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 A B S T R A C T

Time-dependent reliability analysis allows for assessing the performance and safety of an 
engineering structure over its entire lifespan, accounting for inherent randomness and time-
varying factors in both structural properties and external loads. However, incorporating the 
time dimension dramatically increases the computational complexity. To address this challenge, 
we propose a novel method for computationally expensive time-dependent reliability analysis, 
which is called ‘single-loop approximate Bayesian active learning quadrature’ (SL-ABALQ). First 
of all, estimation of the time-dependent failure probability is treated as a Bayesian inference 
problem with the help of Gaussian process regression. To avoid the intractability of exact 
Bayesian inference, an approximate Bayesian inference approach is instead developed. In this 
context, the mean of an approximate posterior failure probability is given, which can serve 
as a failure probability estimator. Moreover, we also derive an upper bound on the mean 
absolute deviation of the approximate posterior failure probability, which provides a measure 
of uncertainty for the failure probability estimator. Second, leveraging the estimator and its 
associated uncertainty measure, a novel stopping criterion is proposed to determine when the 
iterative learning process should terminate. Third, two new learning functions are introduced to 
identity the next best time instant and the sample point given the time instant. The performance 
of the proposed method is demonstrated by five numerical examples, with comparison to several 
existing methods. It is shown that our method can reduce the number of performance function 
evaluations without compromising accuracy.

. Introduction

Ensuring the performance and safety of civil infrastructure throughout its entire service life remains a central challenge in 
tructural engineering. Structural reliability analysis has therefore emerged as a critical tool for quantifying the probability that 
n engineered structure will fulfill its intended function without failure for a specified time period, explicitly accounting for various 
ncertainties in material properties, environmental loads, and other influential factors. Many traditional reliability analysis methods 
implify the problem by assuming that the behavior of the system under consideration does not evolve with time. However, such 
n assumption is rarely justified because both external loads and structural properties (due to, e.g., aging, damage, wear, fatigue 
nd corrosion) are inherently time-dependent. This time dependence can significantly affect the performance and safety of civil 
nfrastructure. Therefore, time-dependent reliability analysis methods have also been developed, allowing the probability of failure 
o be assessed over the entire lifespan of a structure. Despite that, the inclusion of the time dimension significantly increases the 
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computational complexity. In response to this challenge, there are roughly three main groups of methods available: analytical 
methods, stochastic simulation methods and surrogate modeling methods.

Analytical methods address the time-dependent reliability problem by deriving explicit (or semi-explicit) mathematical expres-
sions for the failure probability as a function of time. One common family of analytical approaches is the out-crossing rate methods, 
which relate the time-dependent failure probability to the rate at which the performance function crosses from the safe domain 
into the failure domain. This idea traces back to Rice’s seminal work [1], which introduced what is now known as Rice formula for 
the crossing rate of a stochastic process across a fixed threshold — later extended to the out-crossing rate concept in reliability 
analysis. However, analytical solutions to the Rice formula are available only for some special classes of stochastic processes, 
e.g., stationary Gaussian processes [2], non-stationary Gaussian processes [3] and non-stationary Lognormal processes [4]. To 
broaden the applicability, some other out-crossing rate methods have been developed, such as PHI2 [5], PHI2+ [6], moment-based 
PHI2 (MPHI2) [7] and first order time-variant reliability expansion [8]. Overall, analytical methods can provide valuable insight into 
the problem at hand and avoid brute-force simulations. However, they rely on simplifying assumptions (e.g., Poisson assumption) 
that may not always be fully justified in practical applications, and closed-form solutions are typically available only for special 
cases.

Instead of pursing explicit (or semi-explicit) formulas, stochastic simulation methods estimate the time-dependent failure 
probability by running many random simulations of the system’s behavior over the period of interest and directly observing the 
failure frequency. The most representative method in this category is the plain Monte Carlo simulation (MCS). Although widely 
applicable, it requires a considerably large number of performance function evaluations for a small failure probability. This leads 
to the development of more efficient stochastic simulation techniques such as subset simulation (SS) [9,10], importance sampling 
(IS) [11–14] and line sampling [15]. Compared to analytical methods, stochastic simulation methods impose minimal assumptions 
about the underlying problem and offer broad versatility. However, they often demand a large number of performance function 
evaluations, which can render practical application computationally challenging.

Surrogate modeling methods substitute the original time-dependent performance function with a surrogate model that is 
computationally cheap to evaluate. Once trained, this surrogate model is typically coupled with stochastic simulation techniques 
to estimate the time-dependent failure probability. Examples of surrogate modeling methods are the response surface method [16], 
polynomial chaos expansion [17] and support vector machine [18]. Notably, active learning Kriging (AK) and Gaussian process 
regression (GPR) methods have received considerable attention for addressing time-dependent reliability problems. In this context, 
existing developments typically follow one of the two schemes: double-loop scheme and single-loop scheme. The double-loop scheme 
is essentially an extreme response surrogate approach: an active-learning Kriging model is built in the outer loop to approximate 
the performance function’s extreme response over the time interval, while a separate Kriging model in the inner loop identifies the 
extreme response for each sample trajectory. This class includes the nested extreme response surface approach [19], mixed efficient 
global optimization (EGO) method [20], parallel EGO method [21], AK coupled with IS (AK-co-IS) and AK coupled with SS (AK-co-
SS) [22] and IS-based double-loop Kriging [23]. On the contrary, the single-loop approach constructs a global response surrogate 
model for the underlying time-dependent performance function. A non-exhaustive list of such methods comprises the single-loop 
Kriging (SILK) method [24], single-loop adaptive sampling method  [25], active failure-pursuing Kriging (AFPK) method [26], real-
time estimation error-guided sampling (REAL) method [27], single-loop Kriging method considering the first failure instant [28], 
single-loop Kriging coupled with SS (SLK-co-SS) method [29], estimation variance reduction-guided adaptive Kriging method 
(VARAK) method [30], subdomain uncertainty-guided Kriging (SUK) method [31], single-loop GPR based-active learning (SL-GPR-
AL) method [32] and error-informed parallel adaptive Kriging (EPAK) method [33]. In general, surrogate modeling methods can 
leverage the strengths of both worlds, i.e., fast evaluations from surrogates and robust probability estimation from simulation. Recent 
studies have shown that single-loop active learning methods can achieve a commendable balance between computational efficiency 
and predictive accuracy in time-dependent reliability analysis. Nevertheless, owing to factors such as improper stopping criteria 
and learning functions, existing single-loop methods may still suffer from slow or unreliable convergence behavior, low sampling 
efficiency, and limited robustness.

The first author and his co-workers have recently advanced time-independent reliability analysis from a distinct perspective 
by superimposing active learning atop Bayesian inference, yielding several high-performing Bayesian active learning methods 
(e.g., [34–38]). This conceptual idea is also helpful for addressing time-dependent reliability problems, as illustrated by two 
preliminary studies [39,40]. Despite these promising results, the full potential has been largely unexplored. To this end, the main 
objective of this paper is to develop a novel method for computationally expensive time-dependent reliability analysis by exploring 
both the single-loop formulation and Bayesian active learning concept. The resulting method is called ‘single-loop approximate 
Bayesian active learning quadrature’ (SL-ABALQ). The main contributions of this study can be summarized as follows. First, by 
leveraging the Bayesian nature of GPR, we develop an approximate Bayesian inference scheme for the time-dependent failure 
probability, yielding both a failure probability estimator and its associated uncertainty measure. This approach essentially helps 
to avoid the potential intractability of exact Bayesian inference. Second, a principled stopping criterion is proposed to determinate 
when the iterative learning process should terminate. Third, two learning functions are introduced to identify the next best time 
instant and the sample point of random variables and stochastic processes (at the identified time instant) at which to evaluate the 
true performance function in case the stopping criterion is not satisfied.

The remainder of this paper is organized as follows. Section 2 provides background on time-dependent structural reliability 
analysis. The proposed SL-ABALQ method is introduced in Section 3. Five numerical examples are studied in Section 4 to validate 
the performance of the proposed method. Finally, Section 5 summarizes and concludes the present study, and also highlights future 
research.
2 
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2. Time-dependent structural reliability analysis

This section provides some preliminary knowledge on time-dependent structural reliability analysis. Section 2.1 gives the 
mathematical definition of the time-dependent failure probability. Section 2.2 outlines the discretization of stochastic processes. 
Section 2.3 then introduces how the time-dependent failure probability is estimated by using the plain MCS.

2.1. Definition of the time-dependent failure probability

Without loss of generality, let us consider a time-dependent performance function of the form: 
𝑔(𝑿(𝜔𝑿 ), 𝒀 (𝜔𝒀 , 𝑡), 𝑡) ∶ R𝑑1 × R𝑑2 × R → R, (1)

where 𝑿(𝜔𝑿 ) = [𝑋1(𝜔𝑿 ), 𝑋2(𝜔𝑿 ),… , 𝑋𝑑1 (𝜔𝑿 )] ∈ 𝐷𝑿 ⊆ R𝑑1  is a vector of 𝑑1 continuous random variables with support 𝐷𝑿 , 
𝒀 (𝜔𝒀 , 𝑡) = [𝑌1(𝜔𝒀 , 𝑡), 𝑌2(𝜔𝒀 , 𝑡),… , 𝑌𝑑2 (𝜔𝒀 , 𝑡)] ∈ 𝐷𝒀 ⊆ R𝑑2  is a vector of 𝑑2 continuous-time stochastic processes with support 𝐷𝒀 ; 
𝜔𝑿 ∈ 𝛺𝑿 and 𝜔𝒀 ∈ 𝛺𝒀  denote two outcomes in the sample spaces 𝛺𝑿 and 𝛺𝒀 , respectively; and 𝑡 ∈ R represents time parameter, 
which is constrained to a specific interval [𝑡0, 𝑡𝑓 ]. In the sequel, the symbols 𝜔𝑿 and 𝜔𝒀  are omitted when there is no risk of confusion. 
The stochastic processes involved are assumed to be second-order (i.e., square-integrable). By convention, failure occurs when the 
time-dependent performance function takes a negative value at any time within [𝑡0, 𝑡𝑓 ]. The time-dependent failure probability is 
formally defined by: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) = P
{

𝑔(𝑿, 𝒀 (𝑡), 𝑡) < 0,∃𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

, (2)

where P is the probability operator. Equivalently, by appealing to the minimum value of the performance function over time, it can 
also be expressed as: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) =P
{

min
𝑡∈[𝑡0 ,𝑡𝑓 ]

𝑔(𝑿, 𝒀 (𝑡), 𝑡) < 0
}

=∫𝑿
∫𝛺𝒀

𝐼
(

min
𝑡∈[𝑡0 ,𝑡𝑓 ]

𝑔(𝒙, 𝒚(𝜔𝒀 , 𝑡), 𝑡) < 0
)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

,
(3)

where 𝐼 is the indicator function: it returns one if its argument is true, zero otherwise; 𝑓𝑿 (𝒙) is the joint probability density function 
of 𝑿. The corresponding time-dependent reliability 𝑅(𝑡0, 𝑡𝑓 ) is mathematically complementary to the failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ), 
i.e., 𝑅(𝑡0, 𝑡𝑓 ) = 1 − 𝑃𝑓 (𝑡0, 𝑡𝑓 ). The indicator function will be interchangeably denoted as 𝐼(𝒙, 𝜔𝒀 ), emphasizing its dependence on 𝒙
(or equivalently 𝜔𝑿) and 𝜔𝒀 .

For most practical time-dependent reliability problems, it is unlikely that a closed-form solution for the time-dependent failure 
probability can be derived. Therefore, analytical approximations or numerical methods are often necessary.

2.2. Discretization of stochastic processes

The continuous-time stochastic processes 𝒀 (𝑡) are inherently infinite-dimensional, rendering direct computation intractable. To 
enable numerical analysis, these processes are discretized into a finite-dimensional representation. A common approach is the 
Karhunen–Loève (KL) expansion (see, e.g., [41]), which decomposes a second-order stochastic process 𝑌 (𝑡) into a finite series 
expansion. Denote the mean and covariance functions of 𝑌 (𝑡) as 𝜇𝑌 (𝑡) and 𝑐𝑌 (𝑡1, 𝑡2), respectively. The KL expansion of 𝑌 (𝑡) can 
then be expressed as: 

𝑌 (𝑡) ≈ 𝑌 (𝑡) = 𝜇𝑌 (𝑡) +
𝑞
∑

𝑖=1

√

𝜆𝑖𝜉𝑖𝜙𝑖(𝑡), (4)

where {𝜆𝑖
}𝑞
𝑖=1 are 𝑞 dominant eigenvalues of the covariance matrix 𝑪𝑌 , arranged in a descending order; 

{

𝜙𝑖(𝑡)
}𝑞
𝑖=1 are corresponding 

eigenfunctions; {𝜉𝑖
}𝑞
𝑖=1 are 𝑞 uncorrelated random variables; 𝑞 is the number of truncation terms, which can be specified by the 

explained variance ratio: 

𝑞 = argmin
𝑞∈[1,2,…,∞]

{
∑𝑞

𝑖=1 𝜆𝑖
∑∞

𝑖=1 𝜆𝑖
≥ 𝜂

}

, (5)

where 𝜂 is a user-defined threshold. In this study, the time interval of interest [𝑡0, 𝑡𝑓
] is discretized into 𝑛𝑡 equally spaced time points, 

𝑡0, 𝑡1,… , 𝑡𝑛𝑡−2, 𝑡𝑛𝑡−1 = 𝑡𝑓 , where the time step is given by 𝛥𝑡 = (𝑡𝑓 − 𝑡0)∕(𝑛𝑡 − 1).

2.3. Time-dependent failure probability analysis by MCS

To estimate the time-dependent failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ), the plain MCS can be employed straightforwardly. Its estimator can 
be formulated as: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) =
1
𝑁

𝑁
∑

𝐼(
𝑛𝑡−1
min
𝑖=0

𝑔(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖) < 0), (6)

𝑗=1

3 
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where {𝒙(𝑗)}𝑁𝑗=1 is a set of 𝑁 random samples of 𝑿; 
{

𝒚̂(𝑗)(𝑡𝑖)
}𝑁

𝑗=1
 is a set of 𝑁 random samples of 𝒀̂ (𝑡𝑖) at given time instant 𝑡𝑖. The 

coefficient of variation (CoV) of the estimator is given by: 

CoV
[

𝑃𝑓 (𝑡0, 𝑡𝑓 )
]

=

√

√

√

√

1 − 𝑃𝑓 (𝑡0, 𝑡𝑓 )

(𝑁 − 1)𝑃𝑓 (𝑡0, 𝑡𝑓 )
. (7)

Indeed, the plain MCS represents a typical frequentist approach to evaluating the time-dependent failure probability integral, 
as defined in Eq. (3). While conceptually straightforward, the plain MCS is often not computationally feasible in practice due to 
the following reasons: (1) it requires 𝑁 × 𝑛𝑡 evaluations of the performance function 𝑔, where 𝑁 must be large enough to ensure 
convergence and 𝑛𝑡 must be large enough to mitigate errors due to time discretization; and (2) each evaluation of 𝑔 may be 
computationally intensive (e.g., high-fidelity finite element analysis or multi-physics modeling), particularly for complex, large-scale 
engineering systems.

3. Proposed SL-ABALQ method

In this section, we introduce the proposed SL-ABALQ method for time-dependent structural reliability analysis. Section 3.1 gives 
an approximate Bayesian inference framework for the time-dependent failure probability based on the GPR. It is followed by the 
stopping criterion and learning functions in Sections 3.2 and 3.3, respectively. Finally, the procedure for implementing the proposed 
method is summarized in Section 3.4.

3.1. Approximate Bayesian inference about the time-dependent failure probability

In contrast to the frequentist approach, we seek to interpret the task of estimating the time-dependent failure probability 
integral (Eq. (3)) as a Bayesian inference problem. To circumvent the potential intractability of exact Bayesian inference, we pursue 
an approximate solution in this work. The core idea of the Bayesian interpretation is to treat the performance function 𝑔 as a 
random function, even though it is deterministic by definition. This is motivated by the fact that the value of 𝑔 at a given location 
𝒖 = [𝒙, 𝒚̂(𝑡), 𝑡] remains numerically unknown until it is evaluated, which is often the case in practice.

To begin, we place a Gaussian process (GP) prior over the performance function 𝑔: 
𝑔0(𝒖) ∼ (𝑚𝑔0 (𝒖), 𝑘𝑔0 (𝒖, 𝒖

′)), (8)

where 𝑔0 represents the prior distribution of 𝑔 before any evaluations are performed; 𝒖′ =
[

𝒙′, 𝒚̂′(𝑡′), 𝑡′
] is another point in the input 

space; 𝑚𝑔0 (𝒖) and 𝑘𝑔0 (𝒖, 𝒖′) are the prior mean and covariance functions, respectively.
Suppose that we have collected 𝑛 input–output pairs of 𝑔, denoted as  = { ,}, where  =

{

𝒖(𝑖)
}𝑛
𝑖=1 and  =

{

𝑧(𝑖)
}𝑛
𝑖=1 with 

𝑧(𝑖) = 𝑔(𝒖(𝑖)). This collection is referred to as the design of computer experiments. Conditioning the GP prior on the data  gives rise 
to the posterior distribution of 𝑔, which also follows a GP: 

𝑔𝑛(𝒖) ∼ (𝑚𝑔𝑛 (𝒖), 𝑘𝑔𝑛 (𝒖, 𝒖
′)), (9)

where 𝑔𝑛 represents the posterior distribution of 𝑔 after 𝑛 observations are available; 𝑚𝑔𝑛 (𝒖) and 𝑘𝑔𝑛 (𝒖, 𝒖′) are the posterior mean 
and covariance functions respectively, given by: 

𝑚𝑔𝑛 (𝒖) = 𝑚𝑔0 (𝒖) + 𝒌𝑔0 (𝒖, )⊤𝑲−1
𝑔0
( , )( −𝒎𝑔0 ( )), (10)

𝑘𝑔𝑛 (𝒖, 𝒖
′) = 𝑘𝑔0 (𝒖, 𝒖

′) − 𝒌𝑔0 (𝒖, )⊤𝑲−1
𝑔0
( , )𝒌𝑔0 ( , 𝒖′), (11)

where 𝒎𝑔0 ( ) is a column mean vector with its 𝑖th element being 𝑚𝑔0 (𝒖
(𝑖)); 𝒌𝑛(𝒖, ) is a column covariance vector with its 𝑖th element 

being 𝑘𝑔0 (𝒖, 𝒖(𝑖)); 𝒌𝑔0 ( , 𝒖′) is a column covariance vector with its 𝑖th element being 𝑘𝑔0 (𝒖(𝑖), 𝒖′); 𝑲𝑔0 ( , ) is an 𝑛 × 𝑛 covariance 
matrix with entry 

[

𝑲𝑔0

]

𝑖𝑗
= 𝑘𝑔0 (𝒖

(𝑖), 𝒖(𝑗)). For more details on the standard GPR above, one can refer to [42].
The posterior distribution of the indicator function 𝐼 can be defined as: 

𝐼𝑛(𝒙, 𝜔𝒀 ) =

{

1, min𝑛𝑡−1𝑗=0 𝑔𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 ) < 0,

0, otherwise.,
(12)

where 𝐼𝑛 represents the posterior distribution conditional on . In fact, it can be referred to as a generalized Bernoulli process 
(GBP) [43,44].

According to [39], the posterior mean and variance functions of the indicator function 𝐼 can be given by: 

𝑚𝐼𝑛 (𝒙, 𝜔𝒀 ) = 1 − ∫𝑠≥𝟎
𝜑𝑛𝑡 (𝒔;𝒎𝑔𝑛 ,𝑲𝑔𝑛 )d𝒔, (13)

𝜎2𝐼𝑛 (𝒙, 𝜔𝒀 ) = ∫𝑠≥𝟎
𝜑𝑛𝑡 (𝒔;𝒎𝑔𝑛 ,𝑲𝑔𝑛 )d𝒔

(

1 − ∫𝑠≥𝟎
𝜑𝑛𝑡 (𝒔;𝒎𝑔𝑛 ,𝑲𝑔𝑛 )d𝒔

)

, (14)

where 𝜑𝑛𝑡 (𝒔;𝒎𝑔𝑛 ,𝑲𝑔𝑛 ) is the joint PDF of 𝑛𝑡-variate normal distribution with mean 𝒎𝑔𝑛  (with its 𝑖th element being 𝑚𝑔𝑛 (𝒖|𝑡 = 𝑡𝑖)) 
and covariance 𝑲  (with its (𝑖, 𝑗)-th entry being 𝑘 (𝒖|𝑡 = 𝑡 , 𝒖′|𝑡′ = 𝑡 )). Note that the integrals involved in Eqs. (13) and (14) 
𝑔𝑛 𝑔𝑛 𝑖 𝑗

4 
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are analytically intractable, so MCS is typically employed. However, this in turn will lead to difficulties in obtaining the posterior 
statistics of the time-dependent failure probability.

To overcome the aforementioned issue, this study proposes an approximate analytic strategy. Let us first assume that 𝑔𝑛(𝒖|𝑡 = 𝑡0), 
𝑔𝑛(𝒖|𝑡 = 𝑡1), ⋯, 𝑔𝑛(𝒖|𝑡 = 𝑡𝑛𝑡−1) are perfectly positively linearly correlated, i.e., 

𝑔𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 ) = 𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 ) + 𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 )𝑍, (15)

where 𝜎𝑔𝑛 (⋅) is the posterior standard deviation function of 𝑔, i.e., 𝜎𝑔𝑛 (⋅) =
√

𝑘𝑔𝑛 (⋅, ⋅); 𝑍 is the standard normal variable. It is worth 
noting that the true correlation coefficient 𝜌 between any two time instances is governed by the posterior covariance function 
(Eq. (11)), which lies within [−1,1]. While the assumption 𝜌 = 1 may overestimate the true correlation, it greatly simplifies the 
temporal dependence structure and leads to useful results, as will be shown. Under the perfect correlation assumption, we can 
replace the original posterior indicator function 𝐼𝑛 with an approximate version 𝐼𝑛, which is defined as: 

𝐼𝑛(𝒙, 𝜔𝒀 ) =

{

1, min𝑛𝑡−1𝑗=0 𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 ) + 𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑗 ), 𝑡𝑗 )𝑍 < 0,

0, otherwise.
, (16)

which also follows a GBP.
The mean and variance functions of 𝐼𝑛 can be derived as: 

𝑚𝐼𝑛 (𝒙, 𝜔𝒀 ) =E
[

𝐼𝑛(𝒙, 𝜔𝒀 )
]

=P
(

𝐼𝑛(𝒙, 𝜔𝒀 ) = 1
)

=𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

,

(17)

𝜎2
𝐼𝑛
(𝒙, 𝜔𝒀 ) =V

[

𝐼𝑛(𝒙, 𝜔𝒀 )
]

=P
(

𝐼𝑛(𝒙, 𝜔𝒀 ) = 0
)

× P
(

𝐼𝑛(𝒙, 𝜔𝒀 ) = 1
)

=𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

,

(18)

where E and V denote the expectation and variance operators, respectively. Note that 𝑚𝐼𝑛 (𝒙, 𝜔𝒀 ) can be regarded a smoothed version 
of the indicator function 𝐼(min𝑛𝑡−1𝑖=0 𝑔(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖) < 0). As 𝜎𝑔𝑛 → 0, the former converges to the latter. In the limiting conditions 
(i.e., 𝑞 → ∞, 𝑛𝑡 → ∞ and 𝜎𝑔𝑛 → 0), 𝑚𝐼𝑛 (𝒙, 𝜔𝒀 ) can approach the true indicator function 𝐼(𝒙, 𝜔𝒀 ).

Further, the resulting approximate posterior distribution of the time-dependent failure probability can be expressed as: 

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) = ∫𝑿
∫𝛺𝒀

𝐼𝑛(𝒙, 𝜔𝒀 )𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

. (19)

Using Tonelli’s theorem, the mean of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) can be derived as: 

𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) =E
[

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
]

=E
[

∫𝑿
∫𝛺𝒀

𝐼𝑛(𝒙, 𝜔𝒀 )𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

]

=∫𝑿
∫𝛺𝒀

E
[

𝐼𝑛(𝒙, 𝜔𝒀 )
]

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

=∫𝑿
∫𝛺𝒀

𝑚̃𝐼𝑛
(𝒙, 𝜔𝒀 )𝑓𝑿 (𝒙)d𝒙dP

(

𝜔𝒀
)

=∫𝑿
∫𝛺𝒀

𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

.

(20)

Even with the perfect correlation assumption (Eq. (15)), 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) converges, in principle, to the true time-dependent failure 
probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ) in the limiting conditions (i.e., 𝑞 → ∞, 𝑛𝑡 → ∞ and 𝜎𝑔𝑛 → 0). This is because the integrand of 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ), 
namely 𝑚𝐼𝑛 (𝒙, 𝜔𝒀 ), approaches the true indication function 𝐼(𝒙, 𝜔𝒀 ), as discussed earlier. Therefore, 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) can be used as an 
estimator of the time-dependent failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ). While this estimator has been suggested in previous studies [39,40], it 
is derived from a completely different perspective in this paper. The advantage of this alternative viewpoint is that it offers a clearer 
theoretical justification. In addition to the time-dependent failure probability estimator, a measure of the underlying uncertainty is 
also necessary.
5 
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To this end, we now examine the mean absolute deviation of the approximate posterior failure probability 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ): 
E [ |𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) |]

= E [ |∫𝑿
∫𝛺𝒀

𝐼𝑛(𝒙, 𝜔𝒀 )𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

− ∫𝑿
∫𝛺𝒀

𝑚𝐼𝑛
(𝒙, 𝜔𝒀 )𝑓𝑿 (𝒙)d𝒙dP

(

𝜔𝒀
)

|]

= E [ |∫𝑿
∫𝛺𝒀

[

𝐼𝑛(𝒙, 𝜔𝒀 ) − 𝑚𝐼𝑛
(𝒙, 𝜔𝒀 )

]

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

|]

≤ E
[

∫𝑿
∫𝛺𝒀

|

|

|

𝐼𝑛(𝒙, 𝜔𝒀 ) − 𝑚𝐼𝑛
(𝒙, 𝜔𝒀 )

|

|

|

𝑓𝑿 (𝒙) d𝒙 dP(𝜔𝒀 )
]

= ∫𝑿
∫𝛺𝒀

E
[

|

|

|

𝐼𝑛(𝒙, 𝜔𝒀 ) − 𝑚𝐼𝑛
(𝒙, 𝜔𝒀 )

|

|

|

]

𝑓𝑿 (𝒙) d𝒙 dP(𝜔𝒀 )

= ∫𝑿
∫𝛺𝒀

[

|1 − 𝑚𝐼𝑛
(𝒙, 𝜔𝒀 ) | × P

(

𝐼𝑛(𝒙, 𝜔𝒀 ) = 1
)

+ |0 − 𝑚𝐼𝑛
(𝒙, 𝜔𝒀 ) | × P

(

𝐼𝑛(𝒙, 𝜔𝒀 ) = 0
)

]

𝑓𝑿 (𝒙) d𝒙 dP(𝜔𝒀 )

= 2∫𝑿
∫𝛺𝒀

𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙) d𝒙 dP(𝜔𝒀 )

(21)

If we denote: 

𝜋𝑛 = ∫𝑿
∫𝛺𝒀

𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑛(𝒙, 𝒚̂(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)d𝒙 dP(𝜔𝒀 ), (22)

then Ineq. (21) can be written succinctly as: 
E [ |𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) |] ≤ 2𝜋𝑛. (23)

This implies that when 𝜋𝑛 → 0, 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) converges in expectation to its mean 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ). Thus, 𝜋𝑛 naturally quantifies the 
uncertainty of the time-dependent failure probability estimator 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ).

It is noted that closed-form expressions for both 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) and 𝜋𝑛 are unavailable, so in this study we approximate them 
numerically using MCS. The respective MCS estimators are given by: 

𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) =
1
𝑁

𝑁
∑

𝑗=1
𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

, (24)

𝜋̂𝑛 =
1
𝑁

𝑁
∑

𝑗=1
𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

, (25)

where {𝒙(𝑗)}𝑁𝑗=1 is a sequence of 𝑁 random samples drawn according to 𝑓𝑿 (𝒙); 
{

𝒚̂(𝑗)(𝑡𝑖)
}𝑁

𝑗=1
 at a given 𝑖 is a set of 𝑁 random samples 

of 𝒀 (𝑡𝑖). The associated variances for 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) and 𝜋̂𝑛 are : 

V
[

𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )

]

= 1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

[

𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

− 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )

]2

. (26)

V
[

𝜋̂𝑛
]

= 1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

[

𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

− 𝜋̂𝑛

]2

. (27)

3.2. Stopping criterion

Having obtained the time-dependent failure probability estimate, a natural question is whether this estimate is sufficiently 
accurate. This, in turn, hinges on defining an appropriate stopping criterion. To do so, let us first study the relative mean absolute 
deviation of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ). Dividing both sides of Ineq. (23) by 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) (assumed nonzero), we have: 

E

[

|

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )

𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )
|

]

≤
2𝜋𝑛

𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )
. (28)

This suggests that the relative mean absolute deviation of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) is actually bounded by 2𝜋𝑛∕𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ). If 𝜋𝑛 is small relative to 
𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ), 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) will concentrate around its mean value 𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ).

Based on Ineq. (28), the following stopping criterion is proposed: 
𝜋𝑛

𝑚𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )
< 𝜖, (29)

where 𝜖 is a user-specified threshold. The stopping criterion guarantees that the relative mean absolute deviation of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) is at 
most 2𝜖. In practice, 𝑚  and 𝜋  are replaced by their estimates 𝑚̂  and 𝜋̂ , respectively.
𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) 𝑛 𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) 𝑛

6 
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3.3. Learning functions

If the stopping criterion in Ineq. (29) is not satisfied, the best next point 
{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1)), 𝑡(𝑛+1)
}

 where to evaluate the true 
performance function has to be selected, with the aim of further improving the accuracy of the time-dependent failure probability 
estimate. This choice is typically guided by one or more learning (or acquisition) functions, which quantify the utility of each 
candidate point. The next point is then identified by maximizing (or minimizing) these functions. In this study, we propose two 
novel learning functions: one for selecting 𝑡(𝑛+1), and another for selecting 

{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1))
}

.
For ease of understanding, the second learning function is presented first: 

𝑛(𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖) = 𝜎2𝑔𝑛 (𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1⃝

𝛷

(

−
𝑚𝑔𝑛 (𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑚𝑔𝑛 (𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)𝑓𝒀̂ (𝑡𝑖)
(𝒚̂(𝑡𝑖))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2⃝

, (30)

where term 2⃝ is derived from the integrand of 𝜋𝑛 by omitting the min operation, which is multiplied by the posterior variance of 
𝑔 (i.e., term 1⃝). The learning function attains large values when 𝑚𝑔𝑛  is near zero, 𝜎𝑔𝑛  is high or the joint PDF is large. Besides, the 
larger 𝑛(𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖) is, the more promising the candidate point 

{

𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖
} is deemed. In this regard, the proposed learning function 

can naturally trade off exploitation and exploration.
Then, we introduce our first learning function, which is simply the integral of 𝑛: 

𝑛(𝑡𝑖) = ∫𝑿
∫𝒀

𝑛(𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖)d𝒙 d𝒚̂(𝑡𝑖). (31)

By integrating 𝑛 over 𝑿 and 𝒀 , the function 𝑛 can average out the uncertainty associated with 𝑿 and 𝒀̂ (𝑡𝑖) and provide a 
global measure of the learning potential of 𝑡𝑖. The learning function is approximated by using MCS: 

̂𝑛(𝑡𝑖) =
1
𝑁

𝑁
∑

𝑗=1
𝜎2𝑔𝑛 (𝒙

(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)𝛷

(

−
𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

𝛷

(

𝑛𝑡−1
min
𝑖=0

𝑚𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖)

)

. (32)

The best next time instant 𝑡(𝑛+1) is identified by maximizing ̂𝑛(𝑡𝑖): 

𝑡(𝑛+1) = argmax
𝑡𝑖∈[𝑡0 ,𝑡1 ,…,𝑡𝑛𝑡−1]

̂𝑛(𝑡𝑖). (33)

The best next sample point 
{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1))
}

 is obtained by maximizing 𝑛 conditional on 𝑡𝑖 = 𝑡(𝑛+1): 
{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1))
}

= argmax
𝒙∈

{

𝒙(𝑗)
}𝑁
𝑗=1 ,𝒚̂(𝑡

(𝑛+1))∈
{

𝒚̂(𝑗)(𝑡(𝑛+1))
}𝑁

𝑗=1

𝑛(𝒙, 𝒚̂(𝑡(𝑛+1)), 𝑡(𝑛+1)). (34)

3.4. Implementation procedure of the proposed method

The implementation procedure of the proposed SL-ABALQ method is summarized below and accompanied by a flowchart in
Fig.  1.

Step 1: Discretize the time interval
Discretize the time interval [𝑡0, 𝑡𝑓

] into 𝑛𝑡 equally spaced nodes 𝑡𝑖 = 𝑡0 + 𝑖𝛥𝑡, 𝑖 = 0, 1⋯ , 𝑛𝑡 − 1, where 𝛥𝑡 = 𝑡𝑓−𝑡0
𝑛𝑡−1

.
Step 2: Construct the initial sample pool
Construct the initial sample pool 𝑺 =

{

𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝑖), 𝑡𝑖
}𝑛𝑡−1,𝑁0

𝑖=0,𝑗=1
, where {𝒙(𝑗)}𝑁0

𝑗=1 is a set of 𝑁0 random samples of 𝑿 generated 

according to 𝑓𝑿 (𝒙) and 
{

𝒚̂(𝑗)(𝑡𝑖)
}𝑁0

𝑗=1
 is a set of 𝑁0 random samples of 𝒀 (𝑡) at time instant 𝑡𝑖 generated using the KL expansion. Let 

𝑁 = 𝑁0.
Step 3: Generate the initial design of experiments
Generate the initial design of experiments  = { ,}, where  =

{

𝒙(𝑙), 𝒚̂(𝑙)(𝑡𝑙), 𝑡𝑙
}𝑛0

𝑙=1
 and  =

{

𝑧(𝑙)
}𝑛0
𝑙=1 with 𝑧(𝑙) =

𝑔(𝒙(𝑙), 𝒚̂(𝑙)(𝑡𝑙), 𝑡𝑙). Note that 𝑡𝑙 for 𝑙 = 1, 2,… , 𝑛0 are simply taken as 𝑛0 equally spaced points on the interval [𝑡0, 𝑡𝑓 ]. Besides, 
{

𝒙(𝑙)
}𝑛0
𝑙=1

are drawn from 𝑓𝑿 (𝒙) using Hammersley sequence and 
{

𝒚̂(𝑙)(𝑡𝑙)
}𝑛0

𝑙=1
 are generated via KL expansion in conjunction with Hammersley 

sequence. Let 𝑛 = 𝑛0.
Step 4: Build the GPR model
Build the GPR model 𝑔𝑛(𝒙, 𝒚̂(𝑡𝑖), 𝑡𝑖) of the time-dependent performance function 𝑔 using the experimental design . In this study, 

we employ MATLAB’s function fitrgp available in the statistics and machine learning toolbox, with a constant prior mean and a 
squared-exponential prior covariance. The involved hyper-parameters are tuned by the maximum likelihood estimation.

Step 5: Obtain the two terms 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) and 𝜋̂𝑛
Obtain the time-dependent failure probability estimate 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) and the epistemic uncertainty measure estimate 𝜋̂𝑛 using MCS 

with 𝑺.
7 
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Fig. 1. Flowchart of the proposed SL-ABALQ method.

Step 6: Check the stopping criterion #1
If the stopping criterion 𝜋̂𝑛

𝑚̂𝑃𝑓,𝑛 (𝑡0 ,𝑡𝑓 )
< 𝜖 is met twice in a row, then proceed to Step 8; otherwise, go to Step 7.

Step 7: Enrich the design of experiments
Enrich the design of experiments  with 

{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1)), 𝑡(𝑛+1), 𝑧(𝑛+1)
}

, where 𝑡(𝑛+1) is obtained by

Eq. (33), 
{

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1))
}

 is identified by Eq. (34), and 𝑧(𝑛+1) = 𝑔(𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝑡(𝑛+1)), 𝑡(𝑛+1)). Let 𝑛 = 𝑛 + 1 and go to Step 
4.

Step 8: Check the stopping criterion #2

Calculate the CoV of the failure probability estimator 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) by CoV
[

𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )

]

=

√

Var
[

𝑚̂𝑃𝑓,𝑛 (𝑡0 ,𝑡𝑓 )

]

𝑚̂𝑃𝑓,𝑛 (𝑡0 ,𝑡𝑓 )
. If CoV

[

𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )

]

< 𝛿

is reached (𝛿 is a user-defined threshold), then go to Step 10; otherwise, proceed to Step 9. It is worth noting that this stopping 
criterion is employed to guarantee that the size of the sample pool is adequate.

Step 9: Enrich the sample pool
Enrich the sample pool 𝑺 with additional 𝑁0 samples 𝑺+ exactly as in Step 2. Let 𝑁 = 𝑁 +𝑁0 and go to Step 5.
Step 10: Return the time-dependent failure probability
Return the time-dependent failure probability estimate 𝑚̂𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 ) as the final result.

Remark 1. The proposed SL-ABALQ method remains applicable when the performance function takes other simpler forms, 
e.g., 𝑔(𝑿, 𝑡), 𝑔(𝒀 (𝑡), 𝑡), 𝑔(𝒀 (𝑡)) or 𝑔(𝑿, 𝒀 (𝑡)).

Remark 2. Other intermediate time-dependent failure probability values 𝑃𝑓 (𝑡0, 𝑡𝑖) for 𝑖 = 0, 1,… , 𝑛𝑡 − 2 can be obtained along with 
𝑃𝑓 (𝑡0, 𝑡𝑓 ) as by-products. They together can provide the insight into evolution of the failure probability. However, the first 𝑛𝑡 − 1
values may not be guaranteed to be as accurate as the last one.
8 
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Table 1
Random variables and stochastic process of Example 1.
 Symbol Distribution Mean Standard deviation Auto-correlation function 
 𝑋1 Normal 0 1 –  
 𝑋2 Normal 0 1 –  
 𝑌 (𝑡) Gaussian process 5 1 exp

(

−(𝑡2 − 𝑡1)2
)  

Table 2
Time-dependent failure probability results of Example 1.
 Method 𝑁call 𝑃𝑓 (0, 1)

 Mean CoV Mean CoV  
 MCS 50 × 107 – 3.27 × 10−2 0.17% 
 PHI2 600 – 4.22 × 10−2 –  
 SILK 42.10 11.56% 3.28 × 10−2 1.61% 
 REAL 40.65 9.04% 3.30 × 10−2 5.25% 
 SL-GPR-AL 28.15 10.26% 3.28 × 10−2 1.48% 
 Proposed SL-ABALQ 22.35 9.77% 3.24 × 10−2 3.06% 

4. Numerical examples

In order to validate the performance of the proposed SL-ABALQ method for time-dependent reliability analysis, five numerical 
examples are investigated in this section. Aside from 𝑛𝑡, the involved parameters are set as follows: 𝑁0 = 105, 𝜂 = 99.5%, 𝑛0 = 10, 
𝜖 = 3%, 𝛿 = 2%. Several existing active learning methods (i.e., PHI2 [5], SILK [24], REAL [27] and SL-GPR-AL [32]) are also 
conducted in each example. The latter three methods, along with the proposed method, are each run independently 20 times, and 
the statistical results are reported.

4.1. Example 1: a test function

The first example considers a time-dependent performance function of the form: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑌 (𝑡) exp(−𝑡) + exp(−
𝑋2

1
10

) +
𝑋4

1
5

−𝑋2 − 1, (35)

where 𝑡 ∈ [0, 1]; 𝑋1 and 𝑋2 are two random variables, 𝑌 (𝑡) is a stochastic process, as reported in Table  1. The time interval [0, 1] is 
discretized into 𝑛𝑡 = 50 equally spaced points.

Table  2 summarizes the results of six methods, i.e., MCS, PHI2, SILK, REAL, SL-GPR-AL and SL-ABALQ. The reference for the 
time-dependent failure probability 𝑃𝑓 (0, 1) is taken as 3.27 × 10−2 (with a CoV of 0.17%), which is provided by MCS with 50 × 107

evaluations of the performance function. With 600 𝑔-function evaluations, PHI2 yields a less accurate estimate of 4.22×10−2. Among 
the remaining four methods, the proposed SL-ABALQ method achieves the fewest average calls to the 𝑔-function, while still yielding 
a mean value of the failure probability estimates that closely matches the reference and with a small CoV of 3.06%.

In addition to 𝑃𝑓 (0, 1), the proposed AL-ABALQ method can also generate the time-dependent failure probability function 𝑃𝑓 (0, 𝑡)
for 𝑡 ∈ [0, 1] as a by-product. The statistical results are shown in Fig.  2, with comparison to the reference by MCS. It can be seen 
that the mean curve is close to the reference, and the mean ± standard deviation (std dev) band remains narrow.

4.2. Example 2: a two-bar frame

The second numerical example involves a two-bar frame subjected to a time-varying stochastic load 𝐹 (𝑡) [45], as shown in Fig. 
3. The two bars (𝑂1𝑂2 and 𝑂2𝑂3) have diameters 𝑑1 and 𝑑2, respectively. Their yield strengths degrade over time, i.e., 𝑠1(𝑡) =
𝑠1,0 exp(−𝑘𝑡) and 𝑠2(𝑡) = 𝑠2,0 exp(−𝑘𝑡), where 𝑠1,0 and 𝑠2,0 are the initial yield strengths and 𝑘 = 0.01. The distances 𝑂1𝑂2 and 𝑂1𝑂3
are denoted by 𝑙1 and 𝑙2, respectively. Failure occurs when the axial stress in either bar exceeds its yield strength. The corresponding 
time-dependent performance function can be defined as: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = min

⎧

⎪

⎨

⎪

⎩

𝜋
4 𝑑

2
1𝑠1(𝑡) −

𝑙1
𝑙2
𝐹 (𝑡),

𝜋
4 𝑑

2
2𝑠2(𝑡) −

√

𝑙21+𝑙
2
2

𝑙2
𝐹 (𝑡)

, (36)

where 𝑡 ∈ [0, 15] year; 𝑿 = [𝑑1, 𝑑2, 𝑠1,0, 𝑠2,0, 𝑙1, 𝑙2] is a set of six random variables, and 𝑌 (𝑡) = 𝐹 (𝑡) is a stochastic process, as given in 
Table  3. In this example, 𝑛𝑡 is set to be 50.

The results of several methods are presented in Table  4. The reference solution for the time-dependent failure probability 𝑃𝑓 (0, 15)
is taken as 8.13 × 10−3 (CoV = 0.35%), obtained using MCS with 50 × 107 samples. The proposed SL-ABALQ method achieves a 
comparable mean failure probability estimate with a significantly lower mean number of 𝑔-function evaluations (25.55) and a 
moderate CoV of 4.50%. In contrast, the PHI2 method requires 1224 𝑔-function calls, but produces an inaccurate failure probability 
9 
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Fig. 2. Time-dependent failure probability function of Example 1.

Fig. 3. A two-bar frame under a time-varying stochastic load.

Table 3
Random variables and stochastic process of Example 2.
 Symbol Distribution Mean CoV Auto-correlation function 
 𝑑1 (m) Uniform 0.10 0.025 –  
 𝑑2 (m) Uniform 0.12 0.025 –  
 𝑠1,0 (Pa) Lognormal 6 × 108 0.1 –  
 𝑠2,0 (Pa) Lognormal 6 × 108 0.1 –  
 𝑙1 (m) Uniform 0.4 0.025 –  
 𝑙2 (m) Uniform 0.3 0.025 –  
 𝐹 (𝑡) (N) Gaussian process 2 × 106 0.1 exp

(

−(𝑡2 − 𝑡1)2∕2
)  

estimate of 1.53×10−2. The SILK method failed to provide results due to an out-of-memory error before reaching its stopping criterion. 
Both the SL-GPR-AL and REAL methods also yield mean failure probability estimates close to the reference, with CoVs of 5.95% 
and 2.46%, respectively. However, they require more evaluations of the 𝑔-function on average than the proposed method, and the 
CoV of the number of 𝑔-function for REAL is notably high (40.87%).

Fig.  4 depicts the mean, mean ± std dev of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 15] from the proposed 
method, as well as the reference curve generated via MCS. It is shown that the mean curve accords well with the reference one, 
and the mean ± std dev band is relatively narrow.

4.3. Example 3: a cantilever tube

In the third numerical example, we consider a cantilever tube subjected to two forces (𝐹  and 𝑃 ) and a time-varying torque (𝑇 (𝑡)), 
as shown in Fig.  5. The tube has a length of 𝐿, and the hollow cross-section has outer radius 𝑟𝑜 and inner radius 𝑟𝑖. The material’s 
yield strength degrades over time according to 𝑆(𝑡) = 𝑆0(1 − 𝛾 log(1 + 𝑡)), where 𝑆0 is the initial yield strength and 𝛾 = 0.01. Failure 
is defined as the maximum von Mises stress exceeding the yield strength. The associated time-dependent performance function is 
10 
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Table 4
Time-dependent failure probability results of Example 2.
 Method 𝑁call 𝑃𝑓 (0, 15)

 Mean CoV Mean CoV  
 MCS 50 × 107 – 8.13 × 10−3 0.35% 
 PHI2 1224 – 1.53 × 10−2 –  
 SILK – – – –  
 REAL 46.35 40.87% 8.04 × 10−3 2.46% 
 SL-GPR-AL 31.50 9.30% 8.08 × 10−3 5.95% 
 Proposed SL-ABALQ 25.55 12.34% 8.14 × 10−3 4.50% 

Fig. 4. Time-dependent failure probability function of Example 2.

Fig. 5. A cantilever tube under two forces and one torque.

given by: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑆(𝑡) −

√

√

√

√

√

(

𝑃
𝜋(𝑟2𝑜 − 𝑟2𝑖 )

+
𝐹𝐿𝑟𝑜

𝜋
4 (𝑟

4
𝑜 − 𝑟4𝑖 )

)2

+ 3

(

𝑇 (𝑡)𝑟𝑜
𝜋
2 (𝑟

4
𝑜 − 𝑟4𝑖 )

)2

, (37)

where 𝑡 ∈ [0, 5] year; 𝑿 = [𝑆0, 𝑟𝑖, 𝑟𝑜, 𝐿, 𝐹 , 𝑃 ] is a vector of six random variables, and 𝑌 (𝑡) = 𝑇 (𝑡) is a stochastic process, as given in 
Table  5. In this example, we set 𝑛𝑡 = 20.

Table  6 compares the performance of several methods. The reference value for the time-dependent failure probability 𝑃𝑓 (0, 5)
is 1.18 × 10−2 (with a small CoV of 0.41%), which is given by MCS with 20 × 5 × 106 samples. The PHI2 method requires 3360 
evaluations of the performance function and produces a failure probability estimate of 2.29×10−2, which deviates significantly from 
the reference value. The results of SILK are unavailable, as it ran out of memory before reaching its stopping criterion. Among the 
remaining methods, the proposed SL-ABALQ achieves the lowest average number of 𝑔-function evaluations, with a mean of only 
11 
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Table 5
Random variables and stochastic process of Example 3.
 Symbol Distribution Mean CoV Auto-correlation function 
 𝑆0 (MPa) Lognormal 320 0.10 –  
 𝑟𝑖 (mm) Uniform 10 0.05 –  
 𝑟𝑜 (mm) Uniform 20 0.05 –  
 𝐿 (mm) Uniform 120 0.05 –  
 𝐹 (kN) Lognormal 5 0.05 –  
 𝑃 (kN) Lognormal 10 0.10 –  
 𝑇 (𝑡) (N m) Gaussian process 1000 0.15 exp

(

−(𝑡2 − 𝑡1)2∕5
)  

Table 6
Time-dependent failure probability results of Example 3.
 Method 𝑁call 𝑃𝑓 (0, 5)

 Mean CoV Mean CoV  
 MCS 20 × 5 × 106 – 1.18 × 10−2 0.41% 
 PHI2 3360 – 2.29 × 10−2 –  
 SILK – – – –  
 REAL 53.70 13.02% 1.21 × 10−2 2.22% 
 SL-GPR-AL 37.25 15.16% 1.16 × 10−2 4.16% 
 Proposed SL-ABALQ 20.05 7.84% 1.16 × 10−2 3.90% 

Fig. 6. Time-dependent failure probability function of Example 3.

20.05 and a CoV of 7.84%. Moreover, it provides a mean failure probability estimate that closely matches the reference, along with 
a low CoV of 3.90%.

Fig.  6 shows the statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 5], along with the reference 
produced by MCS. The mean curve is in good agreement with the reference, while the mean ± std dev band is suitably narrow.

4.4. Example 4: a space truss

The fourth example consists of a 120-bar space truss structure under thirteen vertical loads (which has been studied in, 
e.g., [32,40]), as sketched in Fig.  7. The finite-element model of this structure is created using the software called OpenSees 
(https://opensees.berkeley.edu/), comprising 120 truss elements and 49 nodes. Each bar has a cross-sectional area 𝐴, and is made 
of a material with Young’s modulus 𝐸. Twelve static loads 𝑃1, 𝑃2, . . . , 𝑃12 are applied at nodes 1–12, while a time-varying load 𝑃0(𝑡)
is imposed at node 0. The time-dependent performance function is defined as: 

𝑔(𝑿, 𝑌 (𝑡)) = 𝛥 − 𝑉0
(

𝐴,𝐸, 𝑃0(𝑡), 𝑃1, 𝑃2,… , 𝑃12
)

, (38)

where 𝑡 ∈ [0, 50] year; 𝑉0 is the vertical displacement of node 0; 𝛥 is the tolerance, which is specified as 100 mm; 𝑿 =
[𝐴,𝐸, 𝑃1, 𝑃2,… , 𝑃12] is a vector of fourteen random variables, 𝑌 (𝑡) = 𝑃0(𝑡) is a stochastic process, as given in Table  7. In this example, 
𝑛𝑡 = 50 is used.

Table  8 reports the results obtained by various methods for estimating the time-dependent failure probability 𝑃𝑓 (0, 50). The 
reference failure probability is taken as 2.85×10−2 (CoV = 0.82%), generated by MCS with 50×5×105 model evaluations. The PHI2 
method produces an inaccurate failure probability estimate of 3.20 × 10−2, while requiring 1664 evaluations of the performance 
12 
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Fig. 7. A 120-bar space truss subject to thirteen vertical loads [40].

Table 7
Random variables and stochastic process of Example 4.
 Symbol Distribution Mean CoV Auto-correlation function 
 𝐴 (mm2) (Truncated) Normal 2000 0.10 –  
 𝐸 (GPa) (Truncated) Normal 200 0.10 –  
 𝑃1 , 𝑃2 ,… , 𝑃12 (kN) Lognormal 100 0.15 –  
 𝑃0(𝑡) (kN) Lognormal process 1000 0.15 exp

(

−(𝑡2 − 𝑡1)2∕50
)  

Note: The auto-correlation coefficient function for 𝑃0(𝑡) is defined for the underlying Gaussian process.

function. The results of SILK and REAL are missing as both methods ran out of memory before reaching their stopping criteria. At 
the cost of an average of 44.40 model calls, SL-GPR-AL gives a failure probability mean (2.89 × 10−2) that is close to the reference 
with a small CoV of 1.73%. In contrast, the proposed SL-ABALQ method only requires 35.25 model evaluations on average, while 
still delivering fairly good results.

Fig.  8 shows the statistical results for the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 50] alongside the reference 
curve generated by MCS. It can be seen that the mean ± std dev band is narrow and the mean curve is close to the reference curve.
13 



C. Dang et al. Mechanical Systems and Signal Processing 241 (2025) 113473 
Table 8
Time-dependent failure probability results of Example 4.
 Method 𝑁call 𝑃𝑓 (0, 50)

 Mean CoV Mean CoV  
 MCS 50 × 5 × 105 – 2.85 × 10−2 0.82% 
 PHI2 1664 – 3.20 × 10−2 –  
 SILK – – – –  
 REAL – – – –  
 SL-GPR-AL 44.40 9.73% 2.89 × 10−2 1.73% 
 Proposed SL-ABALQ 35.25 10.57% 2.88 × 10−2 3.33% 

Fig. 8. Time-dependent failure probability function of Example 4.

Table 9
Random variables and stochastic process of Example 5.
 Symbol Distribution Mean CoV Auto-correlation function 
 𝐸0 (GPa) Lognormal 210 0.10 –  
 𝑓𝑦,0 (MPa) Lognormal 300 0.10 –  
 𝑏 Uniform 0.02 0.02 –  
 𝑄𝐷 (kN∕m) Lognormal 20 0.10 –  
 𝑄𝐿,1 ,… , 𝑄𝐿,4 (kN∕m) Lognormal 10 0.10 –  
 𝐹 (𝑡) (kN) Gaussian process 200(1+0.05log(1 + 𝑡)) 0.15 exp

(

−|𝑡2 − 𝑡1|∕25
)  

4.5. Example 5: a steel frame

The final example involves a three-bay, four-story steel frame structure, as shown in Fig.  9(a). As in Example 4, this structure is 
also modeled using the software OpenSees. The model comprises 12 beam and 16 column members, each represented as a nonlinear 
beam–column element. The P–𝛥 effect is explicitly accounted for in all columns. The cross-section is I-shaped, as shown in Fig.  9(b), 
with dimensions 𝑑 = 0.5 m, 𝑏𝑓 = 0.3 m, and 𝑡𝑤 = 𝑡𝑓 = 0.02 m. The constitutive law of the steel is represented by a bilinear model, 
as depicted in Fig.  9(c). The modulus of elasticity and yield strength degrade over time according to 𝐸(𝑡) = 𝐸0(1 − 𝛾 log(1 + 𝑡)) and 
𝑓𝑦(𝑡) = 𝑓𝑦,0(1 − 𝛾 log(1 + 𝑡)), where 𝐸0 and 𝑓𝑦,0 are the initial modulus of elasticity and yield strength respectively, and 𝛾 = 0.05. The 
strain-hardening ratio is denoted by 𝑏. As shown in Fig.  9(a), each floor is subjected to a uniformly distributed dead load 𝑄𝐷 and 
a live load 𝑄𝐿,𝑖. In addition, four time-dependent lateral loads are applied, i.e., 14𝐹 (𝑡), 12𝐹 (𝑡), 34𝐹 (𝑡), and 𝐹 (𝑡). The time-dependent 
performance function is defined as: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝛥 − 𝑈4
(

𝐸0, 𝑓𝑦,0, 𝑏, 𝑄𝐷, 𝐷𝐿,1, 𝐷𝐿,2, 𝐷𝐿,3, 𝐷𝐿,4, 𝐹 (𝑡), 𝑡
)

, (39)

where 𝑡 ∈ [0, 2.5] year; 𝑈4 denotes the lateral displacement of the fourth floor (specifically, at the left-top node); 𝛥 is the threshold, 
which is set to 0.024 m; 𝑿 = [𝐸0, 𝑓𝑦,0, 𝑏, 𝑄𝐷, 𝐷𝐿,1, 𝐷𝐿,2, 𝐷𝐿,3, 𝐷𝐿,4] is a vector of eight independent random variables, 𝑌 (𝑡) = 𝐹 (𝑡) is 
a stochastic process, as detailed in Table  9. In this example, 𝑛𝑡 is set to 25.

The results of several methods are summarized in Table  10. The reference value of the time-dependent failure probability 
𝑃𝑓 (0, 2.5), obtained from MCS with 25 × 105 simulations, is 1.89 × 10−2 with a CoV of 2.28%. The PHI2 method gives an inaccurate 
estimate, i.e., 2.90 × 10−2, with 770 model evaluations. The results of both SILK and REAL are unavailable as in some trials they 
ran out of memory before reaching their respective stopping criteria. Compared with SL-GPR-AL, the proposed SL-ABALQ method 
demonstrates better overall performance: (1) it requires slightly fewer 𝑔-function calls on average (15.50 vs. 16.55), with similar 
14 
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Fig. 9. A three-bay, four-story steel frame structure subjected to vertical and lateral loads.

Table 10
Time-dependent failure probability results of Example 5.
 Method 𝑁call 𝑃𝑓 (0, 2.5)

 Mean CoV Mean CoV  
 MCS 25 × 105 – 1.89 × 10−2 2.28% 
 PHI2 770 – 2.90 × 10−2 –  
 SILK – – – –  
 REAL – – – –  
 SL-GPR-AL 16.55 9.29% 1.85 × 10−2 5.12% 
 Proposed SL-ABALQ 15.50 9.24% 1.87 × 10−2 4.54% 

Fig. 10. Time-dependent failure probability function of Example 5.

CoVs (9.24% vs. 9.29%); and (2) it yields a slightly smaller CoV for the failure probabilities (4.54% vs. 5.12%), while the mean 
values of both methods remain very close to the reference.

Fig.  10 shows the statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 2.5] obtained by the 
proposed method, together with the reference solution from MCS. It can be seen that the mean curve is close to the reference, 
accompanied by a narrow mean ± std dev band.
15 
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5. Summary and conclusions

This paper presents a novel method for computationally expensive time-dependent structural reliability analysis, termed ‘single-
loop approximate Bayesian active learning quadrature’ (SL-ABALQ). In this method, the integral of the time-dependent failure 
probability is addressed from a Bayesian active learning perspective in a single-loop format. By virtue of the Bayesian nature of 
Gaussian process regression (GPR), an approximate Bayesian inference scheme is developed to avoid the potential intractability 
of exact Bayesian inference. This approach yields both an estimator for the time-dependent failure probability and an associated 
measure of uncertainty. Building on these results, we propose a novel stopping criterion that determines when the iterative process 
should terminate, thereby avoiding both premature convergence and unnecessary continuation. In addition, two new learning 
functions are presented to guide the selection of the next best time instant and the sample point of random variables and stochastic 
processes (at the selected time instant) at which to evaluate the performance function if the stopping criterion is not reached. The 
performance of the proposed SL-ABALQ method is demonstrated through five numerical examples against several existing methods. 
It is shown that our method can reduce the number of performance function evaluations without sacrificing accuracy. The method 
is designed for the general time-dependent reliability problems, where the performance function is a function of input random 
variables, stochastic processes and the time parameter. Of course, it is equally applicable to some other special cases. Moreover, 
AL-ABALQ can provide the evolution of failure probability over the time interval at no additional computational cost.

Future research could explore the following aspects. First, efficient stochastic simulation techniques could be employed to replace 
the plain MCS, particularly when the time-dependent failure probability over a given interval is very small. This is also relevant 
in cases where the quantity of interest is an accurate time-dependent failure probability function, as the failure probability is 
typically low at the beginning of the time interval. Second, multi-point selection strategies can be developed to facilitate the parallel 
distributed processing, thus further enhancing the computational efficiency. Third, although the proposed method can alleviate the 
curse of dimensionality to some extent — since each input stochastic process is treated as a single dimension — dimension-reduction 
techniques may still be beneficial when the total dimensionality (i.e., 𝑑1 + 𝑑2 + 1) is high.
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