = [0, 1], (2.24)

ϵ̂Ii × ϵ̂Ij = [−1, 1] i ̸= j, (2.25)

xiϵ̂
I
i ± yiϵ̂

I
i = (xi ± yi)ϵ̂Ii , (2.26)

xiϵ̂
I
i × yiϵ̂

I
i ≡ xiyi(ϵ̂Ii )2 = xiyi[0, 1], (2.27)

with xi and yi finite numbers associated to the ith EUI,ϵ̂Ii . An interval is
converted into its affine form by:

⟨xI⟩ = 1
2(x+ x) + 1

2(x− x)ϵ̂Ix, (2.28)

with ϵ̂Ix symbolising the EUI corresponding to the interval variable xI .
By associating an EUI to each interval variable, the dependency trough
computations is taken into account. Moreover, the conservatism introduced
when assembling the global stiffness matrix KI is alleviated as the interval radius
of the stiffness ∆K can be written as a superposition of the contribution of each
interval parameter; see [210] for the proof. The applicability of the so-called
improved interval analysis via extra unitary interval has been demonstrated in
the context of interval perturbation [172], interval arithmetic computations of
truss structures [171], Timoshenko beams and Euler-Bernoulli beams subjected
to spatial non-determinism [203, 208], or the computation of natural frequencies
of structures containing interval-valued nondeterminism [204].

Although recent developments have shown that Interval Arithmetical techniques
are capable of approximating the bounds of the interval-valued responses of a
numerical model within reasonable computational cost, their general application
is still limited [66]. The main reason for this is that these techniques are
intrusive, requiring dedicated FE solvers to handle interval valued uncertainty.
This hinders the use of well-known and robust commercially available numerical
codes, which is a major backdraw for the general, i.e., industrial, application of
these methods.

Global optimisation approach

The main goal of the global optimisation approach is to actively search the
input space bounded by xI for the smallest hyper-cubic approximation yI of
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ỹ. Here, based on independent optimisations yi and y
i

are identified for each
output quantity yi of the solution interval yI . This optimisation problem is
explicitly defined as:

y
i

= min
x∈xI

gi(x) i = 1, . . . , ny (2.29)

yi = max
x∈xI

gi(x) i = 1, . . . , ny (2.30)

where yI
i = [y

i
; yi] is the ith output quantity, and gi the function operator

for yi that provides the functional relation between the input and output
parameters, which can be given by an analytical expression, numerical model,
or appropriate surrogate models. The advantage of this approach is that the
dependency of the non-deterministic parameters is implicitly taken into account
by sampling the input space. Moreover, the global optimisation approach is
non-intrusive decoupling the uncertainty in the parameters and evaluating
the function operators. This allows the use of robust and high-performance
commercially available codes and packages, which facilitates the application of
interval analysis to large-scale problems, as shown in [85, 96, 99].

One major disadvantage is that conservatism towards the interval parameters
is not guaranteed, unless the exact bounds of the, in general non-convex, goal
function are identified. Also, the computational effort and the convergence of the
optimisation strategy are highly problem-dependent. Although Moens and Hanss
argue in [159] that the goal function often exhibits a smooth behaviour towards
the uncertain parameters, this statement can not be generalised. Furthermore,
in the case of crash analysis, the non-linearity of the goal function is further
emphasised by the uncertain parameters. However, due to the availability of
advanced black-box optimisation strategies, global optimisation is considered
the standard approach to solve interval problems. Examples of optimisation
algorithms that are applied in this context are directional search [187, 188,
189], linear programming [62], genetic algorithms [25, 34, 148, 162], efficient
global optimisation [52, 118, 148], or the recently introduced Bayesian global
optimisation method [43]. In addition to these black-box optimisation algorithms,
one could also use adjoint state methods, where local gradient information about
the goal function is obtained in the adjoint state [80, 90]. The main disadvantage
of these adjoint methods is that they are intrusive as one would need to adapt
the underlying model to obtain gradient information.

In engineering practice, the computational cost of finding an accurate solution
is often very high, as the underlying models are already expensive to evaluate.
This is especially true in crash analysis, where a single full vehicle model
generally needs upto several days to compute. Furthermore, the number of
evaluations required by the optimisation algorithm increases exponentially with
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the number of uncertain parameters [66], which is described as the curse of
dimensionality. Therefore, even models with reasonable computation time
become intractable at some point. Hence, the use of surrogate models to
replace the computationally expensive models is highly recommended to achieve
accurate results within a reasonable time. These surrogate models represent the
output domain of a deterministic model as a continuous function, calibrated on
a set of observations. The main challenge is to find an appropriate surrogate
model that can be calibrated using the lowest amount of observations. This
is achieved by replacing the function operator gi in Equation (2.29) by a
surrogate model. Surrogate models found in the literature with application
to interval propagation include: Gaussian process [52, 123], Artificial Neural
networks [28, 31, 68], Interval Predictor Models [42, 74, 195], Polynomial
Response Surfaces [205, 209], Chebyshev-based series expansions [136, 236],
Taylor Series Expansions [88], or a dimension-wise approach [227].

On the other hand, in the case that the deterministic model response is
monotonic with respect to the uncertain parameters, the vertex method,
introduced by Dong and Shah [55] provides the exact result for interval problems.
The method is a special case of the global optimisation approach, as it provides
a first-order response surface model approximation of the model responses,
which is obtained only by propagating the vertices of the hyper-cubic uncertain
input set xI . Hence, the method only needs 2nx evaluations for nx uncertain
interval parameters. The method is widely applied in interval analysis, see, e.g.,
[1, 37, 148, 152, 177, 186, 187, 231, 238]. However, it should be noted that, in
general, one cannot assume that the response is monotonic.

Fuzzy arithmetic

The concept of fuzzy numbers is based on fuzzy sets, as introduced by Zadeh [242],
as an approach to represent vague linguistic information. Fuzzy sets represent
an extension to the interval concept, where a membership function describes the
degree to which a variable belongs to a set. This is modelled by the membership
function µx̃(x) describing the membership of each element x ∈ X with the
fundamental set X = Rnx to the fuzzy set x̃. The fuzzy set x̃ is then described
by:

x̃ = {(x, µx̃(x))|x ∈ X ;µx̃(x) ∈ [0; 1]}, (2.31)
with µx̃(x)) = 1 meaning that x is certainly belonging to the fuzzy set x̃, and
µx̃(x)) = 0 meaning that x is definitely not a member of x̃. In the case that
0 < µx̃(x)) < 1 the membership is uncertain. Multiple membership functions
can be applied, while the most commonly used are the triangular and Gaussian
membership functions, depicted in Figure 2.9. When multiple parameters are
modelled as fuzzy variables, a joint fuzzy membership function is defined for nx
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fuzzy input parameters as:

µx̃(x1, . . . , xnx) = min(µx̃1 , . . . , µx̃nx
). (2.32)

The resulting fuzzy membership function µỹ(y) of the output ỹ is identified
using Zadeh’s extension principle [241, 243] based on the results of a model m(),
which can be a numerical model. The extension principle is defined as:

µỹ(y) =
{

supy(µx̃(x1, . . . , xn)) if ∃y = m(x1, . . . , xn)
0 otherwise

. (2.33)

To obtain a solution one usually has to rely on a computationally expensive
multidimensional optimisation scheme, which is not that efficient. Hence, over
the last decades, a number of alternative approaches have been proposed in
literature. The most comprehensive review about these methods can be found in
the book by Hanss [99]. Here only the α-cut method will be briefly discussed, as
this provides an extension of the interval arithmetic approach to solve numerical
models with fuzzy variables. In the α-cut method the membership function
µx̃1(x1) is subdivided into nα equally spaced intervals. An interval for each
membership level µαi is then obtained as follows:

xI
i,α{xi ∈ Xi|µx̃i

(xi) ≥ α} (2.34)

with the discrete values of the nα + 1 intervals equal to:

µαj
= j

nα
, j = 0, . . . , nα. (2.35)

As such the α-cut method contains all elements xi that belong to x̃i at least to
a degree α. By performing commonly applied interval arithmetic techniques
at each α-cut the output membership function is constructed. It was shown
in [159] that the output membership function is an intersection of the output
intervals at a certain α-cut. Figure 2.9 illustrates three α-cuts that are made in
the two membership functions with the blue dot at µx̃i(xi) = 1 in both figure
(a) and (b) a deterministic model evaluation and the red and orange line are
two intervals at µx̃i

(xi) = 0.5 and µx̃i
(xi) = 0.

2.5.2 Interval field analysis

Interval analysis as described above is by definition unable to take dependency
into account, which results in two extremes when spatial uncertainty, e.g., the
stiffness of a material, needs to be modelled. In the first extreme, the stiffness
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Figure 2.9: Illustration a triangular membership function (a) and a Gaussian
membership function (b); the blue dot indicates a deterministic analysis and
the red and orange lines the alpha-cuts at 0 and 0.5 with the corresponding
intervals

of the material is fully coupled, e.g., the component has a high or low stiffness
without any spatial variation, which would lead to a serious under-estimation of
the spatial complexity of the uncertainty. In the second extreme, all elements
in the model have an independent stiffness value, which neglects any kind
of dependence through the spatial domain Ω. Here, the computational time
would become intractable for industrial size models, which could easily contain
more than 106 DOF. Furthermore, by neglecting the dependence between two
adjacent locations in Ω, discontinuous and possible nonphysical realisations
are implicitly included in the mathematical description. In an attempt to
represent spatial non-determinism in a more truthful manner explicit interval
fields were introduced in [158], which can be seen as a possibilistic counterpart
to random fields [224]. It should be mentioned that other techniques have also
been proposed to model spatial or coupled intervals, based on a local averaging
technique [234, 235], or by defining the inter-dependence [73].

Explicit interval fields

The definition of an explicit interval field is given in Equation (2.36), where
the field consists of a superposition of nb ∈ N base functions ψi(r) : Ω 7→ R
defined over the geometrical domain Ω ⊂ Rd, where d is defined as the physical
dimension of the problem. These base functions describe the spatial nature of
the uncertain parameter x, distributed along the coordinate r ∈ Ω. An interval
field scales these basis functions ψ(r) with independent interval scalars αI

i ∈ IR,
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formally defined as [158]:

xI(r) = x̂(r) +
nb∑

i=1
ψi(r)αI

i , (2.36)

with x̂(r) ∈ R the midpoint function of the interval field. When Ω is discretised
into ne finite elements Ωne

i ⊆ Ω, these base functions ψi(r) interpolate the
independent interval scalars αI

i to dependent intervals for each Ωe
i , i = 1, . . . , ne

by projecting them onto a non-orthogonal vector space [65]. Furthermore,
the dimension of the input space is reduced if nb << ne, which reduces the
computational cost of propagating the interval uncertainty towards bounds on
the response quantity of interest.

The main goal of the interval field analysis is to identify the set of system
responses ỹ that bounds the possible range of responses y given the interval
field xI(r). Since finding the exact set is generally computationally intractable,
the exact solution set ỹ is usually approximated by a realisation set ỹs defined
as:

ỹs =
{

yj |yj = mi(xj(r)); xj(r) ∈ xI(r); j = 1, . . . , nq

}
. (2.37)

The set ỹs is typically constructed using nq deterministic solutions yj = M(xj).
For each of these nq solutions, the interval field realisations xj(r) are generated
by drawing a realisation from the interval scalars constituting the interval
field. The main challenge here is to choose xj(r) such that ỹs is a conservative
approximation of ỹ.

In the specific case of crash analysis, the functional relationship between x and
y, as given by the numerical model M, is strongly non-convex. Therefore, the
analyst has to resort to global optimisation schemes to solve Equation (2.29). A
particularly well-known non-gradient-based algorithm is Differential Evolution
(DE) [214], which was successfully applied to crash analysis in [32, 148] .

Definition of the basis functions

The basis functions ψi of the interval field described in Equation (2.36) can
be defined in various ways and should reflect the knowledge or physics of the
underlying problem. To meet the various requirements multiple definitions have
been proposed. In addition, basis functions can also be defined on the basis of
direct [111] or indirect [67, 71] measurement data. Realisations of the interval
field as defined in Equation (2.38) are obtained through discretisation of the
basis functions. In the following sections, an overview is given about different
basis functions, based on literature reviews [66, 70].
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Inverse Distance Weighting interpolation basis functions are defined through
the intuitive Inverse Distance Weighing (IDW) framework, which was introduced
in [65]. In this case, the basis functions ψi(r) use the IDW framework to model
the spatial dependence of the interval scalars αI proportional to the inverse
distance from predefined locations, denoted as control points ri. In practice,
the interval field is discretised over rnk

with nk ∈ N for instance the element
centre points, Gauss integration points, or nodal locations of the FE model
under consideration. Following the IDW framework, the basis functions are
based on a set of normalised weight functions wi(r) ∈ Ω, defined as:

ψi(r) = wi(r)∑nb

j=1 wj(r) , (2.38)

with i = 1, . . . , nb. The weight functions wi are inversely proportional to a
distance measure d(·). This distance is measured to all other coordinates in the
domain. The weight function wi is denoted as:

wi(r) = 1
[d(ri, r)]p , (2.39)

with the power p ∈ R+ as a non-negative parameter that the analyst can set to
influence the decay rate from the control point ri. Note that for a power p < 1
no derivative of the basis function exists at the control points, while in the case
p > 2 the basis functions flatten and higher gradients at the transitions are
obtained. Empirical evidence suggests that, in general p = 2 is a good starting
point [71], if no further information about the spatial nature is available. The
distance measure d(·) is measured in Euclidean space, which in the standard
IDW framework, is defined as:

d(ri, r) = ∥ri − r∥2 , (2.40)

with ∥·∥2 denoting the L2 norm. To construct the interval field based on IDW,
the normalised weight functions are multiplied by independent interval scalars
αI

i and summed to the midpoint of the interval field. This is explicitly denoted
as follows:

xI(r) = x̂(r) +
nb∑

i=1

αI
iwi(r)∑nb

j=1 wj(r) . (2.41)

An example of the resulting interval field is shown in Figure 2.10, where the
vertex realisations are shown on the top figure. Also the figure shows the
weight functions as defined in Equation (2.39) and the basis functions following
Equation (2.38). Note in this figure that the weight functions have "non-
vanishing" weights, retaining a non-negligible weight throughout the domain.
The latter is one of the main reasons hindering the application of IDW to large
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finite element models. Furthermore, this hinders the application of IDW based
interval fields to inhomogeneous phenomena. Hence, the author proposed an
extension to IDW in [153], which can be found in Chapter 4.

Local interval field decomposition was introduced by Imholz et al. [110, 112]
to limit the spatial complexity of interval field realisations by placing an upper
limit on the gradients. This method also starts by denoting an interval field as
the sum of the mean field value µx and the deviation from that point:

xI(r) = µI
x + sI

x(r) (2.42)

with µx = 1
Ω
∫

Ω x(r)dΩ. The deviation of the interval field is bounded by
a maximum absolute deviation sx,max. The dependency within the field is
modelled based on a maximum difference between two points, which will cause
the field to vary within reasonable limits. This property is taken into account for
a continuous field by the first spatial derivative. As the uncertainty is assumed
to be homogeneous with respect to the spatial domain this limit is given by a
single value ∂x

∂r |max, which bounds the first derivative by:

− ∂x

∂r |max≤ ∂xj(r)
∂r ≤ ∂x

∂r |max (2.43)

The basis functions ψi for this method need to be identically shaped, piece-wise
second order polynomial functions, defined for each element or node within
the domain. This is shown in Figure 2.11 where the radial basis functions are
shown at each on the nodes N within the domain y. Note that the influence of
these basis functions is determined by an influence radius R. This is a major
advantage of the method compared with IDW where an influence of the basis
functions remains within the domain. The main draw-back of this method with
respect to the application to industrial size models is that each node requires a
basis function. For a detailed comparison with the IDW technique, the reader
is referred to [108].

Local explicit interval fields for non-homogeneous uncertainty The concept
introduced in [33] is aimed at modelling a localized increase in non-determinism,
which is referred to as non-stationary or non-homogeneous uncertainty. In
practice this for example observed in cast products, were typical regions are
likly to contain porosity’s. The interval field is created with a limited influence,
whcih is contained within a subdomain Ki ⊆ Ω. Furthermore, by limiting
the domain in which the interval field is defined, the computational burden
to calculate the realisations is significantly reduced, for which the author also
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Figure 2.11: Illustration of the radial basis functions Φi of the LIFD method;
with R the radius of influence, and Ni the FE node numbers within the domain
y, taken from [110]

proposed solutions in [69]. The main requirement is that the defined basis
functions satisfy the following constraints:

∂wi

∂d(ri, r) ≤ 0, (2.44)

∂wi

∂d(ri, r) = 0, if d(ri, r) = Bi, (2.45)

{
wi(r) ≥ 0, if d(r, ri) ̸= Bi,

wi(r) = 0, if d(r, ri) = Bi,
(2.46)

with Bi the width of the local support zone K ⊆ Ω around a control point
ri. An example of these basis functions is provided in Figure 2.12. The local
domain and the points within this domain are indicated by K, which is also
done for the three weight functions within the sub-domain wK

1,2,3. Note that the
basis function ψi is zero throughout the domain except within the sub-domain
with radius B.

B-spline based interval field decomposition Recently introduced in [105] the
method uses B-spline basis functions of degree k built upon a non-decreasing
knot vector Ξ = {t1, t2, . . . , tnb+k+1}, with t1 the ith knot entry and nb the
total number of B-spline basis functions. The kth degree univariate B-spline
basis function is recursively obtained through the Cox-de Boor formula [182]
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Figure 2.12: Illustration of the local explicit interval fields method basis functions
within the sub-domain K, taken from [33]

for k = 0:

Bi,0(r) =
{

1, ti ≤ r < ti+1

0, otherwise
, (2.47)

and for k > 0,

Bi,k(r) = r − ti
ti+k − ti

Bi,k−1(r) + ti+k+1 − r

ti+k+1 − ti+1
Bi+1,k−1(r). (2.48)

Inclusion of these basis functions in the explicit interval field formulation, as
defined in Equation (2.7), the expression is slightly adapted:

xI(r) = x̂I + ∆xI
nb∑

i=1
Bi,k(r)αI

i , tk+1 ≤ x ≤ tnb
, (2.49)

with Bi,k, i = 1, . . . , nb the kth degree B-spline basis functions defined on Ξ,
and αI

i unitary interval scalars that are referred to as interval field coordinates
in this method. The advantage of this method is that it is very flexible with
easy extensions to non-homogeneous interval fields, and higher-dimensional
interval fields. However, this requires that the analysis is able to provide detailed
properties of the field.
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Figure 2.13: Illustration of the quadratic B-spline basis functions over the
domain x ∈ [0; 10] [105]

Affine arithmetical interval fields

Extending the concepts of affine arithmetic to model dependency with the aim
of modelling spatial uncertainty, the dimensionless interval field AI(r) with
unit range was introduced in [203, 204, 207, 208] with applications described
in [206, 211]. The parameter interval field xI(r) is obtained as:

xI(r) = x̂0
(
1 + AI(r)

)
, (2.50)

With x̂0 ∈ R a midpoint taken constant over the domain r. The amplitude of
the interval field can be related to the interval field radius ∆x(r) via:

∆x(r) = x(r) − x(r)
2 ≡ x̂0∆A(r), (2.51)

with AI a dimensionless interval function having zero midpoint and a radius
∆A(r) < 1. Furthermore, by defining a deterministic, symmetric, non-negative,
bounded spacial dependency function ΓA(ri, rj) on the dimensionless interval
field AI :

ΓA(ri, rj) = mid
[
AI(ri),AI(rj)

]
≡

mid
[
AI(ri),AI(rj)

]
(x̂0)2 − 1, (2.52)

with mid(·) an operator that returns the midpoint of the interval. This function
only works when the EUI’s are used as defined in Equations (2.23)-(2.27) to omit
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the dependency problem. Arguably, ΓA(ri, rj) can be regarded as a possibilistic
counterpart for the stochastic auto-correlation function [207], which is used
to describe auto-covariance in a random field [224]. Therefore, following the
random field approach, the interval field is expressed as a Karhunen-Loève-like
decomposition of ΓA(ri, rj). Hence, the dimensionless interval function AI(r) is
expanded as a series of na deterministic functions and extra unitary intervals:

AI(r) =
na∑
i=1

√
λiψi(r)êI

i (2.53)

with λi and ψi the eigenvalues and eigenvectors obtained from the following
eigenvalue problem: ∫

Ω
ΓA(ri, rj)ψi(ri)dr = λiψi(r) (2.54)

which is known in the context of random fields as the homogeneous Fredholm
integral of the second kind [224]. The parametric interval field following this
approach is defined as:

xI(r) = x̂0

[
1 +

na∑
i=1

√
λiψi(r)êI

i

]
(2.55)

It should be noted that by replacing the independent identically distributed
(i.i.d.) random variables in the truncated KL series expansion with interval
variables the convergence properties of the expansion, as described in [212], are
no longer guaranteed [66]

2.5.3 Overview and considerations using interval fields

This section provides guidelines and considerations for practical application of
the previously discussed interval field techniques. First, an overview is given
about the various interval field techniques and in the second part application
examples are given. The main challenge in the selection of an interval field
technique is that it depends on the available data and the problem at hand. To
provide guidance in choosing between the various options the following points
should be considered:

1. User input is the data that should be provided by the user or analyst.
Depending on this data different field definitions might be preferred. The
IDW technique requires intervals at the control points, which can be
measured or based on engineering judgement. Other techniques require a
global or sub-domain interval.
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2. Dependence structure determines how two variables at different
locations within the domain are related. For IDW these are independent
at the control points and depend on their mutual distance within the
domain. Other techniques use a support radius, or characteristic length
parameter that determines the relation.

3. Gradient control means that the analyst can directly influence the
gradients of the realisations. The reason for this is that high gradients
might be non-physical, or information about the gradients within the
domain at a specific location is available. Some techniques like LIFD allow
the user to bound the gradients of the realisations.

4. High dimensions refers to the possibilities to use the technique with
multiple input intervals, or in domains larger than the three dimensional
physical domain. This mostly depends on the way that the fields are
represented and discretised. For example, IDW can be used in three-
dimensions but discretisation over, e.g., 106 nodes for large industrially
sized models quickly becomes troublesome.

5. Non-homogeneous fields refer to changing the nature of the uncertainty
of the field properties within the domain. This means that, for example,
the characteristic length changes within the domain or the influence radius
of the knot vector as shown with the BIFD method.

Finally, based in these points Table 2.1 provides a detailed overview of the
practical considerations of the different interval field methods, highlighting the
data that should be provided and where the technique is best applied.

Application of interval field techniques for process variation

In this case study an interval field is used to model the influence of process
variance caused by additive manufacturing [73]. In this work, a rocker for
the Formula Electric Belgium team was topology optimised and produced in
Poly-Amide 12 (PA-12) using Selective Laser Sintering (SLS). It is well-known
that the mechanical performance and dimensional stability are heavily impacted
by a number of process-related variables; the interested reader can find more
information about this in [30, 94, 180, 232]. Here it was found that the main
contribution to thickness variation is the inter-layer cooling time. In other words,
the time between sintering of a layer and the next layer, which determines the
local cooling rate. The main cause of varying inter-layer cooling time is when
multiple parts are built within the same building plate. The larger the area
that the laser should process the longer it takes before the next layer is applied.
Therefore, as there is some knowledge about the other parts on the building
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plate an estimation about the thickness variation can be made and modeled
with an interval field. In this study the IDW based interval field is used as this
allows the incorporation of this knowledge at certain points in the domain, i.e.,
control points. The resulting interval field is shown in Figure 2.14 where the
upper and lower bound of the thickness are shown. The domain of this interval
field Ω is described by two coordinates r1 and r2.The stack direction of the
component during production was along r1, which is the direction that is mainly
influenced by the inter-layer cooling time. These interval field realisations were
obtained using the in-house developed code FIRST.

����

��

�
�

�
�

Figure 2.14: Illustration of interval field realisations on a rocker used by Formula
Electric Belgium; This part is topology optimised and produced in PA-12 using
(SLS), taken with permission from [73]

Application of interval field techniques for material variation

To highlight the intuitive framework that IDW based interval fields offer, a
case with material variation is considered. Here a complex door hinge is
obtained using Topology Optimisation TO. It is assumed that the Young’s
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modulus of the material spatially varies throughout the final product. Based
on expert knowledge, the Young’s modulus could be estimated at two locations
of the product. However, as there is only limited information at hand these
measurements are bounded by an upper and lower limit. The first point
xI

r1
= [65; 72]GPa and the second point xI

r2
= [67; 75]GPa. The location of

these control points is shown in Figure 2.15 indicated as yellow points, with r1
at the bottom and r2 at the top of the hinge.

Figure 2.15: illustration of the control point placement in a medium size
numerical model of a TO hinge; the two contol points are indicated by the
yellow dots; created by the graphical user interface of FIRST

After placing the control points, the basis functions can be determined by
setting the parameter p from Equation (2.39) by the user. Typical, a starting
point for this parameter is p = 2 especially if there is no further information
available [71]. Hereafter the field must be discretised, which can be to the nodes,
Gauss integration points, or element locations depending on the problem and
the possibilities at hand. Figure 2.16 illustrates one of the vertex realisations of
the interval field.
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Figure 2.16: illustration of a single interval field realisation on Young’s modulus,
on a numerical model of a topology optimised door hinge; created by the
graphical user interface of FIRST

Application of interval field techniques for structural dynamics

The final application example is the use of an interval field to model the uncertain
stiffness of a composite solar panel used in a lunar lander [39]. In this study,
the transient dynamic response during the landing procedure was modelled and
the difference between interval- and random fields are investigated. The model
that was used is shown in Figure 2.17 where the point of interest is shown at
the tip of the composite solar panel. This study highlighted that there are
quite some parallels between the concepts of random fields and interval fields,
with as main conclusion that the correlation length of a random field and the
maximum gradients of the LIFD method have a very similar effect on the global
parameter behaviour and therefore produce comparable realisations. This is not
so surprising as the correlation length determines the relative change in random
variables and, in some sense limiting the gradients has a similar effect. However,
due to the infinite support of the normal Gaussian random variables the random
field results do not provide crisp bounds, which is the case for interval fields.

Other applications of interval field techniques are found in the fields of
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Figure 2.17: Numerical model of a lunar lander used to investigate the transient
dynamical behaviour during landing [38]

geomechanics [83], where the effect of uncertain soil properties on slope stability
is investigated, hence, improving the safety of constructions built in coastal or
mountain areas. Another application can be found in electromagnetic problems
[229], where it is found that the electromagnetic performance is very sensitive
to uncertainty in the geometry, material, and environment. The final example
is the application of interval analysis to assess the vibro-acoustic performance
of a passenger vehicle [237].

2.6 Robustness based design optimisation

Robust design optimisation is a primary requirement to ensure that a system
fulfils its intended purpose over a long period of time. To reach this goal,
one often has to consider significant uncertainty in the problem specification.
For example in an early design stage, one might not even know how adjacent
components look like and what their specifications are. The objectives of
general optimisation techniques, e.g., to minimise weight or maximise output,
are cumbersome, as it is well known that the optimal performance of a system
is often very sensitive to small changes in input parameters [59]. Hence, due to
this sensitivity, either the optimal performance is only occasionally reached or
the variation causes a constraint violation. Robust design optimisation considers
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the output variation and is aimed at finding designs that are insensitive to input
variation. The idea of products and processes that are insensitive to variations,
i.e., in manufacturing, was pioneered by Genichi Taguchi who first applied
his methodology on electrical circuits [218, 219], and is often quoted [20, 113]
characterising a robust design as:

"Not just strong. Flexible! Idiot Proof! Simple! Efficient! A
product/process that produces consistent, high level performance
despite being subjected to a wide range of changing client and
manufacturing conditions" –Genichi Taguchi

In the decades after the ideas by Genichi Taguchi two viewpoints about
robustness have emerged. The first viewpoint considers the performance of
a system under extreme and exceptional conditions. The second viewpoint
considers the performance of the system under normally varying conditions,
e.g., manufacturing tolerances. This second viewpoint is based on the quote
of Genichi Taguchi, which is also the viewpoint taken in this work. Note
that the latter viewpoint is closely related to sensitivity analysis. However,
there is a subtle difference between the two. Sensitivity analysis describes the
dependency of the output of a system on the input parameters and aims to
identify the most influential input parameter. In general, sensitivity analysis is
a local measure often related to gradient information, which can be obtained by
various techniques. Robustness, on the other hand, is a global measure of the
degree of system variability due to input variations. Figure 2.18 illustrates the
main ideas of a robust design, where the design parameter zi has a normally
distributed variation N (zi, 0.2) illustrated for zi = 2 and zi = 6. It is clear
that the output variation is smaller for zi = 2 with an extremely low constraint
violation. The constraint in this case is that the output should be lower than
yi < 36. Figure 2.18 also illustrates the role of sensitivity analysis for zi = 6
where the red line shows the gradient. Note that this gradient is not consistent
over the total variation of the design parameter. To differentiate between these
robust design strategies, four classes of robustness measures are defined that
are conceptually different [166]:

1. Functional expectancy and dispersion metrics are based on the
evaluation of expectancy and the variation around this value. As an
example, Genichi Taguchi proposed a signal-to-noise ratio to quantify
robustness based on the idea of loss of quality [218, 219]. Mostly focused on
aleatory descriptions of uncertainty these methods are often too difficult to
calculate analytically for industrial cases. Therefore, often approximations
are made using surrogate modelling techniques.
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2. Sensitivity based robustness measures are the most straightforward
robustness measures with a well-understood framework to relate the
change in independent variables to dependent variables. These metrics
are usually based on the calculation of quotients or partial derivatives in
the case of multiple input parameters.

3. Size of feasible domain measures are aimed at finding the largest
domain in which the functional output is considered within tolerance. In
other words, a design that is very sensitive to variations while the output
variation remains within certain bounds can still be considered a robust
design. These measures usually include the calculation of a distance, area,
volume, or polyhedron in one or more dimensions.

4. Probability of functional compliance metrics evaluate the probability
that one or more functions fulfil their requirements under stochastic
variation, which requires detailed knowledge about the probability density
functions of the input parameters and design limits.

Note here that the four categories above are mainly considered with aleatory
uncertainties, while often parallels can be made in the case of epistemic
uncertainties. In this work, these parallels are explored, and below a more
comprehensive overview is given about robust design optimisation techniques
under epistemic uncertainty.

2.6.1 Functional expectancy and dispersion

This section covers the more classical view on robust design as proposed by
Taguchi with ideas such as quality loss and the mean square deviation [220].
Here no information about the requirements is regarded as the focus lies in
minimisation of the dispersion, i.e., variance, or expected mean value, or a
combination of both. Hence, the probability density function (PDF) of the input
variables should be known a priori. Using an appropriate design of experiments
or expert knowledge, these PDF’s can be obtained and the mean value of the
output can be calculated as:

E(y) =
∫
f(x)p(x)dx (2.56)

with f(x) the functional relation and p(x) the PDF of x. The variance about
this estimate is then determined by:

σ(y) =
∫

(f(x) − E(y))2p(x)dx, (2.57)
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Figure 2.18: Illustration of multiple robustness measures; the performance
function is shown in black with two possible inputs z = 2 or z = 6 the varaition
of these parameters is shown in red, the resulting output variance is shown in
blue

which is referred to as the standard deviation. Although seemingly
straightforward, the calculation of the expected value and variance of the
output under multiple uncertain inputs is usually untraceable analytically [26],
which has led to the use of advanced surrogate modelling strategies.

2.6.2 Sensitivity based robustness

Robustness measures that are based on the sensitivity of dependent variables
to independent variables are well understood and often used. In this class of
metrics, one usually uses a finite quotient for one variable or partial derivatives in
the case where there are numerous variables. When the underlying function m()
is known analytically one can derive an analytical expression for the derivatives.
However, this is not true in general, where the underlying function is a black-
box model without any information about the gradients. In this case, the
gradients must be based on samples, which is only valid when there are small
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differences between input parameters. Figure 2.18 illustrates this point at zi = 6
where the derivative is shown tangentially to the performance function. The
gradient obtained is only locally valid, not over the complete domain of possible
input values. Hence, these methods should only be used with relatively small
input variations and smooth functional relations, as otherwise problems and
misjudgments might arise.

Interval sensitivities

In the specific case of interval-valued input variables, the concept of interval
sensitivity was introduced [161] where sensitivity is measured over the entire
range of the interval and a global measure is obtained. For interval sensitivities
the relation between input and output of the model m can be written in terms
of the interval radius ∆x and center x̂ as:

∆y = h(x̂,∆x) = 1
2

(
sup
x∈xI

m(x) − inf
x∈xI

m(x)
)

(2.58)

By considering the interval center x̂ as the fixed nominal case, the interval
sensitivity of the output interval yI with respect to the input interval xI is
defined as:

δyI

xI = ∂(∆y)
∂(∆x) (2.59)

with δyI

xI the interval sensitivity relating a change in absolute input interval
width to a change in output interval width. This derivative exists, if ∆y at x̂
is a C1-continuous function of ∆x, for parameter values within the interval.
For further details and calculation procedure, the interested reader is referred
to [161].

Interval sensitivity index

Recently, an interval sensitivity index C was proposed in [35]. This index is a
more general approach, where the sensitivities of one or more parameters can
be compared. In a one-dimensional case the index is based on the difference
between the interval valued upper and lower bound and the actual upper and
lower bound within the domain. Figure 2.19 illustrates the areas that are defined
for this case with Au between the upper-bound and yi, Aprocess between yi and
y, and Al between the upper-bound and y. The total area Atotal is given by the
sum: Atotal = Au +Aprocess +Al. Based on these measures the index is defined
as [35]:

Ci = Au(i) +Al(i)
Atotal(i)

(2.60)
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Figure 2.19: Illustration of the interval input output relation to highlight the
area’s used in the interval sensitivity index

Before the index is calculated, the interval radius of the parameters is normalized.
Therefore, Ci will always be within 0 ≤ Ci ≤ 1. In the case that Ci = 0, interval
parameter xi has no influence on the result, when Ci = 1 parameter xi is the only
influential parameter [35]. The main difference with the interval sensitivities
is that the interval index is not limited to the bounds, as it quantifies what
happens within the interval as well.

2.6.3 Size of feasible design space metrics

A feasible design space is obtained by quantifying the variance allowed for
the input parameters that keeps the design within predefined functional limits.
Robustness measures in this class usually involve the calculation of a high-
dimensional volume or manifold that satisfies the design specifications. Note
that the feasible design space is determined by relating the dependent variable
to the independent variable. These metrics are usually independent of the
input variation, as designs are preferred with the highest amount of permissible
variation. One approach to achieve this is to search for the design that respects
the largest distance away from the constraints, this can be done using the
robustness radius, defined as:

Rr = min
(

| min
x∈X

m(x) − E(m(x))|; | max
x∈X

m(x) − E(m(x))|
)
, (2.61)

with E(m(x)) the expected mean of the response and the minimum and
maximum of the model are limited by the imposed constraints. Therefore,
Rr describes the minimum distance between the constraints and the nominal
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input value. The robustness radius is also shown in Figure 2.18, which makes
clear that the robustness of Rr(x = 2) > Rr(x = 6). More measures are
provided in the overview of [166]. However, the remainder of this section will
discuss the robustness measures introduced for fuzzy variables.

Robustness measures for fuzzy variables

A robustness measure for fuzzy numbers was introduced in [20, 246], which is
related to the "fuzziness" of the input variables. This fuzziness is measured
using Shannon’s entropy [49, 248] applied as:

H(x̃) = −k
∫

xi∈x̃
· · ·
∫

[µx̃(xi) ln(µx̃(xi)) + (1 − µx̃(xi)) ln(1 − µx̃(xi))] dxi

(2.62)
with k a positive constant [49]. This measure can be interpreted as the "steepness"
of the membership function µx̃(x). Application to a crisp set yields H = 0,
whereas the most uncertain set with all elements evaluated by a membership
function µx̃ = 0.5 except for the mean value yields the maximum value for H.
Moreover, there is a dependency between the support of the fuzzy number and
the entropy measure, which increases with a larger support. Except in the case
of an interval variable µx̃ = 1∀x ∈ X , which yields H = 0. Therefore, intervals
are excluded from this robustness measure.

The robustness R(·) if now measured by the ratio of input entropy and response
entropy, were parameter k in Equation (2.62) is omitted. In the case of a fuzzy
input vector x̃ and associated multi-variate fuzzy responses ỹj , the structural
robustness is defined as:

R(x̃, ỹj) = H(x̃)
H(ỹj) . (2.63)

Note that the computation of H(·) is associated with the numerical computation
of a high-dimensional integral. Hence, the authors proposed separate
computations of the elements in x̃, which poses a minor influence as long
as the elements in x̃ only weakly interact. Therefore, a numerically more
efficient robustness measure is defined as:

R(x̃, ỹj) =
∑nx

i=1 H(x̃i)∑ny

j=1 ujH(ỹj)
, (2.64)

with uj a weight factor for certain output events and nx,ny the number of input
and output variables in x̃ and ỹ.

Design optimisation based on this robustness measure was proposed by
evaluating several alternative designs [20]. First, the uncertain structural



52 ROBUST DESIGN OF COMPLEX SYSTEMS

responses are obtained from an uncertainty analysis, which yields a set of
output responses based on a sampling strategy. The set of output responses is
then divided into permissible and non-permissible responses, which can be used
to inversely quantify sets of design alternatives. Now the robustness measure,
among others, is used to identify the most robust design. Note that in the case
of black-box functions, the results depend on the underlying samples that are
taken, as do the design variants. Although applied to a heavy non-linear crash
example, one has to assume that the samples of the domain are sufficient to
guarantee no violations occur within. The authors listed several shortcomings
in a subsequent work [246] where an extension is proposed by calculating the
robustness measure in Equation (2.63) at multiple α-cuts, with an application
of the method for pipe corrosion [221].

Robustness in the framework of convex set theory

Measures for robustness to use in the framework of convex sets were proposed
in [22], where convex sets are described in the framework of info-gap theory,
which has analogies with convex sets [8]. This robustness definition is actually
identical to the robustness radius, as described in Equation (2.61). In addition,
info-gap robustness adds a definition for opportuneness, where the analysis
defines an output that would be nice to realize. This is also defined identical to
the robustness radius only now the value is maximized instead of minimized.

Robustness under interval uncertainty

In the case of interval valued uncertainty due to a lack-of-knowledge the
robustness is usually defined as the resulting output interval width, which
would correspond with the output variance at a certain confidence level. In
general, robustness is defined as:

R(f(x, z∗)) = max
x∈xI

f(x, z∗) − min
x∈xI

f(x, z∗), (2.65)

with R(·) the robustness measured for a specific design variable z∗. This type of
robustness measure is seen in [18, 131, 154], which is mostly concerning interval-
valued variables. More details and cases based on this robustness measure can
be found in Chapter 6.
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2.6.4 Probability of functional compliance

In this class of robustness, measures assess the probability that one or more
system requirements are met under stochastic variation. Hence, these methods
require a detailed description of the probabilistic uncertainty in the input
variables, the system performance limits, and the model should accurately
describe the underlying physical phenomena. This class of methods is limited
to probabilistic methods, as one needs to obtain a probability of exceeding the
requirements. In most cases found in literature, input variables are assumed to
follow a normal distribution, an assumption mainly based on the ease of use
and supported by the central limit theorem. In this case, the probability of
exceeding the upper performance limit (UPL) and lower performance limit LPL
is calculated as:

Prij [LPLj ≤ fj(xi) ≤ UPLj ], (2.66)
where the probability is measured that the output fj depending on variable xi

remains within tolerance. In the case of multiple requirements, the likelihood is
measured that all these requirements are met.

To this point, depending on the robustness measure that is deployed, multiple
techniques exist to evaluate the robustness. Examples using analytical
expressions are found in the literature [21], while most industrial applications are
more demanding. Therefore, the most common strategies found in the literature
are: based on sets of samples [20], using surrogate model approaches [154] or
general means of optimisation [130].

2.7 Stochastic process emulators

A meta-model, emulator, or surrogate model refers to a mathematical function
that generally has no underlying physical constraints and is capable of emulating
a set of observations. In the case of crash analysis, these observations can be
related to the velocity of certain parts [17], or other quantities of interest.
One of the main advantages is that these mathematical functions are easy to
evaluate at a fairly low computational cost. In other words, one can evaluate
surrogate models a lot faster than the numerical model. This point is also
illustrated in Figure 2.20 where the black lines illustrate the path that is the
easiest to evaluate. The dashed lines illustrate that the numerical model should
still be evaluated to produce a set of observations. The surrogate model G is
then trained based on these observations. Note that the model G should be as
simple as possible to allow quick approximations. The non-determinism can be
regarded in two ways at this point: (1) the underlying physics are stochastic in
nature and the model captures this variability; (2) the model can approximate
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the observations until a certain measurement error. The two are structurally
the same and can be analysed in identical ways by a stochastic process [89],
while the context is different. In this work the focus lies on Gaussian processes,
which are a specific type of stochastic surrogate models. The interested reader
is referred to [11] for a recent introduction and review on the use of stochastic
modelling approaches.

y = G(x) + ζ, ζ = N
(
0, σ2(x)

)
stochastic emulator

numerical model

input parameters
z ∈ Z,x ∈ xI model response y

estimated response
µy, σ

2
y

Figure 2.20: Illustration of a stochastic emulator replacing the expensive to
evaluate numerical model

To illustrate the idea of a stochastic process emulator and notation hereof, the
example as stated in [198] is followed. The goal of the example is to demonstrate
a draw or realisation of a quadratic random function defined in Equation (2.67).
In this example X is denoted as the input space for the unknown output
g(x). A draw or realisation of the stochastic process is denoted by g(·), and is
accomplished by generating realisations b0, b1 and b2 of random variables B0,
B1 and B2. Here, the realisation of a random variable is the mapping of a set
of outcomes Ω to a real number R.

To illustrate the process of creating draws g(x) : x ∈ X = [−2; 2] a quadratic
random function is defined:

g(x) = b0 + b1x+ b2x
2, (2.67)

where the realisations b0, b1 and b2 are mutually independent normally
distributed random variables Bi ∼ N (0, σ2

i ) for i = 1, 2, 3. It can be shown that
this normally or Gaussian distributed process realised over x ∈ [−2; 2] has a
zero mean:

E[g(x)] =E[b0 + b1x+ b2x
2], (2.68)

=E[b0] + E[b1]x+ E[b2]x2, (2.69)

=0 + 0x+ 0x2 = 0. (2.70)
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Note that Equation (2.68) is not applicable to a single realisation, as this
property is only achieved for a very large number of realisations. Likewise, the
variance of the process is given by:

V ar[g(x)] =E[(b0 + b1x+ b2x
2)(b0 + b1x+ b2x

2)], (2.71)

=σ2
0 + σ2

1x
2 + σ2

2x
4. (2.72)

Figure 2.21: Illustrations of random draws of the function in Equation (2.67)

Based on the process variance, Confidence Intervals (CI) are calculated as:

CI = cσ, (2.73)

with c a constant that indicates the number of standard deviations, e.g., c = 1, 96
indicates a 95% confidence interval. This means that 95% of the realisations fall
within the CI. Figure 2.21 shows a number of realisations in dashed lines, the
process mean as a red line, and the 95% CI as the blue area in the background.
It is clear from this figure, by the increased blue area, that the variance is larger
at x = 2 compared to x = 0.

Note that there is a relation between x = 2 and x = 0 as they are both related
to the same process. This relation is known as covariance, which is a measure
of the joint variability of two random variables. The covariance is calculated for
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x1, x2 ∈ [−2; 2] as:

Cov[g(x1), g(x2)] =E[(b0 + b1x1 + b2x
2
1)(b0 + b1x2 + b2x

2
2)], (2.74)

=σ2
0 + σ2

1x1x2 + σ2
2x

2
1x

2
2. (2.75)

Based on this example, the reader should have an idea about random process
functions. Note that the quadratic function defined in this section has a number
of limitations, e.g., g(x) only produces quadratic realisations. In practice the
main challenge is to find a functional relation and covariance structure that
correctly predicts observations. Therefore the remainder of this text is devoted
to a more general and flexible formulation of a random process, which is made
conditional on a set of observations.

2.7.1 Gaussian process models

Multiple approaches have been proposed to enhance the capabilities of random
process to represent functional relations. The simplest approach is to allow the
mean of the stochastic process to depend on x in the form of a regression equation
while assuming that the residual variation follows a stationary stochastic process.
This GP has the form:

G(x) = βββT f(x) + σ2𭟋(x,Λ), (2.76)

with the first term being a deterministic regression model with f(x) an arbitrary
basis function, and βββT a vector of regression coefficients. The second term,
is a stochastic process that maps the probability space (Λ,F , P ) to a real
value, with sample space Λ, a σ-algebra F , and probability measure P . This
zero-mean, unit variance stochastic process is scaled with a constant variance of
the Gaussian process σ2. The correlation between two points x and x′ is defined
by the covariance function K(x, x′,p), with p presenting parameters of the
covariance function, generally referred to as hyper-parameters. The correlation
length (see later) is one of those typical hyper-parameters.

For a GP, 𭟋(·) is considered to be stationary, which means that (𭟋(x1), . . . ,𭟋(xnx
))

and (𭟋(x1 + h1), . . . ,𭟋(xnx
+ hnx

)) for h ∈ Rnx have the same distribution for
any x1, . . . , xnx

. The covariance matrix must satisfy the following conditions:

Cov[g(x1), g(x2)] = K(x1 − x2), (2.77)

Where K(·) is the covariance- or "autocovariance" function of the process.
Equation (2.77) means that the covariance function of a stationary Gaussian
Process only depends on the distance x1 − x2. Furthermore, the constant
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(a) Prior (b) Posterior

Figure 2.22: Trajectories sampled from the prior distribution (a) and trajectories
sampled from the posterior distribution (b) where two observations have been
added. For both illustrations the correlation length is lc = 0.6. The blue area
indicates the 95% confidence area, and for the right figure the mean is given in
red.

variance of a stationary stochastic process 𭟋 can be expressed in terms of the
covariance function V ar[g(x)] = Cov[g(x), g(x)] = K(0). The correlation is
then given as:

Cor[g(x1), g(x2)] = K(x1 − x2)/K(0). (2.78)

Equation (2.77) means that points with the same inter-point distance between
x1 and x2, and with the same orientation will have the same covariance. Further
details about the properties of correlation functions fall outside the scope of
this work and can be found in [198]. However, there exists a useful way of
creating correlation functions given a collection of known correlation functions.
Suppose that there are two valid correlation functions K1(·) and K2(·) then
their product K1(·) ×K2(·) is also a valid correlation function, as is any convex
combination. Correlation functions that are the product of one-dimensional
marginal correlation functions are called separable correlation functions.

Gaussian correlation function

This correlation function is based on the normal Gaussian density and is one
of the most commonly used correlation functions. The separable Gaussian
correlation function is given by:

K(x1, x2, lc) = exp
(

−1
2

(
||x1 − x2||2

lc

)2
)
, (2.79)
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with || · ||2 the Euclidean distance and lc the correlation length, which is a
hyper-parameter controlling the rate of correlation.

Exponential correlation functions

The Gaussian correlation function can be seen as a special case of the power
exponential correlation function. The function:

K(x1, x2, lc) = exp
(

−1
2

(
||x1 − x2||2

lc

)p)
, (2.80)

is said to be a power exponential correlation function for lc ≥ 0 and 0 < p ≤ 2.

Whittle- Martérn family of correlation functions

In the thesis of Bertil Martérn [141, 225] a correlation function was introduced
that was deduced to be the most general representation of a correlation function.
The general form of the Whittle-Martérn correlation function is given as [76]:

K(x1, x2, lc, ν) = 2ν−1

Γ(ν)

(√
2ν ||x1 − x2||2

lc

)ν

Kv

(√
2ν ||x1 − x2||2

lc

)
, (2.81)

with ν ≥ 1/2 the "smoothness" parameter, Γ Euler’s Gamma function, and
Kv is the modified Bessel function of the second kind. It can be shown that
for different values of the "smoothness" parameter ν the single and squared
exponential correlation functions are obtained [76]. The most commonly used
Martérn correlation functions are the analytical solutions derived for ν = 3/2
and ν = 5/2. The analytical expression of the Martérn 3/2 correlation function
is defined as:

K(x1, x2, lc, ν = 3/2) =
[
1 +

√
3 ||x1 − x2||2

lc

]
exp

(
−

√
3 ||x1 − x2||2

lc

)
.

(2.82)

The Martérn 5/2 correlation function is defined as:

K(x1, x2, lc, ν = 5/2) =
[

1 +
√

5 ||x1 − x2||2
lc

+ 5
3

(
||x1 − x2||2

lc

)2
]

exp
(

−
√

5 ||x1 − x2||2
lc

)
. (2.83)
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An interesting property of this correlation function is that it is ⌈ν − 1⌉ times
differentiable, with ⌈·⌉ the ceiling function for when ν = 1/2 [132, 190]. A
comment often made about the exponential correlation function is that it is
infinite differentiable, which is not common for functional relations in engineering
practice. Therefore, this function might possibly be too smooth.

The interested reader is refereed to [3] for more details regarding the different
covariance functions in Gaussian processes. In this thesis, two well-known
covariance functions are used: the Gaussian kernel, as defined in Equation (2.80),
and the Matérn 5

2 kernel, as defined in Equation (2.83).

2.7.2 Predictions made by noise free Gaussian processes

The main aim of using a GP is to make a prediction M̂(x) of the underlying
model output M(x), at a new unexplored point x ∈ X , based on noise-
free observations of the process in yDOE = {y1

DOE = M(x1
DOE), . . . , yny

DOE =
M(xnn

DOE) }. This type of GP is also known as the best linear unbiased
predictor [58, 198] or universal Kriging within the geo-statistics community.
Here, the predictions are based on the Gaussian assumption, which states that
the prediction at an unobserved point y = M̂(x) follows a conditional Gaussian
distribution based on the observed responses yDOE [58]:{

M̂(x)
yDOE

}
∼ NnDOE+1

({
fT (x)βββ

Fβββ

}
, σ2

{
1

k(x)
kT (x)

K

})
, (2.84)

with the covariance matrix K the covariance for all points in the domain,
F the matrix of the observed trend, and k(x) a vector of cross-correlations
between predicted point x and observed points xDOE and f , σ2, βββ correspond
to Equation (2.76). Conditional on the observed data, the mean and variance
of the Gaussian process can be estimated by [198]:

µgp(x) = fT (x)β̂ββ + kT (x)K−1(yDOE − Fβ̂ββ), (2.85)

σ2
gp(x) = σ2 (1 − kT (x) + uT (x)(FT K−1F)−1u(x)

)
, (2.86)

and with
β̂ββ = (FT K−1F)−1FT K−1yDOE (2.87)

the general least-squares estimate of βββ and

u(x) = FT K−1k(x) − f(x). (2.88)

Equations (2.85) and (2.86) are referred to as the mean and variance of the GP
predictor, respectively. The GP described in this section is an interpolating
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GP, which means that the prediction of the variance at an experimental point
x ∈ xDOE tends to zero. This is also shown in Figure 2.23 where the prior 2.23a
and posterior distributions 2.23b of the GP are shown. These figures show the
mean, in red, and 95% CI as a blue area, including a number of realisations of
the GP in dashed lines.

(a) Prior (b) Posterior

Figure 2.23: Trajectories sampled from the prior distribution (a) and trajectories
sampled from the posterior distribution (b) . Similar as in Figure 2.22. However
the correlation length parameter is changed to lc = 3. The blue area indicates
the 95% confidence area, and for the right figure the mean is given in red.

2.7.3 Predictions made by a noisy Gaussian process

In the specific case where a GP is used to predict a stochastic function, a noise
term is defined. In general, a noise contaminated function is defined in the
following ways:

M(x) = m(x) + ζ, (2.89)
where the model output m(x) is contaminated with an additional noise term
ζ. It is convenient to assume that this noise follows a zero-mean Gaussian
distribution:

ζ = N (0,Σgp), (2.90)
with Σgp the covariance matrix of the noise term. Depending on the definition
of Σgp different classes of noise are identified:

Σgp = σ2
gpI, (2.91)

with I the identity matrix, for the case of homogeneous (homoscedastic) noise.
It is also possible that for each observed response an independent noise variance
is observed, which is defend as:

Σgp = diag(σ2
gp), (2.92)
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for the case of independent heterogeneous (heteroscedastic) noise. In the most
general case described as general heteroscedastic the noise matrix has the shape
of a general covariance matrix Σgp where for each observation a different noise
variance can be obtained and correlations of this noise are possible. The work
presented here is limited to homoscedastic noise. In other words, it is assumed
that all observed responses have the same noise variance without any underlying
correlations. For this specific case of homoscedastic noise, the total GP variance
is given as:

σ2
total = σ2

gp + σ2, (2.93)
with σ2 from Equation (2.76), and:

τ = σgp2

σ2
total

, (2.94)

which will allow us to estimate the noise variance of the GP-model. Here the
GP is again calibrated on an initial design of experiments xDOE obtained from,
e.g., Latin hyper-cube sampling and their observed results yDOE . The posterior
Gaussian distribution of the unobserved point M̂(x) is then given by:{

M̂(x)
yDOE

}
∼ NnDOE+1

({
fT (x)βββ

Fβββ

}
, σ2

total

{
(1 − τ)
k̃(x)

k̃T (x)
σ2K̃

})
. (2.95)

For the noisy GP the cross-covariance vector between the predicted point x and
observed points xDOE including the noise is given as:

k̃ = (1 − τ)k (2.96)

and the covariance matrix is given as:

K̃ = (1 − τ)K + τI (2.97)

The mean and variance of a universal Gaussian process with homoscedastic
noise conditional on the observations are estimated by [198]:

µgp(x) = fT (x)β̂ββ + k̃T (x)K̃−1(yDOE − Fβ̂ββ), (2.98)

σ2
gp(x) = σ2

total
(
1 − K̃T (x)K̃−1k̃(x) + uT

c (x)(FT K−1F)−1uc(x)
)
, (2.99)

with F the matrix of the observed trend, with:

β̂ββ = (FT K̃−1F)−1FT K̃−1yDOE , (2.100)

the general least-squares estimate of regression coefficients βββ and

uc(x) = FT K̃−1k̃(x) − f(x). (2.101)
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Equations (2.98) and (2.99) are referred to as the mean and variance of the
GP predictor, respectively. The parameters of the GP, e.g., βββ,σ2, as well as
the hyper-parameters of the covariance kernel, e.g., lc, are optimised using
maximum likelihood estimation, which is further explained in the next section.
In the case of unknown homoscedastic noise, an additional noise parameter σ2

gp
is added to the maximum likelihood estimation [190]. Note that, unlike the
noise-free case, the variance of the prediction at an experimental design point
x ∈ xDOE does not collapse to zero, and the GP predictor becomes a regression
model since it is no longer interpolating through the observations. This effect
is also shown in Figure 2.24 with the GP in Figure 2.24a and the posterior in
Figure 2.24b. In these figures again the mean is in red, the 95% CI in blue, and
a number of realisations are in the dashed lines. Note that unlike Figure 2.23
the observations are not crisp at the points xDOE = {−2; 3} as there remains
an, e.g., observation or process, variance σgp at the sampled points.

(a) Prior (b) Posterior

Figure 2.24: Trajectories sampled from a noisy GP with the prior distribution
(a) and posterior distribution (b). Similar as in Figure 2.22, with a correlation
length of lc = 3. The blue area indicates the 95% confidence area, and for the
right figure the mean is given in red.

2.7.4 Maximum-likelihood estimation of hyper-parameters

The hyper-parameters, e.g. lc, used to build a GP model are usually unknown
and should be determined based on the information at hand. It is common
practice to use an optimisation strategy to estimate these parameters. In the
literature, multiple dedicated strategies are described based on the information
that is known and the parameters that should be optimised. Currently there
are two main hyperparameter estimation methods used in the context of GP
modelling, maximum-likelihood estimation and cross validation [10], which
can be found in more comprehensive works [58, 190, 198]. In this work only
maximum-likelihood estimation is considered.
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The idea behind maximum-likelihood estimation is to find the set of hyper-
parameters H = {βββ, σ2, lc} such that the likelihood of the observations in yDOE
are maximised. The marginal likelihood is based on the evidence p(yDOE|H),
given by:

p(yDOE|C) =
∫
p(yDOE|H)p(H|C)dH, (2.102)

with p(yDOE|H) the likelihood of observing yDOE given the parameters H and
p(H|C) the prior parameter distribution, which is characterised by C. Based on
the fact that the GP-model uses a Gaussian prior, an analytical formula can be
derived for multiple combinations of hyper-parameters that must be estimated.
The interested reader is referred to [190, 198] for more details and proofs.

For noise-free GPs the parameters that should be estimated are: βββ, σ2 and lc.
Note that Equation (2.87) represents the least squares estimate β̂̂β̂β. In addition,
σ̂2 is estimated as:

σ̂2 = σ2(lc) = 1
nDOE

(yDOE − Fβββ)T K−1 (yDOE − Fβββ)T
, (2.103)

with βββ and K depending on lc. The latter parameter lc in turn is found by
means of the maximum likelihood estimation, which for noise-free GP is defined
as:

l̂c = argmin
lc∈Dlc

1
2
[
log det(K) + nDOE log(2πσ̂2) + nDOE

]
, (2.104)

with Dlc a set bounding the possible values for lc.

In the case of unknown homoscedastic noise variance, the hyper-parameters are
obtained in a similar fashion, where now the covariance matrix K is replaced
by K̃ as defined in Equation (2.97). Furthermore, the noise ratio τ should also
be estimated with the maximum-likelihood estimation for this case defined as:

l̂c, τ̂ = argmin
lc∈Dlc ,τ∈[0;1]

1
2
[
log det(K̃) + nDOE log(2πσ̂2

total) + nDOE
]
, (2.105)

with the parameter τ bounded within [0; 1], and σ̂2
total the estimated total

variance, which is estimated as stated in Equation (2.103) where K is replaced
by K̃. The set of optimal parameters is then identified by finding the minimum
of Equation (2.104) or Equation (2.105), which can be accomplished using
various optimisation techniques, e.g., Interior point methods [233], or Differential
Evolution [185]. The choice of an optimisation algorithm in this context depends
on the complexity of the underlying problem and the associated computational
costs.
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2.7.5 Optimisation using a Gaussian Process

As highlighted in Figure 2.20, a GP can replace the complex and difficult to
evaluate numerical model. The GP is analytical and is therefore relatively
easy to evaluate. Therefore, in this work a GP is used as a meta-model in
optimisation. It should be clear that this section does not cover a general
discussion regarding optimisation approaches, as this falls outside the scope of
this work. The interested reader is referred to [104] for a more comprehensive
overview and practical considerations. The focus of this section is on global
optimisation approaches applicable to the non-linear nature of crash analysis.
Furthermore, as the numerical model of the crash case behaves as a stochastic
black-box function only a limited set of optimisation strategies can be used.
Generally speaking, there are two approaches for this type of problem meta-
modelling strategies, or evolutionary algorithms. The former uses a meta-model
as a surrogate to speed up the search algorithm in the optimisation process,
e.g. using a GP. The latter uses a large population, i.e., samples, which slowly
evolve towards a global minimum, e.g., Differential Evolution (DE) [185]. In
this work, an efficient global optimisation approach is proposed, capable of
identifying the most robust design with a minimum number of evaluations. As
this approach is based on the idea of EGO the rest of this section will introduce
EGO as introduced in [118].

Efficient global optimisation

Introduced in [118] Efficient Global Optimisation EGO is a strategy to optimise
black-box functions by updating a surrogate model in the background. In
essence, the idea is to adaptively update a surrogate model by minimising the
discrepancy with a physical model f(·) and the surrogate g(·). Hence, the
surrogate provides a functional relation between output and input variables. In
general, the surrogate is a Gaussian Process GP, as described in Chapter 2.7.
Hence, the method starts with an initial DOE to obtain an initially trained GP,
which is then enriched by a new point at each iteration. These new points are
identified by the expected improvement:

E(I(x)) = E(fmin − g(x)), (2.106)

where fmin = min(yDOE) is the current minimum of the evaluated DOE points
and g(x) the surrogate prediction. By using a GP as surrogate model g, the
outputs are normally distributed N (µ, σ). Therefore, the expected improvement
is expressed as:

E(I(x)) = (fmin − µ(x))Φ
(
fmin − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fmin − µ(x)

σ(x)

)
(2.107)



STOCHASTIC PROCESS EMULATORS 65

with ϕ(·) the normal PDF and Φ(·) the cumulative distribution function (CDF)
of N (0, 1). An illustration of EGO is given in Figure 2.25 where the GP posterior
is shown in the left top, with underneath the expected improvement. For the
left hand figure the expected improvement is the highest at x = 0, indicated by
the blue dot. Therefore, in the following iteration f(x = 0) is evaluated and the
GP is updated with this information. The expected improvement on the right
side shows now that the next point that promises to be the largest improvement
is x = −5. Note that the absolute value of the expected improvement is lower
in the right figure, which will decrease further as the minimum is approached.
Variations of expected improvement were introduced [115, 134, 168] for different
needs, with a specific application on interval variables in [52].

Figure 2.25: Illustration of Efficient Global Optimisation with on top the GP
posterior distribution and on the bottom the expected improvement; the blue
dot indicates the point with maximum expected improvement indicated by the
dashed blue line in the top figures





Chapter 3

Inhomogeneous interval fields
based on scaled inverse
distance weighting
interpolation

This chapter was previously published as:
C. van Mierlo et al. “Inhomogeneous interval fields based on scaled inverse
distance weighting interpolation”. In: Computer Methods in Applied Mechanics
and Engineering 373 (2021). Publisher: Elsevier, p. 113542

3.1 Abstract

This chapter introduces a novel method to model non-deterministic quantities
based on experimental measurement data. The focus of this work is on quantities
that vary over a continuous domain, e.g., material properties, time-dependent
strain rate effects, or stress-strain curves. These quantities are modelled by
means of the recently introduced concept of interval fields. An interval field
defines intervals that are defined throughout the continuous domain and have
dependence in this domain by expanding them over a set of basis functions,
describing the spatial nature of the non-determinism of the modelled quantities.
One of the more intuitive concepts of defining basis functions in an interval field

67
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is through inverse distance weighting interpolation (IDW), which starts from
known intervals at specific control points within the domain. For each of these
control points, a corresponding basis function is defined, the relative weight
of which is decreasing inversely with the distance. Through this definition,
all intervals have non-vanishing basis functions throughout the model domain.
This makes the application of standard IDW extremely challenging when the
interval uncertainty varies inhomogeneously over the domain, i.e., when local
effects are present in the model.

Therefore, in this work standard IDW is adapted by changing the distance
measure. More specifically, the weight of intervals is increased locally, while
diminishing the weight in other regions. For this purpose, a function is
introduced that maps the domain to a higher dimension feature space, in
which the distances that determine the weight are measured. This mapping
function is based on either the size of the intervals at the control points or
experimental data, which both yield additional control resulting in increased
agreement with experimental data.

This chapter demonstrates that this method outperforms standard IDW in
controllability, while limiting the number of control points. This is illustrated
in three case studies: a first case concerning modelling local non-determinism; a
second case where a mix of global and local effects is modelled; and the third case,
where the interval field is based on experimental stress strain curves. In all these
cases, multiple configurations demonstrate the effects of the parameters, and
how the new technique is applied. The proposed technique outperforms standard
IDW in all three case studies, with an increased coefficient of determination,
R2, between 22% and 56%, in comparison to standard IDW.

3.2 Introduction

In practice, engineers are faced with the task of designing functional components,
that should be capable of performing under challenging situations. The
performance of these components is mainly assessed by means of numerical
approximations of sets of differential equations describing the physical behaviour
of the component. However, in many cases the parameters that govern these
equations are only known vaguely, with limited information about how these
values are distributed, or what their exact value is. The main reasons for this
are: the corresponding quantities are inherently variable, e.g. wind loads, or
there is incomplete knowledge about the quantity, e.g. direct measurement is
challenging, or a combination of both [84]. In order to account for these vague
or non-deterministic quantities in engineering practice, large safety factors are
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used, which might introduce a large degree of conservatism to ensure reliable
performance. To account for these non-deterministic quantities, numerous
techniques have been introduced during the last decades. Typically these
techniques are categorised as probabilistic [213] and possibilistic approaches
such as: intervals [68], fuzzy sets [100], and imprecise probabilities [19].
Where probabilistic methods describe non-determinism as the likelihood that
parameters assume a value via a joint probability density function, possibilistic
methods as, i.e. interval methods, consider non-deterministic quantities to be
bounded.

A recently introduced interval method to distribute properties spatially is the
framework of interval fields, which can be regarded as a possibilistic counterpart
to random fields [224] for quantities that are spatial or time dependent [158].
Following this framework of interval fields, locally defined intervals are expanded
through the model domain based on a set of a priori defined basis functions.
Multiple definitions of basis functions can be found in literature, which are
based on inverse distance weighting [71], affine arithmetic [204, 208, 211],
radial basis functions [112], a spatial averaging method [234], or set-theoretical
approaches [116, 176]. The main focus of this work is on basis functions defined
using inverse distance weighting or, Shepard’s method, as described in [200]. In
this article, Inverse Distance Weighting interpolation (IDW) is proposed as a
method to interpolate two-dimensional irregularly spaced data, that could be
applied in the fields of, e.g. meteorology, geology and urban planning. All these
disciplines have in common that information is collected at specific locations,
e.g. weather stations, and needs to be distributed towards a larger area, e.g.
a city, or state. IDW is applied to construct the basis functions for defining
interval fields in [51], where it is assumed that information about the non-
deterministic quantity is obtained at specific locations. This local information
about the non-determinism is reflected by the intervals at these points, referred
to as control points. This local definition of intervals makes IDW an intuitive
technique that is capable of representing non-determinism in different cases, as
described in [71].

However, when considering inhomogeneous interval fields (i.e. interval fields that
are constructed from intervals with large size variations at the control points),
IDW suffers from several issues, which make it incapable of representing the
observed non-determinism [150]. This is problematic when real-life cases such
as local damage, gradual increasing variation of model parameters (e.g., time
sensitive parameters such as creep parameters) or stress-strain measurements
are to be modelled using the interval field framework.

One of the shortcomings of IDW is that it neglects the direction to other points,
as reported in [200]. The effect of not taking the direction into account is
that the basis functions are non-vanishing in the continuous domain. Thus,
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even when other points are crossed in a straight line, the interval defined
at the first control point still has an influence. This is counter-intuitive, as
one would expect that after crossing other control points the effect should be
negligible. This problem is inherent to the definition of the basis functions
that are inversely proportional to a distance measure, computed to all other
points within the model domain. Thus, when a locally increased amount of
non-determinism is modelled, a larger interval is placed at the corresponding
control point, which affects the entire interval field. The effect that is noticed
depends on the information that is placed at the control points of the interval
field, and can manifest itself in unpredictable manners. Usually this occurs in
locations further away from the control points, as in these locations the weights
of different control points all have an influence.

To overcome these shortcomings, this work introduces an adaptation of standard
IDW, by measuring the distance between elements in the geometrical domain
in a feature space. This is accomplished by an explicit mapping function that
transforms the model domain into a higher-dimensional feature space, which
changes the distance between control points. The key idea here is to use a
set of experimental data to define this mapping function. In addition, when
high dimensional data about the quantities of interest is available throughout
the domain the spatial nature of the interval field can be matched to these
measurements. For this work the focus lies on one-dimensional data, as
measurements of two-dimensional data remain challenging even with the use
of advanced techniques, such as Digital Image Correlation (DIC) [9], which
can be used in conjunction with the virtual fields method [184], as applied
in [75]. Therefore, the method is demonstrated on three case studies, including
a one-dimensional example based on a real set of stress-strain curves. The
structure of the paper is as follows: Section 2 provides the reader with the
necessary background in interval fields. In Section 3, a detailed description
of the methodology is given, while in Section 4 the optimisation procedure is
described for obtaining a data-based interval field. The performance of the
method and examples of the obtained results are provided in Section 5, with
final remarks and conclusions given in Section 6.

3.3 Interval Field analysis

Omitted to avoid redundancy, see Chapter 2 Section 2.5.2
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3.4 Scaled basis functions

The classical definition of Inverse Distance Weighting (IDW) interpolation as
introduced in Section 2.5.2 has a major shortcoming, which is attributed to the
non-vanishing weights used to create the basis functions in Equation (2.38). The
weights, defined in Equation (2.39) depend on a power p and a distance measure
d(·) measured from the control points to all points within the geometrical
domain Ω. Therefore, at each point within the domain at an identical distance
from the control point has an equal weight, which causes undesired ‘artefacts’
between the control points. These artefacts depend on the location of the control
point and the size of the interpolated values, which may cause the realisation
of the interval field to inflate or deflate in particular situations. When the
realisations of the interval field experience these undesired artefacts, only limited
adjustments can be made by the analyst in order to mitigate these effects in the
standard definition of IDW. These effects are best illustrated when the weights
are calculated at a query point rm (which is not a control point in the interval
field) for two configurations of co-linear points. This is illustrated in Figure 3.1
where in the two configurations 3.1a and 3.1b the control point r2 is placed
in two different locations: between control point r1 and query point rm, and
between the query point rm and r3, respectively. It would be expected that the
location of this control point influences the weight of the other control points
at the query location rm. However, as the distance between r1 and r3 to rm is
identical the weight of these points is equal at the query point, as illustrated by
the weights wa and wd in illustration 3.1c. Hence, this is counter-intuitive as
it would be expected that placing the control point between rm and r3 would
lower the influence of r3 at the query point. This is described as neglecting the
direction by Shepard in his original paper [200], as it is clear that the point r2
is crossed on the path from rm to r3 in configuration b.

In addition, if one assumes that the interval at r3 is significantly larger compared
to the intervals at r1 and r2 and when IDW interpolation is used as described in
Equation (2.38) at rm, then the interpolated value is larger than the values at r1
and r2 in both configurations. This effect or inflation can be counter-intuitive
and undesired, especially in the configuration in Figure 3.1b where a control
point r2 is placed between the control points rm and r3. Moreover, the example
in Figure 3.1 only uses three control points in each configuration, which would
be very low for a case with industrial relevance. Nevertheless, it is clear that the
problems associated with these non-vanishing weights become more pronounced
and harder to mitigate with each control point that is added, as each control
point has a non-vanishing weight throughout the domain.

To overcome the shortcomings associated with these non-vanishing weight
functions in standard IDW, a new framework for constructing interval fields
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(a) Distance measures with control point r2 placed between r1 and rm
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(b) Distance measures with control point r2 placed between rm and r3
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(c) Weight functions based on the location of the control point r2 in red and blue

Figure 3.1: Effect of changing the location of the control point on the weight
functions

based on IDW interpolation is introduced in this section. The key idea is that
the weight functions are scaled with respect to an envelope that represents
experimental data or expert knowledge. This scaling is performed to alter the
influence of certain control points within the domain. Specifically, this scaling
is accomplished by transforming the physical domain Ω to a higher dimensional
feature space Ω ⊂ F . This transformation is performed by means of an explicit
scaling function S : Rd 7→ Rd+1, which maps Ω to the higher dimensional
feature space F . The idea behind computing the distance measures in the
feature space F is illustrated in Figure 3.2, which corresponds to configuration
b in Figure 3.1b. In this example, the assumption is made again that the
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first control points r1 and r2 have interval values that are significantly smaller
compared to this of the last control point r3, which leads to the inflation of
the realisations. In order to reduce the influence of this large interval value
at r3, a scaling in the feature space is performed Sa,b,c = S(r3), illustrated
in Figure 3.2a. By changing the location of the control point in the feature
space the distance measure of the query point to the control point is changed
d(rm, r3), which is shown in Figure 3.2b where the distance measure increases
from c to a, in correspondence with the scaling in Figure 3.2a. By increasing the
distance between the query point rm and the control point r3 the weight of the
control point decreases at the query point and therefore mitigating the effect of
inflation of the basis functions without changing the number or location of the
control points.

3.4.1 Scaling function based on interval size

In this section, a more general case is considered where the scaling, as discussed
in the introduction of this section, is performed only at the control points, which
represent expert knowledge or local measurements. Especially in cases where
the interval size is varying considerably within the domain to model localised
phenomena, this can reduce the inflation or deflation of the interval field due
to the large intervals. Therefore, the scaling is only performed on the interval
size, which is determined through the interval radius ∆x. This corresponds to
the previously discussed case where very small intervals are placed at r1 and r2
and a large interval is placed at r3. The scaling in Figure 3.2a illustrates the
results of Equation (3.1) where intervals with different sizes are placed at an
increased distance in the feature space F . Therefore the weight of larger intervals
that differ in size from their neighbouring points is reduced, as illustrated in
Figure 3.2c. The mapping function associated with this is explicitly defined as:

Si =
(

∆αi

max(∆α)

)t

, (3.1)

with the parameter t ∈ R+
0 being a scaling factor. The index i denotes that this

mapping is only made at discrete control points of the interval field. Therefore,
before the weight functions are created the distances are measured within the
feature space as indicated by Figure 3.2a. From this illustration it is also clear
that the path from r2 to Sa,b,c can be formed in different manners by means of
interpolation (e.g. linear-, polynomial-, spline-interpolation, . . . ). Nevertheless
without losing generality, this chapter specifically uses only linear interpolation
between scaled control points S(ri) to obtain the scaled value at point S(rj) in
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(a) Different magnitudes of scaling control point r3, indicated by a,b and c
d(rm, r3)|F

Sc Sb Sa

(b) The effect of the different magnitudes of scaling on the distance measure
w3(S)

r1 r3r2rm

c
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a

(c) Weight function of rm dependent on the scaling that is used

Figure 3.2: The effect of increasing the magnitude of scaling, labelled c,b and a,
of control point r3 on the distance measure and the corresponding effect on the
weight functions

the feature space, which is explicitly denoted as:

S(rj) = Si
rj − ri+1

ri − ri+1
+ Si+1

rj − ri

ri+1 − ri
∀rj ∈ [ri ri+1] (3.2)

which is based on first order Lagrange polynomials. Note that these linear
interpolation functions will make the basis functions approximately linear
functions between control points. Obviously, also other interpolation schemes
can be used to replace Equation (3.2).
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3.4.2 Distance measures

In order to obtain the weight functions, the Euclidean distance between the
control point ri and other non-control points rj is measured in the feature space
F along the created path. This can be interpreted as measuring the distance
over a topological surface described by the feature space F , indicated by the
super-script S. The total distance is computed by summing the Euclidean
distances between all elements from the control point ri to the jth element rj ,
denoted as:

dS(ri, rj) =
j−1∑
v=i

∥(rv,Sv) − (rv+1,Sv+1)∥2 , for i < j (3.3)

These measurements are directly used to determine the weights based on
Equation (2.39):

wS
i (r) = 1

[dS(ri, r)]p . (3.4)

Here, the index i selects the appropriate weights for the corresponding ith

interval. The final interval field is obtained by implementing these weights in
Equation (2.38), which yields following expression:

xI(r) = x̂ +
nb∑

i=1

αI
iw

S
i (r)∑nb

j=1 w
S
j (r)

. (3.5)

3.5 Data based basis functions

In the previous section it is assumed that information about the non-
deterministic quantities is available at discrete points. This section deals with
the case where measurements about the spatial nature are available throughout
the domain. Specifically, the applicability of the mapping function to the
experimental data is investigated in order to obtain a better overall fit with
the available experimental data. This is achieved in two steps where first an
envelope of experimental data is constructed that is used to define the mapping
function, and second, an optimisation is performed to maximise the agreement
between the interval field and the experimental data.

3.5.1 Scaling function based on measurement data

In order to define the basis functions to build an interval field that represents a
set of experimental data, an envelope AI(r) is defined which encapsulates all
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experimental data. The envelope AI(r) : Ω 7→ IR is defined as a function of the
model domain, and when sampled, the interval bounding the measurements
range at this point is returned. This allows for direct measurement of the
interval centre point and radius at a location within r, denoted as:

Â(r) = A(r) + A(r)
2 , (3.6)

∆A(r) = A(r) − A(r)
2 . (3.7)

It should be noted that when only AI(r) is considered, the spatial dependence
that is present in the data is omitted. This effect is especially pronounced
when considering non-monotonic spatial functions that are represented by an
envelope. Additionally, by decomposing the envelope AI(r) into a midpoint and
a radius, not only the spatial dependence is decoupled, but the inhomogeneities
are decomposed as well. Where in general, both the midpoint and the radius can
vary throughout the domain. Therefore, the scaling function in Equation (3.8)
is aimed at maximising the difference between the measurements in the data
set by combining both effects, and define the scaling on the sum of absolute
value of the midpoint with the radius. This scaling based on the envelope of
experimental data is explicitly denoted as:

S(r) =
(

|Â(r)|+∆A(r)
maxr(|Â(r)|+∆A(r))

)q

, (3.8)

with |·| indicating the absolute value, q ∈ R+
0 a parameter to scale the influence,

similar to t in Equation (3.1), and the max(.) is taken with respect to the vector
r to normalise the scaling.

3.5.2 Optimisation of the basis functions

Scaling the basis functions will not directly provide the optimal agreement
between realisations and the interval field. A good agreement is accomplished
by optimising the realisations of the interval field towards the data set in a least
squares sense, minimising the residual between experimental results and the
interval field. The residual is calculated by computing the Euclidean distance
∥·∥2 between the radius of the envelope of experimental data ∆A(r) and the
radius of the interval field

∑nb

i=1 ψi(rj , p, q)∆αj at a selected set of locations rj ,
explicitly denoted as:

δj(p, q) =
∥∥∥∥∥∆A(rj) −

nb∑
i=1

ψi(rj , p, q)∆αj

∥∥∥∥∥
2

. (3.9)
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Based on this distance metric, an optimisation can be performed based on these
residuals by summing them for all elements n in the vector r. Optimisation is
performed with respect to the parameters p and q, from equation (3.4) and (3.8).
During optimisation these parameters are constrained to ensure that p > 0 and
q ≥ 0, which can for instance be accomplished by means of Sequential Quadratic
Programming (SQP) [91]. The optimisation problem is explicitly denoted as:

min
p,q

n∑
j=1

δn(ψ(p, q))

s.t. p >0

w ≥0

(3.10)

The results shown in this chapter are obtained by initiating both parameters
as p = q = 1. At this point, all information is provided in order to obtain
scaled basis functions, which are used in the case studies in the following section.
All the steps needed to obtain an interval field from scaled basis functions are
illustrated in Figure 3.3.

This workflow starts from the analyst, placing the control points at the desired
locations, and the calculation of the interval midpoint and radius of the envelope.
The optimisation loop indicated here is kept general, as multiple constrained
optimisation algorithms can be employed. At the end of the optimisation process
the optimal parameters p∗ and q∗ are obtained, and are used to calculate the
final interval field using Equation (3.5). Additionally, it should be noted that
this optimisation step is also applicable when standard IDW is used, by tuning
the p value for optimal correspondence with the data. This will be illustrated
in section 3.6.
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Set the control points ri

Determine interval radius and midpoint:
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Figure 3.3: Workflow to optimise the interval field with respect to experimental
data
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3.6 Case studies

In order to demonstrate the proposed approach, three cases studies are defined:

Case 1: locally varying intervals

Case 2: varying both the midpoint and radius

Case 3: interval field model for stress-strain measurements

In the remainder of this section, results are mainly discussed using figures with
a specific consistent lay-out, where the weights, basis functions and the upper
and lower bound of the interval field are illustrated in rows, respectively. The
columns represent different configurations, where additional control points are
placed, or different factors are used in equations (3.8) and (2.38), which are
determined through optimisation when indicated by an ∗. All parameters that
are used to obtain the results are included on the last figure, which shows the
realisations of the interval field. Note, that in all figures the weight functions
are plotted with a logarithmic y-scale that is truncated at a value of 500, this in
order to aid in the comparison of results since theoretically the weights w → ∞
when r → ri. In addition, to provide quantitative comparison of the results an
R2 value is provided, calculated between the interval field and the experimental
data set, denoted as:

R2 = 1 −
∑n

j=1 (∆A(rj) −
∑nb

i=1 ψi(rj)∆αj)2∑n
j=1(∆A(rj) − 1

n

∑n
i ∆Ai)2 , (3.11)

where the average radius of the envelope is calculated using all data points n.
To calculate the R2 value the explained variation of the interval field is divided
by the total variation. Therefore, an R2 value of 1 tells the analyst that all the
variation is explained by the interval field, i.e. perfect agreement is obtained.

3.6.1 Case 1: Locally varying intervals

This case represents local effects that could be caused by, e.g., porosity or cracks,
which are modelled by a locally increased amount of uncertainty. This can be
represented by an interval field, which describes the spatial distribution of a
model parameter that represents this behaviour, e.g. local loss of stiffness. For
the sake of illustration, in this case, it is assumed that the model parameter
responsible for this behaviour lies in a large interval xI

3, while this is lower
in normal circumstances. These intervals with corresponding locations of the
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control points are provided in Table 3.1 for this case. The envelope is constructed
by means of linear interpolation between all the control points, indicated as
a dashed black line in each of the realisations in Figure 3.4. In this figure
standard IDW is used in three different configurations: first, using three control
points with p set to 2; second, standard IDW where p is determined by means
of optimisation, equation (3.9); and third, standard IDW where optimisation is
used to determine p using additional control points.

i 1 2 3 4 5
ri 0 0.25 0.5 0.75 1
xI

i 320 320 600 320 320
xI

i 290 290 0 290 290

Table 3.1: Intervals and control points used for case 1

Figure 3.4 shows the effects of the power p and adding additional control points
on both the basis functions and the weights. It is clear from Figures 3.4a and
3.4b, that lowering the power p localises the influence of an interval around a
control point, which also attributes to a higher rate of decline of the weight
at this control point. However, due to this rapid decline in weight around the
control points, the weight of all intervals increases between the control points,
which is best seen by comparing the basis functions of Figure 3.4d and 3.4e.
This effect is also responsible for the inflation of the realisations of the interval
field, illustrated in Figure 3.4i. In the latter case it is clear that the large
interval at r = 0.5 has an influence on the realisation outside the local area.
This effect is mitigated by scaling the basis functions in order to obtain a better
agreement between the envelope using a minimal number of control points. This
is illustrated in Figure 3.5.

In Figure 3.5 three different configurations of scaled IDW are shown, where in the
left column, both p and q are set at an initial value of one, optimisation towards q
is performed for the column in the middle, and optimisation towards both p and
q is performed in the right column. It is shown in Figure 3.5g that a moderate
fit is already obtained by setting q to one, without any means of optimisation.
When optimisation is used, a R2 higher than 0.9 is achieved without the addition
of additional control points, as shown in the other configurations, as shown
in Figure 3.5h and 3.5i. The effects of using scaled IDW is clearly visible at
the weighting functions, which is clearly visible by comparison of the weighting
functions in Figure 3.4a and 3.5a, the latter being less smooth. This effect is
attributed to the sharp transitions of the envelope, which is caused by the use of
linear interpolation to construct the envelope, as after this sharp transition, the
mapping function provides a sudden large change in distance between points.
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(a) Standard weight func-
tions

(b) Optimised weight func-
tions

(c) Optimised weight func-
tions

(d) Standard basis functions(e) Optimised basis func-
tions

(f) Optimised basis func-
tions

(g) Standard IDW realisa-
tions (h) Optimised realisations (i) Optimised realisations

Figure 3.4: Columns representing cases using standard IDW in order to fit the
envelope, black dashed line, below with corresponding weight functions, basis
functions and the outer realisations indicated in red and blue lines, respectively.

However, as real data in general is smoother, this effect will be less pronounced.

In addition, Figure 3.5a illustrates how scaling of the weights locally decreases
the influence where, for instance the weight function w1 decreases when moving
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(a) Scaled weight functions(b) Scaled weight functions (c) Scaled weight functions

(d) Scaled basis functions (e) Scaled basis functions (f) Scaled basis functions

(g) Scaled realisations (h) Scaled realisations (i) Scaled realisations

Figure 3.5: Columns representing cases using scaled IDW in order to fit the
envelope, black dashed line, with corresponding weight functions, basis functions
and the outer realisations indicated in red and blue lines, respectively.

away from the control point r1, but when reaching a value of r = 0.25 this
decrease is amplified. As a result, one can see a difference in the influence of
the basis functions in Figure 3.5e, where the influence of ψ1(r) is almost not
decreasing when moving away from the control point r1, while the influence of
ψ2(r) is more localised, illustrated by the faster decline of the basis function
when moving away from the control point r3. Hence, the realisations obtained



CASE STUDIES 83

with scaling the weights are in better agreement with the envelope, indicated
by the higher R2 values.

3.6.2 Case 2: varying both the midpoint and radius

For this case, the data consists of different intervals with both a varying interval
radius and midpoint. The intervals and corresponding control points used in
this case are provided in Table 3.2, which are all used to construct the envelope
by means of linear interpolation. The results of this case are illustrated in
Figure 3.6, where the left column represents standard IDW with only the control
points i = 1, 2, 5, scaled IDW is optimised, in the middle and on the right,
scaled IDW is used with an additional control point i = 1, 2, 4, 5.

i 1 2 3 4 5
ri 0 0.35 0.5 0.75 1
xI

i 400 1200 350 500 1200
xI

i 200 1150 50 100 700

Table 3.2: Intervals and control points used for case 2

This case shows how the information about the radius of the envelope is
translated to the weight and basis functions, which is demonstrated by omitting
some of the control points that are used to create the envelope from the interval
field definition (i.e., r3 and r4, are excluded). Here, the envelope is constructed
by linear interpolation, and the midpoint of this envelope is used to construct
the interval field, according to Equation (2.41). With the use of standard IDW
there is a clear discrepancy between the envelope and the interval field at r = 0.5,
in Figure 3.6g, which can only be mitigated by an additional control point at
this location. However, in the second configuration in Figure 3.6h, scaling of
the weights based on the midpoint and the radius yields a clear improvement
with an R2 of 0.91. The main reason can be found at the basis functions where
a comparison between 3.6a and 3.6b indicates that the influence of the small
interval xI

2 is decreased faster, resulting simultaneously in a fast increase of the
effect of xI

1 and xI
5.

In order to increase the coefficient of determination a control point can be
added, which also allows the analysis to sample different realisations. However,
additional control points will increase the nb dimensional input space which
increases the number of samples to be propagated, i.e., vertex analysis. In
addition, for each control point an additional basis function and corresponding
weight is needed. This is illustrated in Figure 3.6i, were an additional control
point r3 = 0.75 is used to create the interval field. The increased R2 value of
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0.98 clearly shows a large improvement of agreement, and the power of the
scaling parameter q is decreased from 1.3 to 0.43 resulting in smoother basis
functions as the scaling is less pronounced.

(a) Standard weight func-
tions (b) Scaled weight functions (c) Scaled weight functions

(d) Standard basis functions (e) Scaled basis functions (f) Scaled basis functions

(g) Standard realisations (h) Scaled realisations (i) Scaled realisations

Figure 3.6: Left column representing standard IDW, while the other cases
use scaled IDW in order to fit the envelope in the black dashed line below,
with corresponding weight functions, basis functions and the outer realisations
indicated in red and blue lines, respectively.
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3.6.3 Case 3: interval field model for stress-strain measure-
ments

Figure 3.7: Experimentally obtained stress-strain curves with the corresponding
envelope, plotted at a 0.1 offset in black dashed lines encapsulating the data

The last case under consideration is based on real stress-strain measurements
of tensile tests, performed on dog-bone shaped samples in accordance with
ASTM D638 at a speed of 5 mm/min. The samples are produced by means
of additive manufacturing, using a FORM 2 stereolithography printer, and are
tested on a INSTRON 4204 tensile test machine. The stress-strain curves that
were obtained are illustrated in Figure 3.7 with in dashed black lines an envelope
AI , which encloses the stress-strain data. The main goal in this case is now to
represent this envelope AI by means of an interval field, which was proposed
by the authors in [150]. In this case the spatial dependence is provided by the
stress-strain curves as they represent the underlying physics of the material that
has been tested. Therefore, the envelope AI is constructed by the minimum
and maximum stress at a specified strain. During the test not all specimen
failed at a same amount of strain, therefore, the envelope is constructed up
to the strain where the first specimen failed. The envelope is illustrated in
Figure 3.7, indicated by the black dashed lines that are plotted at a 10% offset.
Note that the underlying assumption is made that these tests are representative
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not only for the non-determinism, but also for the spatial nature in the strain
domain. The interval midpoint and radius are defined on the envelope trough
the following expression:

σ̂i =A(ϵi) + A(ϵi)
2 (3.12a)

∆σi =A(ϵi) − A(ϵi)
2 (3.12b)

where ϵ denotes the strain, and σ̂ and ∆σ denote the stress interval midpoint
and radius, respectively. Using equation (3.12) the size of the intervals only
depends on the location of the control point, denoted by ri. However, all
stress-strain curves should be zero at the origin, which is achieved by keeping
the interval ϵ = 0 at zero.

In Figure 3.8, there are three cases illustrated, with on the left, standard IDW
using four control points, scaled IDW with four control points in the middle,
and finally scaled IDW with only two control points on the right. The specific
challenge in this case is the uneven distribution of control points, where the
first three control points r1,2,3 are very close to each other. The choice for this
configuration is made for mechanical reasons, namely to allow direct control of
the initial stiffness and the yield stress. The intervals and control points that
were used in this case are provided in table 3.3.

i 1 2 3 4
ri 0 0.008 0.08 0.75
xI

i 0 3.4 12.5 19.3
xI

i 0 2.8 9.9 15.7

Table 3.3: Intervals and control points based on the data of case 3

The main problem using standard IDW is that the influence of the intervals
at these low strain values remains throughout the domain, which causes the
realisations to deflate. This deflation effect can be traced back to the basis
functions where it is clearly seen, in Figure 3.8d, that both ψ1 and ψ2 have
a large influence between control point r2 and r3, and again between control
point r3 and r4. Especially concerning the latter range, the effect is translated
towards the realisations, where the influence of the two small intervals at low
strain values pinches the outer realisations closer to the midpoint, illustrated in
Figure 3.8g. In the second configuration, illustrated in the middle, the scaled
basis functions in Figure 3.8e drastically reduce the influence of the first two
basis functions, ψ1(r) and ψ2(r). Additionally, when the basis functions are
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(a) Standard weight func-
tions (b) Scaled weight functions (c) Scaled weight functions

(d) Standard basis functions (e) Scaled basis functions (f) Scaled basis functions

(g) Standard realisations (h) Scaled realisations (i) Scaled realisations

Figure 3.8: Left Column representing standard IDW, while the other cases use
scaled IDW in order to fit the envelope of experimental data in the black dashed
line below, with corresponding weight functions, basis functions and the outer
realisations, indicated in red and blue lines, respectively.

scaled, less control points can be used without loss of fitness, already briefly
shown in the previous case study. Here, the number of control points is reduced
to two, while still showing a good agreement with the data, as illustrated
in Figure 3.8i. In this figure it is illustrated that, compared to the case in
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Figure 3.8h with four control points, a similar coefficient of determination,
of R2 = 0.95 is obtained, while the optimised parameters are quite different.
This is one of the key strengths of this technique where the information of
the data is used to increase the agreement with experimental results without
using additional control points. Therefore, the size of the nd dimensional input
space can be kept reasonable even for larger models without compromising on
spatial resolution. However, with less control points the possible realisations of
the interval field reduce as well, where is this case the weight of w1 diminishes
quickly with increasing distance from the control point, and w2 controls most
of the realisations. Therefore, sampling the interval field in Figure 3.8i only
yields realisations parallel to the midpoint as the interval field only depends
on ψ2(r), with the first interval kept at zero. This is illustrated in Figure 3.9
where vertex samples of the interval fields in Figure 3.8 are shown in various
coloured dashed lines for both standard and scaled IDW. In addition, this figure
shows that with identical control points, in the left and middle configuration,
the sampled realisations are different, and for the last configuration on the left
only two samples are required for a full vertex analysis.

3.7 Conclusion

The framework of interval fields is a both numerically and theoretically
convenient concept to represent non-deterministic quantities that have time,
space or even space-time dependencies. In addition, the interval field can be used
to represent experimental measurements that quantify the non-deterministic
value throughout the domain. The general idea behind this concept is that
independent interval scalars are expanded though the domain by a priori defined
basis functions. Inverse distance Weighting (IDW) provides an intuitive manner
of defining these basis functions. However, the realisations obtained through
standard IDW generated basis functions are not always satisfactory, even
when additional control points are used. Therefore, this chapter introduces a
methodology based on the idea that the realisations of the interval field should
be limited to an envelope through the domain. This is accomplished by scaling
the weight functions such that the corresponding basis functions yield interval
fields realisations that always respect this envelope.

The scaling of the distance measure that drives the basis functions is performed
by mapping the control points to a higher dimensional feature space, by using
an explicit mapping function S, as defined in Equation (3.8). The definition
of these mapping functions is either based on interval radius, or the sum of
the absolute midpoint with the radius of the envelope. When the mapping is
based on the interval radius, interpolation between points in the feature space
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(a) Standard IDW two control points (b) Standard IDW four control points

(c) Scaled IDW two control points (d) Scaled IDW four control points

Figure 3.9: Vertex samples of the interval field indicated by xI
vert, for standard

IDW in Figure 3.9a and 3.9b and for scaled IDW in Figure 3.9c and 3.9d, both
for two and four control points, respectively.

is required, which should be chosen appropriately. The weights of the basis
functions are then measured in this feature space.

The envelope that is used to accomplish this scaling can be based on either
expert knowledge or a set of experimental measurements. The main concern is
that the bounds of the envelope should be representative for the spatial nature
of the non-deterministic quantity under consideration, as these bounds are used
to scale the basis functions towards the envelope. This is demonstrated in the
third case where a set of stress-strain measurements are represented through
an interval field. In this case, the envelope clearly represents the underlying
non-deterministic physical behaviour of the material at hand. In addition,
optimisation is used to increase the agreement between the envelope and the
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interval field. This is accomplished by minimising the residual between the
envelope and the outer realisations of the interval field, in a least-squares sense.
While the method is shown to be effective in reducing the problems associated
with classical IDW, the developments are limited to 1-dimensional interval fields
only. Further work is aimed at investigating how the mapping to a higher
dimensional feature space, as well as the calculation of the necessary distances,
can be performed efficiently and effectively.



Chapter 4

Interval field methods with
local gradient control

This chapter is a slight improved version of the previously published paper:
C. van Mierlo et al. “Interval field methods with local gradient control”. In:
Proceedings of the European Congress on Computational Methods in Applied
Sciences and Engineering. event-place: Oslo, Norway. ECCOMAS

4.1 Abstract

This chapter introduces a novel method to create an interval field based on
measurement data. Such interval fields are typically used to describe a spatially
distributed non-deterministic quantity, e.g., Young’s modulus. The interval
field is based on a number of measurement points, i.e., control points, expanded
throughout the domain by a set of basis functions. At the control point the
non-deterministic quantity is known and bounded by an interval. However,
at these measurement points information about the gradients might also be
available. In addition, the non-deterministic quantity might be described better
by estimating the gradients based on the other measurements.

Hence, the proposed interval field method allows to incorporate this gradient
information. The method is based on Inverse Distance Weighing (IDW) with
an additional set of basis functions: one set of basis functions interpolates the
value, and the second set of basis functions controls the gradient at the control

91
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points. The additional basis functions can be determined in two distinct ways:
first, the gradients are available or can directly be measured at the control
point, and second, a weighted average is taken with respect to all control points
within the domain. In general, the proposed interval field provides a more
versatile definition of an interval field compared to the standard implementation
of inverse distance weighting. The application of the interval field is shown in
a number of one-dimensional cases where a comparison with standard inverse
distance weighting is made. In addition, a case study with a set of measurement
data is used to illustrate the method and how different realisations are obtained.

4.2 Introduction

In common engineering practice the main goal is to provide or validate
component designs that should perform under a wide range of circumstances,
e.g., extreme weather, impact loads, and sometimes even in space or at other
planets. To ensure the performance of these components, engineers often use
numerical methods to approximate the set of differential equations governing
the physical behavior of the component under investigation. However, this
can be a daunting task as the parameters governing these equations are often
only known vaguely, as they are inherent variable, or only limited knowledge
about these quantities is available, as direct measurement is not possible,
or a combination of both [84]. Hence, during the last decades a number
of techniques are introduced that aim to quantify these non-deterministic
quantities. In general, these techniques are categorized as probabilistic [213] and
possibilistic approaches such as: intervals [68], fuzzy sets [100], and imprecise
probabilities [19]. Where probabilistic methods describe non-determinism as the
likelihood that parameters assume a value via a joint probability density function,
possibilistic methods as, i.e. interval methods, consider non-deterministic
quantities to be bounded.

In a number of cases these quantities, e.g., wind loads, Young’s modulus,
dielectric constants, experience a spatial or temporal dependency, which is
difficult to consider within the classic interval method as described by R.E.
Moore [163]. Therefore, the framework of interval fields was introduced [158],
which is capable of providing the spatial or temporal dependency structure
by a set of basis functions. Hence this method can be seen as a possibilistic
counterpart to random fields [224]. In the last decade a number of researchers
have introduced different basis functions that model the dependence structure,
which can be based on inverse distance weighting [66, 152], affine arithmetic [207,
208, 211], radial basis functions [112], a spatial averaging method [234], or set-
theoretical approaches [116, 176]. The basis functions that are introduced in this
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chapter are an extension to the existing technique of Inverse Distance Weighting
(IDW), which was introduced by Sheppard [200].

In this work the focus lies on interval fields defined trough IDW, which is a
convenient way of constructing an interval field. The idea behind IDW is that
the non-deterministic quantity is known or measured at independent locations
within the physical domain. The interval field is then constructed based on the
assumption that the weight of this information decreases proportional to the
inverse of the distance moving further from this measurement point, which is
referred to as a control point. Although this technique is successfully applied
in a number of cases it has a number of shortcomings [152], and one of such
shortcomings is that the maximum value of the interval field can never exceed
the maximal value placed at a control point. This property is attributed to
the definition of the basis functions, which will always have a zero gradient at
each of the control points. Hence, this paper proposes an interval field based on
two independent sets of basis functions at each control point, where one will
interpolate the value of the control points and the second set of basis functions
will control the gradients at the control point.To control the effect of the basis
functions for the gradients a scaling parameter v is introduced. In general this
information about the gradients may not always be available. Therefore, two
methods are proposed to determine the gradients at the control points: the
first method uses direct measurement, and the second technique estimates the
gradients based on the observed trend of the data. This chapter is structured
as follows: in Section 4.3 the interval field is introduced, and in Section 4.4
the application of this interval field is compared with the standard technique.
Finally, Section 4.5 illustrates a real case study and conclusions are made in
section 4.6.

4.3 Interval field analysis

In this section a brief description of the interval field analysis is provided, for a
more detailed description the reader is referred to [66].

4.3.1 Explicit interval fields

The definition of the proposed explicit interval field is given in Equation (4.1)
where, opposed to the literature in [158], a second set of basis functions ϕi

is added. The new interval field consists of the superposition of two times
nb ∈ N independent basis functions ψi + ϕi. Here, the range of the interval is
interpolated by ψi : Ω 7→ R, and in a similar way the gradients are determined
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by ϕi : Ω 7→ R. Both of these basis functions are defined over the geometrical
domain Ω ⊂ Rt, where t is defined as the physical dimension of the problem.
These basis functions describe the spatial nature of the non-deterministic
parameter, distributed along the coordinate r ∈ Ω. An interval field is created
by scaling both these basis functions ψi, ϕi with independent interval scalars
αI

i , β
I
i ∈ IR. This interval field is formally defined as:

xI(r) = x̂ +
nb∑

i=1
[ψi(r)αI

i + ϕi(r)βI
i ], (4.1)

with x̂ ∈ R the midpoint of the interval field. Note that the existing IDW
framework for interval fields is a special case where βI

i = 0. When Ω is discretised
into k finite elements, these base functions ψi and ϕi interpolate the independent
interval scalars αI

i and βI
i to dependent intervals for each element in the domain

Ω. Hence, the size of the bounded uncertain input space is 2nb, which can be
reduced when only the range or the gradient at a control point is considered,
i.e., ∆xi = 0 while the gradient lies between [0; 1]. Nevertheless, in general
this means that the input space dimension can be reduced if 2nb < k, which is
double the amount compared to the standard method of IDW.

4.3.2 Interval finite element analysis

Omitted to avoid redundancy, see Chapter 2 Section 2.5.2

4.3.3 Definition of the basis functions

The definition of an interval field, as presented in Equation (4.1) takes two
basis functions, the first interpolates the range of the interval field from the
control points ψi, and the second basis function ϕi controls the gradients.
Through the definition of these basis functions the spatial dependence of the
non-deterministic quantity of interest is modeled throughout the domain Ω.
An important property of these basis functions is that they should be self-
complementary, i.e.

∑nb

i=1 ψi(rj) = 1 ∀ rj ∈ Ω. Furthermore, they should
behave as unit vectors at the control points to ensure that independent intervals
are retained (see [72] for a more thorough discussion). An intuitive definition
of basis functions that comply with these requirements is provided by means
of IDW interpolation, as applied in [71], which is also used to interpolate the
range at the control points to the domain Ω in this chapter.
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Basis functions for the range

The first set of basis functions is the standard IDW approach where basis
functions are defined for each control point ri. This is accomplished by a
normalisation of weight functions wi(r) ∈ Ω, denoted as:

ψi(r) = wi(r)∑nb

j=1 wj(r) , (4.2)

with i = 1, . . . , nb. The weight functions wi are inversely proportional with the
Euclidean distance measure d(·) measured between the control point ri and
other coordinates r in the domain:

wi(r) = 1
[d(ri, r)]p . (4.3)

Herein, the power p ∈ R+ allows the analyst to influence the rate of decay of
the weight function. Note that for a power p < 1 no derivative of the basis
function exists at the control points, while in the case that p > 2 the basis
functions flatten and higher gradients at the transitions are obtained. Empirical
evidence suggests that in general p = 2 is a good starting point [71], if no further
information about the spatial nature is available. The distance measure d(·) is
measured in Euclidean space, defined as:

d(ri, r) = ∥ri − r∥2 , (4.4)

with ∥·∥2 denoting the L2 norm.

Basis functions for the gradient

The second set of basis functions is constructed in a similar manner as the IDW
basis functions and identical weight functions are used, as they assign a higher
weight to points in r closer to a control point ri. These basis functions are
defined as:

ϕi(r) = wi(r)δi(r)∑nb

j=1 wj(r) , (4.5)

with δi : R 7→ R a factor to set the gradients at the control points ri, which is
defined as:

δi = Ai(r − ri)
[

Ri

Ri + d(ri, r)

]
, (4.6)

here Ai ∈ R+ represents the desired gradient at the control point and the
constant Ri ∈ R+ is a scaling factor, defined as:

Ri = v(max(x̂i) − min(x̂i))
Ai

, (4.7)
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with v ∈ R+ a scaling factor that determines the effect of the gradient terms
similar to parameter p, which determines the effect of the basis functions for
the value. The value |δi(r)| that is added by these basis functions ϕi causes the
derivatives to be ∂δi

∂r = Ai. This is only valid at the control points as the value of
ϕi(r) for consecutive points moving away from ri as the factor Ri/ [Ri + d(ri, r)]
will go from 1 to behaving like d(ri, r)−1 for large d(·). In addition, note that
δi(ri) = 0 thus keeping the independence of the basis functions at the control
points, which can therefore be scaled by independent interval scalars while
retaining the self-complementary basis and the independency of the intervals
scalars at the control points. However, note that these basis functions are not
self complementary beyond the control points.

The only remaining parameter is the constant Ai which will be the gradient
at the control point. Depending on the available data two distinct ways of
calculating Ai are presented. The first method is to directly calculate the
constant based of points close to ri, defined as:

Ai = (x̂j − x̂i)(ri − rj)
d(ri, rj)2 , (4.8)

here the index j is given to a neighbouring point ri±j used to calculate the
constant Ai. Depending on the side and the distance the result of equation (4.8)
can differ, in this case the maximal value is taken. In this case the assumption is
made that there is more information available around the control points, which
may not be the case in general.

Therefore, a second approach is to determine the constants Ai as a weighted
average of the control points rj ∈ ri, defined as:

Ai =
∑nb

j wi
(x̂j−x̂i)(ri−rj)

d(ri,rj)2∑nb

j wj
, (4.9)

where the weights wj are defined as in equation (4.3), which assigns less weight
to control points far from ri. Furthermore, in this work Ai is determined based
on the midpoint x̂ of the intervals, which will give an average gradient that is
acceptable for a large number of cases. However, it is easy to define a case with
increasing non-determinism with a zero midpoint, thus depending on the case
better results can be obtained by changing this to the interval radius ∆x, or
the extremes of the interval xi, xi. Using these basis functions will ensure that
the desired derivatives Ai are obtained at each control point ri.

One of the important things to note here is that the basis functions ϕi of the
gradients add a value |δi(r)| to the standard IWD basis functions ψi. This value
of |δi(r)| is zero at the control points, and the effect can be changed between
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the control points by setting the parameter v, which changes the value of |δi| as:

|δi(r)| ≤ v[max(∆xi±j) − min(∆xi±j)], (4.10)

with the index j ∈ ri ± r. As such, the scaling parameter v controls the effect
of the basis for the gradients, which can be local for a small value of v or
have an effect far away from the control point for larger values of v. Therefore
this parameter can be seen as the gradient counterpart to the parameter p
that determines the effect of the basis functions for the value. An interesting
implication of using the basis functions ϕi is that the maximum value of the
interval field is no longer restricted to the location of a control point and can
be anywhere within the domain Ω.

4.4 Illustration of interval fields with local gradient
control

The following cases compare and illustrate the use of the novel interval technique.
First a comparison is made with the existing IDW technique, second the two
different strategies to dermine the gradients are explored, and the third case is
about extracting samples and the possibilities towards dependence structures
between αI and βI .

4.4.1 Comparison between IDW with and without gradient
control

To demonstrate the additional value of incorporating gradient information in
the basis functions a case is considered where only limited information about
a set of measurements is available. This set A represents the true underlying
spatial non-determinism for a parameter, e.g., used in the FE method. The
measurements are made at the points [0.1, 0.15, 0.8], which are therefore also
used as the control points ri of the interval field. In order to calculate the
first basis functions that will interpolate the range at the control points ψi, the
parameter p is set to p = 2. Figure 4.1a illustrates the basis functions that are
obtained, which are 1 at the location of the control point.

The second set of basis functions ϕi provides the desired spatial gradients at the
control points, which are calculated exactly from the midpoint x̂i of the set A.
The motivation is that these points represent a small group of measurements
or this can be based on engineering judgement. Hence, the basis functions
are calculated following equation (4.5) where the spatial gradients are taken
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(a) Basis functions for the
interval field value

(b) Basis functions for the
derivative

(c) Sum of the basis func-
tions without scalars

Figure 4.1: Basis functions obtained by measuring the gradients, as indicated
by equation (4.8)

from equation (4.8). In this case the parameter v is set at 10, which is an
arbitrary choice. The obtained basis functions are shown in Figure 4.1b, where
these are zero at the control points. Note that these basis functions are not
self complementary

∑nb
1 ϕi ≠ 1 ∀ i outside the control points. In Figure 4.1c

the sum of these basis functions is given with the interval scalars set at one
αI

i , β
I
i = 1.

Figure 4.2a illustrates the outer realisations, in red and blue lines, and the
vertex realisations, in dashed lines, of the interval scalar αI . Hence, we are only
considering the combinations of different values without different gradients, as
indeed βI can also vary between [−1 1] causing the gradients to lie within the
interval [−Ai Ai]. Therefore, the illustrations in this case and the following
case are limited to βI = 1, which will set the gradients at the control points
equal to the calculated values of Ai.

In Figure 4.2b a similar plot is made with the standard IDW basis functions,
which are identical to ψi. A comparison between Figure 4.2a and 4.2b shows that
the proposed method is capable of capturing the gradients and thus provides
a better estimation of the set A. In addition, one can see that the maximum
value of the interval field based on IDW is located at the control point where
in Figure 4.2a this is located between r2 and r3, which is an intuitive location
based on the gradient information at the control points.

4.4.2 Determination of the gradient from other control points

In the previous case the gradients are directly calculated at the control points,
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(a) Interval field using the derivatives (b) Interval field using IDW

Figure 4.2: Vertex realisations of an interval field based on IDW (b) and one
using the information about the derivatives (a); the dash-dotted line indicates
the unknown underlying uncertainty

which requires additional information at the control points. However this
information might not always be available. Therefore, a different approach is
considered where the constants Ai are calculated based on a weighted average
of the midpoints, as described in equations (4.9). The basis functions that are
obtained in this way are given in Figure 4.3 where the first illustration 4.3a
is identical to this in 4.1a. However, looking at the basis functions of the
gradients ϕi shows a gradient close to zero for the third control point r3, which
is attributed to the distance and the small relative change of midpoint at these
locations.

(a) Basis functions for the
interval field value

(b) Basis functions for the
derivative

(c) Sum of the basis func-
tions without scalars

Figure 4.3: Basis functions based on the derivatives calculated from the
information at the other control points, as described by (4.9)



100 INTERVAL FIELD METHODS WITH LOCAL GRADIENT CONTROL

In Figure 4.4 the realisations of this interval field are given, which have a higher
maximum value compared to the previous case without changing the value of v.
This effect is also seen in the basis function in Figure 4.3b, which has a maximal
value almost double as high as the previous basis functions. This is caused by
the larger difference in the values that are used to calculate the constants, which
is described by (4.10) and can be changed by selecting a different value v.

Figure 4.4: Realisations case 1

4.4.3 Interval field realisations

As described in the first case, each of the realisations until here are given with
vertex samples from αI , while βI = 1 is kept constant. However, this interval
field consists of a two-dimensional uncertain input space at each control point.
Thus, a full vertex analysis consists out of 22nb samples. In addition, it is up to
the analysts to determine the range of the gradients as these can vary between
[−Ai Ai] illustrated in Figure 4.5a where the sign of the gradient is unknown
at the control points and there are a large number of possible realisations. It
is also possible to limit the values in βI from [0 Ai] as shown in Figure 4.5b
where the gradients are equal to Ai or smaller.

It is clear from Figure 4.5a that the possible values of the gradients should
be limited in this case as a large number of realisations lies outside the data
A. Although, limiting βI to lie within an interval [Ai 0] it should be noted
that more complex dependency structures could be defined, as described in [66].
Nevertheless, one should always define an interval for βI as keeping βI at a
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(a) Vertex realisation for both αI , βI ∈
[−1 1]

(b) Vertex realisation for αI ∈ [−1 1] and
βI ∈ [0 1]

Figure 4.5: Two realisations of an interval field representing the envelope A

fixed value will fully couple the value at a control point with the gradient, which
is not the case in general.

4.5 Case study

In this final case study the method is applied to capture the non-determinism of a
set of stress-strain curves. The objective is to represent the set of measurements
with an interval field, and each sample of this interval field should represent
a feasible stress-strain curve. To obtain the stress-strain curves provided in
Figure 4.6a three samples have been printed and tested under uni-axial tension,
in accordance with ASTM D638.

To illustrate the additional value of the method only two control points are
placed, one at the origin and one at r = 0.07. The constant Ai are in this
case calculated at each point directly, following Equation (4.8), based on the
interval radius ∆x of Asamples. The resulting interval field shown in Figure 4.6b
is only sampled at βI

1 = 0,−0.5,−0.5,−1 and αI
2 = 0.8, 0,−0.8, 0.7 labeled

realisations 1, 2, 3 and 4, respectively. Thus, the non-deterministic measurement
set is represented only using the gradient at the first control point and the value
at the second control point, which could be regarded as sampling the initial
stiffness of the material and the yield strength.

This case is used as an example where the parameters and control points are set
by hand. In a more comprehensive study to find the optimal interval field to
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(a) (b)

Figure 4.6: Measured stress-strain curves (a) and the interval field representation
(b); the dashed line represents the envelope Asamples

represent a set of measurements optimisation approaches can be used, as in [152].
Furthermore, detailed investigations into the set of admissible realisations need
to be made.

4.6 Conclusions

In this chapter an extension to the existing framework of interval fields is
presented. This extension allows for the incorporation of information about
gradients at the control points. It is shown that this method is better capable in
representing a spatially distributed non-deterministic quantity compared with
the existing technique. Even without explicit information about the gradients at
the control points better agreement is obtained by making an estimation about
these gradients. To control the effects, a parameter v is introduced that allows
the user to adjust the realisations of the interval field by tuning the influence of
the gradients on the final result. In addition, a case study is conducted with a
set of real measurements, which could be represented using only the gradient
information in one control point and the range at the other control point.
Further research will focus on the application of admissible set decomposition,
which allows for dependency structures within the interval framework.



Chapter 5

Interval methods for
lack-of-knowledge uncertainty
in crash analysis

This chapter was previously published as:
C. van Mierlo et al. “Interval methods for lack-of-knowledge uncertainty in crash
analysis”. In: Mechanical Systems and Signal Processing 168 (2022). Publisher:
Elsevier, p. 108574

5.1 Abstract

This chapter deals with lack-of-knowledge uncertainty in complex non-linear
simulations on a component level, i.e., a crashbox during frontal impact of a
vehicle. Specifically, the focus lies on using interval field techniques to model
the uncertain boundary conditions during impact simulations. The uncertainty
considered in this work is the unknown mechanical response from the adjacent
structure. This uncertainty is considered to be epistemic, representing the case
where this adjacent structure is unknown at the time the impact analysis is
performed. In practice, this refers to the situation where the adjacent structure
is still under development, e.g., at a different department or even outsourced. In
addition, the safety critical performance of both, the component and the overall
structure should be guaranteed under a wide range of circumstances, which are
typically encountered in real-life situations. Typically, car manufacturers use

103
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multidisciplinary optimisation to identify component designs that perform best
on all requirements in a deterministic sense, while minimising the overall weight.
Unfortunately, the results of such optimisation schemes are known to converge
to an often non-robust optimum. As a result, the response of the structure may
be sensitive to small changes in input parameters or boundary conditions.

As an answer to these challenges, this chapter proposes an interval field approach
that accounts for the epistemic, i.e., lack-of-knowledge, uncertainty of the
adjacent structures, even in an early design stage. This is accomplished by
introducing a spatially varying uncertain mechanical compliance in elements
that connect the component to the adjacent structures. These elements have
an interval valued stiffness, which is varied along the component following the
realisations of an interval field. The bounds on the interval-valued response
quantities of interest, i.e., mean force and peak force, are identified using a
differential evolution algorithm. This method is demonstrated on four case
studies of a full overlap crash analysis of a rectangular crash box, which
represents a generic component within the front structure of a vehicle. These
case studies demonstrate the applicability and the potential of the proposed
method. In addition, in the last case it is shown that the performance of the
component can be assessed under an increasing range of uncertainty.

5.2 Introduction

In recent years car manufacturers are changing from traditional test-based design
towards more simulation-driven approach due to the ever rising complexity
in development and increase of safety requirements. Examples of such safety
requirements are, e.g., proposed by the United Nations Economic Commission
for Europe (UN-ECE) [60], or based on consumer tests, e.g., those of the
New Car Assessment Programmes (NCAP) like Euro NCAP [64] or Global
NCAP [92]. These tests represent the relevant accident scenarios while
being also sufficiently repeatable to enable controlled vehicle assessments and
ratings. In these numerical approaches advanced numerical methods for multi-
disciplinary and multi-criteria optimisation are used to identify the appropriate
design compromises, see, e.g., [59]. However, even in standard cases, the
performance of designs obtained though optimisation are known to be very
sensitive to small changes in input parameters. This problem is further amplified
when considering highly non-linear phenomena encountered in crashworthiness
studies [4]. Furthermore, the robustness - low sensitivity of responses to input
variations - as well as the reliability - low probability of constraint violations
- have to be considered additionally. This leads to an even higher numerical
effort than just needed for a deterministic optimisation.
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In addition design criteria for crashworthiness are mostly related to bio-
mechanical measures (accelerations, velocities, deformations, forces, and
moments) registered by Anthropometric Test Devices (ATDs), also known as
“dummies”. Examples are the Head Injury Criterion (HIC), see the discussion
in [226], or the Neck Injury Criterion (NIC), see [29]. The optimal quantity to
use in crashworthiness assessment is changing frequently, see e.g. [145]. However,
during the early development process, it is standard to consider mainly structural
criteria, i.e., criteria related to the performance of the car structures, as detailed
geometrical and material data is not available. Car-body related criteria address
either aspects of the safety cage (deformation resistance parts) or aspects of
the crumple zones (energy absorbing parts), as illustrated in Figure 5.1. The
design of energy absorbing parts remains challenging, criteria as specific energy
absorption (SEA), which is the total energy absorption divided by mass, peak
force or peak acceleration are commonly used [45, 81].

(a) Deformation resistance parts (blue) (b) Energy absorbing parts (blue)

Figure 5.1: Example of a car body highlighting deformation resistance (left)
and energy absorbing parts (right) for a frontal impact [103]

5.2.1 Simulation based car body development

The development of the car body structure is a highly complex task, where
all components interact and the required force-deformation behaviour of
the components is completely inter-dependent. Even the design of a single
component is highly complex due to the high non-linear behaviour in terms of
mechanical plasticity, failure, contact, buckling, large deformations, strain- and
stress-rate-dependencies. In addition, a high number of different materials have
to be modelled, ranging from different steel types and other metals to glass,
polymers, foams, composites and bio-materials. The related computational effort
is high; standard simulations take several hours and in some cases even days,
despite the integration of high performance computing (HPC) in the simulation
workflows. Therefore, to reduce this computational cost for the structural design
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of energy absorbing components there are two main approaches found in crash
related literature, which are listed below and are illustrated in Figure 5.2.

a) Full vehicle FEM simulations with models as shown exemplarily
in Figure 5.2: the complete structure of the car is modelled and the
developer modifies a component (or components) assessing the changes
via a complete repeat of the full set of crash simulations (note that a small
change will affect the car performance in multiple different crash tests).

b) Component simulations with pre-defined boundary and initial
conditions. For this, there are three options:

b1) The energy absorption of a component is assessed under drop test
conditions, i.e., a rigid plate or block with a certain mass and initial
velocity is hitting the component. Here, the dynamic effects are
covered more correctly.

b2) A similar configuration as for b1) is used but by a crush test where
a rigid wall with a prescribed and constant velocity deforms the
component in axial direction. Because this is often done in a quasi-
static manner, dynamic effects like inertia forces and (strain-)rate
dependencies are neglected.

b3) An alternative can be realised by using a full vehicle simulation
and by registering the deformation- or velocity-over-time of the FE
nodes at the interface between the component and the complete car
structure. Then, the data of the interface nodes is used as constraints
in the component simulations.

In some cases, a full-vehicle simulation is used to assess the performance
of a single component. The advantage of this approach is that it takes all
surrounding parts, as well as their interaction with the component, into account.
However, especially during early stages of the development process, properties
or design details of neighbouring components are not fully known. Typically,
the development is a concurrent process between multiple designers or even
departments / companies, where each designer or department is designing an
individual component in parallel with activities of the others. Therefore, the
full vehicle model at this point may not be available, under construction, or
far from the final version. Hence, having a complete vehicle simulation during
development may mean that pseudo-accuracy is introduced by the level of
detail that is obtained, which neglects the development of other components.
Therefore, potential wrong conclusions are made and redesigns at a later stage
would be needed to correct for these decisions.
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Figure 5.2: Example of full vehicle test (top) and component / sub-structure
tests (bottom), after [59]

In addition, the potentially high computational effort of a full-vehicle simulation
makes it nearly infeasible to realise a high number of full model simulations,
such as needed for optimisation and robustness or reliability assessments. For
instance, a single simulation of the Honda Accord model with 1.9 million
elements [175] takes 14 hours on eight Intel(R) Core i9-7980XE CPUs. The
academic example used in this work on the other hand, as illustrated in case a)
in Figure 5.2, requires several minutes to calculate. Moreover, as the full car
model consists of multiple parts and materials that interact with each other,
the uncertainties about all these parameters should be carefully assessed and
quantified. Therefore, detailed investigations should be conducted concerning
the range of these parameters as well as the relative likelihood of certain
parameter values within this range (as commonly quantified by a distribution
function). This is very challenging in general, and especially in an early design
stage where many design decisions may still be open. In recent years, robustness
studies on full vehicle models have been realised in, e.g., [4, 107]. However,
these are rarely embedded in an industrial development and more importantly,
the uncertainties considered are far from complete.
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5.2.2 Uncertainty in crashworthiness

In the three versions of crashworthiness assessment of a single component
illustrated in Figure 5.2, the parts are evaluated in an isolated environment
neglecting the influence of possible modifications in the other components.
However, from experience, we know that the mechanical response of other
components strongly influences the behaviour of the component under
consideration in the design study. Therefore, to the opinion of the authors, this
- often unknown - difference between fixed boundary conditions and coupled
boundary conditions to adjacent parts is of very high relevance, and should
be considered in a single component impact performance optimisation under
uncertainty. When neglected, the identified optimum may be of questionable
value, as robustness or reliability problems on component level may lead to
critical performance issues in the global crash performance of the complete
vehicle. The advantage of the single component assessment is clearly the
computational cost, i.e., a single assessment can be conducted at a fraction of
the time it would take to run a full crash model. In addition, validation of these
simulations via physical experiments is less complicated as drop-tower tests or
quasi-static tests are widely used for single component testing, as opposed to full
vehicle tests. The number of scientific papers on the assessment of components
is very high, see [2, 247] to give only some of the most recent papers. However,
the consideration of uncertainties is rarely undertaken on component level. As
an example the reader is referred to [215].

Nevertheless, a range of methods is proposed in recent crash related literature
that take these uncertain input parameters into account. Examples include load
case and geometrical uncertainties [79, 107], or material uncertainties [122]. In
these approaches, variations of the impact angles, locations and velocities are
considered. In some cases, these quantities are also combined with the influence
of manufacturing tolerances (variations in thickness, material parameters or
geometrical features like radii) [59]. Following these numerical approaches, one
typically assumes the uncertain input parameters to be independent. Regarding
the parameters mentioned above, most of them are direct input parameters of the
finite element model except the geometrical changes such as radii. For the latter,
parametric shape modelling and mesh morphing tools have been developed [59].
In addition, efforts have been made on reducing the computational cost of
uncertainty propagation by a multi-fidelity approach in [138], or adaptive
Kriging based approaches in [167].
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5.2.3 Complexity of hierarchical development

The application of optimisation with robustness and reliability analyses in an
industrial setting remains challenging and time consuming, not only because
of the high numerical effort. The main reason is related to the context of
systems engineering and the necessity of hierarchical development caused by
the high complexity of the product. This means that the different crash types
(e.g. front, side, and rear impacts) are treated by different people or even
departments and companies. As a consequence, every developer is working on
a single component and not on the complete vehicle. Therefore, requirements
must be broken down to the component level. Consequently, assessments are
done as well on single components rather than on the full vehicle or system.
The well-known V-model approach and the more recently developed Component
Solution Space methodology [48, 249] enable this hierarchical development.
However, following the Component Solution Space approach, it is challenging
to include the inter-dependencies of the different components during a crash.
As in the original Component Solution Space approach [249], deterministic
force-deformation curves are obtained for each of the components, with a range
that is maximised for each component until constraints are violated, e.g., order
of plastic deformation, or acceleration limits. However, in real incidents, impact
angle, speed and impacting object are unknown and the occurring deformations
and force levels are uncertain. To resolve this, Component Solution Space
methods have been introduced that incorporate epistemic uncertainty: where [47]
focuses on uncertainties in force levels and [46] on remaining uncertainties, i.e.,
deformation lengths, energy to be absorbed, critical acceleration limit. These
methods provide bounds on the range in which the component is performing as
well as information about the range of uncertainty allowed for by the adjacent
structure.

To overcome the issues related to the decoupled development of complex
interacting structures, this chapter presents a novel method to consider the
interactions of a single component with these adjacent structures. Typically,
the design and optimisation of these single components are based on droptower
tests, b1 in Figure 5.2, where one typically measures force and deformation of
an impacting object on a fixed specimen or component. However, this chapter
proposes a novel way to design and optimise a single component by introducing
uncertain boundary conditions that account for the unknown behaviour of the
adjacent structure, which is neglected in the typical tests. Nevertheless, from
experience, we know that the mechanical response of other components strongly
influences the behaviour of the component under consideration in the design
study. Therefore, to the opinion of the authors, this - often unknown - difference
between fixed boundary conditions and coupled boundary conditions to adjacent
parts is of very high relevance, and should be considered in a single component
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impact performance optimisation under uncertainty. The structure of this
chapter is as follows: Section 5.3 gives a detailed description of the proposed
implementation of interval fields at the boundary conditions. The difference
between deterministic and uncertain boundary conditions is illustrated for a
number of case studies in Section 5.4, followed by a discussion of the results in
Section 5.5. Final conclusions are drawn in Section 5.6, which also provides an
outlook of future challenges.

5.3 Non-deterministic modelling of the adjacent
structure

The uncertainty in the proposed modelling strategy stems from the assumptions
and abstractions that are made concerning the mechanical behaviour of the
adjacent components. Since this uncertainty stems from a lack-of-knowledge
about the final components, it is an attribute of the analysis, and hence,
epistemic in nature. Therefore, it is proposed to model it using the interval
framework. For the sake of argumentation, when one would attempt to model
this type of uncertainty using probabilistic methods, subjective information
is inserted into the analysis [66], which might give a false sense of accuracy.
Applying interval analysis therefore is the most objective approach since it
acknowledges that there is no information on the likelihood of relative parameter
values within the interval bounds. Furthermore, when limited data about the
actual boundary conditions are available, approaches to infer the bounds based
either on Bayesian analysis [109] or inverse analysis can be applied [71].

A particular convenient interval technique for parameters that are spatially
distributed is the recently introduced framework of interval fields, which can be
regarded as a possibilistic counterpart to random fields [224] for quantities that
are spatial or time dependent [158]. Following this framework of interval fields,
locally defined intervals are expanded through the model domain based on a set
of a priori defined basis functions. Multiple definitions of these basis functions
can be found in literature, which are based on inverse distance weighting [71],
affine arithmetic [203, 207, 211], radial basis functions [112], a spatial averaging
method [234], or set-theoretical approaches [116, 176]. A recent overview of
interval fields can be found in [66]. The following sections start with a detailed
description of the interval field framework, and end with a description how this
concept is used to model the epistemic uncertainty about the adjacent structure
in a component finite element simulation.
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5.3.1 Interval field analysis

Omitted to avoid redundancy, see Chapter 2 Section 2.5

5.3.2 Boundary conditions described by interval fields

The discussion in this chapter is based on a full vehicle crash model and an
exemplary component, here a generic crash box, to illustrate the principal ideas.
Figure 5.3 illustrates this component and the typical simulation setup, where
on the left the finite element model of the component is shown and on the right
an illustration of the typical boundary conditions is given where the red crosses
indicate the fixed nodes. The case that is considered in this work is a full-width
overlap crash test of a passenger car driving against a rigid barrier at 56 km/h,
in accordance with the corresponding NCAP test [64]. This type of test set-up
is defined in several consumer and regulation tests and is commonly used in
scientific studies.

v0

(a) Finite Element Model of the crashbox
with a rigid plane attached to the nodes in
the back (red) and impacting plane right

v0

Fi
xe

d
no

de
s

Finite element mesh Impacting moving plane

(b) Illustration of a general crash set-up,
with the red crosses indicating the fixed
nodes, and the impacting rigid plane on
the right

Figure 5.3: Illustration of the crashbox and the general set-up of a crash analysis
as used in this chapter

The interval field concept is not directly applicable to this typical crash
simulation, as illustrated in Figure 5.3b. First, a representation of the adjacent
structure should be defined. In this case the adjacent structure is modelled
at the back of the component between the rigid wall and the fixed nodes,
which corresponds well to the physical location of these components within
the vehicle. Figure 5.4 illustrates the adjacent structure modelled by a set of
connecting elements. The epistemic uncertain lateral stiffness of these elements
is represented by the interval field. Note, that the described method also
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works for elements placed in front of the component, or a combination of both,
although this would require additional considerations about the properties of
these elements.

r

v0

Component mesh Impacting rigid plane
Element 1

Element 2

Element 3

Fixed nodes
Adjacent structure

Figure 5.4: Illustration of the connecting elements, with the fixed nodes in red,
the component in orange, and the rigid impacting plane on the right

Interval field modelling of the connecting elements

In this work, a novel technique is used to model a one-dimensional interval
field on a three-dimensional component. This interval field is defined on the
lateral stiffness of the elements connecting the crash-box to the surrounding.
As such, the interval field models the uncertain compliance of the structure
that is adjacent to the crash box. Specifically, the crash box is modelled as
a rectangular shell that is meshed by two-dimensional shell elements. In this
case, the nodes of the shell elements describe the circumference of a rectangular
shape, as the thickness is considered within the shell formulation. Therefore,
the distance measure used in IDW is calculated along the circumference of the
rectangular box, which yields a continuous one-dimensional interval field along
the circumference of the component. However, since the vector r describes a
position on a continuous rectangular loop, the determination of the distance d(·)
from the control point ri to the other nodes r is less trivial as each nodal point
can be reached following two distinct paths, i.e., clockwise, or counterclockwise
along the circumference of the component. In this case, we consider the shortest
distance between two points on the circumference. This can be solved by only
using the shortest path between ri and r to determine the distance measure, e.g.,
using Dijkstra shortest path algorithm [54]. In addition, element lengths can
be directly used as weights in these shortest path algorithms and one directly
obtains the distance. Note that the application of Dijkstra’s algorithm in this
case is superfluous since only two possible distances exist. However, in more
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general cases, multiple paths may exist. This motivates the application of
shortest-path algorithms. In Figure 5.13 an illustration of the nodes is provided

The other parameters to fully determine the interval field as described in
Chapter 2.5.2 are: the power p, the interval scalars αI

i , i, . . . nb, and the location
of the control points ri, i, . . . , nb. The influence of each of these parameters
is described in detail in different case studies (see Section 5.4. In this chapter,
the power p is set at 2, which is reasonable based on prior experience [66]. It
is interesting to point out that higher values of p will increase the weight of
the closest control point and flatten the realisations near the control points,
while a lower value of p decreases the influence of the control points where the
realisation are all closer to an average value.

Two illustrations of realisations of the interval field are given in Figure 5.15,
where the dashed black lines and red dots illustrate the variation of the
normalised lateral stiffness of the elements towards the fixed wall nodes in blue.
In addition, the control points ri in this figure are shown as blue nodes with a
black circle located at the coordinates ri = [30, 30; 30,−30; −30,−30; −30, 30],
and for some cases the control points are placed between the corner nodes
located at the coordinates ri = [2, 30; 30,−2; −2,−30; −30, 2].

Modelling the connecting elements

Depending on the analysis there are several ways to model the connecting
elements at the back of the component. The appropriate selection of the
element type is important, since it influences the energy balance of a crash
simulation significantly. Figure 5.5 shows the effect of the connecting elements
on the energy balance for two different material models. In a typical crash
scenario, the kinetic energy Ek of the moving vehicle is fully translated into
elastic and plastic deformation energy Ed = Eelastic +Eplastic, which is stored
and dissipated by the deformation of the component. However, an additional
energy storing and dissipation element is introduced by the introduction of
the connecting elements. The amount of energy stored or dissipated in the
elements depends on the interval field realisation and the material model that
describes the behaviour of these elements. Figure 5.5b illustrates this behaviour
where both, a linear and a bi-linear material model are shown by respectively
the full and dashed lines. Here, the plastic deformation of the bi-linear model
dissipates a part of the kinetic energy, which will therefore not be translated
to the component. Therefore, the crash box is not subjected to the full kinetic
energy of the impact. Such situation is undesirable as this biases the comparison
of the dissipated energy in the crash box with respect to cases where less energy
is dissipated in these connecting elements. Therefore, the connecting elements
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are modelled with a linear material behaviour. Further, such linear model
also ensures a constant interaction between the component and the adjacent
structure. The physical interpretation corresponds to a crash where a certain
amount of energy is stored elastically within the complete structure, e.g., front
structure of a vehicle, test machine, and this energy is released back from the
most rigid components to the deformed components. However, note that when
the elements are modelled as linear elastic elements, i.e., beams, forces higher
than the yield force of the material can be reached for a short moment of time.
Since the failure of these connecting elements are not of interest for the analysis,
this is not critical.

t

E

Ed

Epl

Eel

Ek

Etotal

(a) Energy balance of one simulation
where all the kinetic energy Ek is
transformed into deformation energy
Ed, and energy in the springs Es; a
part elastic Eel an part plastic Epl

F

ϵ

Fy

(b) Illustration of the force-strain
behaviour for a bi-linear model where
Fy indicates a yielding point at which
the response becomes less stiff

Figure 5.5: Two figures illustrating the impact of different material models on
the energy balance of an impact simulation; indicated by the full and dashed
lines

5.4 Case studies

In this section, four different approaches to model the lack-of-knowledge
uncertainty about the adjacent structure are illustrated on a generic crash
example. Specifically, the lateral stiffness of the linear connecting elements is
modelled according to following approaches: (1) a deterministic benchmark case,
(2) a scalar interval valued model, (3) an interval field approach, and finally
(4) an interval field approach with a varying degree of uncertainty, modelled



CASE STUDIES 115

Material model properties used for the component
Mass density ρ 7830 kg/m3 Strain-rate parameter P 5
Young’s modulus E 200 GPa Strain-rate parameter C 40
Poisson ratio ν 0.3 Yield stress σ0 366 MPa
Equivalent stress σ1 424 MPa Equivalent strain e1 0.025
Equivalent stress σ2 476 MPa Equivalent strain e2 0.049
Equivalent stress σ3 507 MPa Equivalent strain e3 0.072
Equivalent stress σ4 529 MPa Equivalent strain e4 0.095
Equivalent stress σ5 546 MPa Equivalent strain e5 0.118
Equivalent stress σ6 559 MPa Equivalent strain e6 0.14
Equivalent stress σ7 584 MPa Equivalent strain e7 0.182

Table 5.1: Material properties used in the piece-wise linear plasticity material
model of the component

by changing the interval radius. The reasoning behind each of these cases is
different where in the first cases (1-3) the main goal is to quantify the bound
on the output given a certain degree of uncertainty, and the final case (4) is an
investigation on the effect of different levels of uncertainty.

5.4.1 General setup and quantities of interest

In this section, a detailed investigation of the interactions between the interval
field and a generic impact-critical component is conducted under a load case that
is defined on the full overlap crash test. The generic component is represented
by a rectangular box, which has sides of 60 mm, a total length of 180 mm with
a thickness of 2 mm, which is modelled by 2700 four-node shell elements, as
illustrated in Figure 5.3a. The properties of the sheet metal used for these
components are modelled using a piece-wise linear plastic model [137]. The
corresponding parameters are listed in Table 5.1. Following the load case, the
component is impacted by a rigid moving wall with a mass of 60 kg. The initial
velocity is set to 56 km/h or an equivalent 15.6 m/s. This provides a total
kinetic energy of 7300.8 J at the start of the simulation. In engineering practice,
it is common to assess the performance of these crash boxes in terms of the peak
force and the mean force that are generated during impact. The goal of a general
engineering design optimisation for impact is to identify the input parameters,
such that an acceptable performance threshold is met. Conventionally, in crash
analysis the goal is to achieve a force that is as constant as possible during the
deformation.
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Peak force

The peak force is a measurement of the highest force that occurs during the
impact simulation. In all considered cases, the peak force is measured at the
rigid plane located at the back of the springs. The location is also indicated as
a red plane in Figure 5.7. The peak force is measured directly from the output
data without using any additional filtering:

Fpeak = max
t∈∆t

F (t) (5.1)

This causes this measurement to be noisy due to numerical instability of the
explicit solution scheme. Typically, the peak force is measured just after the
component and the rigid wall make contact, which initiates the start of the
typical deformation folds. In general, high peak forces are avoided by car
manufacturers as these are associated with high accelerations, which impose
high forces on the adjacent structure and eventually the passengers leading to
more severe injuries.

Mean force

The mean force is an average measurement of the force during impact and
provides global information about the performance of a particular design. The
mean force is calculated following Equation (5.2) where the total energy of the
component Ecomp is divided by the average final deformation D(tfinal). In order
to omit zero entries, only the force and deformation starting from impact until
the kinetic energy is zero are considered tfinal : Ekinetic(tfinal) = 0, neglecting
the elastic spring-back of the component.

Fmean = Ecomp(tfinal)
D(tfinal)

, (5.2)

where D(tfinal) is calculated as the average displacement between the nodes of
the start and the end of the crash box.

5.4.2 Benchmark case

This first case is used as a benchmark where the boundary conditions are applied
in a normal way, with two rigid planes in correspondence with the illustration
in Figure 5.3b. Therefore, only a single simulation is performed as there are no
uncertainties considered in this case. The result of this simulation is provided
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by means of a force-displacement graph, shown in Figure 5.6. In this graph,
the peak force and mean force measurements are indicated by a blue dot and
an orange dashed line, respectively. Note that it is common within industry to
filter the results of the numerical simulations of crash scenarios, see e.g., [196].
However, as there are no experimental data to compare to, the results shown in
this chapter are provided without the use of any filtering. It is clear that there
is a large difference in peak force and mean force, which is not unexpected for
a component with this geometry, which is not optimised in any sense. In an
industrial environment, one would typically optimise the component such that
the peak and mean force are more or less equal to each other, or below an a
priori set threshold.
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Figure 5.6: Force-deformation curve of the benchmark case without filtering,
red; location of the peak force, blue dot; and the mean force, orange dashed line

The multiple peaks that are seen in Figure 5.6 are located at times where the
force has built up until reaching a threshold before the next fold is initiated.
This corresponds perfectly with the observed folding pattern, as illustrated
in Figure 5.7. In this figure, the red plane is fixed and the white plane on
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the right is impacting the structure, in correspondence with Figure 5.3b. The
folding pattern shows that three folds are created during the first 12 ms of
the impact, which is a local buckling mode starting at the impacting plane.
The computational time for this simulation is approximately 2 minutes on two
cores of an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.3GHz processor, which is
reasonable in comparison to performing simulations on a full vehicle model.

va

(a) time = 3 ms

vb

(b) time = 6.5 ms

vc

(c) time = 12 ms

Figure 5.7: Deformation of the benchmark case with fixed boundary conditions
at different time steps, with the fixed plane in red, and the impacting plane in
white

5.4.3 Interval valued non-deterministic modelling of the
adjacent structure

In the following case studies, the non-deterministic effects of the adjacent
structure are modelled by a set of springs at the back of the component. These
springs are illustrated in Figure 5.4. The lateral stiffness of each element is
determined following a discretisation of the interval field. This interval field
with IDW basis functions is used to model the spatial dependency of the
element stiffness, which corresponds to the physical reality where the point-
wise deformation of two points in an adjacent component is also dependent on
the neighbouring areas in this component. As such, the interval field models
the spatial distribution that is in a full-scale analysis provided by adjacent
connecting elements. Additionally, it is shown that it is needed to optimise the
input parameters of the interval field to obtain the worst case response of the
structure, i.e., a response that results in structural failure defined as higher
accelerations.
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Interval valued stiffness of the adjacent structure

For this case, the bounds of the lateral stiffness interval are considered to be
given as kI

t = [200; 330] MPa. Furthermore, it is assumed that all elements
take the same stiffness value. This assumption will not provide the worst-case
bounds on the response as this would require the use of optimisation, which is
used in general for non-monotonic problems [61, 160], and as will be applied in
the latter case studies in this chapter. Nonetheless, the analysis is performed
with these assumptions to illustrate the effect the elements have on the overall
performance of the crashbox. The results of this case study are illustrated in
Figure 5.8. In this figure, the force deformation curves of this case are compared
with those of the benchmark case. Figure 5.8 shows that both the obtained
mean force as well as the peak forces are lower than those of the benchmark
case, by 5.4 kN and 15 kN respectively. In addition, it also shows that the
peak force is reached at a lower deformation in both cases. This behaviour
is explained by the elements that absorb, and therefore deform, a part of the
kinetic energy especially at the start of the impact, which is shown in Figure 5.9.
This figure shows that the time to absorb the kinetic energy is both higher and
lower depending whether the lower or upper bound is used. Hence, the time to
build up the force and initiate the first folds is increased.

Figure 5.9 shows that in the final stages of the impact event the elements
set at the lower value of the stiffness accumulate more energy than the stiffer
elements (indicated in red), which causes the total kinetic energy to be absorbed
sooner. Therefore, the elements influence the time in which the kinetic energy
is absorbed by the component and the amount of kinetic energy, as a part
remains within the elements. The latter is of course an undesired effect as
these components are designed to dissipate a certain amount of kinetic energy.
Therefore, care should be taken to limit the amount that is elastically stored
within the springs. Moreover, this figure also shows the energy accumulated
by the deformation of the component Ecomp, the kinetic energy Ekin, hourglass
energy Ehg, and the total energy Etot of the simulation, which are truncated at
the time all kinetic energy is dissipated.

Finally, Figure 5.10 illustrates the deformation pattern at specific time steps
where the results of the upper row are set at the upper limit of the interval and
the second row is set at the lower interval value. It is clear from this figure that
the deformation in both runs is quite similar but with a small time delay for the
lower limit, which is also less deformed at the end of the impact after 18 ms.
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Figure 5.8: Force-deformation curves of the interval valued case with the minimal
and maximal peak- and mean force indicated by arrows and solid lines, in blue
and red

Interval valued spatial uncertain stiffness controlled at the corners

In this case study, the interval valued stiffness for the elements is assumed to be
spatially coupled, while the size of the interval is identical to this of the previous
case. As explained earlier, this corresponds to the physical presence of the
adjacent structure. The stiffness values of the elements are coupled by means of
an interval field. In this interval field, a set of discrete control points are placed
at the corner nodes of the crashbox. Further, rather than modelling the stiffness
of each of the 60 elements separately, only 4 parameters are required. This is
advantageous from a computational standpoint. The interval field used in this
case is defined in section 2.5.2 with basis functions that are based on IDW with
p = 2, and the interval of the lateral stiffness is assumed to have a midpoint
of x̂ = 265 MPa with a radius of ∆x = 65 MPa, which corresponds to the
interval used in previous case kI

t = [200; 330] MPa. The bounds of the response
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Figure 5.9: Energy balance of the interval valued case with: the total energy
Etot blue, the kinetic energy Ekin yellow, hourglass energy Ehg green, the energy
of the adjacent structure Eadj red, and the energy of the component Ecomp
purple

are in this case estimated by global optimisation using a differential evolution
algorithm (DE). DE uses different populations for each generation within the
input space to actively search for the global minimum. The results and the
settings for the optimisation algorithm are summarised in Table 5.2, where
the interval scalars are denoted with an ∗ when obtained through optimisation
α∗ = maxmi(xI).

From the summary in Table 5.2 and the corresponding force-deformation curves
in Figure 5.11, it is clear that when optimisation is used to actively search for
the bounds, a larger interval is found for both, the mean force and the peak
force. Especially in comparison with the previous case, it is clear that variation
of the stiffness between elements yields larger bounds on the response for both
quantities of interest. Figure 5.11 further illustrates that both the minimal
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Figure 5.10: Deformation of the interval valued case at identical time steps,
with the fixed plane in red, and the impacting plane in white

results of DE using control points at the corner nodes
value pop rec mut nfal nit α∗

1 α∗
2 α∗

3 α∗
4 Optimisation

224.4 20 0.3 [0.9 1.7] 1155 56 0.0634 0.9663 0.1508 0.2748 minFpeak
261.7 20 0.3 [0.9 1.7] 220 8 0.4767 0.6706 0.6464 0.3902 maxFpeak
42.2 20 0.3 [0.9 1.7] 1325 59 0.5267 0.9036 0.5703 0.0222 minFmean
61.4 20 0.3 [0.9 1.7] 9850 257 0.7300 0.1332 0.8988 0.1077 maxFmean

Table 5.2: Results of the case study with control points at the corner nodes,
including the DE parameters: population size (pop), recombination constant
(rec), mutation constant (mut), with the number of evaluations (nfal) and
iterations (nit) needed to identify the optimal interval scalar parameter α∗ for
the different optimisation runs

mean force as well as the minimal peak force are very low in the region between
30 and 80 mm of deformation, before starting to increase again. The cause of
this effect can be seen in the deformation pattern in Figure 5.12, where it is
clear that a global buckling mode is activated. This causes the crashbox to
"fold" and lose its structural integrity. The force is only going up after 140 mm
of deformation because the collapsed structure is still between the two rigid
planes and is starting to get further compressed. Hence, it is argued that from
this level of uncertainty realisations are possible where the performance of the
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component is no longer guaranteed, as the global buckling mode prevents the
dissipation of the kinetic energy.
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Figure 5.11: Force-deformation curves for the case with four control points
at the corners obtained through optimisation; with the minimal and maximal
peak- and mean force indicated by arrows and solid lines, in blue and red

Figure 5.11 also shows that the optimisation procedure yielded a mean force
which is higher than the mean force that was obtained in the benchmark case.
This is illustrated in green colour. The reason for a higher mean force is found
in Figure 5.12. Based on this figure, the higher mean force is attributed to a
more dense folding pattern. Because of this denser folding pattern, the total
deformation of the crashbox is also shorter than for the benchmark case, which
can also be seen in Figure 5.11. This indicates that, for an equal kinetic energy,
interactions between the component and the adjacent structure can result in
mean forces both higher and lower than these identified with the benchmark
case.

To gain a better understanding of these interactions, it is also useful to look
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Figure 5.12: Deformation of the case with four control points at the corners at
identical time steps, with the fixed plane in red, and the impacting plane in
white

at the realisations of the interval field. These realisations are illustrated in
Figure 5.13 with the left hand realisation corresponding to the maximum peak
force and the right hand configuration to the minimum mean force. The control
points of the interval field are indicated by a black circle in this figure and
the normalised stiffness of the elements is indicated by the relative length of
the black dashed lines. It is clear from this figure that the global buckling
mode is obtained by a realisation that resembles a plane which is placed at an
angle, while the maximum mean force is obtained by making differences between
opposite corners. These realisations are not only interesting from the point of
UQ as they can also assist in the way these components are manufactured and
joined together, which initiates relative changes of stiffness.

Interval valued spatial uncertain stiffness controlled between the corner
nodes

For this case, the locations of the control points are changed, which directly
influences the possible realisations of the interval field. A summary of the results
obtained through optimisation using a differential evolution algorithm is given
in Table 5.3. In a comparison with the previous case it is noticed that there is a
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(a) Realisation of the interval field
according to α∗ = max mi(xI)

(b) Realisation of the interval field
according to α∗ = min mi(xI)

Figure 5.13: Realisations of the interval field with four control points, resulting
in the minimal and maximum mean force; control points are indicated by a
black circle and the length of the dashed line indicates the normalised stiffness
value

results of DE using control points between the corner nodes
value pop rec mut nfal nit α∗

1 α∗
2 α∗

3 α∗
4 Optimisation

224.3 20 0.3 [0.9 1.7] 1140 55 0.0391 0.2447 0.8808 0.3498 minFpeak
264.0 20 0.3 [0.9 1.7] 320 14 0.5126 0.7282 0.3702 0.6913 maxFpeak
41.9 20 0.3 [0.9 1.7] 5125 250 0.3034 0.9278 0.9953 0.1621 minFmean
62.8 20 0.3 [0.9 1.7] 975 44 0.5595 0.5065 0.9198 0.2090 maxFmean

Table 5.3: Results of the case with control points between the corner nodes,
including the DE parameters: population size(pop), recombination constant
(rec), mutation constant (mut), with the number of evaluations (nfal) and
iterations (nit) needed to identify the optimal interval scalar parameter α∗ for
the different optimisation runs

change in the upper limit of the peak force and the mean force, which indicates
that this configuration allows for a different interaction with the elements.

Figure 5.14 shows the deformation pattern that yielded the minimal and maximal
mean force at different time steps. Compared to the previous case, these
deformation patterns look quite different at a first glance, nevertheless when a
closer look is taken it seems that these are more familiar to the previous cases,
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seen from a different viewpoint. This could be the case as the configuration
of the interval field is not unique, which causes the component to buckle in
a different direction when the control points are rotated. This is not true in
general as in this case the box is a simple symmetric geometry, which is not
true in the presence of holes and fold initiators.

va

(a) time = 2.5 ms

vb

(b) time = 5 ms

vc

(c) time = 18 ms

Deformation resulting in the maximal mean force
vd

(d) time = 2.5 ms

ve

(e) time = 5 ms

vf

(f) time = 18 ms

Deformation resulting in the maximal mean force

Figure 5.14: Deformation of the case with four control points at the corners at
identical time steps, with the fixed plane in red, and the impacting plane in
white

In addition, the realisations of the interval field are provided in Figure 5.15
where the different location of the control points are indicated by the black
circle. The non-uniqueness in this case can be seen as rotating the interval
realisation by 90 degrees, which yields the same results. It is also visible in
this figure that the minimal mean force is obtained by a similar realisation as
seen in the previous case. For the maximal mean force a different realisation is
responsible for the observed differences.

Increased degree of freedom by placing additional control points

In this case, the degrees of freedom of the interval field are increased by placing
additional control points, which allows the realisations of the interval field to
have a more complex shape. Hence, this case represents a combination of the
previous cases constructed by placing control points at both, the corner nodes
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(a) Realisation of the interval field
according to α∗ = max mi(xI)

(b) Realisation of the interval field
according to α∗ = min mi(xI)

Figure 5.15: Realisations of the interval field with four control points, resulting
in the minimal and maximum mean force; control points are indicated by a
black circle and the length of the dashed line indicates the normalised stiffness
value

results of DE using eight control points
value pop nfal nit α∗

1 α∗
2 α∗

3 α∗
4 α∗

5 α∗
6 α∗

7 α∗
8 Optimisation

224.1 26 5652 350 0.08 0.05 0.79 0.55 0.65 0.68 0.19 0.02 minFpeak
263.4 26 864 32 0.25 0.85 0.33 0.55 0.66 0.59 0.46 0.89 maxFpeak
41.3 26 5832 350 0.95 0.90 0.56 0.04 0.04 0.53 0.20 0.92 minFmean
64.7 26 5831 350 0.53 0.67 0.05 0.96 0.46 0.26 0.98 0.35 maxFmean

Table 5.4: Results of the case using eight control points, here the DE parameters:
recombination constant (rec), mutation constant (mut) are identical to the
previous case, while the population size(pop), number of evaluations (nfal) and
iterations (nit) needed to identify the optimal interval scalar parameter α∗ for
the different optimisation runs are provided

and between them. The results of this case are summarised in Table 5.4, which
indicates that in general the bounds on the response have increased.

These increasing bounds are expected as the additional control points increase
the dimension of the input space, which also results in an increased time
to perform the optimisation. It is noticed that the optimisation algorithm
quickly identifies realisations that result in a high or low mean force, and starts
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optimising the elements to have the lowest stiffness that still initiates the global
buckling mode. The mean reason is that after buckling of the component the
moving rigid plane starts impacting the elements, which provide a lower force
if they have a lower stiffness. This is observed by the fast increase in force in
Figure 5.16 while the energy in the springs Figure 5.17 is not increasing. Hence,
it can be argued that the component is not capable of dissipating all kinetic
energy under this amount of uncertainty.
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Figure 5.16: Force-deformation curves for the case with eight control points
obtained through optimisation; with the minimal and maximal peak- and mean
force indicated by arrows and solid lines, in blue and red

The realisations of the interval field with eight control points are shown in
Figure 5.18b where the realisation yielding the maximum mean force is shown
on the left and the minimal mean force on the right. As in the previous cases, the
realisation that yields the minimal mean force is quite similar and the maximum
mean force is a result of a more complex interaction with the elements at the
end of the component.
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Figure 5.17: Energy balance of the interval valued case whit: the total energy
Etot blue, the kinetic energy Ekin yellow, hourglass energy Ehg green, the energy
of the adjacent structure Eadj red, and the energy of the component Ecomp
purple

5.4.4 Interval field with increasing uncertainty

In this case the uncertainty in the interval field model, quantified by the width
of the bounds, is varied by changing the radius of the interval ∆x. This study
is aimed at identifying the performance of the component under different levels
of uncertainty. In this case, the level of uncertainty that allows to deform the
component by a global buckling mode is of main concern as this prevents the
component from fully dissipating the kinetic energy, which is the main purpose
of this component. The corresponding level of uncertainty is identified by
running a set of optimisations using the same settings as in Section 5.4.3 while
the interval radius ∆x is varied. The results of all these individual optimisations
are provided in Figure 5.19 where each of the optimisation runs are identified
by a marker for the upper and lower bound. Figure 5.19 shows that with an
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(a) Realisation of the interval field
according to α∗ = max mi(xI)

(b) Realisation of the interval field
according to α∗ = min mi(xI)

Figure 5.18: Realisations of the interval field with eight control points, resulting
in the minimal and maximum mean force; control points are indicated by a
black circle and the length of the dashed line indicates the normalised stiffness
value

increase of the interval radius a non-monotonic increase of the bounds on the
output, indicated in red and blue, is obtained. Especially the large step made
by the lower bound of the mean force between ∆x = 32.5 MPa and ∆x = 34.5
MPa is of interest as this indicates the transition between a folding pattern
towards the global buckling mode, which is regarded as a failure. This is also
observed in the deformation patterns, in the same figure, at a single time step of
5 ms, which illustrate the transition in the observed deformation pattern. This
information can be used in a component optimisation where a better design
is performing better under a wider range of uncertainty, which would make
it more robust. This robustness is not limited to the component alone as it
translates to the complete structure, which will meet the requirements under a
wider range of circumstances.

In addition, the markers in Figure 5.19 show that the DE algorithm was unable
to identify the same minimum that was obtained in another optimisation run,
which yields the adjusted bounds identified by a circle. The adjustments of
the bound for each of these circles was about ten times smaller in absolute
value compared to the step that is observed at the minimum mean force bound.
Although, this step occurs at a seemingly arbitrary value of ∆x = 32.5 MPa,
the important lessons are the different worst-case deformation patterns that
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Figure 5.19: Bounds of the mean force identified through global optimisation
for different values of interval radius ∆x, with the corresponding deformation
at identical times

are occurring. Moreover, this value of ∆x can be seen as a measure of the
robustness of the component with respect to the uncertain input. Hence, the
robustness is interpreted as the ability of the component to perform within
certain limits for a range of uncertainty.

5.5 Discussion

In the previous section, a number of cases are shown starting from a benchmark
case, an interval valued case, interval field analysis and finally an interval
field approach with increasing uncertainty. These cases illustrate the use
and additional value of using non-deterministic modelling strategies in crash
simulation. However, a number of important findings are further elaborated on
in this section that allow for a more general discussion about the results.
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The first finding is that the elements at the back of the component are also
dissipating kinetic energy, which is a direct result of the stiffness of each spring
and the reaction force of the component. This effect is first shown in the
benchmark case, Section 5.4.2, where at the start of the impact energy is stored
at the springs, which is released later. Nevertheless, in Section 5.4.3 it is also
shown that the optimisation algorithm converges to a configuration of the
elements that ensures failure of the component while maximising the amount of
elastic energy stored within the elements. This configuration leads to lowest
mean force after the component lost structural rigidity, which can be interpreted
as failure. Therefore, energy storage at the end of the impact event stored
within these elements is undesired and should be limited or accounted for within
the optimisation, as this limits the kinetic energy dissipated by the component.

The second point that stands out in this analysis is related to the optimisation
algorithm that is used to obtain the bounds on the output quantities. It is
noted that the DE algorithm experiences some difficulties to reach a converged
solution for some of the optimisation runs. Since, these simulations are quite
time consuming, a limit on the maximum number of iterations of the DE solver
has to be placed for practical reasons. Specifically, this bound was set at 350
iterations, which corresponds to about 5700 deterministic crash simulations.
Figure 5.20 shows the convergence of the best candidate point at each iteration
for the minimisation of the mean force, for the cases in Section 5.4.3. For each
of these optimisation runs, the best candidate point is not improved for the
last 50 iterations before reaching the maximum number of allowed iterations.
Hence, this point is accepted as the global minimum with the knowledge that
with a large number of additional iterations a better candidate point might
be identified. In the authors opinion this is not justified by the additional
computational cost that would be required. Note that it is not possible in
general to prove that the global minimum is identified using global optimisation
approaches in combination with non-convex functions.

In addition, Figure 5.19 shows that for the multiple independent simulation
runs different global minima were identified, which were not always lower than
the minima found at a lower interval radius. The bounds of these optimisation
runs, marked by a circle, are adjusted to the previously identified minima. One
of the reasons for these difficulties is of course the heavy non-linear response of
the crash model with respect to the uncertain input parameters. To illustrate
this, Figure 5.21a shows the function evaluation of 5000 samples, for which
X1,2 are generated by a Latin hyper-cube and X3,4 are set at zero. This figure
shows that optimisation of this function is not trivial as there are multiple
local minima and maxima, which means that small perturbations of the input
parameters can easily lead to a different result. In addition, Figure 5.21b
shows the same data as in Figure 5.21a represented as a two-dimensional colour
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Figure 5.20: Convergence of the differential evolution algorithm for the
minimisation of the mean force, described in section 4.3.2., 4.3.3., and 4.3.4.

plot. The rectangles in Figure 5.21b represent the input space dimensions that
were used in the optimisation runs of Figure 5.19 with the edge of the figure
representing ∆x = 65 MPa. This figure shows the symmetry that exists between
the interval field and the rectangular crash box, and some of the local minima
and maxima. However, note that because of the interpolation used to create
this colour plot some of these local effects are not well-represented. With these
challenges in global optimisation of this function in mind it can be argued that
the differences between the three cases in Sections 5.4.3, 5.4.3 and 5.4.3 are
not that significant. This is especially interesting towards the case with eight
control points, in Section 5.4.3 where the dimension of the search space doubled
resulting in a much larger computational cost. This case demonstrates that
there is a dependence between the number of control points of the interval field
and the performance of the component. Hence, it is worthwhile to investigate
this dependence as in a more complex case the presence of small triggers, e.g.,
holes, can lead to bifurcations.

A final point of discussion relates to the use of the peak force and the mean force
measure for anti-optimisation of crash structures under uncertainty. Although
these measures have a profound physical background and are widely used within
the crash community, it is illustrated in Section 5.4.4 that optimisation on these
responses is very hard. In addition, in Section 5.4.3 it is shown that over time
the optimisation is more focused on storing energy within the elements than
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(a) three-dimensional representation of the
input and output

(b) two-dimensional representation of the
slice

Figure 5.21: Slice of the input space with the mean force as a response,
constructed with 5000 Latin hyper-cube samples for X1 and X2 while X3,4 = 0
the surface is then created by linear interpolation

it is at identifying bifurcation modes for the component. Therefore, further
investigations should be made to a measure that captures the performance of
the overall system with an output that is less prone to small bifurcations in
optimisation.

5.6 Conclusions

This chapter introduces a new framework for modelling and evaluating the
crashworthiness of a single component in an early development stage under
epistemic uncertainty. This is accomplished by modelling the behaviour of
the impacted adjacent structure as unknown but spatially coupled uncertain
element stiffnesses. The interval valued performance of the structure is obtained
using a global optimisation approach, which is shown to be challenging yet
feasible for interval field analysis applied to crash simulation. Based on an
academic case study, the results obtained by this innovative framework are
demonstrated. The focus is on the sensitivity of the typical main quantities
of interest, i.e., mean and peak force during impact, towards the uncertainty
included in the interval field modelling strategy. In the presented case study,
three dominant deformation modes are identified for the considered range of
uncertainty, one of them a global buckling mode. The results indicate that even
limited uncertainty in the adjacent structure can affect the deformation mode
significantly, resulting in fundamentally different conclusions. In addition, by
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investigating the realisations of the interval field, the cause of these deformation
modes can be further analysed.

Although this work is aimed specifically at crash analysis, this technique can
be applied to impact simulations in general. Especially in cases that typically
consider fixed boundary conditions while the actual conditions are unknown, the
interval field proves to be a powerful concept that allows to tackle uncertainty
efficiently. Hence, in future work the combination with the Component Solution
Spaces for early stage crash component design is further investigated, which
allows for faster design of complex structures in a large and decentralised design
process while guaranteeing overall system performance from an early design
stage.





Chapter 6

Robust design optimisation
under lack-of-knowledge
uncertainty

This chapter was previously published as:
C. van Mierlo et al. “Robust design optimisation under lack-of-knowledge
uncertainty”. In: Computers & Structures 275 (2023). Publisher: Elsevier,
p. 106910

6.1 Abstract

Design optimization is common practice in engineering where the goal is to
find the optimal combination of design parameters under prescribed constraints.
However, some parameters may be impossible to define in a deterministic sense
and may only be known with significant uncertainty. This limitation has led to
an alternative definition of design optimality called robustness, where attention
is payed to the variation around the optimal performance. Straightforward
methods to solve robust optimization problems are usually limited in two ways:
(1) the computation burden of the so-called ‘double-loop’ optimization problem
hinders application to realistic models, and (2) the formalisms are typically
limited to probabilistic descriptions of the uncertainty. This chapter presents a
formulation of the robust optimization problem under interval uncertainty and
proposes a new approach taking advantage of the so-called adaptive Gaussian
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processes to solve it efficiently. The proposed surrogate approach mitigates
the computational burden of the resolution, and a dedicated learning function
is proposed to ensure iterative minimization of the surrogate modelling error
and convergence towards the robust optimum. The algorithm uses a stopping
criterion related to the level of confidence associated with the optimality of
the solution. The approach is illustrated on six analytical and engineering
benchmark problems.

6.2 Introduction

Current engineering practice involves the development and design of products
that span an ever growing field of applications, while the performance of these
products should also be guaranteed under a wide range of circumstances. In
other words, the performance of a product should be only minimally affected by,
e.g., load variations, changing environments, boundary conditions. The idea of
products and processes that are insensitive to variations, e.g., in manufacturing,
was pioneered by Genichi Taguchi who first applied his methodology on electrical
circuits [218, 219]. However, the description of these variations, including the
details about their underlying probability density functions (PDF’s), is in
general a challenging task. The main reasons for this are that the corresponding
quantities are inherently variable, e.g. wind loads, there is incomplete knowledge
about the quantity, e.g. direct measurement is challenging, or the designer is
faced with a combination of both [84]. Additionally, in an early design stage,
where the fundamental design decisions are made, only rough estimations of the
quantities influencing the performance might exists. Historically, in engineering
practice uncertainties are covered by safety factors. Although this approach is
very straightforward, these safety factors will not provide information about
the actual conservatism in the design. Therefore, numerous techniques for
uncertainty quantification have been introduced during the last decades to
account for these uncertainties. Typically, these techniques are categorised as
probabilistic and possibilistic approaches [213]. The latter includes techniques as:
interval [68, 163], fuzzy sets [100], information gap methods [22], and imprecise
probabilities [19, 77]. In general, probabilistic methods are best suited for
aleatory uncertainties as they describe non-determinism via random variables
defined by their joint probability distributions, while possibilistic approaches
are usually well suited to cover both aleatory and epistemic uncertainties.

In addition to the variety of possibilistic methods, different definitions of
the robustness are proposed in literature; the relevance of which depends on,
e.g., the application and the available information. For a review of different
robustness measures under probabilistic uncertainty the reader is referred
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to the work in [166, 179, 246]. In the context of possibilistic uncertainties,
robustness definitions have been introduced in the framework of information
gap theory [130, 192], convex models [8], and for fuzzy sets [20]. The definitions
in these works are mainly based on two criteria: the first is minimising the
variation of the output [20], and the second is to optimise simultaneously both
the output (e.g. performance) and its variance around the optimal value [106,
157, 244]. In addition to the definition of robustness, a range of methods have
been developed for its evaluation, with sampling strategies for most mixed
uncertainty problems [20, 135], forward or inverse propagation [219], meta-
model assisted methods [191], and fully decoupled methods for reliability based
design optimisation [78].

This work focuses on developing a meta-model assisted method to determine
the robustness at different design points. The meta-model that is used is a
Gaussian Process (GP) model also known as Kriging [129, 194], which is used
in this context as an emulator of the physical model. After calibration of the
GP-model on a set of evaluated points, i.e., Design of Experiments (DOE),
the model is fast to evaluate. Based on this easy to evaluate GP model, fast
approximations can be made about the underlying problem, i.e., numerical
model, and this approximation can be improved by increasing the calibration
points in the DOE. The well-known framework of Efficient Global Optimisation
(EGO) [118] successfully exploits the GP mean and variance to select additional
calibration points and improve on the predicted minimum. In the specific
case of interval uncertainties, the GP is used to estimate the interval width
in un-sampled regions, including the confidence bounds about this estimate.
Hence, the GP estimate can be used in place of the actual model for the
optimization problem. The estimation will be affected by a modeling error
but can be bounded by a confidence interval. An improvement function is
proposed that finds the next point to evaluate as a compromise between its
estimated robustness and the uncertainty regarding its estimation (high GP
variance). The improvement function in this work is based on the work of M.
De Munck et al. [52]. However, in this work some adaptions are proposed to the
improvement function to efficiently perform the robust optimisation. To solve
the robustness optimisation efficiently two improvement functions are combined:
first an improvement of the interval width throughout the domain and second
an improvement towards the most robust design. The combination of these two
improvement functions provides a powerful improvement function that refines
the GP model both globally and locally around the most robust design point.
The proposed Robustness under Lack-of-Knowledge method is abbreviated as
RULOK.

This chapter is structured as follows: Section 6.3 the robustness measure
under interval uncertainty is introduced, while Section 6.4 provides the details
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towards the Gaussian Process model that is used. Section 6.5 describes the
adaptive sampling strategy that is used to calibrate the Gaussian process and the
performance of this method is demonstrated on a number of cases in Section 6.6.
Finally, in Section 6.7 a discussion about the results is held before conclusions
are drawn in Section 6.8.

6.3 Robustness under lack-of-knowledge uncer-
tainty

The uncertainty considered in this work is purely epistemic in nature and results
from a lack-of-knowledge about the exact value of the parameter. In practice,
this kind of uncertainty is encountered when the best estimate of a parameter
is limited to a range of possible values, even when it is based on all available
data and/or knowledge. The real value of the quantity, be it deterministic or
variable, is in this case represented by the bounds between which it is deemed
to lie. Precisely, an interval is defined as:

xI = [x; x] = {x ∈ Rnx | x ≤ x ≤ x}, (6.1)

where x denotes the lower bound and x denotes the upper bound. In addition, an
interval can be represented by the centre point x̂ = x+x

2 and radius ∆x = x−x
2

of the interval.

6.3.1 Propagation of interval valued uncertainty

In this work the model m is a continuous function on R, which is parameterised
by a parameter vector θθθ. The parameter vector consists out of two parts
θθθ = {x, z}, with x the uncertain parameters and z the design parameters. The
number of elements in the parameter vector are indicated by nθθθ = nx + nz. By
solving the model m the parameter vector θθθ is transformed Rnθθθ 7→ R to a scalar
response quantity y ∈ Y ⊂ R, with the set of admissible model parameters Y,
defined as:

m : y = m(θθθ). (6.2)

The main goal of the interval analysis is to identify the extremes of the set
of system responses ỹ. Since finding the set ỹ is in general computationally
intractable, the exact solution set is often approximated by a realisation set ỹs
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defined as [66]:

ỹs =
{
yj | yj = m(θθθj); xj ∈ xI ; j = 1, . . . , nq

}
. (6.3)

The set ỹs is typically constructed by performing nq deterministic evaluations
yj = m(θθθj) of the numerical model, with yj the response of the jth solution.
For each of these nq solutions, a sample is taken within the range of the
interval xI . The main challenge herein is choosing xj such that ỹs is a accurate
approximation of ỹ. A first way to obtain such approximation is to follow an
optimisation approach. Here, the exact solution set ỹ is approximated by an
accurate interval for the one dimensional case. For the higher dimensional case a
conservative approximation is made about the hyper-cubic solution set in higher
dimensions yI = [yI

1 , y
I
2 , . . . , y

I
ny

], with ỹ ⊆ yI . The corresponding optimisation
problem is defined as:

y = min
x∈xI

m(θθθ),

y = max
x∈xI

m(θθθ),
(6.4)

where yI = [y; y] is the solution interval. When a global minimum or
maximum is found through optimisation, the exact output set bounds are
obtained. However, it should be noted that the behaviour of the goal function
with respect to the uncertain parameters is unpredictable in the case of strongly
non-linear problems, which makes the computational effort highly problem
dependent [159].

There is a special case for monotonic problems, where the vertices of the hyper-
cubic input space are sampled, called the vertex method, introduced by Dong
and Shah [55]. Following this method the output set is determined exactly
within 2nx evaluations. However, the underlying assumption is that the model
output behaves monotonically with respect to the input parameters, which is
not true in general. Other approaches are intrusive methods to solve interval
problems, which have been proposed in [172], and interval arithmetic methods
as proposed in [210].

6.3.2 Defining robustness in the case of interval valued
uncertainty

As mentioned in the introduction, multiple definitions of robustness exist,
depending on the context and application. In this work, it is proposed to define
robustness as the design with minimum variation in the performance given
a well-defined input uncertainty. Following this definition, robustness can be
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defined as the ratio of input uncertainty to the output uncertainty. However,
quantifying this uncertainty is non-trivial in general. Therefore, the focus lies on
the interval radius as a measure for the uncertainty. In this way, this robustness
measure can be regarded as an interval counterpart to robustness measures that
minimize the variance of the performance. For a case with one interval valued
input parameter, the input and output uncertainty are represented respectively
by the scalar interval radius ∆x and the associated scalar output interval radius
∆y. The output radius is a function of the design parameter z and should be
evaluated for multiple designs z ∈ Z. The robustness for this case is defined as:

R(z) = ∆x
∆y(z) = x− x

y(z) − y(z) , (6.5)

Since ∆x is independent of the design z, finding the most robust design z∗

is reformulated to the minimisation of the output uncertainty, which can be
evaluated for multidimensional cases, defined by:

z∗ = argmin
z∈Z

[y − y] = argmin
z∈Z

[max
x∈xI

m(θθθ) − min
x∈xI

m(θθθ)]. (6.6)

Figure 6.1 illustrates the proposed robustness measure R for a point z∗ and
shows the associated upper bound y(z) and lower bound y(z), in red and blue.
The point z∗ is also the point with the maximum robustness R, indicated in
orange. As suggested from Equation (6.6) finding the robustness of just one
design involves a global optimisation to construct the conservative approximation
of the solution set ỹ, which should be repeated for each of the design points
in Z. Thus, crude optimisation of the problem described in Equation (6.6)
involves two other optimisation problems: first an optimisation that actively
looks for the upper-bound y, and second, an optimisation that searches the
lower bound y, both for the same design z. Therefore, crude optimisation is a
time consuming effort, as this would involve a large number of evaluations of
the model m under consideration. In an attempt to alleviate this problem, the
next section discusses the use of a well-designed Gaussian process model G that
could be used in place of the model m.

6.4 Gaussian process model for robustness under
interval uncertainty

This section provides a short theoretical summary of GP models or Krig-
ing [129][132], an introduction with examples is also available in [190]. A GP
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Figure 6.1: Illustration of the optimal robust design points R(z∗) (orange) for
the upper and lower bounds y and y for a specific design parameter zi.

model is a stochastic meta-model that assumes m(θθθ) to be a realisation of a
Gaussian process, which is defined as [198]:

G = βT f(α) + σ2𭟋(x,Ω), (6.7)

with the first term being a deterministic regression model with f(α) =
{f1(α), . . . , fk(α)} a set of arbitrary basis functions, and βT a vector of
regression coefficients. The second term consists of a zero-mean, unit variance,
stationary Gaussian process 𭟋(x,Ω) scaled with a constant variance of the
Gaussian process σ2. The underlying probability space of the Gaussian process
is represented by Ω and the correlation between two points r and r′ is defined
by the covariance function K(r, r′, lc), with lc the characteristic length or other
hyper-parameters. In general, one refers to the covariance matrix K where
the covariance is determined for all points in a domain. The reader may refer
to [3] for details about different covariance functions in Gaussian processes.
In this chapter two well-known covariance functions are used: The Gaussian
kernel (also known as squared-exponential covariance function) and the Matérn
5
2 kernel.

The GP-model is then calibrated on an initial design of experiments xDOE

obtained from, i.e., Latin hyper-cube sampling and their observed results yDOE .
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Conditional on the observed data the mean and the variance of the Gaussian
process can be estimated [198]:

µgp = f(x)T β̂ + r(x)TK−1(yDOE − Fβ̂), (6.8)

σ2
gp = σ2 (1 − rT (x) + uT (x)(FT K−1F)−1u(x)

)
, (6.9)

with F the matrix of the observed trend, r(x) a vector of cross-correlations
between predicted points x and observed points, and with:

β̂ = (FT K−1F)−1FT K−1yDOE , (6.10)

the general least-squares estimate of β and

u(x) = FT K−1r(x) − f(x). (6.11)

Equations (6.8) and (6.9) are referred to as the mean and variance of the GP
predictor, respectively. The GP that is used in this work is an interpolating
GP, which means that the prediction of the variance at an experimental point
x ∈ xDOE tends to zero.

6.4.1 Predicting interval bounds with a Gaussian Process
model

In this work a GP-model is used to predict the output of the model m with
as input θθθ the set of uncertain and design parameters. To this end, µgp is
considered to be the best GP-estimate and σgp is the confidence over this
estimate. For the specific application of estimating an output interval based
on the GP-model the main interest goes to the maximum and the minimum
response over the complete range of uncertainty. Therefore, the bounds of the
response are estimated by:

ygp(z) = µgp(z) = max
x∈xI

µgp(θθθ), (6.12)

y
gp

(z) = µ
gp

(z) = min
x∈xI

µgp(θθθ). (6.13)
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A similar approach can be taken to identify the maximum and minimum of the
confidence bounds:

δµ+σ(z) = max
x∈xI

(µgp(θθθ) + cσgp(θθθ)), (6.14)

δµ+σ(z) = min
x∈xI

(µgp(θθθ) + cσgp(θθθ)), (6.15)

δµ−σ(z) = max
x∈xI

(µgp(θθθ) − cσgp(θθθ)), (6.16)

δµ−σ(z) = min
x∈xI

(µgp(θθθ) − cσgp(θθθ)), (6.17)

with cσ confidence bounds. The bounds of the response are estimated for
each design point z, based on Equations (6.12-6.17). Figure 6.2a illustrates a
simplification of the GP-model output for a single uncertain parameter x ∈ xI

and a single design variable z ∈ Z. The upper bound of the output interval
is determined by Eq. (6.12), indicated by the red line, and using Eq. (6.13)
the lower bound is found, indicated by the blue line. In addition, the bounds
based on the mean plus variance µgp + cσgp are predicted by Equations (6.14)
and (6.15), indicated by the red dotted and dashed lines. Similarly, the bounds
based on the mean minus the variance µgp − cσgp are given by Equations (6.16)
and (6.17) are indicated by the blue dotted and dashed lines. Moreover, two
designs z∗

gp and zpot
gp are shown, illustrating the predicted behaviour along the

uncertain parameter x. Note that in general, for one specific design, e.g., z∗
gp,

the location of x for the predicted upper bound ygp(z∗
gp) and the location of x

of the maximum of the CI for the upper bound δµ+σ are different.

In the second illustration, Figure 6.2b, the estimated interval bounds are shown
by the red and blue lines, with the CI about these estimates indicated by the
red area for the upper bound, and blue area for the lower bound. Note that
the red area is drawn between the upper bound of the minimum prediction and
the upper bound of the maximum prediction by the GP-model. In addition,
two designs z∗

gp = 2 and zpot
gp = 4 are highlighted to illustrate the robustness

measure. The robustness in Eq. (6.5) can be calculated based on these bounds
given by the GP-model. Specifically, for the design z∗

gp the robustness is given
by:

R(z∗
gp) = x− x

y(z∗
gp) − y(z∗

gp) (6.18)

with y(z∗
gp)−y(z∗

gp) the estimated interval width, which corresponds to 2∆y(z∗
gp).

Moreover, based on the CI it is also possible to estimate the potential interval
width for zpot

gp , which would potentially have a higher robustness. To make this
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(a) Illustration of the Gaussian Process model spanning the uncertain x, design z and
output y space, with the GP mean prediction µgp in black and the µ ± cσ CI in red
and blue surfaces; Two potential design points z∗
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gp are shown as a slice.
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and the two designs z∗
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gp)and the lowest CI prediction ∆δgp(zpot
gp ) of the bounds

Figure 6.2: Illustration of the domain to determine the robustness based on the
GP-model predictions
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estimate the confidence bounds about the mean prediction are used:

R(zpot
gp ) = x− x

δµ−σ(zpot
gp ) − δµ+σ(zpot

gp )
(6.19)

with δµ−σ(zpot
gp )−δµ+σ(zpot

gp ) the estimated interval width, which corresponds to
2∆δgp(zpot

gp ). The difference between these two robustness measures is that
R(z∗

gp) is estimated on the mean and the potential robustness R(zpot
gp ) is

estimated using the CI. Hence, the learning function introduced in Section 5 will
exploit this difference, to search for designs with a potential higher robustness.
Note that changing the constant c in Equations (6.14) to (6.17) from, e.g., 2σ
to 3σ will enlarge the distance between red and blue surfaces.

In general, identifying the minimum and maximum as stated in Equations (6.12)
until (6.17) is not trivial and involves numerous calls to the GP model. In
addition, the mean and variance of the GP model are hard to use for optimisation
as in the general case the problem is non-convex. Therefore, using a GP model
is challenging for global optimisation methods. However, a number of successful
strategies have been proposed to efficiently optimise such problems e.g., using
branch and bound algorithms as proposed in [118]. In this work, the continuous
problem is discretised over a grid with a fixed number of points. In that case,
the complex problem of identifying the maximum and minimum reduces to
identifying the highest value in a set of candidates. Note that this only works
efficiently with a low number of parameters, as the computational burden
increases exponentially O(nd) with the d-dimensions of the problem for a full
grid. In addition, an associated disadvantage is the finite accuracy achievable
by the discretisation of the problem, with a finer discretisation causing a higher
computational burden. The effects of discretisation can be mitigated in low
dimensional problems by using a high number of grid points and changing the
number of points to check the dependency of the solution on the discretisation.

6.5 Adaptive refinement of the Gaussian process
model

To identify the robust design point in a limited number of evaluations of the
model m the GP-model is adaptively refined with the specific goal of identifying
the most robust design point. Therefore, the GP-model itself is used to identify
regions of interest based on two criteria related to the famous compromise
between exploration (low prediction confidence) and exploitation (identified
areas of possible optimum). The learning function to achieve this is described
in this section, starting first with an introduction of the maximum improvement
function.
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6.5.1 Maximum improvement function

The learning function introduced in this chapter is based on the maximum
improvement function, which was introduced in [52]. Before applying this idea
to the robustness problem as stated in the previous section, the general idea is
briefly summarised. The goal of the learning function is to determine which
sample is the best candidate to enrich the set of calibration samples for the GP.
This effectively means improving the precision of the GP around the selected
sample. Here this is illustrated on a general continuous function f(u) : Rnu 7→ R,
which is approximated by a GP-model g(u). Using the learning function as
defined in (6.20), a compromise is made between improving the calibration
around the expected minimum using the GP mean (exploitation) and in areas of
high prediction uncertainty based on the GP variance where a better minimum
could be found (exploration). By iteratively enriching the calibration of the GP
with the best sample improves the estimation of the minimum until a stopping
criterion is eventually reached. The learning function is defined as [52]:

MI(u) = min(µg(u)) − (µg(u) − cσg(u))
min(µg(u)) , (6.20)

with µg(u) the GP model prediction at u, min(µg(u)) the current minimum, and
cσg(u) represents the variance around the prediction of u. Here, the variance is
truncated at a certain confidence bound with c in Eq. (6.14). Hence, when the
confidence bounds are based on, e.g., 3σ, more effort is dedicated to reducing the
uncertainty about the approximation. Contrarily, lower confidence bounds, e.g.,
2σ, reduce the confidence interval and favour improving approximately found
maxima or minima. To identify the new candidate point unew the maximum
MI is identified over the domain u ∈ U found by:

unew = argmax
u∈U

(
min(µg(u)) − (µg(u) − cσg(u))

min(µg(u))

)
. (6.21)

Figure 6.3 shows the true function f(u) in red and the GP based approximation
g(u) in black. The black dot is a point that is part of the DOE used to calibrate
the GP-model. Furthermore, this figure shows how the learning function in
Eq. (6.20) is used to evaluate the point unew ∈ U to determine which point
should be added to the DOE. When the GP-model is re-calibrated using the
newly evaluated point unew, the minimum of f(u) is further approximated. If
it is unlikely that a point ucandidate provides a minimum of f(u) lower than the
current min g(u), a negative improvement is obtained.
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Figure 6.3: Illustration of the learning function where the goal is to approximate
the minimum of the true function f(u) in red, by the GP-model prediction g(u);
the black dot is the point that is part of the DOE and the next point unew is
selected by the learning function, adapted from [52]

6.5.2 Maximum improvement of the robustness

After the introduction of the maximum improvement, the remainder of section
5 describes how this is used in this specific case of robustness. The main goal of
the optimisation procedure is to identify the most robust design point in z ∈ Z,
such that this design provides a minimum variation in the output interval for
all x ∈ xI . This is enabled by adapting the maximum improvement, introduced
in Eq. (6.20), to work directly on the minimum interval width. Specifically, it
is adapted to:

MIz(z) =
minz∈zI

(
ygp(z) − y

gp
(z)
)

−
(
δµ−σ(z) − δµ+σ(z)

)
minz∈zI

(
ygp(z) − y

gp
(z)
) , (6.22)

with δµ−σ(z)−δµ+σ(z) the predicted minimum bound 2∆δ(z) with a confidence
interval of cσ about this bound, and minz∈zI

(
ygp(z) − y

gp
(z)
)

the minimum
bound predicted by the mean estimate. Note that the mean estimated bounds
correspond to 2∆ygp(z∗

gp) in Figure 6.2b, and δµ−σ(z) − δµ+σ(z) to 2∆δgp(zpot
gp )

in the same figure. By reaching a MIz(z) ≤ 0, when the two intervals are equal,
one can state that it is not expected with, e.g, 95% confidence for c = 1.96, that
there is a smaller bound of ∆y within the current range of design parameters
z ∈ Z. Figure 6.4 illustrates in the top graph the improvement function where
∆δ provides a possible smaller bound for the interval ∆y. In the graph below the
value for MIz(z) is given, illustrating that it is likely to improve the robustness
at min ∆δ.
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Figure 6.4: Illustration of the predicted mean bound ∆ygp(z) = ygp(z) − ygp(z)
and the minimum bound based on the confidence interval ∆δ(z) = δµ+σ(z) −
δµ−σ(z)

6.5.3 Maximum improvement of the predicted bounds

The previously introduced improvement function Eq. (6.22) finds a promising
design point, based on the estimates of the GP-model. However, to estimate
promising design points the overall GP-model must be refined as well, especially
around these promising design points. Therefore, a second improvement function
is introduced to increase the confidence of the predicted bounds. Here the
maximum improvement Eq. (6.20) is adapted to obtain a best estimate of the
minimal interval width ∆δmin, which depends on both the upper and lower
bound. Figure 6.5 illustrates the idea behind the improvement function used
here. In general, the goal is to approximate the output set ỹs for each design
z ∈ Z. The point that provides the largest improvement of the lower bound of
this interval is given as:

MImin(θθθ) = min
x∈xI

[µgp(θθθ) + cσgp(θθθ)] − µgp(θθθ), (6.23)
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and the improvement of the upper bound is given as:

MImax(θθθ) = µgp(θθθ) − max
x∈xI

[µgp(θθθ) − cσgp(θθθ)] . (6.24)

Note that unlike the improvement functions in Equations (6.20) and (6.22) the
one given in (6.23) and (6.24) are not normalized and calculated for each design
in Z. Hence, there is a guaranteed possible improvement even if the global
minimum and maximum are identified. The improvement function is illustrated
in Figure 6.5 for a single point x∗ ∈ xI . In the illustrated case, the improvement
of the minimum bound MImin is unlikely (negative value) while it seems likely
to improve the upper limit MImax. In the end, only one candidate point can be
chosen to be added to the design of experiments. Therefore, for each evaluated
point the highest improvement value is used, which can either improve the lower
bound or the upper bound:

MIx = max(MImin,MImax). (6.25)

This means that for the illustration in Figure 6.5 only the value of MImax is
saved for the point x∗.

y

x

MImax(z,x∗)
MImin(z,x∗)

x∗

∆yz
∆δmin

∆δmax

ygp

ygp + cσgp

ygp − cσgp

Figure 6.5: Illustration of the learning function for a candidate point x∗, showing
the MI of the lower and upper bound; here the improvement of the lower bound
is negative

Finally, the candidate point that performs best over the sum of the two
improvement functions Eq. (6.22) and Eq. (6.25) is selected. Hence, the next
candidate point θθθcandidate is obtained by:

θθθcandidate = argmax
z∈Z x∈xI

[MIz(z) +MIx(θθθ)] . (6.26)
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Note that it is possible here to assign weighting factors to the two functions.
However, to the author’s knowledge no advantage is gained in this regard.
Hence, these weights are not used in this work.

6.5.4 Stopping criterion for adaptive refinement

The role of a stopping criterion is to indicate when the algorithm reached a
desired level of convergence. In this work, the stopping criterion is defined
on the improvement of the robustness MIz, which means that based on the
current GP-model it is unlikely to identify a point that is more robust than the
current best estimate minz∈zI

(
ygp(z) − y

gp
(z)
)

. This point is identified with
cσ confidence when the maximum improvement MIz ≤ 0. However, this is only
achieved when the GP-model variance at location z∗ reduces to zero. Although
possible in theory, this is highly unlikely to be achieved in practice. Hence a
small error term ϵ is defined, which assures that when:

MIz ≤ ϵ, (6.27)

there is with 95% confidence no point R within the domain smaller than R(1+ϵ).
Unless explicitly specified otherwise, the default value for ϵ = 1·10−3 throughout
this work.

6.5.5 Overview of the method

In Figure 6.6, a flowchart of the method is provided. The flowchart describes in
detail the steps needed to perform the optimisation as proposed in this chapter.
The method starts at the initialisation where all parameters are selected by the
user, i.e., correlation function, size of the initial design of experiments, value for
ϵ. After this initialisation is made, the initial design of experiments is evaluated
by the model m and the GP is calibrated. Hereafter, the adaptive refinement
starts with finding new potential robust designs points based on the learning
function in Section 5. For each newly identified point the model is evaluated
m(θθθcandidate) and the results are added to the Design of Experiments. This loop
continues until the stopping criterion Eq. (6.27) is met. Finally, after finishing
the optimisation, it is highly recommended to validate and verify the results
of the GP. A good starting point to check the accuracy of the GP-model is to
perform Leave-one-Out (LOO) cross-validation with the points already in the
Design of experiments.
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Initiate optimisation

Draw initial samples θθθDOE based on LHS

Evaluate the model y = m(θθθDOE) and obtain yDOE

Calibrate the GP model using yDOE

Calculate MIz using Eq. (6.22)

Check if MIz ≤ ϵ

Evaluate the model ycandidate = m(θθθcandidate)

Obtain best candidate point θθθcandidate Eq. (6.26)

Append yDOE with ycandidate

Calculate the results and verify

Stop

Adaptive refinement of GP

no

yes

Figure 6.6: Flowchart of the robustness under lack-of-knowledge method

6.6 Case studies

In this section the RULOK technique is tested and validated for different
problems, which start with a set of analytical functions and build up to higher
dimensional engineering examples. For the first analytical cases a comparison is
made with classical optimisation techniques, which require direct evaluations of
the numerical model for each of the sample points. Moreover as the robustness
measure in Eq. (6.6) requires a double-loop optimisation approach, where the
outer-loop is focused on the next design point and the inner loop identifies
the upper and lower bound of the response for a given design z ∈ Z. This
optimisation directly uses the expensive to evaluate numerical model. Thus,
the efficiency is measured in the amount of required function evaluations.
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6.6.1 Analytical test functions

To study the basic properties of the proposed method a set of analytical test
functions is used. Each of the three test functions presents a different challenge
in terms of optimisation, starting form a convex and smooth function and
progressing to non-convex problems. The analytical test functions are defined
as:

fa(x1, x2) = x2
1x2 − x2

2, (6.28)

fb(x1, x2) = x2x1 − sin (x1)x2
2 + x2

1, (6.29)

fc(x1, x2) = cos(4πx1) − sin(x1x2) + x2, (6.30)

with x1 ∈ [−5, 5] the design parameter and xI
2 = [−5, 5] the uncertain parameter.

The goal of the optimisation is to identify the value for x1 at which the bounds
on ∆f are minimal for each x2 ∈ xI

2. This optimisation is defined as:

maxR(x1) = min
x1∈xI

1

(
max
x2∈xI

2

fn(x1, x2) − min
x2∈xI

2

fn(x1, x2)
)
, (6.31)

with n indicating the three functions fa, fb, fc. In these particular cases, without
the need for optimisation, one can determine that the minimum of the functions
fa, fb and fc lies at x1 = 0; ∀x2 ∈ xI

2. Nevertheless to demonstrate the additional
value of the proposed method two well-known optimisation algorithms are used
in a comparison. These two optimisation approaches used in this work are:
Unconstrained Optimisation (UO) where the minimum of a function is searched
using a quasi-Newton algorithm; another strategy is to use a Genetic Algorithm
(GA) to solve the outer-loop where the bounds of the response in the inner-loop
are identified using UO. The population for the GA is set to a default value of
20.

The results of the method and those oobtained by classical optimisation
approaches are compared in Table 6.1. It is noticed that the proposed method
outperforms the brute optimisation approaches, which is expected with the use
of a meta-model. The table also shows that depending on the level of confidence
the number of iterations increases. Note that the amount of iterations needed to
obtain a result is difficult to estimate a priori as this depends on the underlying
problem and the correctness of the GP model at each iteration. The error term
in the table refers to the discretization error introduced by using a fixed grid
to sample the meta model. For both function fa and fb the optimal point is
part of the samples in the grid using nsamples = 501. However, for function
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fc this dependence is checked and the optimal point is not part of the grid
points nsamples = 200 or nsamples = 500. Therefore, the analysis returns the next
best point, which is the closest to the optimal point. Using a larger number of
grid-points will therefore increase the accuracy of the estimation at a higher
computational cost.

Function Method Optimum Iterations Evaluations Error∗ confidence
fa analytic 0 - - - -
fa RULOK 0 36 38 ≈ 0.02 1, 96σ
fa RULOK 0 42 44 ≈ 0.02 3σ
fa UO -7e-6 3 184 - -
fb analytic 0 - - - -
fb RULOK 0 28 30 ≈ 0.02 1, 96σ
fb RULOK 0 49 51 ≈ 0.02 3σ
fb GA 0.099 77 50680 - -
fc analytic 0 - - - -
fc RULOK -2.5e-2 279 281 0.05 1, 96σ
fc RULOK 1e-2 172 174 0.02 1, 96σ
fc RULOK 0 214 216 ≈ 0.02 1, 96σ
fc RULOK -1e-2 242 244 0.02 3σ
fc GA 4.4e-5 30 2760857 - -

∗ the discretization error of the grid is determined by ∆x/npoints = 10/501 for fa and fb.

Table 6.1: Results of the analytic test functions

To further illustrate how the method works Figure 6.7 shows the function value
for all three functions fa,fb and fc at each design point x1. For each function
the true bounds are given by the black dashed lines, the evaluated points are
indicated with a green cross, and the predicted upper- and lower-bound are
given in red and blue, including their 95% confidence intervals, and the optimal
design point is indicated by a circle. Starting at the top of Figure 6.7 function fa

is shown where the gradient decreases when moving towards the robust design
point x1 = 0. The middle sub-figure illustrates the function fb with larger
confidence bounds around the predicted optimum, shown by the red and blue
areas. It is also shown that the CI about the upper bound is larger than the
CI of the lower bound, which is exactly the goal during optimisation. Finally,
the bottom graph of Figure 6.7 shows the more complex function fc with the
optimum at x1 = 0. This figure illustrates the additional function evaluations
needed to ensure the global minimum was found, and not one of the many local
minima. Note that for this case the optimal robust point x1 = 0 is not part of
the grid as the grid is discretized by an even number of samples, which include
the end and start point.
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Figure 6.7: The GP predicted bounds of the interval valued uncertainty including
the 95% confidence intervals; for from the top to the bottom function fa,fb and
fc, respectively.
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In Figure 6.8 the meta-model of function fa is plotted for all points within the
domain with the black surface the mean response, the red and blue surfaces the
lower- and upper-bound of the 95% confidence intervals, and the green dots are
the points used to calibrate the GP-model. This figure illustrates the dispersion
of the evaluation points at the edges of the domain and concentration of points
around the optimal point, which reduces the variance of the GP-model at this
location. Hence, the distance between the bounds increases in locations that are
further from the optimal point since there are considerably less points evaluated
here. Nevertheless, it is possible to use the GP-model further to analyse the
problem at hand. However, one should be aware that due to the selection of
training points an overall agreement between the GP-model and the underlying
problem is not guaranteed.

Figure 6.8: GP-model prediction of function A with the black surface the mean
response, the red and blue surfaces the 95% CI on the mean prediction, and
the green points indicating the evaluated points

6.6.2 Plate subjected to a point load

In this case study, the thickness of a plate with two equal sides of 100mm
is chosen within the interval t ∈ [3, 6]mm. The uncertain parameter is the
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Young’s modulus of the material, which is known to be bounded by the interval:
EI = [110, 280]GPa. All degrees of freedom of one side of the plate are
completely fixed and a point load of 100N is applied to one of the opposite
corners. The performance of this design is measured by the displacement of the
corner node that is subjected to the load. The analysis is performed by a FE
model using 1000 shell elements.

At the start of the analysis two initial points are evaluated based on Latin
Hyper-Cube sampling. Figure 6.9 shows the results that are obtained after just
9 function evaluations, with the true bounds of the model in dashed black lines,
the GP-model prediction of the upper- and lower-bound in red and blue, and the
confidence intervals as colored areas. The optimal design point trobust = 6mm is
as expected, the thickest plate. The rationale behind this simple example is that
the thickest plate will bend less than a thinner plate under identical uncertainty
of the Young’s modulus. However, Figure 6.9 presents an illustration of the
refinement around the optimal point, with only two evaluation points lower
than 4.5mm. The order of the points that are added is further highlighted by
the numbers next to the crosses in the plot starting with the initial evaluations
1 and 2, up to 9, the final point.

Although the physical interpretation of the problem explains the identified
optimum a double-loop approach is used to validate this result. Here using
CO a total of 82 evaluations of the numerical model were needed to identify
the optimum trobust = 6mm, which is identical. However, with this classical
optimisation no additional information is obtained regarding the problem that
is studied.

6.6.3 The borehole function

The second engineering example is the Borehole function [217], which is a typical
test case for computer experiments. The borehole function describes the water
flow fborehole though a borehole between two underground aquifers by the flow
rate of the water m3/year:

fborehole = 2πTu(Hu −Hl)

ln ( r
rw

)
(

1 + 2LTu

ln ( r
rw

)r2
wKw+ Tu

Tl

) . (6.32)

It is assumed that the diameter rw ∈ [0.05, 0.15] m, the length of the borehole
L ∈ [1120, 1680]m of the borehole can be controlled and are therefore the
design parameters. All other parameters are listed in Table 6.2. Two cases
are considered with this example, first a case where only two parameters are
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Figure 6.9: GP predicted bounds of the interval valued uncertainty including
the order in which the points within the DOE where evaluated; including the
95% confidence intervals, evaluated points indicated by crosses, and the optimal
design point indicated by a circle.

uncertain and the others are taken at the midpoint, second a case where all
parameters are considered uncertain.

Borehole function with two uncertain parameters

In this first case only the potentiometric head of the upper aquifer Hu and the
hydraulic conductivity Kw are regarded as uncertain. The remaining uncertain
parameters are taken at the midpoint of their interval. The results of the analysis
are shown in Figure 6.10, which shows a contour plot of the true interval width
on the top, the predicted interval width based on the mean of the GP-model
below, and the minimal interval width based on the 95% CI next to it. In all
contour plots of Figure 6.10 the red circle and green dot indicate the location
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Figure 6.10: Top: contour plot of the true interval width in function of the
design parameters, borehole radius rw and the borehole length L and only the
potentiometric head of the upper aquifer Hu and hydraulic conductivity Kw

are regarded uncertain; bottom: mean GP prediction of the interval width (left)
and the minimal interval width by 95% CI (right)

of the robust design point, located at the lower-bound of the diameter and the
upper-limit of the length of the borehole. In addition the blue dots indicate the
points where the original function was sampled. The physical interpretation
of the location of the robust point is that a borehole with a smaller diameter
limits the possible flow through the borehole. However, for the length of the
borehole this observation is not obvious. The results in Figure 6.10 are obtained
with a total of 35 evaluations of the borehole function including the four initial
evaluations.

Borehole function with six uncertain parameters

In this case all six uncertain- and the two design-parameters of the previously
discussed borehole function Eq. (6.32) are considered within the ranges as
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parameter x x x̂ unit
radius of influence rI 100 50 000 2550 m
transmissivity of upper aquifer T I

u 63 070 50 000 56 535 m2/year
potentiometric head of the upper aquifer HI

u 990 1110 1050 m
transmissivity of lower aquifer T I

l 63.1 116 89.55 m2/year
the potentiometric head of the lower aquifer HI

l 700 820 760 m
hydraulic conductivity of the borehole KI

w 9855 12 045 10 950 m2/year

Table 6.2: Parameters of the borehole function

defined in Table 6.2. The results of the analysis are shown in Figure 6.11, which
shows the true interval width on the top and the GP prediction on the bottom
left and the interval width based on the 95% CI on the right. The number
of evaluations to obtain these results has only increased slightly to 64, which
includes 8 initial evaluations, while the complexity of the problem is increased
by four additional uncertain parameters. The location of the robust design
point remained at the lower-bound of the diameter and the upper-bound of the
borehole length. The physical reason for this difference is not directly clear from
the formulation of the borehole function. However, the additional parameters
seem to have little effect to the overall behaviour of the function while the
width of the interval has increased slightly, which can be seen by comparing
Figure 6.10 and Figure 6.11. To better understand the effect of the additional
parameters the interval sensitivities are investigated. The reader is referred
to [161] for a thorough discussion about interval sensitivities. However, note
that the fundamental difference between the classical sensitivity studies and
interval sensitivities is that the latter is valid over the full range of the interval,
while the former focuses on local sensitivities, which are not valid over the full
range of the interval. The interval sensitivities for the borehole function with
six uncertain parameters are provided in Figure 6.12, which shows that the
radius of influence r, transmissivity of the upper aquifer Tu, and lower aquifer
Tl have an negligible effect on the output interval. Moreover, this figure shows
that all parameters behave the least sensitive around the robust design point.
The latter means that with a relative change of input interval width only a
minimal change in output interval width happens.

Although the obtained results are convincing and could be compared with the
true solution, this is not always possible especially with the use of complex
numerical models. However, one can validate the GP-model based on the
points that were evaluated in the Design-of-Experiments, which provides an
indication about the correctness to capture the underlying physical behaviour.
This validation is accomplished by a number of tests shown in Figure 6.13 which
are based on the Leave-One-Out prediction of the points within the DOE. Note
that this is a conservative choice as the prediction is now made with a GP
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Figure 6.11: Top: contour plot of the true interval width in function of the design
parameters: borehole radius rw, and the borehole length L; with uncertain
parameters: the radius of influence r, transmissivity of upper aquifer Tu, the
potentiometric head of the upper aquifer Hu, transmissivity of lower aquifer Tl,
the potentiometric head of the lower aquifer Hl, the hydraulic conductivity of
the borehole Kw; bottom: mean GP prediction of the interval width (left) and
the minimal interval width by 95% CI (right)

containing n − 1 training points, which is especially conservative with a low
number of training points. In Figure 6.13a the true function response and the
Leave-One-Out (LOO) response are shown including the R2 value. Figure 6.13
illustrates that most of the points in the DOE are located at the lower-bound
of the function output and an increasing error towards the upper-bound of the
output. The latter is a direct effect of the selection of points that are added
to the DOE, which results in a GP model that is especially good in a specific
region. The second Figure 6.13b the true function value and the standardized
LOO residual are shown with the two red lines indicating the 95% CI. A similar
conclusion can be made where the model in correct at lower output values but
misses the true function at higher output predictions. Finally in Figure 6.13c
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Figure 6.12: Relative interval sensitivity of the uncertain parameters r, Tu, Hu,
Tl, Hl and Kw in function of the borehole diameter rw and length L.
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the true model quantiles versus the predicted quantiles are shown. We can
conclude that the GP-model performs well at low flow rates, with an error that
increases at higher flow rates.

6.7 Discussion

In general the results of the presented method are convincing and show that
this method is capable of identifying the robust design point with only a
limited amount of evaluations of the underlying expensive function, which is
demonstrated in a number of case studies. Nevertheless, a few things are noted by
the authors that should be addressed for further research and implementation.
As mentioned before, the obtained results are based on the GP model as
implemented in UQlab [140] for all case studies. It is noted by the authors that
using different implementations of the GP can lead to an increase in the number
of iterations before convergence is reached. This is attributed to the use of a
noise parameter in the GP, which is set at a minimum of 1e− 4 for the Matlab
built-in implementation [142]. Hence, the error term ϵ in Equation (6.27) should
increase to reflect this.

The number of samples in the initial DOE can affect the convergence and in
this chapter, as a rule of thumb, the number of initial evaluations is kept at the
total amount of uncertain- and design-parameters. Quantifying the effect of the
initial population size on the rate on convergence is challenging as this depends
on the underlying problem, i.e., that what is resembled by the GP model. This
rule of thumb is regarded as the minimal amount of initial evaluations needed
by the GP to make a first estimation. Nevertheless, the number of iterations is
difficult to determine a priori, as this depends on the complexity of the response
surface, the added value of the point added at each iteration, and the calibration
error of the GP model.

Finally, as the improvement function is evaluated on a fixed number of equally
spaced grid points, a limited precision is reached. Although using a large number
of grid points the precision increased, the computational cost to evaluate all
these points increases exponential in d-dimensions O(n−d) for a full grid. Hence,
in high dimensional cases this becomes a bottleneck without sacrificing the
resolution of the grid.
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(a)

(b)

(c)

Figure 6.13: Validation tests for the borehole function with two uncertain
parameters: (a) shows the cross-validated prediction vs. the true function value,
(b) shows the standard normalized residuals of the cross-validated GP model
within the 95% bounds in red, and (c) shows the cross validated quantiles vs.
the true quantiles
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6.8 Conclusion

This chapter introduces a novel method to design robust structures in an
early stage of development under lack-of-knowledge uncertainty. The presented
method uses an adaptively refined GP-model to perform the global optimisation
of the robustness and locate the most promising designs, which are the least
sensitive to the modelled sources of uncertainty. Based on a set of analytical test
functions the effectiveness and efficiency of the proposed method is demonstrated
and compared with typical well-known optimisation algorithms. It is shown that
the proposed method efficiently solves the double-loop problem, which is typically
associated with robustness-based optimization methods. In addition, three
additional case studies: a plate in bending, and two times the borehole function
are included to demonstrate the applicability to both industrial problems and
problems in moderately high dimensions. For all of these examples the results
are obtained with a reasonable number of evaluations of the underlying function
or numerical model. Future research is aimed at enlarging the application
domain of the proposed method, specifically for time-dependent problems.



Chapter 7

Robust design optimization of
expensive stochastic
simulators under
lack-of-knowledge

This chapter was previously published as:
C. van Mierlo et al. “Robust design optimization of expensive stochastic
simulators under lack-of-knowledge”. In: ASCE-ASME J Risk and Uncert
in Engrg Sys Part B Mech Engrg 0.0 (2023). Publisher: American Society of
Mechanical Engineers Digital Collection, p. 0

7.1 Abstract

Robust design optimisation of stochastic black-box functions is a challenging
task in engineering practice. Crashworthiness optimisation qualifies as such
problem especially with regards to the high computational costs. Moreover, in
early design phases, there may be significant uncertainty about the numerical
model parameters. Therefore, this chapter proposes an adaptive surrogate-based
strategy for robust design optimisation of noise-contaminated models under
lack-of-knowledge uncertainty. This approach is a significant extension to the
Robustness under Lack-of-Knowledge method (RULOK) previously introduced
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by the authors, which was limited to noise-free models. In this work, it is
proposed to use a Gaussian Process as a regression model based on a noisy
kernel. The learning process is adapted to account for noise variance either
imposed and known or empirically learned as part of the learning process. The
method is demonstrated on three analytical benchmarks and one engineering
crashworthiness optimisation problem. In the case studies, multiple ways
of determining the noise kernel are investigated: (1) based on a coefficient of
variation, (2) calibration in the Gaussian Process model, (3) based on engineering
judgement, including a study of the sensitivity of the result with respect to
these parameters. The results highlight that the proposed method is able to
efficiently identify a robust design point even with extremely limited or biased
prior knowledge about the noise.

7.2 Introduction

Robust design optimisation is a methodology that aims to create products
and processes that are insensitive to variations from, e.g., applied loads,
environmental conditions, manufacturing processes, and was pioneered by
Genichi Taguchi who first applied his methodology on electrical circuits [218,
219]. This methodology has since been further developed and multiple definitions
of robustness are found in literature. Two main classes of methods can be
drawn from it: the first is aimed at minimizing the output variance, see,
e.g., [18, 20, 154], while the second is aimed at optimizing of both the objective
function and the variance associated with this optimum, see, e.g., [106, 157,
244]. Moreover, robust design methods differ in the conceptualisation of the
source of variations that these designs are subjected to, which is best described
by non-deterministic approaches. Typically, these non-deterministic modelling
strategies are categorised as probabilistic and possibilistic approaches [213].
Where probabilistic methods are best suited for aleatory uncertainties as they
describe non-determinism via random variables defined by their joint probability
distributions, possibilistic approaches are usually better suited to cover both
aleatory and epistemic uncertainties, which can be modelled by techniques such
as: interval [68], fuzzy sets [100], information gap methods [22], and imprecise
probabilities [19, 77].

The authors of this work recently introduced the Robustness Under Lack-Of-
Knowledge method (RULOK) [154]. This method is aimed at finding the
design that causes the least amount of variation from a set of admissible design
parameters z ∈ Z ⊆ Rnz with Z the set of admissible designs and nz ∈ N. The
design parameters represent quantities that are controlled by the analyst, such
as, e.g., plate thickness values, hole diameters. The uncontrolled parameters



INTRODUCTION 169

are modelled as purely epistemic interval parameters x ∈ xI ⊆ IRnx with
nx ∈ N and IR the set of real valued closed intervals. They represent parameters
affected by significant uncertainties, such as e.g., weld diameters, transmission
parameters, material parameters. At the basis of the RULOK method an
adaptively refined Gaussian Process (GP) is used to estimate the minimum
interval width of the response for each of the designs. However, this approach is
not well suited for non-linear noisy systems, as seen in e.g., crash analysis, since
it assumes a deterministic behaviour of the underlying model. In these cases,
the non-determinism about these systems should be considered in the Gaussian
process to calibrate a meaningful surrogate. This remark is especially true when
the meta-model is used for robust design optimisation and reliability-based
design optimisation (RBDO) [44, 222] as these methods require a meaningful
surrogate to identify the correct optimum. Hence, in order to use industrial size
multi-disciplinary numerical models such as those used in crash optimisation,
see, e.g., [59] a more advanced meta-model is needed. One should note here that
crashworthiness optimisation using these advanced numerical models has always
been challenging, not only for meta-model assisted techniques. Crashworthiness
simulations or other advanced non-linear FE methods can be considered as
black-box functions, as no closed-form formulation or gradient information is
available. Moreover, it is well known for crash analysis that deterministic
simulations might exhibit numerical inadequacies, i.e., dynamic- and numerical
instabilities that can cause a small (infinitesimal) change in the input to produce
a major change in the output [4, 124, 148]. In addition to these numerical
inadequacies, in the specific case of explicit dynamic analysis there is a small
but progressively increasing numerical error accumulation [14, 16, 59, 223] over
the total duration of the simulation. The accumulated error term of both the
numerical inadequacies and numerical error makes the deterministic simulation
act like a stochastic simulation model despite its deterministic nature. In other
words, evaluation of the explicit numerical model returns different results for
the same set of input parameters.

The previously introduced RULOK approach relies on an interpolating GP
also known as Kriging [129, 194, 202] based on the assumption that the
underlying systems behaviour is deterministic. However, due to the combination
of the numerical inadequacies and numerical errors such systems exhibit noisy
behaviour. The RULOK approach is not capable of representing the behaviour
of a noisy system and induces significant over-fitting. The GP used in RULOK
is adaptively refined using a specific learning function, which identifies the
next point to be evaluated by the expensive to evaluate black-box function.
Note that the idea behind this adaptive strategy lies at the basis of Efficient
Global Optimisation (EGO), as introduced by [118]. In this chapter, an
extension to the original RULOK method is proposed, which enables the method
to work with both deterministic functions and non-deterministic functions.
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Therefore, this chapter introduces the use of a GP with a noisy kernel, which
is capable of truthfully representing stochastic function responses. The idea
of using a GP with a noise kernel is not new and has gained an increasing in
interest over the past decades, see, e.g., [125, 181] for an overview. In these
works, the learning function used in EGO is adapted to account for the noise
contaminated responses. In this work the learning function introduced in [154]
is slightly adapted. Especially the stopping criterion is changed to a more
general formulation that accounts for the set or calibrated noise kernel of the
GP. The paper is structured as follows: Section 7.3 describes the measure of
robustness under lack-of-knowledge. In Section 7.4 the details about noisy GP’s
are provided, while Section 7.5 describes the new stopping criterion and provides
an overview of the RULOK method. In Section 7.6, the method is tested on
three noise contaminated analytical functions and in Section 7.7 an example
about crashworthiness optimisation of a crashbox is given. Finally, in section
7.8 a discussion about the results is presented before conclusions are drawn in
Section 7.9.

7.3 Robustness under lack-of-knowledge uncer-
tainty

Omitted to avoid redundancy with Section 2.5.2 in Chapter 2.

7.3.1 Propagation of interval valued uncertainty

Omitted to avoid redundancy with Section 2.5.2 in Chapter 2.

7.3.2 Robustness for interval analysis

Robustness under lack-of-knowledge uncertainty is defined in [154] as the ratio
of input uncertainty to the output uncertainty, which can be regarded as an
interval counterpart to robustness measures that minimize the variance of
the performance. The robustness measure is illustrated for a case with one
interval valued input parameter, of which the input and output uncertainty are
represented respectively by the scalar interval radius ∆x and the associated
scalar output interval radius ∆y, which is a function of the design parameter z.
Hence, the output radius should be obtained for multiple designs z ∈ Z. The
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robustness is defined as:

R(z) = ∆x
∆y(z) = x− x

y(z) − y(z) . (7.1)

Since the uncertainty ∆x is independent of the design z, finding the most robust
design z∗ is reformulated to the minimisation of the output uncertainty, defined
by:

z∗ = argmin
z∈Z

[y − y] = argmin
z∈Z

[max
x∈xI

m(θθθ) − min
x∈xI

m(θθθ)], (7.2)

with maxx∈xI m(θθθ) the predicted upper-bound and minx∈xI m(θθθ) the predicted
lower-bound derived from the GP surrogate. Note there that Equation (7.2)
can be evaluated for multiple outputs y. In the specific case of a stochastic
function the location of the upper- and lower-bound can only be estimated by
the mean of the process. This point is illustrated in Figure 7.1 showing the
robust design point indicated in green based on the mean upper- and lower
bound in red and blue, respectfully. Obtaining these bounds from a stochastic
function is not trivial, especially correct estimations of the variance might be
challenging to obtain. Hence, in this work a GP is used to estimate the mean
responses based on a limited number of evaluations. The variance of the process
is then reflected in the noise variance of the GP.

7.4 Gaussian process model for noisy responses

This section provides a short theoretical summary of GP models or Krig-
ing [129][132], an introduction with examples is also available in [190]. A GP
model is a stochastic meta-model that assumes m(θθθ) to be a realisation of a
Gaussian process, which is defined as [198]:

G = βT f(α) + σ2𭟋(θθθ,Ω), (7.3)

with the first term being a deterministic regression model with f(α) =
{f1(α), . . . , fk(α)} a set of arbitrary basis functions, and βT a vector of
regression coefficients. The second term consists of a zero-mean, unit variance,
stationary Gaussian process 𭟋(θθθ,Ω) scaled with a constant variance of the
Gaussian process σ2. The underlying probability space of the Gaussian process
is represented by Ω and the correlation between two points θθθ and θθθ′ is defined
by the covariance function K(θθθ,θθθ′, lc), with lc the characteristic length or other
hyper-parameters. In general, one refers to the covariance matrix K where the
covariance is determined for all points in a domain. The reader may refer to [3]
for details about different covariance functions in Gaussian processes. In this
chapter the Matérn 5

2 kernel is used. Note that there is no general framework
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Figure 7.1: Illustration of the optimal robust design points R(z∗) (orange) for
the with noise contaminated upper- and lower bounds y and y for a specific
design parameter zi, adapted from [154]

at this moment to a priori select the appropriate covariance function. The
choice of this particular kernel is based on the fact that this function is 3 times
differentiable opposed to an infinite time as seen in the squared exponential
covariance function [76].

7.4.1 Predictions made by a noisy Gaussian process

Omitted to avoid redundancy with Section 2.7.3 in Chapter 2.

7.4.2 Predicting interval bounds with a Gaussian Process
model

Based on an initial set of evaluations, the GP is calibrated, and the model
responses can be obtained based on the easy to evaluate GP. To this end, µgp

is considered to be the best GP-estimate and σ2
gp is the variance over this

estimate. For the specific application of estimating an output interval based
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on the GP-model the main interest lies in estimation of the maximum and
the minimum response over the complete range of uncertainty. Therefore, the
bounds of the response are estimated by:

ygp(z) = µgp(z) = max
x∈xI

µgp(θθθ), (7.4)

y
gp

(z) = µ
gp

(z) = min
x∈xI

µgp(θθθ). (7.5)

A similar approach can be taken to identify the maximum and minimum of the
confidence bounds:

δµ+σµ
(z) = max

x∈xI
(µgp(θθθ) + cσµ(θθθ)), (7.6)

δµ+σµ
(z) = min

x∈xI
(µgp(θθθ) + cσµ(θθθ)), (7.7)

δµ−σµ
(z) = max

x∈xI
(µgp(θθθ) − cσµ(θθθ)), (7.8)

δµ−σµ
(z) = min

x∈xI
(µgp(θθθ) − cσµ(θθθ)), (7.9)

with cσ confidence bounds. The bounds of the response are estimated for each
design point z, based on Equations (7.4-7.9). Note that although the GP is cheap
to evaluate finding the minimum and maximum response as in Equations (7.4)
until (7.9) is non-trivial as this is a non-convex problem. However, successful
strategies have been proposed to efficiently optimise such problems e.g., using
branch and bound algorithms as proposed in [118]. In this work, the continuous
problem is discretised over a fine grid with a fixed number of points, which
was also done in the previous work of the authors. The complex problem of
identifying the maximum and minimum in a continuous setting reduces to
identifying the highest value in a set of candidates in a grid-shaped design.
Note that this only works efficiently with a low number of parameters, as the
computational burden increases exponentially O(nd) with dimension d for a full
grid.

7.5 Adaptive refinement of the noisy Gaussian
process model

In this section the learning function introduced in [154] is described, with
the new stopping criterion. The aim of the learning function is to identify
points that improve the GP estimate of the robust design point. In this regard
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a balance should be found between, exploration (low prediction confidence)
and exploitation (identified areas of possible optimum). The main goal of the
optimisation procedure is to identify the most robust design point in z ∈ Z,
such that this design provides a minimum variation in the output interval for
all x ∈ xI . This is enabled by adapting the maximum improvement [52] to work
directly on the minimum interval width:

MIz(z) =
minz∈zI

(
ygp(z) − y

gp
(z)
)

−
(
δµ−σ(z) − δµ+σ(z)

)
minz∈zI

(
ygp(z) − y

gp
(z)
) , (7.10)

with δµ−σ(z) − δµ+σ(z) the predicted minimum interval width 2∆δ(z) with a
confidence of cσ about this bound, and minz∈zI

(
ygp(z) − y

gp
(z)
)

the current
best estimate of the robust design point zopt. Figure 7.2 illustrates the learning
function in Equation (7.10) with on the top illustration the GP predicted upper-
and lower-bound of the model and on the lower illustration the learning function
MIz. The illustration shows that a design point z∗ at min 2∆δ is possible more
robust than the current optimum zopt at min ∆ygp. This is also apparent from
the graph below where MIz(z∗) > MIz(zopt), illustrating that it is likely to
improve the estimated robustness at min ∆δ. Note here that by reaching a
MIz(z) ≤ 0 the two intervals are equal. Hence, one can state that it is not
expected with, e.g, 95% confidence for c = 1.96, that there is a smaller bound
of ∆y within the current range of design parameters z ∈ Z.

7.5.1 Maximum improvement of the predicted bounds

The learning function in Equation (7.10) finds a promising design point z ∈ Z,
based on the estimates of the GP-model. However, to improve the estimated
interval width for each design a second learning function is used. This second
function can be seen as an estimation of the relevance of candidates with
respect to their coordinates in the θθθ uncertain dimensions. The maximum
improvement [52] is adapted to obtain the best estimate of the upper and lower
bound for each design point. The maximum improvement of the lower bound
of the interval is given as:

MImin(θθθ) = min
x∈xI

[µgp(θθθ) + cσµ(θθθ)] − µgp(θθθ), (7.11)

and the maximum improvement of the upper bound is given as:

MImax(θθθ) = µgp(θθθ) − max
x∈xI

[µgp(θθθ) − cσµ(θθθ)] , (7.12)

both of which are not normalised as seen in Equation (7.10). This to
guarantee a possible improvement even if the global minimum and maximum are
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Figure 7.2: Illustration of the predicted mean bound ∆ygp(z) = ygp(z) − ygp(z)
and the minimum bound based on the confidence interval ∆δ(z) = δµ+σ(z) −
δµ−σ(z), adapted from [154]

identified. This learning function is illustrated in Figure 7.3, where the maximum
improvement is given for a candidate point x∗ ∈ xI . The improvement of the
minimum bound MImin(z,x∗) at x∗ is unlikely (negative value) while it seems
likely to improve the upper limit MImax(z,x∗). However, only one candidate
point can be chosen to improve the estimation of the bounds. Therefore, for
each evaluated point the highest improvement value is used, which can either
improve the lower bound or the upper bound:

MIx = max(MImin,MImax). (7.13)

This means that for the illustration in Figure 7.3 only the value of MImax is
saved for the point x∗.

Finally, the candidate point that performs best over the sum of the two
improvement functions Equation (7.10) and Equation (7.13) is selected. Hence,
the next candidate point θθθcandidate is obtained by:

θθθcandidate = argmax
z∈Z x∈xI

[MIz(z) +MIx(θθθ)] . (7.14)
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ygp + cσµ

ygp − cσµ

Figure 7.3: Illustration of the learning function for a candidate point x∗, showing
the MI of the lower and upper bound; here the improvement of the lower bound
is negative [154]

Note that MIz and MIx have a different magnitude as MIx is not normalised.
Hence, it is possible at this point to scale MIz and MIx. However, to the
knowledge of the authors no significant improvements have been achieved in
this regard [154].

7.5.2 Stopping criterion for adaptive refinement of noisy
responses

The role of a stopping criterion is to indicate when the algorithm reached a
desired level of convergence. In this work, the stopping criterion is defined on
the improvement of the robustness MIz, which means that based on the current
GP-model it is unlikely to identify a point that is more robust than the current
best estimate minz∈zI

(
ygp(z) − y

gp
(z)
)

. However, this estimate of the interval
width is affected by the noise variance of the GP, illustrated in Figure 7.4. The
dashed blue and red lines indicate the Gaussian noise about the mean bounds at
−5 and 20, which corresponds with the bounds of function fa(z1 = 0), as shown
in the case studies. The full lines are the prediction given by the GP model
where the total variance is the sum of the GP noise and variance σ2

gp + σ2. In
accordance with the learning function in Equation (7.10) the smallest interval
width with 95% confidence is illustrated by min ∆δ, which can never be larger
than the interval width based on the noise ∆σn. Hence, to account for the
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min ∆δ

∆σgp

min ∆ygp
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z1

N (y, σtotal)
N (y, σgp)
N (y, σ)
N (y, σtotal)
N (y, σgp)
N (y, σ)

Figure 7.4: Illustration of the stopping criteria for a GP with noise; The
illustration shows that the ∆δ canFor both the upper and lower bound three
normal distributions are drawn N (y, σn),N (y, σgp), N (y, σtotal) indicated by
the dashed, dash-dotted and full lines, respectively

homoscedastic noise the stopping criteria is defined as:

MIs = 2cσgp

minz∈zI

(
ygp(z) − y

gp
(z)
) + ϵ, (7.15)

with σgp the noise variance of the GP, which is either known or unknown. Note
that in the case of unknown noise variance the stopping criterion changes over
each iteration of the adaptive scheme. The adaptive refinement is complete
when the possible improvement is smaller than the maximal improvement given
the noise of the GP:

MIz ≤ MIs. (7.16)

By the end of the adaptive refinement one can state that according the current
GP there is with 95% confidence no point R within the domain smaller than
R(1 + ϵ). To prevent premature termination of the algorithm the method
is only stopped when the criterion is satisfied by two consecutive iterations.
Note that the stopping criterion in Equation (7.16) would not work in the
case of heteroscedastic noise. Hence, the remainder of this chapter focuses on
homogeneous or homoscedastic noise.
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7.5.3 Overview of the method

In Figure 7.5, a flowchart of the method is provided. The flowchart describes in
detail the steps needed to perform the optimisation as proposed in this chapter.
The method starts at the initialisation where all parameters are selected by
the user, i.e., using a set GP variance or calibrate for the GP variance, the
correlation function that is used, size of the initial design of experiments, value
for ϵ. After this initialisation is made, the initial design of experiments is
evaluated by the model m and the GP is calibrated. Hereafter, the GP is
adaptively refined to identify a new potential robust design point based on the
learning function in Section 7.5. For each newly identified point, the model is
evaluated m(θθθcandidate) and the results are added to the Design of Experiments.
This loop continues until the stopping criterion Equation (7.16) is met two
consecutive times. Finally, after finishing the optimisation, it is considered good
practise to validate the results of the GP.

Initiate optimisation

Draw initial samples θθθDOE based on LHS

Evaluate the model y = m(θθθDOE) and obtain yDOE

Calibrate the GP model using yDOE

Calculate MIz using Eq. (7.10)

MIz ≤ MIs

and
MIi−1

z ≤ MIi−1
s

Evaluate the model ycandidate = m(θθθcandidate)

Obtain best candidate point θθθcandidate Eq. (7.14)

Append yDOE with ycandidate

Calculate the results and verify

Stop

Adaptive refinement of GP

no

yes

Figure 7.5: Flowchart of the robustness under lack-of-knowledge method for
noisy functions
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7.6 Analytical test functions with noise

To study the basic properties of the proposed method a set of analytical test
functions is used, which are identical to the analytical functions used in [154].
However, in this work a random noise term is added. The analytical test
functions with noise are defined as:

fa(z1, x1) = z2
1x1 − x2

1 + ζfn, (7.17)

fb(z1, x1) = x1z1 − sin (z1)x2
1 + z2

1 + ζfn, (7.18)

fc(z1, x1) = cos(4πz1) − sin(z1x1) + x1 + ζfn, (7.19)

with z1 ∈ [−5, 5] the design parameter, xI
1 = [−5, 5] the uncertain parameter

and ζfn represents a random component. It is assumed that the random errors
are i.i.d. random errors with E[(ζfn)] = 0 and V[(ζfn)] = σ2

fn, thus σ2
fn represents

the imposed homoscedastic noise variance independent of z1 and x1. Figure 7.6
illustrates the effect of the added noise to the functions fa, fb and fc, which is
illustrated by the red and blue areas around the mean upper- and lower-bound
indicated by full red and blue lines. The proposed method is tested on these
cases under both known- and unknown-homogeneous noise.

7.6.1 Analytical functions with known homogeneous noise

In this case homogeneous variance of the GP σ2
gp is assumed a priori, which is

independent of the noise term put on the analytical functions σ2
fn. In the cases

below, the effect of different noise terms on both the analytical function σ2
fn and

GP σ2
gp is demonstrated. The proposed approach is stochastic in nature since it

depends on the noise-affected realisations of the system. Therefore, each of the
cases shown in this section are repeated ten times, and the mean and envelope
of all runs are shown. The first case illustrated in Figure 7.7 shows the effect
of increasing the imposed noise variance σ2

fn for function fa Equation (7.17).
The figure on the left shows an increasing error for an increased imposed noise
variance σ2

fn, indicated with the mean relative error in a blue line and the
blue area showing the minimum and maximum error obtained for ten runs.
The figure on the right shows in a similar way the total number of function
evaluations, which includes the initial 20 design of experiment evaluations.

For the second case, the variance of the GP σ2
gp is set at different values,

while the imposed noise variance is kept at σ2
fn = 10, again for function fa

Equation (7.17). The results are shown in Figure 7.8, which is identical in
setup to the previous case. It is clear that with an increase of GP variance
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Figure 7.6: Illustration of the effect of noise on function fa,fb,fc; The red and
blue lines indicate the upper- and lower-bound of the functions, while the red
and blue areas represent the effect of noise on the upper- and lower-bound
illustrated by the 3σ CI for three noise variances σ2

fn = 10, 60, 150 for fa,fb and
σ2

fn = 0.01, 0.05, 2 for fa
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Figure 7.7: The mean and envelope of ten runs for function fa Equation (7.17)
with an increased imposed noise variance σ2

fn

σ2
GP the number of function evaluations ntotal increases, while the relative error

decreases slightly. In addition, the results indicate that when using an GP
with almost no variance, i.e., interpolating GP, on a function with noise the
obtained results are subjected to higher errors, if convergence is even possible.
In the opposite case, where the GP is set with high variance, a large number of
evaluations is required to reach the desired accuracy.

Figure 7.8: The mean and envelope of ten runs for function fa Equation (7.17)
with a increased set GP variance σ2

GP

For the third analytical case, function fb Equation (7.18) is used following a
similar approach. The results of this case are shown in Figure 7.9 where the
noise imposed on the function is increased and the variance of the GP model
is kept at σ2

GP = 10. These results are a bit different than expected from the
previous results, as in this case, the number of function evaluations decreases
with an increase of imposed noise variance σ2

fn. This decreasing trend has not
been observed in the previous case in Figure 7.7. The main reason can be
found in the underlying function. Where fa has a smooth transition to a global
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minimum, fb experiences two local minima and a global minimum at z1 = 0,
which can also be seen in Figure 7.6. One possible interpretation of that result
is that high noise levels mask the local minima of function fb.

Figure 7.9: The mean and envelope of ten runs for function fb Equation (7.18)
with a increased imposed noise variance σ2

fn

Finally, Figure 7.10 shows the results of function fc Equation (7.19) where in
a similar way the imposed noise variance σ2

fn is increased. It is already clear
from the results on the left that the error term is very large, indicating that
the obtained results are not satisfactory. Note that fc in Figure 7.7 shows
the complexity with multiple local minima covered by noise with very small
difference between the lower and upper bound. In this case the function possesses
too much of a challenge when noisy responses are considered.

Figure 7.10: The mean and envelope of ten runs for function fc Equation (7.19)
with increasing imposed noise variance σ2

fn
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7.6.2 Analytical functions with unknown homogeneous noise

This section focusses on cases with unknown noise variance σ2
gp. For such cases

the possibility of learning/ estimating the noise parameter from the observations
is investigated. The calibration of the noise variance is part of the GP calibration
using a maximum-likelihood approach and without any further changes in the
presented method. It is expected that the variance can only be estimated
correctly based of a sufficiently large number of observations. Hence, in the
first case shown in Figure 7.11 investigates this effect by increasing the points
in yDOE for function fa. The results indicate that for a very low number of
initial samples the results are not always satisfactory, which can be seen by the
high error, and the difference between the calibrated and imposed noise. In
these cases the optimisation strategy converges too fast, as with the limited
number of evaluations no correct estimates of the imposed noise variance σ2

fn
are made. This behaviour changes when 16 or more initial samples are used
with a reduction in the variance of the algorithm output and error suggesting
a correct convergence. Furthermore, it can be noticed that a high number of
initial samples not directly results in a high amount of total function evaluations.
Nevertheless, it should be noted that there will be a penalty when larger amounts
of initial samples are being used as the DOE will not place all points at optimal
locations, increasing the amount of function evaluations that do not contribute
to the final goal of the optimisation.

Figure 7.11: Results of function fa Equation (7.17) with on the left the relative
error, in the middle the total number of function evaluations including the
initial evaluations, and on the right the calibrated noise of the GP in a full
yellow line.

In addition to the effect of the initial samples, the stopping criterion depends
on both the GP variance and the error parameter ϵ, which controls when to
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stop the adaptive refinement. Therefore, based on the previous results, this
effect is checked using 20 initial samples, while varying ϵ. The results are shown
in Figure 7.12, with again the same structure as before. The decrease of ϵ and
the associated decrease of the allowed error are shown in the top left figure.
Here, it is seen that the effect on the precision of changing ϵ is relatively low.
However, it can be seen that for very low values the number of evaluations
starts to increase. It is also noted that for very low values of ϵ convergence
becomes unlikely even with a very high number of evaluations. However, to
prevent premature stopping the value of ϵ should be kept as low as possible.

Figure 7.12: Results of Function fa Equation (7.17) for eight cases with
increasing values for Epsilon, with on the left the relative error, in the middle
the total number of function evaluations including the initial evaluations, and
on the right the calibrated noise of the GP in a full yellow line.

In accordance with the previous cases of function fa the noise variance σ2
fn

imposed on fb is increased. However, this time the GP will take this increase of
noise into account as it calibrates for the noise. Figure 7.13 shows the results for
an increased imposed noise variance σ2

fn. Note that these results were obtained
for ϵ = 0.15 and 20 initial samples for each run. The figure on the right shows
the imposed noise variance σ2

fn and the mean calibrated GP noise as a full line,
with the area indicating the calibrated GP variances for all ten runs. It is clear
from Figure 7.13 that the method is capable of tracking these high imposed
variances without increasing the function evaluations.

7.6.3 Conclusions based on the analytical functions

In this section two distinct ways of using the RULOK method for noisy functions
are shown: first with a noise variance given a priori and second with unknown
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Figure 7.13: Results of function fb Equation (7.18) for eight cases with increasing
imposed noise variance σ2

fn, with on the left the relative error, in the middle the
total number of function evaluations including the initial evaluations, and on
the right the calibrated noise of the GP in a full yellow line.

noise calibrated as part of the GP maximum likelihood estimation. Both
methods are capable of providing satisfactory results for the analytical functions
defined in this section. However, general conclusions are not easily drawn on the
basis of the results obtained, as the performance of the method heavily depends
on the underlying problem. Conclusions that can be made are: (1) the number
of evaluations is higher when considering a noisy function response; (2) the
method is tolerant to over- and under-estimation of the actual noise variance;
(3) convergence is not guaranteed in complex cases with many local minima.
Furthermore, when the noise variance is estimated by the GP in the calibration
step the size of the initial design of experiments should be sufficiently large.
Although calibration of the noise variance is possible, better results, with fewer
evaluations, were obtained by a priori estimated noise.

7.7 Application to robust crashworthiness optimisa-
tion

In this section the proposed RULOK method for noisy function responses is
demonstrated on a frontal crash example. Here, the output of a numerical
impact simulation, as shown in Figure 7.14, is regarded as a noisy function
response. This crashbox is a typical component that can be found in the front
structure of a vehicle. The main objective of a crashbox is to dissipate a certain
amount of energy during frontal impact, and to prevent further structural
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Table 7.1: Significant parameters and their ranges as used in the numerical
simulations of the crashbox

Material model properties used for the component
initial speed v0 15 m/s mass m 600 kg
thickness plate 1 T1 [2; 3] mm thickness plate 2 T2 [2; 4] mm
spotweld diameter Tsw [1; 3] mm density of steel ρ 7.89 kg/m3

Young’s modulus GPA 200 Poisson ratio ν 0.3

damage at low-speed impact events. The numerical model to represent the
crashbox is taken from the publicly available Toyota Yaris model, downloaded
from [175], and consists of three sheet metal parts that are held together by a
number of spotwelds. The specific part numbers (PID’s) are 2000137, 2000121,
2000142 and part 2000486, of which the latter is used to model the spotwelds.
The setup of the numerical model, as shown in Figure 7.14, illustrates these
parts as also two rigid surfaces, the red surface is fixated at the back of the
component and the blue surface is impacting the crashbox with a prescribed
kinetic energy, as shown by the arrow. The kinetic energy of the blue surface is
scaled to 67, 5kJ with a mass of 600kg and an impacting speed of 15m/s, as
there are two crashboxes in a full vehicle model. Other parameters that are
used in this analysis can be found in Table 7.1. More details can be found in the
publicly available numerical model [156]. Note that T1 refers to the thickness
of the green plate in Figure 7.14, which has PID 2000121, and T2 to the blue
plate in the back with PID 2000142.

Optimisation of components for the front structure of a vehicle is quite
challenging as there are multiple objectives from different development teams
that should be met. For the structural requirements the mean force during
impact is often regarded as a quantity of interest. Figure 7.15 shows a typical
force-deformation curve for the crashbox with the dashed line indicating the
mean force. In this case the objective is to identify the design that results in the
smallest variation of the mean force for a given uncertainty. The uncertainty in
the two cases below stems from a lack-of-knowledge about the weld diameter,
and the thickness of the back-plate, which are modelled by an interval as
described in Table 7.1.

7.7.1 Crashbox with uncertain spotweld diameter

In this section, robust optimisation is performed with T1 as design parameter,
and Tsw the uncertain interval valued parameter as described in Table 7.1,
while T2 = 1.8 mm is fixed. As a reference, the existing RULOK method using
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v0

Figure 7.14: Finite Element Model of the crashbox with a rigid plane attached
to the nodes in the back (red) and impacting plane right (blue); adapted from
the Toyota Yaris model [175]

an interpolating GP without noise is used to identify the robust design point.
However, the original RULOK method failed to converge and was interrupted
after 1500 model evaluations. The results obtained by these 1500 evaluations are
plotted as the blue dots in Figure 7.16. When applying the RULOK method for
noisy functions, convergence was reached after 30 model evaluations including
20 initial evaluations. The results of this are also shown in Figure 7.16 with the
upper- and lower bound as predicted by the GP including the 95% CI about
these estimations, based on a set GP variance of σ2

GP = 5kN. The robust design
point for this case was determined to be T1 = 2.39 mm, which is shown by
the green line. Bases on the 1500 points evaluated by the original method this
optimum is clearly in the correct region.

In the previous example, the variance of the GP was set at an arbitrary value
with σ2

gp = 5 kN, which would correspond to a coefficient of variation (C.O.V.)
of about 0.045 on average within the domain. Therefore, to illustrate the
applicability of the method in an industrial setting, the variance of the GP is
determined by the mean response of the 20 initial evaluations multiplied by an
assumed C.O.V.. In Figure 7.17 the results are shown for different assumed
C.O.V.’s and a mean response of the 20 initial evaluations of 110kN. The top
figure shows the robust design point for each of the cases with the blue line
indicating the mean of the 10 evaluations and the blue area the envelope. On
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Figure 7.15: Typical force-displacement curve, obtained from the numerical
simulation, with the mean-force Fmean as a dashed line; in addition, two
deformed states of the crashbox are provided

the bottom figure the number of evaluations is shown in red, with the line
indicating the mean number of evaluations and the area covering all obtained
results. The results obtained indicate that the method is not very sensitive to
the assumed GP noise variance, and that even with COV = 1 correct results
are obtained. However, for both very low and high C.O.V.’s the number of
evaluations start increasing, and sometimes wrong optima are identified, while
the mean predicted optimum is always in the correct range.

7.7.2 Crashbox with uncertain spotwelds and plate thickness

To demonstrate the proposed method in a case with multiple uncertain
parameters both the spotweld diameter Tsw and the thickness of the back-
plate T2 are regarded uncertain, following the intervals listed in Table 7.1.
When an additional uncertain parameter is introduced, the location of the
robust design point has also changed. Therefore, a reference is created based
on 1000 Latin-Hyper-Cube (LHS) samples, before initiating the optimisation
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Figure 7.16: Evaluations by the RULOK method without noise kernel, in blue
vs. the evaluations, in red, and prediction of the method with a noise kernel

by RULOK. The results obtained are shown in Figure 7.18 with the LHS
samples in blue, the GP predicted upper- and lower-bound in red and blue lines,
respectively. The evaluations used to calibrate the GP are shown in red and
the predicted optimum is highlighted in green. It is clear that the predicted
optimum has shifted towards the lower bound of T1. The results shown here
are obtained for a set variance of σ2

gp = 5 kN and convergence was reached after
only 63 iterations. The obtained optimum T1 = 2.03 mm is indicated in green,
appears correct based on the LHS samples.

7.8 Discussion

The obtained results are very promising, especially those for the crashbox case,
which demonstrate the added value of this method for the use in non-linear
explicit numerical codes. However, as demonstrated on the analytical functions
the results are not always satisfactory as seen for fc, where often local minima
were obtained for. It should be mentioned here that the analytical function fc

presents an extremely difficult problem, which as seen in [154] where a Genetic
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Figure 7.17: Obtained results for the crashbox with the GP noise depending on
the COV of the initial 20 evaluations

Algorithm (GA) needed 2760857 function evaluations to find the robust design
point of function fc. By imposing i.i.d. random noise on this already complex
function, the complexity rises further, which poses a real challenge for most
commonly used optimisation strategies. The main added value of this method
is shown in Figure 7.16 and Figure 7.18 where the method arguably shows some
kind of ignorance towards bifurcations or numerical inadequacies. Furthermore,
in crash analysis finding the exact optimum is extremely challenging, and
proving that one found the global optimum is even more so. Therefore, the
obtained optimum is certainly not optimal in the mathematical sense. However,
based on the very limited information about the obtained highly non-linear
response that is available, a good estimate is made towards the location of
the robust design point, which is already a large improvement and provides
guidance for further developments. Note here that in previous work of the
authors [13, 148], the optimisation of similar crash cases took a minimum of
about 160 evaluations, and sometimes more than 3000 function evaluations
for a single design. Reducing this to only about 50 evaluations for a range of
designs is a huge improvement in terms of efficiency. To determine the number
of initial evaluations ten times the dimension of the input space 10nθ can be
taken as a rule of thumb. However, the method is capable of achieving result
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Figure 7.18: 1000 LHS samples of the numerical model vs. the GP prediction
of the upper- and lower bound based on only 62 function evaluations

with far fewer initial evaluations as shown in Section 7.6

The results obtained by calibration of the GP noise variance showed that the
method could be used for unknown homoscedatic noise variance. However,
this comes at the cost of increased function evaluations, starting with a larger
initial set of samples. It should be mentioned that the authors attempted to
calibrate the GP noise variance for the crashbox example. However, after a
large number of function evaluations convergence was deemed unlikely. The
problem here is that the signal is contaminated with a combination of numerical
errors and numerical inadequacies, which are challenging to differentiate using
only a limited number of evaluations. However, it was demonstrated on the
analytical function that the calibrated GP noise variance can be tracked well for
different noise variances. Arguably, the numerical inadequacies do not follow
the Gaussian noise assumptions, which is followed in the analytical cases.

The results in this work are based on the GP model implemented in UQlab [140]
for all case studies. However, using the stopping criterion proposed in this
chapter the method is applicable to all implementations of Gaussian Processes.
This was not the case before, as multiple implementations always use a small
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GP noise variance, called nugget, for numerical stability [142], which can be
taken into account as Gaussian noise. Finally, it should be noted that, as
with the original RULOK method, a structured grid is used. Therefore, the
computational cost to evaluate all points on this grid increases exponentially
in d-dimensions O(n−d) for a full grid. Therefore, in high dimensional cases
this becomes a bottleneck without sacrificing the resolution of the grid, and one
should consider the possible dependency of the solution to the discretisation of
the grid.

7.9 Conclusion

In this chapter an extension to the robustness under lack-of-knowledge method
is proposed, focusing on function responses that are contaminated by i.i.d.
Gaussian noise. A learning function with a new stopping criterion is proposed
capable of taking homoscedastic noise into account. The applicability of the
method is demonstrated on a set of analytical cases. Furthermore, the proposed
method is demonstrated on a highly non-linear crashworthiness case, which
arguably contains a certain amount of Gaussian noise on the response. The
results of this case show that the proposed method is capable of identifying a
robust design point, with fewer model evaluations than what would be expected
from a general optimisation algorithm.



Chapter 8

Valorisation

This chapter is a requirement within the Faculty of Engineering Technology,
which is aimed at the valorisation potential of the methods and developments
presented in the thesis. In this chapter, two independent valorisation trajectories
are explored and described in detail in the sections below. The valorisation
is mainly found in licensing implementations of state-of-the-art techniques
such that industry’s R&D departments can make more efficient use of these
techniques, and second in, expert roles providing assistance to industry to use
advanced methods and consultation in impact modelling and testing.

8.1 Uncertainty Quantification software licensing

FIRST, abbreviated from Fuzzy, Interval Ready Software Technology, is a
software tool used and developed by the Reliable and Robust Design research
group at the KU Leuven. This tool is specifically aimed to be intuitive in use
and is equipped with a recently developed graphical user interface. FIRST
allows direct coupling with multiple commercially available Finite Element
packages, i.e., Siemens NX, Abaqus. The main goal of this software package
is to lower the threshold experienced by industry to use advanced uncertainty
quantification tools, in particular field techniques, i.e., random fields, and
interval fields. Therefore, FIRST can be used by the research & development
teams at these companies to: (1) increase and understand the validity of
numerical models by including the relevant uncertainty from an early conceptual
stage, (2) assist in the design of appropriate experimental campaigns, and (3)
assist in analysing manufacturing variability and the impact hereof on product
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reliability. The analyst is assisted in this regard using the intuitive graphical
interface of FIRST to enable advanced uncertainty quantification techniques,
i.e., interval fields, random fields. Based on the developments in this thesis,
the interval field capabilities were extended with the techniques described in
Chapter 3 and 4. Furthermore, based on the developments in this work the
main contribution would be an additional material calibration module. This
module can be used to calibrate material models that can be used in various
FE simulations. In addition, the module would allow the user to quantify the
effect of scattered material data on the product performance, following the
developments in Chapter 3.

The material calibration module would allow the analyst to upload a set of
experimental data, as shown in Figure 3.7, and capture the non-determinism
using an interval field. Realisations of this fitted interval field are then directly
usable in numerical simulation and other UQ techniques, e.g., sensitivity analysis,
robustness based design optimisation. This methodology was first tested and
implemented by the author in [149], and is also used for the optimisation results
shown later in this section. The material calibration module would be licensed
as a separate add-on for FIRST following the Software As A Service (SAAS)
model. The license costs of this module would be in the range of 5K€ for
an annual licence. This license fee is in line with currently available material
calibration tools (Mcalibration), which do not offer non-deterministic modelling
strategies. However, first a test phase would be conducted to gather customer
feedback, which will be mainly from the industrial partners and license holders
who already have an additional service package for FIRST. The reason for this
testing phase is of course to ensure that the package is working as intended
and that the instructions are clear to new users. The typical costumers for this
add-on would be:

• Machine building companies aiming to increase the reliability of
the machines, and reduce the variance in produced products. Using
the material calibration module these companies can quantify effects of
scattered material properties on the production process of the machines.

• Product development and design companies where FE methods are
used to determine the performance of the final product. Often, significant
uncertainty exists about the exact material behaviour, especially at an
early development stage. Using the calibration module the material models
can be calibrated and used for UQ

Based on the growing number of workshops, learning platforms and conferences
industry’s interest is increasing to use non-deterministic modelling, uncertainty
quantification, and model Verification and Validation (V&V) techniques, which is
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Figure 8.1: Screenshot of the graphical user interface of FIRST

further supported by the increasing active scientific community in this field. This
indicates the economic potential. Moreover, renown standardisation institutes,
i.e., ASME, NASA, ISO, are increasingly describing the use of advanced
methods to perform these activities. Furthermore, the future of crashworthiness
assessment in automotive industry is moving towards a simulation driven
approach, with other industries following these developments. However, at
the moment only a few tools are commercially available and suited to perform
advanced UQ analysis, e.g., Noesis Optimus, COSSAN-X, UQ lab, UQpy.
At this moment, only COSSAN-x offers random field capabilities with an
intuitive graphical user interface. Moreover, none of these packages have a
non-deterministic material calibration tool. Therefore, FIRST including the
material calibration tool provides a lot of additional value for the customers that
use commercially available simulation packages. Figure 8.1 shows a snapshot
of the graphical user interface of FIRST. This figure shows how large three-
dimensional models can be displayed. On the left, the field parameters are set
by the user who can directly see these changes appear on the model.
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8.2 Consulting and providing expert knowledge to
industry

In this research the focus was put on impact and crash analysis. Hence, over
the years a certain amount of expertise regarding modelling and testing of these
events is obtained. In addition, from the start of this research development
and in-house construction of a Digital Image Correlation (DIC) [119] capable
impact tower started. Furthermore, an accompanying set of High Speed cameras
where acquired that could be used during impact experiments. These unique
capabilities make our research group well positioned to provide consulting to
industry, which is also a valid valorisation strategy as the developments in
this research project, i.e., capturing material uncertainty, account for uncertain
adjacent components, and a robust design optimisation technique are challenging
to combine in a single product. Therefore, the gained expertise of this research
project can be provided to industry in the form of consulting services and the
creation of unique devices to assess the crashworthiness of components. An
example of such a device is the in house built impact tower, which is compatible
with multiple high-speed cameras, which have a clear view on the specimen.

The need for these consulting services is clear as multiple companies reached out
to our research group with specific questions regarding the design and simulation
of impact critical components. The main challenge faced in industry is usually
the validation of impact or crash simulations. An example of these such question
would be: how should the design be adapted to accommodate a new material,
while keeping identical impact performance? In these cases a more detailed
investigation is required and a software solution alone is clearly insufficient.
In another project, detailed investigations in crack propagation was needed
to check that the material and production process could be used to produce
safety critical components. Based on the results obtained with HS-DIC new
computational models could be created, which predicted the failure mechanisms
in higher detail. Furthermore, multiple companies contacted the research group
about concerns with changing safety regulations, which increases the use of
simulation based design as large scale testing is simply to expensive.

8.2.1 In-house built impact tower

Based on the high need for validation of impact tests in the projects conducted
with industry, an impact setup capable to use with High-Speed cameras was
developed. Although, plenty of impact and drop towers are commercially
available, and some are already operational in the Material Science labs (MTM)
of KU Leuven, none of these were designed to be used with a camera setup.
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Figure 8.2: Special build droptower to be used with High-Speed Digital image
correlation

Hence, a flexible in-house setup was designed that could be used for multiple
experiments without blocking the line-of-sight of the cameras. Figure 8.2 shows
a render of the design as envisioned at the start of the research. On the left top
the release mechanism and falling weights are shown, and on the left bottom the
sample holder is shown. The idea with raising the sample holder is to enable the
cameras to be directly pointed at the bottom of the sample. Figure 8.3 shows
the built drop tower created mainly out of ITEM-profiles. On this picture a
puncture test following the ASTM 3763 [7] standard, which is comparable to the
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ISO 6603 standard [114]. The controller enabling safe operations is located in
the white box shown on the right side, and the height adjustable falling weights
and the raised sample holder are shown in the detailed views. By adjusting the
fall height and weight, impact energies within a range of about 2J up to 255J
are realized, as shown in Table 8.1. It should be pointed out here that only the
potential energy of the weight can be used, i.e., there is no additional source
of energy. Therefore, a suitable compromise should be found between impact
speed, drop weight and energy. Note that the minimum impact energy is mostly
determined by the weight of the dropweight assembly, shown in the top detail
of Figure 8.3. The lightest version, weighing only 2.13 kg, was created to test
the landing gear of a drone [150].

parameter minimum maximum
Height [m] 0.1 1.3
weight [kg] 1.8 20
energy [J] 1.96 255

Table 8.1: ranges of the parameters used to design the impact tower

The main quantities of interest during an impact test are the displacement
and force during impact, which are typically used in standards and are also
common output quantities of numerical simulations. The setup was designed
to be used with various types of sensors and data-acquisition tools. Initially
an accelerometer and piezo-electric load-cell were used, in later setups multiple
load-cells, and laser vibrometers were used depending on the specific needs. An
important aspect is the synchronisation of the cameras time-frame with the
data acquisition, to ensure that image and force-displacement measurements are
taken at identical times. In some cases the sampling rate of the data acquisition
could be so high that interpolation could easily be performed and a common
trigger would be sufficient for synchronisation.

The main novelty with respect to existing drop-towers is the possibility to
use a set of high-speed cameras during the tests, which is the reason for the
raised sample holder. A picture of the setup is shown in 8.4 where the cameras
are placed under the sample holder pointing at the sample under an angle of
about 30-degrees. The exact setup varies depending on the test, materials, and
impact energy. To enable the use of DIC high quality images are required of
both cameras having similar Field Of View (FOV), taken at exactly the same
time, the area of interest is in focus, and the lighting conditions are even in all
images. The latter is especially troublesome in the case of high speed imaging as
this usually requires high power light sources, which have a tendency to create
reflections. Additionally, large deformations during impact change the angle of
the incident light, which can cause reflections and changes in light intensity.
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Figure 8.3: Picture of the as built impact tower with the controller in the
white box on the right side, adjustable weights and sample holder in the middle
between two finely machined rods used to guide the falling weights
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Figure 8.4: Picture of the experimental setup to perform puncture tests ISO
6603

8.2.2 High speed digital image correlation

Digital Image Correlation DIC is an optical measuring technique where patterns
of a reference and deformed image are being matched. These images are
usually captured using quite common CCD/CMOS cameras, and more advanced
techniques can be found in literature, e.g., electron microscopes [121], or x-ray
imaging [98]. Depending on the number of cameras being used different terms
are found in literature: 2D-DIC when there is only one camera, stereo-DIC
when two cameras are used, and multi-camera DIC in the case where more than
two cameras are being used [119, 199]. The pattern that is used to correlate
subsequent images is usually applied on the surface of the sample, which in some
cases is not needed as the surface provides enough features. The introduction
of DIC has led to a revolution in experimental mechanics where novel test
procedures are proposed to obtain constitutive material parameters [183]. The
main benefit is that a measurement is not limited to a single point, or location,
as the complete FOV can be used, which in practice usually reduces to a certain
area of interest. This is shown in Figure 8.5 by the coloured area. Note that
this area is a lot smaller than the complete FOV, which is required as the area
should be within the FOV under large deformations.

In the specific case of High-Speed Digital Image Correlation (HS-DIC) the main
change is the type of cameras that are being used. Typical standard cameras
work on a frame-rate between [24 − 90] fps with high-speed cameras capable
of reaching frame-rates of 2 ∗ 106 fps and beyond. Due to advancements in
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Figure 8.5: Result of HS-DIC on the compliant drone leg at multiple time steps

sensor technologies the frame-rates have increased almost exponentially over
the last decades, at lower costs than ever before. Nevertheless, High-speed
cameras are not cheap by any means and most experiments with high speed
cameras use only one [86, 240] camera. In addition, multiple attempts are made
to find alternative setups that use a mirror based setup [36, 239] to increase
the capabilities of a single camera. Especially, as the price-point is largely
determined by the frame-rate and increases exponentially.

Performing validation on impact structures remains a challenge requiring both
specialised hard- and software [12, 193, 228]. The general idea is given in
Figure 8.6 where on the bottom the numerical procedure is shown and on the
top the experimental procedure. These two are not directly comparable as
the influence of capturing the image and the processing settings should be
accounted for. Using the simulation results to numerically deform images from
the experiment is an option to cancel out these effects, as these images undergo
the identical steps as the images used in the experiment. An overview of the
main considerations is given below:

• Boundary conditions used in the experiment should correspond with
these used in simulation. These should be checked before the experimental
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campaign as due to manufacturing, assembly and operational procedures
the intended, e.g., dimensions, features might not correspond.

• Camera settings that are used to capture the behaviour directly impact
the final result. The most important features are:

– Frame rate determines the sampling rate of the system. Simulation
output results should also be available at these approximate sampling
times.

– Resolution determines the amount of pixels that are captured within
the area of interest. At a higher resolution smaller spatial features
can be detected, while the noise floor increases at the same time.

– Optics, such as, the lenses will cause distortions in the image, which
directly impacts the results [133]. Lenses of optically lower quality
will have more distortions within the image and therefore increase
the noise floor. In addition, on older sets of lenses there might be
small artefacts that influence the performance, e.g., scratches.

– Light sources are imported as there should be sufficient light that
the sensor can capture. Especially where the frame rate is high and
therefore the shutter times are very short there should be sufficient
light reaching the imaging sensor.

– Pattern that is applied to the surface, should remain applied to the
surface. When the pattern is moving independently of the component
the measurements are wrong. Generally this happens when there
is insufficient bonding between the paint and the substrate. In the
specific case of impact experiments this might also happen in areas
of high strain rates, near a crack or breakage of the substrate, or
after large deformations. The best solution for these problems is
to let the paint only partially dry, to prevent the paint from fully
curing and becoming very brittle. There are also special types of
paint available that might mitigate these issues.

• DIC settings refer to the algorithmic settings used to correlate the
reference to the deformed image. These settings are typically subset
size, step size and the correlation algorithm, among other more advanced
settings. A typical setting that should be considered for HS-DIC is to
update the reference image or not, depending on the strains that are
measured in subsequent images.

The illustration in Figure 8.5 is a good example of the application and challenges
in using HS-DIC where the deformed state of the compliant drone leg is shown
at multiple time instances. It should be pointed out that, the position of the
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image collectionDIC
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DIC image deformation numerical simulations
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DIC settings camera settings boundary conditions

Figure 8.6: Flowchart of the validation strategy using digital image correlation

impacting metal surface is only at the correct location for the last deformed
state. This metal plate is actually moving up in the current image layout, and
the drone leg position is adapted to create the figure. The main challenges in
this case are the large displacements of the drone leg, where at the start of the
experiment the tip of the drone leg was located in the left corner and at the
end would move out of the FOV.

8.2.3 Case study: validation of a compliant drone leg

In the remainder of this section, a validation of a numerical impact simulation
is discussed, where uncertain hyper-elastic material behaviour is modelled based
on the framework discussed in Chapter 3. This section only focuses on the
validation strategy, so only limited information about the modelling strategy is
provided. The model under consideration is this of a compliant drone leg, which
is designed to dissipate impact energy and protect sensitive camera equipment
mounted on the drone. To validate the numerical model a secondary model
was created using the exact boundary conditions of the lab tests. The idea is
that if the numerical model is valid in lab conditions, results of the numerical
model in other scenarios are also correct, as long as the underlying conditions
are not changed, i.e., similar deformation rate. In this case the lab experiments
were limited by the minimum falling mass weight of 2.13 kg, which was used
to create a kinetic energy at impact of 2.98 J. This impact energy is identical
to this of the drone falling from one meter. In the numerical simulation the
upper part of the drone leg is fully constrained while at the bottom a rigid
surface is moving up with a kinetic energy of 2.98 J. Important factors in this
simulation are the material parameters and the friction model used between the
drone leg and the rigid surface. Time discretisation was performed by means of
an explicit scheme until the total simulation time of 20ms was reached. Here,
eight material curves were generated by vertex samples from the interval field
that was used to describe the material uncertainty, see [150] for details. These
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realisations are the result of using four control points with one kept at zero and
creating a realisation for all other combinations. These realisations were used
to generate eight different results as shown by the red lines in Figure 8.7.

High-speed Digital Image Correlation
technique used Stereovision DIC
Noise
Camera 0 0,5 %
Camera 1 0,6 %
Correlation
Pre-filtering Gaussian - Kernel 5
Subset 27
Step 11
Correlation criterion ZNSSD
Process history Temporal
Shape function Quadratic
Interpolation function Bicubic Splines
Measurement points 347
Total number of images 113 (3 KHz)
Displacement
In-plane resolution 2 µm
Out-of-plane resolution 6 µm

Table 8.2: HS-DIC parameters that were used for this experiment and the
obtained resolution

Figure 8.7: Horizontal displacement u1 for the drone leg as predicted by the
explicit numerical model in red and the results of using DIC on the numerically
deformed images in blue
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The blue lines in Figure 8.7 are the results of performing DIC on the numerically
deformed images using the HS-DIC parameters as listed in Table 8.2. For this
the Region of Interest of the images as shown by the colored region in Figure 8.5
is selected and numerically deformed using the nodal displacements of the
simulation. Due to the low sampling rate it is not entirely clear but the DIC
algorithm acts as a low pass filter. In addition, the figure shows that the
spread on the blue curves increases over time where the red results of the
simulation keep a similar spread in time, which can probably be attributed to
an error caused by temporal updating the reference image. However, no further
investigations have been conducted to prove this.

Figure 8.8: Comparison of horizontal displacement u1 for the drone leg between
simulation results in red lines and HS-DIC results in blue lines

Quantitative results from the DIC measurements were obtained by extracting
the horizontal u1 displacements at a specific point, i.e., the tip of the drone leg.
However, before the quantities of interest can be obtained the DIC algorithm
has to be run, which used the parameters listed in Table 8.2. It should be
pointed out here that the displacement resolution in Table 8.2 is quite high,
and represents a noise floor of the first images. Hereafter, the resolution will
degrade due to other errors, e.g., updated references, changing conditions. The
results of the DIC measurements are shown in Figure 8.8 where they are directly
compared with the results from the simulation. It is clear from Figure 8.8
that there is quite a difference between the results from simulation and test.
In a follow-up investigation model updating techniques could be used to try
and mitigate this difference. This is not a trivial task and a detailed analysis
should be conducted to further explore the possibilities of model updating. This
example highlights some important factors to validate impact models and the
challenges that are associated with these factors.
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This example case illustrates the increased capabilities of the impact tower that
is developed in combination with state-of-the-art full field material identification
techniques. The combination with the developed field techniques strengthens
these capabilities further, and leaves room for further explorations of more
comprehensive material identification techniques and validation strategies.
Furthermore, due to wide range of operations and flexible construction the
droptower can easily be adjusted to facilitate the wide variety of impact
experiments.



Chapter 9

Conclusions

9.1 General conclusions

In this work, the challenges in Systems Engineering are explored and various
ways to efficiently and effectively design complex components are proposed. The
main contribution is a robust design methodology, which is demonstrated to
achieve good results using only a very limited amount of simulations. Therefore
this work contributes to a simulation driven design approach starting from an
early stage of development, reducing the number of redesigns and tests that are
needed.

In Chapter 3 an interval field method is proposed to evaluate and assess the effect
of scattered material curves on the overall design, accomplished by bounding the
realisations of the interval field to an envelope encompassing a set of experimental
results. This is achieved by using an explicit mapping function that scales the
distance measure of the basis functions. As such, the intuitive properties of
the IDW framework are maintained while more complex functional relations
are represented without the need for additional control points. Furthermore, in
Chapter 4 a second manner to achieve more complex functional realisations is
to enhance the IDW basis functions with an interval field method that controls
the gradients at a control point. The proposed interval field uses the value,
gradient, or both pieces of information at a control point, as demonstrated on a
set of simple example problems.

In Chapter 5 a new framework for modelling and evaluating the crashworthiness
of a single component in an early development stage under epistemic uncertainty
is proposed. This is accomplished by modelling the behaviour of the
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impacted adjacent structure as unknown but spatially coupled uncertain element
stiffnesses. The interval valued performance of the structure is obtained using a
global optimisation approach, which is shown to be challenging yet feasible for
interval field analysis applied to crash simulation. In a follow-up research [13]
this method was corroborated by isolating a single component from a full scale
crash simulation. The results from this research show that the component-level
simulations following this framework are closer to the component performance
within the full system. Therefore, the framework enables a first step towards
distributed development of complex interacting structures, such as the front
structure of a body-in-white.

Finally, to obtain a meaningful design under various types of epistemic
parameters, a robustness-based optimisation technique is proposed in Chapter 6,
and applied in the context of stochastic functions in Chapter 7. The central
idea is that the performance of a design should be robust towards the influence
of uncertain parameters. Therefore, a robustness measure is introduced as the
ratio between input interval width over output interval width. Based on an
efficient global optimisation strategy, using predictions made by a Gaussian
Process, the most robust design point is identified with a certain confidence
and a minimum amount of function evaluations. In various cases ranging
from analytical cases, engineering examples and even on crash simulations, the
benefits and performance are benchmarked against state-of-the-art optimisation
algorithms. Moreover, using a GP that accounts for homoscedatic noise in the
underlying function, a certain negligence towards the numerical inadequacies
is achieved. Therefore, the method is able to obtain approximate optimal
results in cases that are extremely challenging for most optimisation techniques.
Furthermore initial tests have shown that both methods also work in the case of
interval field uncertainties, in which case the number of control points determines
the number of uncertain parameters from the interval field. Hence reducing
the dimension of the interval field reduces the dimension of the underlying GP,
which performance deceases drastically for higher dimensions.

The main contributions of this thesis can be summarised as follows:

• A novel interval field basis function is developed that allows to control
gradients at the control points, following the intuitive inverse distance
weighting method.

• A method is introduced to capture and propagate material uncertainty
beyond elasticity, while respecting the underlying physics of the material.

• A novel robustness-based design method is proposed and benchmarked
on real numerical impact simulations, taking into account both numerical
inadequacies and parameter lack-of-knowledge.



RECOMMENDATIONS FOR FUTURE WORK 209

• A dedicated learning function to identify robust design points based on
the estimates of a Gaussian process model, is developed.

• Introduction and verification of a framework to deal with uncertain
boundary conditions of adjacent components.

9.2 Recommendations for future work

To conclude, in this section a few recommendations and ideas are given that
could be investigated for future work.

Improving multi-core capabilities of RULOK The robustness under lack-of-
knowledge framework is based on an adaptive refinement of the underlying
Gaussian process. The set of samples that is used to calibrate this GP and the
subsequently added adaptive samples, are obtained from non-linear numerical
models. It is well-known that these models take quite some time to solve,
even with sophisticated parallelisation methods. However, the method itself
could also benefit from parallelisation, not only for the initial samples, but
the adaptively selected points as well. These additional samples would not be
optimum in the single-core strategy. However, they could be obtained within
the same time-frame and provide additional information. Therefore, reducing
the number of iterations and the total time of the optimisation method. A first
proposed method in this direction can be found in [44].

Experimental validation using High-Speed DIC All hardware requirements
to enable this are provided and various small tests have already been conducted.
The main challenge is the design of the experiment, which should still be in-line
with the validation requirements. This experiment must be designed to limit
all factors of noise and contamination from the experiment. Furthermore, the
framerate of the high-speed cameras dictates the speed at which the experiment
could be run. It should be noted here, that at impact of the component a
(shock) wave is propagating through the medium. Experiments using DIC
that use wave propagation have already been proposed [86]. If the setup is
unable to capture this wave, the subsequent reflections and harmonics might
cast undesired artefacts.

Combination of the component solution spaces to create a general design
framework The method proposed in Chapter 5 could be extended to include
the component solution spaces. In this regard, more unknown components and
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their effects could be modelled, i.e., each designer is provided with bounds on
the performance and a modelling framework in which these bounds are tested.
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