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ARTICLE INFO ABSTRACT

Communicated by M. Beer Time-dependent reliability analysis allows for assessing the performance and safety of an
engineering structure over its entire lifespan, accounting for inherent randomness and time-
varying factors in both structural properties and external loads. However, incorporating the
time dimension dramatically increases the computational complexity. To address this challenge,
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Gaussian process regression we propose a novel method for computationally expensive time-dependent reliability analysis,
Stopping criterion which is called ‘single-loop approximate Bayesian active learning quadrature’ (SL-ABALQ). First
Learning function of all, estimation of the time-dependent failure probability is treated as a Bayesian inference

problem with the help of Gaussian process regression. To avoid the intractability of exact
Bayesian inference, an approximate Bayesian inference approach is instead developed. In this
context, the mean of an approximate posterior failure probability is given, which can serve
as a failure probability estimator. Moreover, we also derive an upper bound on the mean
absolute deviation of the approximate posterior failure probability, which provides a measure
of uncertainty for the failure probability estimator. Second, leveraging the estimator and its
associated uncertainty measure, a novel stopping criterion is proposed to determine when the
iterative learning process should terminate. Third, two new learning functions are introduced to
identity the next best time instant and the sample point given the time instant. The performance
of the proposed method is demonstrated by five numerical examples, with comparison to several
existing methods. It is shown that our method can reduce the number of performance function
evaluations without compromising accuracy.

1. Introduction

Ensuring the performance and safety of civil infrastructure throughout its entire service life remains a central challenge in
structural engineering. Structural reliability analysis has therefore emerged as a critical tool for quantifying the probability that
an engineered structure will fulfill its intended function without failure for a specified time period, explicitly accounting for various
uncertainties in material properties, environmental loads, and other influential factors. Many traditional reliability analysis methods
simplify the problem by assuming that the behavior of the system under consideration does not evolve with time. However, such
an assumption is rarely justified because both external loads and structural properties (due to, e.g., aging, damage, wear, fatigue
and corrosion) are inherently time-dependent. This time dependence can significantly affect the performance and safety of civil
infrastructure. Therefore, time-dependent reliability analysis methods have also been developed, allowing the probability of failure
to be assessed over the entire lifespan of a structure. Despite that, the inclusion of the time dimension significantly increases the
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computational complexity. In response to this challenge, there are roughly three main groups of methods available: analytical
methods, stochastic simulation methods and surrogate modeling methods.

Analytical methods address the time-dependent reliability problem by deriving explicit (or semi-explicit) mathematical expres-
sions for the failure probability as a function of time. One common family of analytical approaches is the out-crossing rate methods,
which relate the time-dependent failure probability to the rate at which the performance function crosses from the safe domain
into the failure domain. This idea traces back to Rice’s seminal work [1], which introduced what is now known as Rice formula for
the crossing rate of a stochastic process across a fixed threshold — later extended to the out-crossing rate concept in reliability
analysis. However, analytical solutions to the Rice formula are available only for some special classes of stochastic processes,
e.g., stationary Gaussian processes [2], non-stationary Gaussian processes [3] and non-stationary Lognormal processes [4]. To
broaden the applicability, some other out-crossing rate methods have been developed, such as PHI2 [5], PHI2+ [6], moment-based
PHI2 (MPHI2) [7] and first order time-variant reliability expansion [8]. Overall, analytical methods can provide valuable insight into
the problem at hand and avoid brute-force simulations. However, they rely on simplifying assumptions (e.g., Poisson assumption)
that may not always be fully justified in practical applications, and closed-form solutions are typically available only for special
cases.

Instead of pursing explicit (or semi-explicit) formulas, stochastic simulation methods estimate the time-dependent failure
probability by running many random simulations of the system’s behavior over the period of interest and directly observing the
failure frequency. The most representative method in this category is the plain Monte Carlo simulation (MCS). Although widely
applicable, it requires a considerably large number of performance function evaluations for a small failure probability. This leads
to the development of more efficient stochastic simulation techniques such as subset simulation (SS) [9,10], importance sampling
(IS) [11-14] and line sampling [15]. Compared to analytical methods, stochastic simulation methods impose minimal assumptions
about the underlying problem and offer broad versatility. However, they often demand a large number of performance function
evaluations, which can render practical application computationally challenging.

Surrogate modeling methods substitute the original time-dependent performance function with a surrogate model that is
computationally cheap to evaluate. Once trained, this surrogate model is typically coupled with stochastic simulation techniques
to estimate the time-dependent failure probability. Examples of surrogate modeling methods are the response surface method [16],
polynomial chaos expansion [17] and support vector machine [18]. Notably, active learning Kriging (AK) and Gaussian process
regression (GPR) methods have received considerable attention for addressing time-dependent reliability problems. In this context,
existing developments typically follow one of the two schemes: double-loop scheme and single-loop scheme. The double-loop scheme
is essentially an extreme response surrogate approach: an active-learning Kriging model is built in the outer loop to approximate
the performance function’s extreme response over the time interval, while a separate Kriging model in the inner loop identifies the
extreme response for each sample trajectory. This class includes the nested extreme response surface approach [19], mixed efficient
global optimization (EGO) method [20], parallel EGO method [21], AK coupled with IS (AK-co-IS) and AK coupled with SS (AK-co-
SS) [22] and IS-based double-loop Kriging [23]. On the contrary, the single-loop approach constructs a global response surrogate
model for the underlying time-dependent performance function. A non-exhaustive list of such methods comprises the single-loop
Kriging (SILK) method [24], single-loop adaptive sampling method [25], active failure-pursuing Kriging (AFPK) method [26], real-
time estimation error-guided sampling (REAL) method [27], single-loop Kriging method considering the first failure instant [28],
single-loop Kriging coupled with SS (SLK-co-SS) method [29], estimation variance reduction-guided adaptive Kriging method
(VARAK) method [30], subdomain uncertainty-guided Kriging (SUK) method [31], single-loop GPR based-active learning (SL-GPR-
AL) method [32] and error-informed parallel adaptive Kriging (EPAK) method [33]. In general, surrogate modeling methods can
leverage the strengths of both worlds, i.e., fast evaluations from surrogates and robust probability estimation from simulation. Recent
studies have shown that single-loop active learning methods can achieve a commendable balance between computational efficiency
and predictive accuracy in time-dependent reliability analysis. Nevertheless, owing to factors such as improper stopping criteria
and learning functions, existing single-loop methods may still suffer from slow or unreliable convergence behavior, low sampling
efficiency, and limited robustness.

The first author and his co-workers have recently advanced time-independent reliability analysis from a distinct perspective
by superimposing active learning atop Bayesian inference, yielding several high-performing Bayesian active learning methods
(e.g., [34-38]). This conceptual idea is also helpful for addressing time-dependent reliability problems, as illustrated by two
preliminary studies [39,40]. Despite these promising results, the full potential has been largely unexplored. To this end, the main
objective of this paper is to develop a novel method for computationally expensive time-dependent reliability analysis by exploring
both the single-loop formulation and Bayesian active learning concept. The resulting method is called ‘single-loop approximate
Bayesian active learning quadrature’ (SL-ABALQ). The main contributions of this study can be summarized as follows. First, by
leveraging the Bayesian nature of GPR, we develop an approximate Bayesian inference scheme for the time-dependent failure
probability, yielding both a failure probability estimator and its associated uncertainty measure. This approach essentially helps
to avoid the potential intractability of exact Bayesian inference. Second, a principled stopping criterion is proposed to determinate
when the iterative learning process should terminate. Third, two learning functions are introduced to identify the next best time
instant and the sample point of random variables and stochastic processes (at the identified time instant) at which to evaluate the
true performance function in case the stopping criterion is not satisfied.

The remainder of this paper is organized as follows. Section 2 provides background on time-dependent structural reliability
analysis. The proposed SL-ABALQ method is introduced in Section 3. Five numerical examples are studied in Section 4 to validate
the performance of the proposed method. Finally, Section 5 summarizes and concludes the present study, and also highlights future
research.
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2. Time-dependent structural reliability analysis

This section provides some preliminary knowledge on time-dependent structural reliability analysis. Section 2.1 gives the
mathematical definition of the time-dependent failure probability. Section 2.2 outlines the discretization of stochastic processes.
Section 2.3 then introduces how the time-dependent failure probability is estimated by using the plain MCS.

2.1. Definition of the time-dependent failure probability

Without loss of generality, let us consider a time-dependent performance function of the form:
gX(wx), Y(@y, 0,0 : RN xR2 xR - R, @

where X(wy) = [X;(wx), Xo(@x), ... X4 (wy)] € Dy C R is a vector of d; continuous random variables with support Dy,
Y(wy,t) = [Y(oy.D), Yoy, 1),.... Y, (wy,N] € Dy C R is a vector of d, continuous-time stochastic processes with support Dy;
oy € 2x and wy € 2y denote two outcomes in the sample spaces 2y and £y, respectively; and ¢ € R represents time parameter,
which is constrained to a specific interval [#), 7 ;]. In the sequel, the symbols wy and wy are omitted when there is no risk of confusion.
The stochastic processes involved are assumed to be second-order (i.e., square-integrable). By convention, failure occurs when the
time-dependent performance function takes a negative value at any time within [#),7,]. The time-dependent failure probability is
formally defined by:

Prtg.1,) =P {g(X,Y(0).1) < 0,3t € [ty. 1,1}, 2)

where P is the probability operator. Equivalently, by appealing to the minimum value of the performance function over time, it can
also be expressed as:

Pr(ty,17) =P {’Er[l;l()if,lf] g(X,Y(®),1) < 0} .

1€ltgts]

= / / 1( min g(x, y(wy,t),t)<0> fx(x)dxdP (oy) ,
Dx J Qy

where I is the indicator function: it returns one if its argument is true, zero otherwise; fy(x) is the joint probability density function
of X. The corresponding time-dependent reliability R(#y,?,) is mathematically complementary to the failure probability P (t,1,),
i.e.,, R(ty,t7) =1~ Ps(t,17). The indicator function will be interchangeably denoted as I(x,wy), emphasizing its dependence on x
(or equivalently wy) and wy.

For most practical time-dependent reliability problems, it is unlikely that a closed-form solution for the time-dependent failure
probability can be derived. Therefore, analytical approximations or numerical methods are often necessary.

2.2. Discretization of stochastic processes

The continuous-time stochastic processes Y (¢) are inherently infinite-dimensional, rendering direct computation intractable. To
enable numerical analysis, these processes are discretized into a finite-dimensional representation. A common approach is the
Karhunen-Loéve (KL) expansion (see, e.g., [41]), which decomposes a second-order stochastic process Y(¢) into a finite series
expansion. Denote the mean and covariance functions of Y (r) as uy(¢) and ¢y (7,t,), respectively. The KL expansion of Y(¢) can
then be expressed as:

q
YO =Y®) = py()+ Z V4i&ii(0), “
i=1
where {A,- }7=1 are ¢ dominant eigenvalues of the covariance matrix Cy, arranged in a descending order; {qb‘-(t)}?:l are corresponding
eigenfunctions; {5,-}?=1 are g uncorrelated random variables; ¢ is the number of truncation terms, which can be specified by the
explained variance ratio:

> A
g= argmin { ==L 15,0, ®
g€l 200l | Doy Ai
where 7 is a user-defined threshold. In this study, the time interval of interest [to, t f] is discretized into n, equally spaced time points,
10,11, - sty 2,1y 1 =17, Where the time step is given by 4t = (t, —1,)/(n, — 1).

2.3. Time-dependent failure probability analysis by MCS

To estimate the time-dependent failure probability P,(#),), the plain MCS can be employed straightforwardly. Its estimator can
be formulated as:

N
~ 1 1 N
Prag.1p) =+ ; I(min g(x". 39(1)).1;) < 0), ©)
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where {Jc(f)}j.\]:1 is a set of N random samples of X; {y(j)(t,-)}

N
coefficient of variation (CoV) of the estimator is given by:

: is a set of N random samples of ¥(z;) at given time instant #,. The

1= Pyt 1))
(N = DP(tg.17)

Indeed, the plain MCS represents a typical frequentist approach to evaluating the time-dependent failure probability integral,
as defined in Eq. (3). While conceptually straightforward, the plain MCS is often not computationally feasible in practice due to
the following reasons: (1) it requires N X n, evaluations of the performance function g, where N must be large enough to ensure
convergence and n, must be large enough to mitigate errors due to time discretization; and (2) each evaluation of g may be
computationally intensive (e.g., high-fidelity finite element analysis or multi-physics modeling), particularly for complex, large-scale
engineering systems.

CoV [Py (ty,1,)] = )

3. Proposed SL-ABALQ method

In this section, we introduce the proposed SL-ABALQ method for time-dependent structural reliability analysis. Section 3.1 gives
an approximate Bayesian inference framework for the time-dependent failure probability based on the GPR. It is followed by the
stopping criterion and learning functions in Sections 3.2 and 3.3, respectively. Finally, the procedure for implementing the proposed
method is summarized in Section 3.4.

3.1. Approximate Bayesian inference about the time-dependent failure probability

In contrast to the frequentist approach, we seek to interpret the task of estimating the time-dependent failure probability
integral (Eq. (3)) as a Bayesian inference problem. To circumvent the potential intractability of exact Bayesian inference, we pursue
an approximate solution in this work. The core idea of the Bayesian interpretation is to treat the performance function g as a
random function, even though it is deterministic by definition. This is motivated by the fact that the value of g at a given location
u = [x, §(¢), 1] remains numerically unknown until it is evaluated, which is often the case in practice.

To begin, we place a Gaussian process (GP) prior over the performance function g:

gow) ~ GP(my (), kg (u,u"), ®

where g, represents the prior distribution of g before any evaluations are performed; u’ = [x’ BACORY ] is another point in the input
space; mg (1) and kg, (u, u') are the prior mean and covariance functions, respectively.

Suppose that we have collected » input—output pairs of g, denoted as D = {U", Z}, where U = {u(")};;l and Z = {z(")};;1 with
z® = g(u®). This collection is referred to as the design of computer experiments. Conditioning the GP prior on the data D gives rise
to the posterior distribution of g, which also follows a GP:

g, (w) ~ GP(m, (w), k, (u,u"), (9)

where g, represents the posterior distribution of g after n observations are available; mg () and kg, (u, u') are the posterior mean
and covariance functions respectively, given by:

my, () = my (W) + ko @, V) K (U UNZ — my (V). (10)

_ T -1
ke, .u") = kg (') = ko . V) K (U Uk (U u), an

where mgo(lf) is a column mean vector with its ith element being mgo(u”)); k,(u, V) is a column covariance vector with its ith element

being ky (u, u®y; kg (U, u') is a column covariance vector with its ith element being k,, w®,u); K oV V) is an n x n covariance
matrix with entry [K go] = kg (®,u"). For more details on the standard GPR above, one can refer to [42].
1,

The posterior distribution of the indicator function I can be defined as:

=
0, otherwise.,

1, min" 7! x, Y(wy,1;),t;) <0,
In(x,wy)={ 0 gn( Y( Y j) j) (12)
where I, represents the posterior distribution conditional on D. In fact, it can be referred to as a generalized Bernoulli process
(GBP) [43,44].

According to [39], the posterior mean and variance functions of the indicator function I can be given by:

m,n(x,wy)= 1 —/ (p,,x(s;mg”,Kgn)ds, a3
520
o7 (x,coy)=/ fpn,(s;mg",Kg”)ds<1—/ con,(s;mg”,Kgn)ds>, a4
" 5>0 520

where (pnr(S;mgn’Kgn> is the joint PDF of n,-variate normal distribution with mean m, (with its ith element being mgn(u|t =1;))
and covariance Kgn (with its (i, j)-th entry being kg" ult = t,u| =1t j)). Note that the integrals involved in Egs. (13) and (14)
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are analytically intractable, so MCS is typically employed. However, this in turn will lead to difficulties in obtaining the posterior
statistics of the time-dependent failure probability.

To overcome the aforementioned issue, this study proposes an approximate analytic strategy. Let us first assume that g, (u|t = t),
gulult =11), -+, g,(ult =1, _,) are perfectly positively linearly correlated, i.e.,

8% Y@y, 1)).1)) = my (x, Y@y, 1)),1)) + 6, (X, Hwy.1).1)Z, 15)

where g, () is the posterior standard deviation function of g, i.e., o, () =4 /kg"(-, -); Z is the standard normal variable. It is worth
noting that the true correlation coefficient p between any two time instances is governed by the posterior covariance function
(Eq. (11)), which lies within [-1,1]. While the assumption p = 1 may overestimate the true correlation, it greatly simplifies the
temporal dependence structure and leads to useful results, as will be shown. Under the perfect correlation assumption, we can
replace the original posterior indicator function I, with an approximate version I,, which is defined as:

- 1, min"*”! . (x, y(wy, 1), 1)+ x, Y(wy,t:),t,)Z <0,
i (x,wp) = Lo Mg, (X, Y@y, 1)),1)) + 0 (%, §(@y, 1)) 1)) , 16)
0, otherwise.
which also follows a GBP.
The mean and variance functions of I, can be derived as:
mj (x,0y) =E [I,Gx, 0p)]
=P (I,(x,0y) =1) an
n=lmg (x, y(wy,1;),1;)
= —-min —— |,
i=0 oy (%, J(@y,1).1;)
) I
o7 (x,0y) =V [I,(x,0y)]
=P (I,(x,wy) = 0) X P (I(x,0y) = 1) 18)

m=l m, (x, y(wy,1;),1;) m=1m, (x,Y(wy,1,),1;)
=<1§(—rrr1in—g" Y2 e min )

min
i=0 o, (x,y(wy,1;).1;) i=0 o, (x,J(@y,1),1;)

where E and V denote the expectation and variance operators, respectively. Note that m; (x,»y) can be regarded a smoothed version
of the indicator function I (min:l 61 g(x, J(wy.1),1;) < 0). As o, — 0, the former converges to the latter. In the limiting conditions
(i.e., ¢ > o, n, > o0 and o, = 0), m i, (%, wy) can approach the true indicator function I(x, wy).

Further, the resulting approximate posterior distribution of the time-dependent failure probability can be expressed as:
P, (tg.1,) = / / I, (x, wy) fx(x)dxdP (wy) . (19)
Dy J oy
Using Tonelli’s theorem, the mean of f’f’n(to, 17) can be derived as:

mp, i) =E [Pratto: /)]

E [ / / I,(x, 0y) fx(x)dxdP (w,,)]
Dx JQy

:/ / E [fn(x,a)y)] fx (x)dxdP (a)y)
Dy J oy

= / / i (x,wy) fx(x)dxdP (wy )
Dy JQy

n=lm, (x, p(wy,1;),1;)
:/ / @ | —min —————— | fx(x)dxdP (wy) .
Dy J oy i=0 Jgn(x’ oy, 1),1)

Even with the perfect correlation assumption (Eq. (15)), m Ppaltgt,) COTIVETEES, in principle, to the true time-dependent failure

(20)

probability P,(t),,) in the limiting conditions (i.e., ¢ — oo, n, — oo and o, = 0). This is because the integrand of m Py ltont )2

namely mj (x,wy), approaches the true indication function I(x,wy), as discussed earlier. Therefore, m 2 j) can be used as an
n

(ot
estimator of the time-dependent failure probability P (. ). While this estimator has been suggested in previous studies [39,40], it
is derived from a completely different perspective in this paper. The advantage of this alternative viewpoint is that it offers a clearer
theoretical justification. In addition to the time-dependent failure probability estimator, a measure of the underlying uncertainty is

also necessary.
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To this end, we now examine the mean absolute deviation of the approximate posterior failure probability Pf’,,(to, 1)
E[ |Pf,n(t0’tf)_mﬁf'n(to,tf) |]

:IE[|/ / fn(x,a)y)fx(x)ddeP(a)y)—/ / mf”(x,a)y)fx(x)ddeP(my) 1
Dx JQy Dx JQy

—E[ |/ / [7,xo9) = mj (x,0p)] £x(x)dxdP (y ) 1
Dy J 2y

|/, L,
o o

=/ / [11=mj, xoop) | XP (T,6.0y) = 1) + 10 = mj, (x.0y) | XP (T,(x,0) = 0) | fx (0 dx dP(y)
Dx JQy

B =l (x, §(wy, 1)), ;) = lm, (x, Yoy, 1), 1;)
Z/DX /QY ( 0 G Py 1), t)>¢<r?=16’ onx Sy 1ty ) TX 0 dxdE@r)
If we denote:
"’_1 m,(x, y(wy. 1), 1;) mlm, (x, oy 1) 1
o o (s ) (s By ) meosearion =

then Ineq. (21) can be written succinctly as:

— mf"(x’ a)y)’ [x(x) dxd]P’(a)y)] (21

mi (x, wy)| ] fx(x)dx dP(wy)

E[ |P; (tg17)—m By atigipy 11 <27, (23)

This implies that when z, — 0, an(to,tf) converges in expectation to its mean mp_ .. Thus, z, naturally quantifies the
B [0St f
uncertainty of the time-dependent failure probability estimator m Praliont )"
It is noted that closed-form expressions for both m Ppalio ) and 7, are unavailable, so in this study we approximate them
numerically using MCS. The respective MCS estimators are given by:

N _ ) A(/)
1 n, I mg, (x ().1;)
s - L e - 24
Py atot ) N; ( 10 o, (x(_]) (j)(ti)’ti) 24
¥ o me, & A%)r) =t mg (x0, 59(1),1,)
PRI Y (it AL Y AL (25)
NS = o, (x0), 3V 1), 1) i=0 g, (x,39(t,).1,)

) ) N
where {x(l)};v_1 is a sequence of N random samples drawn according to fy(x); { yU)(ti)} at a given i is a set of N random samples
= j=1

of ¥(1,). The associated variances for 7 Pratiod ) and #, are :

N - ) 2
1 m—lmg, (x4, 9Y0(1),1;)
V[ﬁr ]:— O —min ——— )| — 1015 . 26
Praotp) ] = NN = 1) ; [ < =0 g, x0, 301 ) 0
N n=1 m, (x9,59(),1) =1 m, (x9,59(t).1,) :
V[ﬁn]=;Z o -min—" " T ) g (minte— 7 )| 27)
NIN-1D H i=0 g, (x), 30, 1)) i=0 5, (x0), 3V, 1,)

3.2. Stopping criterion

Having obtained the time-dependent failure probability estimate, a natural question is whether this estimate is sufficiently
accurate. This, in turn, hinges on defining an appropriate stopping criterion. To do so, let us first study the relative mean absolute
deviation of Pt p). Dividing both sides of Ineq. (23) by m Pralio ) (assumed nonzero), we have:

P (l‘o,t )—mp 2
E |:| Son ! rn(tost£) i < T,

MP, (oot 5)

(28)
mi)f,n(’()s’f)
This suggests that the relative mean absolute deviation of P, ,(t.?,) is actually bounded by 2, /m Pttt )* If z, is small relative to
M, (101,) P, ,(t,1;) will concentrate around its mean value m By (it )"
Based on Ineq. (28), the following stopping criterion is proposed:

ﬂn
—— <g, (29)
mﬁf»n(xo,t/)

where ¢ is a user-specified threshold. The stopping criterion guarantees that the relative mean absolute deviation of f’fy,,(to, t7) is at
most 2e. In practice, m Pratiod ) and z, are replaced by their estimates 7 Pratioty) and #,, respectively.

6
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3.3. Learning functions

If the stopping criterion in Ineq. (29) is not satisfied, the best next point {hx(”“), Doy, t(”“); where to evaluate the true
performance function has to be selected, with the aim of further improving the accuracy of the time-dependent failure probability
estimate. This choice is typically guided by one or more learning (or acquisition) functions, which quantify the utility of each
candidate point. The next point is then identified by maximizing (or minimizing) these functions. In this study, we propose two
novel learning functions: one for selecting 1"+, and another for selecting {x("“), 9("“)(1‘("“))}.

For ease of understanding, the second learning function is presented first:

mgn(x7 5’(11')7 t,’) mgn(x7 j’(ti)v t,’)
o-gn(x’jl(ti)’ li) ng(x75’(ti)7t,')

£,06,3),1) = 02 (3%, 9(1), 1) ® <— > Fx ) Fy 3. (30)
—_——

@
@

where term (2) is derived from the integrand of z, by omitting the min operation, which is multiplied by the posterior variance of
g (i.e., term (D). The learning function attains large values when m, is near zero, o, is high or the joint PDF is large. Besides, the
larger £, (x, 9(1,),1;) is, the more promising the candidate point {x, $(;),#;} is deemed. In this regard, the proposed learning function
can naturally trade off exploitation and exploration.

Then, we introduce our first learning function, which is simply the integral of £,,:

IC,,(I,):/ / L, (x,y(;),t)dx dy(t;). (31)
Dx /Dy

By integrating £, over Dy and Dy, the function £, can average out the uncertainty associated with X and Y (z;) and provide a
global measure of the learning potential of 7;. The learning function is approximated by using MCS:

. al - m=t my (x0, 99, 1;) =t mg (29, 39(1)), 1)
L) = ~ Y o2 (9,59, 1)@ [ —min —————— )& min —————— | (32)
NS =0 5, x99, 17) =0 5, x5V, 1)
The best next time instant "+ is identified by maximizing IZ,,(t,):
() = argmax IL,(,). (33)
1€l ety ]
The best next sample point {x("“), 9("+1)(t("+”)} is obtained by maximizing £, conditional on ¢; = t""+D:
{x(n+l)’ oD oDy | arg max c,(x, D), Dy (34)

: N
xe{x<j>};"=],5,(,<n+n)e{5,<n(,(n+1>)} ]
j=

3.4. Implementation procedure of the proposed method

The implementation procedure of the proposed SL-ABALQ method is summarized below and accompanied by a flowchart in
Fig. 1.

Step 1: Discretize the time interval

Discretize the time interval [z, tf] into n, equally spaced nodes t; = t, + idt, i =0,1---,n, — 1, where At = trfl!—ito

Step 2: Construct the initial sample pool

Construct the initial sample pool S = {xU), Y@, ti}'_qr_l Nlo, where {x(f')}j].i”l is a set of N, random samples of X generated
i=0,j=

according to fy(x) and { U )(t,»)}llvo is a set of N, random samples of Y (¢) at time instant 7, generated using the KL expansion. Let
N =N,. =

Step 3: Generate the initial design of experiments

Generate the initial design of experiments D = (U, Z}, where U = {x(’), ¥Ou.1, }701 and Z = {z(’)}?il with z =
g(x®,35D@t)),1,). Note that ¢, for I = 1,2, ..., n, are simply taken as n, equally spaced points on the interval [z, ? 1. Besides, {x“)}fil
are drawn from fy(x) using Hammersley sequence and {jz(’)(t,) }”0 are generated via KL expansion in conjunction with Hammersley
sequence. Let n = n. =

Step 4: Build the GPR model

Build the GPR model g, (x, y(t;),7;) of the time-dependent performance function g using the experimental design D. In this study,
we employ MATLAB’s function fitrgp available in the statistics and machine learning toolbox, with a constant prior mean and a
squared-exponential prior covariance. The involved hyper-parameters are tuned by the maximum likelihood estimation.

Step 5: Obtain the two terms Pratint ) and #,

1(1)btain the time-dependent failure probability estimate Py atiod ) and the epistemic uncertainty measure estimate #, using MCS
with S.
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Discretize the time interval [to,ty] into n; equally spaced nodes

!

Construct the initial sample pool & = {z(j), g(7>(ti), i

No,nt—1

j=1,i=0

lN:NO

‘ Generate the initial experimental design D = {U, Z} ‘

ln:no

N . n=n-+1
‘ Construct a GPR model gn (e, §(t;),t;) using D }«—
N =N+ No [Galculate By mtosty) 80d n by MCS with s‘

Stopping criterion #17 L‘ Enrich the experimental design
l Yes
) No . .
Enrich the sample pool }<7 Stopping criterion #27
Yes

‘ Return the time-dependent failure probability estimate m ;,f (to

Fig. 1. Flowchart of the proposed SL-ABALQ method.

ty)

Step 6: Check the stopping criterion #1

If the stopping criterion m”—” < € is met twice in a row, then proceed to Step 8; otherwise, go to Step 7.
Pf’,,(to,rf)

Step 7: Enrich the design of experiments

Enrich the design of experiments D with {x("“),j:("“)(t("“)), t("“),z("“)}, where "D is obtained by
Eq. (33), {x("“),y("“)(t(”“))} is identified by Eq. (34), and z"+D = g(x+D, §+D( Dy 4+D) Tet n = n+ 1 and go to Step
4.

Step 8: Check the stopping criterion #2

Var[rﬁ,s (tout )]
fnltots .

PP gt ) - 1f Cov [mpfv"(’o”/)] <0

is reached (6 is a user-defined threshold), then go to Step 10; otherwise, proceed to Step 9. It is worth noting that this stopping

criterion is employed to guarantee that the size of the sample pool is adequate.

Calculate the CoV of the failure probability estimator Byttt y) by CoV [rh B n(,M/)] =

Step 9: Enrich the sample pool
Enrich the sample pool S with additional N, samples S* exactly as in Step 2. Let N = N + N, and go to Step 5.
Step 10: Return the time-dependent failure probability

Return the time-dependent failure probability estimate i Pttt ) 35 the final result.

Remark 1. The proposed SL-ABALQ method remains applicable when the performance function takes other simpler forms,
e.g., g(X,n, g¥Y (0,1, g(Y (1)) or g(X,Y(®)).

Remark 2. Other intermediate time-dependent failure probability values f’f (tg.1;) for i =0,1,...,n, — 2 can be obtained along with
f’f(to,t 1) as by-products. They together can provide the insight into evolution of the failure probability. However, the first n, — 1
values may not be guaranteed to be as accurate as the last one.
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Table 1
Random variables and stochastic process of Example 1.
Symbol Distribution Mean Standard deviation Auto-correlation function
X, Normal 0 1 -
X, Normal 0 1 -
Y () Gaussian process 5 1 exp (—(t, —1,)?)
Table 2
Time-dependent failure probability results of Example 1.
Method Nean P0.1)
Mean CoV Mean CoV
MCS 50 x 107 - 327x 1072 0.17%
PHI2 600 - 422 x 1072 -
SILK 42.10 11.56% 328 x 1072 1.61%
REAL 40.65 9.04% 3.30x 1072 5.25%
SL-GPR-AL 28.15 10.26% 328 x 1072 1.48%
Proposed SL-ABALQ 22.35 9.77% 324 x 1072 3.06%

4. Numerical examples

In order to validate the performance of the proposed SL-ABALQ method for time-dependent reliability analysis, five numerical
examples are investigated in this section. Aside from n,, the involved parameters are set as follows: N, = 10°, = 99.5%, n, = 10,
€ = 3%, 6 = 2%. Several existing active learning methods (i.e., PHI2 [5], SILK [24], REAL [27] and SL-GPR-AL [32]) are also
conducted in each example. The latter three methods, along with the proposed method, are each run independently 20 times, and
the statistical results are reported.

4.1. Example 1: a test function

The first example considers a time-dependent performance function of the form:

2 4
g(X,Y(@),t) =Y () exp(—1) + exp(—l—(;) + ?l -X, -1, (35)

where 7 € [0, 1]; X, and X, are two random variables, Y (¢) is a stochastic process, as reported in Table 1. The time interval [0, 1] is
discretized into n, = 50 equally spaced points.

Table 2 summarizes the results of six methods, i.e., MCS, PHI2, SILK, REAL, SL-GPR-AL and SL-ABALQ. The reference for the
time-dependent failure probability P,(0, 1) is taken as 3.27 x 102 (with a CoV of 0.17%), which is provided by MCS with 50 x 107
evaluations of the performance function. With 600 g-function evaluations, PHI2 yields a less accurate estimate of 4.22x 1072. Among
the remaining four methods, the proposed SL-ABALQ method achieves the fewest average calls to the g-function, while still yielding
a mean value of the failure probability estimates that closely matches the reference and with a small CoV of 3.06%.

In addition to Pf(O, 1), the proposed AL-ABALQ method can also generate the time-dependent failure probability function Pf(O, 1)
for + € [0,1] as a by-product. The statistical results are shown in Fig. 2, with comparison to the reference by MCS. It can be seen
that the mean curve is close to the reference, and the mean + standard deviation (std dev) band remains narrow.

4.2. Example 2: a two-bar frame

The second numerical example involves a two-bar frame subjected to a time-varying stochastic load F(¢) [45], as shown in Fig.
3. The two bars (0,0, and 0,05) have diameters d; and d,, respectively. Their yield strengths degrade over time, i.e., s,(t) =
s10exp(—kt) and s,(f) = s, exp(—kt), where s, and s, are the initial yield strengths and k& = 0.01. The distances 0,0, and 0,0,
are denoted by /; and /,, respectively. Failure occurs when the axial stress in either bar exceeds its yield strength. The corresponding
time-dependent performance function can be defined as:

!
Fdisi(0) = LF @),

g(X,Y(n),1) = min I , (36)
;-'dgsz(t)— I‘HzF(t)

)

where ¢ € [0, 15] year; X = [d},d,, 5| ,5,0,/1, /2] is a set of six random variables, and Y () = F(#) is a stochastic process, as given in
Table 3. In this example, n, is set to be 50.

The results of several methods are presented in Table 4. The reference solution for the time-dependent failure probability P,(0, 15)
is taken as 8.13 x 1073 (CoV = 0.35%), obtained using MCS with 50 x 107 samples. The proposed SL-ABALQ method achieves a
comparable mean failure probability estimate with a significantly lower mean number of g-function evaluations (25.55) and a
moderate CoV of 4.50%. In contrast, the PHI2 method requires 1224 g-function calls, but produces an inaccurate failure probability
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0.035 i .
—MCS
0.03 |~ Proposed method - Mean y
— — Proposed method - Mean + Std Dev , /
0.025
= 0.02
)
@7 0.015
0.01
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t

Fig. 2. Time-dependent failure probability function of Example 1.
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Fig. 3. A two-bar frame under a time-varying stochastic load.

Table 3
Random variables and stochastic process of Example 2.
Symbol Distribution Mean CoV Auto-correlation function
d, (m) Uniform 0.10 0.025 -
d, (m) Uniform 0.12 0.025 -
51 (Pa) Lognormal 6x 108 0.1 -
550 (Pa) Lognormal 6x 108 0.1 -
[/, (m) Uniform 0.4 0.025 -
I, (m) Uniform 0.3 0.025 -
F(@t) (N) Gaussian process 2% 100 0.1 exp (=(t, = 1,)*/2)

estimate of 1.53x1072. The SILK method failed to provide results due to an out-of-memory error before reaching its stopping criterion.
Both the SL-GPR-AL and REAL methods also yield mean failure probability estimates close to the reference, with CoVs of 5.95%
and 2.46%, respectively. However, they require more evaluations of the g-function on average than the proposed method, and the
CoV of the number of g-function for REAL is notably high (40.87%).

Fig. 4 depicts the mean, mean + std dev of the time-dependent failure probability function f’f (0,1) for t € [0, 15] from the proposed
method, as well as the reference curve generated via MCS. It is shown that the mean curve accords well with the reference one,
and the mean =+ std dev band is relatively narrow.

4.3. Example 3: a cantilever tube

In the third numerical example, we consider a cantilever tube subjected to two forces (F and P) and a time-varying torque (7'(¢)),
as shown in Fig. 5. The tube has a length of L, and the hollow cross-section has outer radius r, and inner radius r;. The material’s
yield strength degrades over time according to S(r) = Sy(1 — y log(1 + 1)), where .S, is the initial yield strength and y = 0.01. Failure

is defined as the maximum von Mises stress exceeding the yield strength. The associated time-dependent performance function is

10
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Table 4
Time-dependent failure probability results of Example 2.
Method Nean P,(0.15)
Mean CoV Mean CoV
MCS 50 x 107 - 8.13x 1073 0.35%
PHI2 1224 - 1.53%x 1072 -
SILK - - - -
REAL 46.35 40.87% 8.04x 1073 2.46%
SL-GPR-AL 31.50 9.30% 8.08 x 1073 5.95%
Proposed SL-ABALQ 25.55 12.34% 8.14x 1073 4.50%
0.01 . . -
—MCS
— Proposed method - Mean
0.008 ||~ — Proposed method - Mean + Std Dev ,/
4
///
/44
/44
= 0.006 Vi
IS y/ 44
=2 V4
o~ V4
< y/ 44
7 0.004 Y
47
47
47
#
0.002 + 74 1
0 L 1
0 5 10 15
t (year)
Fig. 4. Time-dependent failure probability function of Example 2.
z
Y
F
b, 4
T(t)( ()P
2 x
L
Fig. 5. A cantilever tube under two forces and one torque.
given by:
FL : T() ?
P r tr
gX. YD, =St~ + 5 +3 — | (37)
(2 —r?) It —rh 2t —rh
o i 4\ 0 i 2V 0 i

where ¢ € [0,5] year; X = [.Sy,r;,r,, L, F, P] is a vector of six random variables, and Y(¢) = T(r) is a stochastic process, as given in
Table 5. In this example, we set n, = 20.

Table 6 compares the performance of several methods. The reference value for the time-dependent failure probability P,(0,5)
is 1.18 x 10~2 (with a small CoV of 0.41%), which is given by MCS with 20 x 5 x 10° samples. The PHI2 method requires 3360
evaluations of the performance function and produces a failure probability estimate of 2.29x 10~2, which deviates significantly from
the reference value. The results of SILK are unavailable, as it ran out of memory before reaching its stopping criterion. Among the

remaining methods, the proposed SL-ABALQ achieves the lowest average number of g-function evaluations, with a mean of only

11
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Table 5
Random variables and stochastic process of Example 3.
Symbol Distribution Mean CoV Auto-correlation function
S, (MPa) Lognormal 320 0.10 -
r; (mm) Uniform 10 0.05 -
r, (mm) Uniform 20 0.05 -
L (mm) Uniform 120 0.05 -
F (kN) Lognormal 5 0.05 -
P (kN) Lognormal 10 0.10 -
T(t) (N m) Gaussian process 1000 0.15 exp (=(t, —1,)*/5)
Table 6
Time-dependent failure probability results of Example 3.
Method Near P,0.5)
Mean CoV Mean CoV
MCS 20 x5 x 100 - 1.18 x 1072 0.41%
PHI2 3360 - 229% 1072 -
SILK - - - -
REAL 53.70 13.02% 1.21 x 1072 2.22%
SL-GPR-AL 37.25 15.16% 1.16 x 1072 4.16%
Proposed SL-ABALQ 20.05 7.84% 1.16 x 1072 3.90%
14, | |
—MCS
12 ——Proposed method - Mean

— — Proposed method - Mean + Std Dev

10+

oL \ \ ]
0 1 2 3 4 5

t (year)

Fig. 6. Time-dependent failure probability function of Example 3.

20.05 and a CoV of 7.84%. Moreover, it provides a mean failure probability estimate that closely matches the reference, along with
a low CoV of 3.90%.

Fig. 6 shows the statistical results of the time-dependent failure probability function Pf (0,1) for ¢ € [0, 5], along with the reference
produced by MCS. The mean curve is in good agreement with the reference, while the mean + std dev band is suitably narrow.

4.4. Example 4: a space truss

The fourth example consists of a 120-bar space truss structure under thirteen vertical loads (which has been studied in,
e.g., [32,40]), as sketched in Fig. 7. The finite-element model of this structure is created using the software called OpenSees
(https://opensees.berkeley.edu/), comprising 120 truss elements and 49 nodes. Each bar has a cross-sectional area A4, and is made
of a material with Young’s modulus E. Twelve static loads P, P, ..., P, are applied at nodes 1-12, while a time-varying load Py(t)
is imposed at node 0. The time-dependent performance function is defined as:

§X,Y(0)=4-V, (A, E,Py(1), P, Py, ..., Pp), (38)

where t+ € [0,50] year; V, is the vertical displacement of node 0; 4 is the tolerance, which is specified as 100 mm; X =
[A,E, P, P,,..., Pj,] is a vector of fourteen random variables, Y () = P,(1) is a stochastic process, as given in Table 7. In this example,
n, =50 is used.

Table 8 reports the results obtained by various methods for estimating the time-dependent failure probability P,(0,50). The
reference failure probability is taken as 2.85x 10~2 (CoV = 0.82%), generated by MCS with 50 x 5 x 10°> model evaluations. The PHI2
method produces an inaccurate failure probability estimate of 3.20 x 10~2, while requiring 1664 evaluations of the performance

12
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Fig. 7. A 120-bar space truss subject to thirteen vertical loads [40].

Table 7
Random variables and stochastic process of Example 4.
Symbol Distribution Mean CoV Auto-correlation function
A (mm?) (Truncated) Normal 2000 0.10 -
E (GPa) (Truncated) Normal 200 0.10 -
P, P, ..., P, (kKN) Lognormal 100 0.15 -
Py() (kN) Lognormal process 1000 0.15 exp (—(t, —1)*/50)

Note: The auto-correlation coefficient function for P,(t) is defined for the underlying Gaussian process.

function. The results of SILK and REAL are missing as both methods ran out of memory before reaching their stopping criteria. At
the cost of an average of 44.40 model calls, SL-GPR-AL gives a failure probability mean (2.89 x 10~2) that is close to the reference
with a small CoV of 1.73%. In contrast, the proposed SL-ABALQ method only requires 35.25 model evaluations on average, while
still delivering fairly good results.

Fig. 8 shows the statistical results for the time-dependent failure probability function f’f (0,7) for ¢ € [0,50] alongside the reference
curve generated by MCS. It can be seen that the mean + std dev band is narrow and the mean curve is close to the reference curve.

13
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Table 8
Time-dependent failure probability results of Example 4.
Method Nean P,(0.50)
Mean CoV Mean CoV
MCS 50% 5% 10° - 2.85x 1072 0.82%
PHI2 1664 - 3.20% 1072 -
SILK - - - -
REAL - - - -
SL-GPR-AL 44.40 9.73% 2.89 x 1072 1.73%
Proposed SL-ABALQ 35.25 10.57% 2.88 x 1072 3.33%
0.035 ! :
—MCS
0.03 | |—Proposed method - Mean J
-
— — Proposed method - Mean + Std Dev
0.025
= 0.02
)
@ 0.015
0.01
0.005
oL . . . . 1
0 10 20 30 40 50
t (year)
Fig. 8. Time-dependent failure probability function of Example 4.
Table 9
Random variables and stochastic process of Example 5.
Symbol Distribution Mean CoV Auto-correlation function
E, (GPa) Lognormal 210 0.10 -
fyo (MPa) Lognormal 300 0.10 -
b Uniform 0.02 0.02 -
Op (kN/m) Lognormal 20 0.10 -
Q15 Qp 4 (KN/m) Lognormal 10 0.10 -
F(1) (kN) Gaussian process 200(1+0.05log(1 + 1)) 0.15 exp (=|t, —1,1/25)

4.5. Example 5: a steel frame

The final example involves a three-bay, four-story steel frame structure, as shown in Fig. 9(a). As in Example 4, this structure is
also modeled using the software OpenSees. The model comprises 12 beam and 16 column members, each represented as a nonlinear
beam—column element. The P-4 effect is explicitly accounted for in all columns. The cross-section is I-shaped, as shown in Fig. 9(b),
with dimensions d = 0.5 m, b, = 0.3 m, and #,, = t, = 0.02 m. The constitutive law of the steel is represented by a bilinear model,
as depicted in Fig. 9(c). The modulus of elasticity and yield strength degrade over time according to E(r) = E(1 — y log(1 + 1)) and
£y = fyo(1 —ylog(l +1)), where E, and f, y0 are the initial modulus of elasticity and yield strength respectively, and y = 0.05. The
strain-hardening ratio is denoted by b. As shown in Fig. 9(a), each floor is subjected to a uniformly distributed dead load Q and
a live load Q, ;. In addition, four time-dependent lateral loads are applied, i.e., %F(r), %F(t), %F(r), and F (7). The time-dependent
performance function is defined as:

gX,Y®),)=4-U, (EO’fy,Osb’ QD;DL’lyDL,27DL’3yDL,47F(t)at) , (39)

where 7 € [0,2.5] year; U, denotes the lateral displacement of the fourth floor (specifically, at the left-top node); 4 is the threshold,
which is set to 0.024 m; X = [E, f}0,b,0p, D 1- Dp 2, D3, Dy 4] is @ vector of eight independent random variables, Y () = F() is
a stochastic process, as detailed in Table 9. In this example, , is set to 25.

The results of several methods are summarized in Table 10. The reference value of the time-dependent failure probability
P;(0,2.5), obtained from MCS with 25 x 103 simulations, is 1.89 x 1072 with a CoV of 2.28%. The PHI2 method gives an inaccurate
estimate, i.e., 2.90 x 1072, with 770 model evaluations. The results of both SILK and REAL are unavailable as in some trials they
ran out of memory before reaching their respective stopping criteria. Compared with SL-GPR-AL, the proposed SL-ABALQ method
demonstrates better overall performance: (1) it requires slightly fewer g-function calls on average (15.50 vs. 16.55), with similar

14
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Fig. 9. A three-bay, four-story steel frame structure subjected to vertical and lateral loads.
Table 10
Time-dependent failure probability results of Example 5.
Method Nea P(0,2.5)
Mean CoV Mean CoV
MCS 25x 10° - 1.89 x 1072 2.28%
PHI2 770 - 2.90 x 1072 -
SILK - - - -
REAL - - - -
SL-GPR-AL 16.55 9.29% 1.85x 1072 5.12%
Proposed SL-ABALQ 15.50 9.24% 1.87 x 1072 4.54%
0.02 . : . X
—MCS .
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Fig. 10. Time-dependent failure probability function of Example 5.

CoVs (9.24% vs. 9.29%); and (2) it yields a slightly smaller CoV for the failure probabilities (4.54% vs. 5.12%), while the mean

values of both methods remain very close to the reference.

Fig. 10 shows the statistical results of the time-dependent failure probability function 13/(0, t) for t € [0,2.5] obtained by the
proposed method, together with the reference solution from MCS. It can be seen that the mean curve is close to the reference,

accompanied by a narrow mean + std dev band.
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5. Summary and conclusions

This paper presents a novel method for computationally expensive time-dependent structural reliability analysis, termed ‘single-
loop approximate Bayesian active learning quadrature’ (SL-ABALQ). In this method, the integral of the time-dependent failure
probability is addressed from a Bayesian active learning perspective in a single-loop format. By virtue of the Bayesian nature of
Gaussian process regression (GPR), an approximate Bayesian inference scheme is developed to avoid the potential intractability
of exact Bayesian inference. This approach yields both an estimator for the time-dependent failure probability and an associated
measure of uncertainty. Building on these results, we propose a novel stopping criterion that determines when the iterative process
should terminate, thereby avoiding both premature convergence and unnecessary continuation. In addition, two new learning
functions are presented to guide the selection of the next best time instant and the sample point of random variables and stochastic
processes (at the selected time instant) at which to evaluate the performance function if the stopping criterion is not reached. The
performance of the proposed SL-ABALQ method is demonstrated through five numerical examples against several existing methods.
It is shown that our method can reduce the number of performance function evaluations without sacrificing accuracy. The method
is designed for the general time-dependent reliability problems, where the performance function is a function of input random
variables, stochastic processes and the time parameter. Of course, it is equally applicable to some other special cases. Moreover,
AL-ABALQ can provide the evolution of failure probability over the time interval at no additional computational cost.

Future research could explore the following aspects. First, efficient stochastic simulation techniques could be employed to replace
the plain MCS, particularly when the time-dependent failure probability over a given interval is very small. This is also relevant
in cases where the quantity of interest is an accurate time-dependent failure probability function, as the failure probability is
typically low at the beginning of the time interval. Second, multi-point selection strategies can be developed to facilitate the parallel
distributed processing, thus further enhancing the computational efficiency. Third, although the proposed method can alleviate the
curse of dimensionality to some extent — since each input stochastic process is treated as a single dimension — dimension-reduction
techniques may still be beneficial when the total dimensionality (i.e., d; + d, + 1) is high.
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