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Abstract 
This study bridges the concepts of subset simulation with asymptotic approximation theory in 
multinormal integrals for the estimation of small probabilities. To meet this aim, for a sequence of 
scaled limit state functions (LSFs) with failure probabilities higher than the original LSF, it is 
found that the proposed asymptotic approximation and subset simulation can be applied within the 
same framework, and only a few steps of subset simulation could be sufficient to approximate 
small failure probabilities using extrapolation. The analogy of the formulation of the second-order 
reliability method (SORM) with the proposed concept is studied and, considering sequential 
sampling as a search algorithm, shown that the information obtained from a few steps of the design 
point search process could be enough to approximate the total failure probability of a problem. 
Solving intricate nonlinear and high-dimensional problems confirms the efficiency and robustness 
of the proposed framework for reliability analysis of real-world engineering problems with small 
probabilities. 
 
Keywords: Failure probability, Reliability index, subset simulation, extreme values theory, 
asymptotic approximation, scaled limit state functions.  
 
1. Introduction 
Probability analysis, uncertainty management, and decision making under uncertainty are integral 
to diverse fields like engineering [1] [2] [3], medicine [4], and computer science [5] [6]. Structural 
reliability theory presents a mathematical tool for handling these topics, which clarifies the 
importance of this theory as a multidisciplinary concept with a wide range of applications. 
Reliability analysis in essence requires solving a probability integral involving a multi-variable 
function 𝑔  (i.e., the model), known as performance function, with random variables 𝑿  (i.e., 
uncertain parameters):  
𝑃! = #𝑓"(𝒙)d𝒙

	

!
,	 (1) 

where 𝐸 is the event of interest (e.g., failure as 𝐸 = {𝑔(𝒙) ≤ 0}) and 𝑓! is the joint probability 
density function (PDF) of the set D grouping the random variables involved [7]. In this context, 
extremely low probabilities, complex function topology in probability space, high-dimensional 
problems with numerous and different types of random variables, and costly or time-consuming 
modeling are known as the main challenges of reliability analysis [8] [9] [10]. To address the 
mentioned challenges, efficient reliability methods (such as first and second-order reliability 
methods (FORM and SORM) [11] [12] [13], Monte Carlo simulation [14] [15] [16], importance 
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sampling [17] [18] [19], directional sampling [20], line sampling [21] [22] [23], subset simulation 
[24] [25] [26], and probability density evolution methods [27] [28], etc.) have been developed for 
solving probability integrals. Broadly speaking, reliability methods can be broadly classified as 
approximate, simulation-based, or surrogate-based [29] [30] [31] [32]. 
The approximation approaches mainly relied on first finding the important failure region of the 
problems (usually by using an optimization algorithm for locating design points) and providing an 
approximation of failure probability by employing some assumptions about the limit state function 
(LSF) of the problem [16]. The FORM and SORM [11] [13] are popular reliability approaches in 
this category. Having information about the LSF of the problem (e.g., the number of important 
failure domains of the problem and moderate nonlinearity of LSF around design points) would 
lead to an acceptable approximation of the failure probability with a reasonable number of function 
calls under certain conditions [33].  
Simulation methods estimate failure probabilities based on random sampling. Monte Carlo 
simulation (MCS) [34] is a well-known approach in this category which approximates the failure 
probability with no assumption about the LSF and therefore always reports proper results with a 
certain confidence interval. For such a performance, MCS is required to generate samples in 
physical space according to the PDF of random variables and evaluate the performance of the 
system for each sample which requires a large number of function calls for the estimation of small 
probabilities. Because of this issue, the application of MCS for reliability analysis of many real-
world engineering problems (e.g., those involving finite element-based models) is very 
challenging. This issue led to the development of other sampling-based methods that mainly work 
based on the idea of MCS but use some assumptions in analysis to reduce the burden of function 
calls for probability estimation [17] [24] [35]. The traditional subset simulation and sequential 
importance sampling are popular approaches in this category [24], [36]. The main assumption 
behind this method is that the topology of the performance function allows the generating of 
conditional samples that approach important failure regions of the problem [37] (noting the point 
that recently, some new versions of these methods have been developed that work without such 
assumptions [16] [25]). In the Line sampling method, the main assumption is that (the direction 
of) the important failure regions is available and this approach captures the curvature of the LSF 
(at important failure regions). Recently, the soft Monte Carlo simulation [15] has been developed 
as an extension of classical line sampling. 
While the proposed approaches suitably reduce the function call of MCS, their number of full 
function calls for the estimation of (small) failure probabilities might still be too large for real-
world applications. On top, if the assumption behind the method does not fit the structure of the 
in-hand problem, the same as the approximation methods, they may report wrong results [38]. For 
instance, in contrast with the assumptions behind subset simulation, MCMC may fail to transmit 
samples toward proper important failure regions. Similarly, despite interesting attempts made to 
address the drawbacks of line sampling [39] [15], specifically in the case of high dimensional 
problems, the employed important direction may not highlight the proper important failure region 
of the problem. 
In the case of surrogate based methods [40] [41], the focus of the most of approaches is to 
interpolate the performance function for a set of input samples 𝑿 [42] [43] [44]. Nonetheless, there 
is also a class of methods that directly approximate the tail of the PDF/CDF function of 𝑔. The 
proposed approaches are generally developed for the estimation of very small probabilities and 
mainly work based on the asymptotic behavior of failure probability concerning the change in 
statistical parameters of random variables or performance function 𝑔. The asymptotic sampling 
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[45] [46] [46] [47] [48] and the method developed based on extreme values theory [49] [50] [51] 
can be considered as the main cases of this approach. While the asymptotic sampling focuses on 
the behavior of reliability indices of a series of scaled LSFs, extreme value theory suggests an 
exponential function for approximating the failure probability (See Fig 1). 
Considering the proposed implementations, the main contribution of this study is the connection 
of the concept of sequential simulation approaches to the extreme values theory. This paves the 
way for consolidating some numerical and approximation methods within a unified framework 
and provides the opportunity to use the capabilities of both categories in probability estimation.  
In the next section, we present the asymptotic subset simulation framework by explaining the 
analogy of subset simulation with the asymptotic approximation in multinormal probability 
integrals. Then, the formulation of the SORM is compared with the proposed framework, and new 
extrapolation functions that are specifically suited for the approximation of small probabilities are 
suggested. Subsection 2.3. presents the generalized form of the proposed approach and then, the 
statistical properties of the estimations are investigated in subsections 2.4. The proposed 
framework is verified in Section 3 and the conclusions are reported in Section 4. 
 

        
Fig 1. Left: The asymptotic sampling [45] and, Right: Extreme values theory [50] for small 

probability estimation 
 
2. Asymptotic subset simulation  
2.1. Concept  
The probability integral of Eq. (1) can be mapped to standard normal space using isoprobabilistic 
transformations [13]. For such an integral with 𝐷 random variables, consider a problem with a 
small failure probability 𝑃" which 𝑔(𝒖)	and Ω represent its LSF and failure domain in standard 
normal space (i.e., if 𝒖 ∈ 	Ω, then 𝑔 ≤ 0). Then, the failure probability of this system can be 
presented as:  
𝑃"($) =

&

√()! ∫ exp 7− &
(
|𝒖|(: d𝒖	

$+{-(𝒖)/0} ,                                                                         (2) 
which is often difficult to evaluate, e.g., when the function 𝑔(𝒖) is highly nonlinear, the number 
of random variables is too large, especially when the failure probability is very small (see Section 
1 for more details). To solve the proposed problem efficiently, by applying a change in the 
parameters of the random variables or function 𝑔,	we define a weakened system with LSF of 𝑔= 
and the failure domain of Θ = {𝑔=(𝒖) ≤ 0} with a failure probability as follows: 
𝑃"(2) =

&

√()! ∫ exp 7− &
(
|𝒖|(: d𝒖	

2+{-3(𝒖)/0} ,                                                                          (3) 
that is aimed to have two main specifications:  
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1) The target probability 𝑃"(2) be suitably higher than the original probability (i.e., 𝑃"(2) ≫ 𝑃"($)).  
2) The failure domain Θ = {𝑔=(𝒖) ≤ 0} reflects a scaled version of the original failure domain Ω =
{𝑔(𝒖) ≤ 0}, while including all important failure regions of the original problem (i.e., Ω ∈ Θ).  
To meet this dual aim, consider 𝑄(𝒖) and 𝑅(𝒖) as load and resistance parameters of the problem 
respectively. Then, one may use a scale parameter 𝜆 to form a new LSF as 𝑔=(𝒖) = 𝑔(𝒖; 𝜆) =
𝑅(𝒖; 𝜆) − 𝑄(𝒖; 𝜆) with the failure domain of Θ = {𝑔=(𝒖) = 𝑔(𝒖; 𝜆) ≤ 0}. For example, based on 
the specification of the in-hand problem, one of the forms of the performance functions in Table 1 
may be used to obtain a weakened system in which the scaled function meets the original LSF 
when 𝜆 = 1.  
 

Table 1. Some alternative approaches for weakening a system and increasing the failure 
probability 

Scaled performance function 𝑔,(𝒖) Description 
1 𝑔(𝜆𝒖) Increasing the variance of random variables 

2 𝑔(𝒖) − T(𝜆) Reducing the performance function based on 𝜆 
Example: 𝑔,(𝑢) = 𝑔(𝒖) − 𝛾(1 − 𝜆) where 𝛾=cte [50] 

3 𝑅(𝒖𝜆) − 𝑄(𝒖) 
 Decreasing the resistance of the systems  

(or/and) increasing the load parameter  
  

4 𝑅(𝒖𝜆) − 𝑄(𝒖𝜆$%) 
5 T(𝜆)𝑅(𝒖) − 𝑄(𝒖) 
6 𝑅(𝒖) − T(𝜆$%)𝑄(𝒖) 
7 T(𝜆)𝑅(𝒖) − T(𝜆$%)𝑄(𝒖) 

 
Note that the scaling approach is not limited to the cases presented in Table 1. In addition, the scale 
parameter may be used to change the statistical parameters of the random variables to obtain a 
weakened system.  
Now, without losing generality, the failure probability of the system can be reformulated using the 
control variate technique as follows [8]: 
𝑃"($) = ℓ𝑃"(2) +

&

√()! G∫ exp 7− &
(
|𝒖|(: 𝑑𝒖	

$ − ℓ∫ exp 7− &
(
|𝒖|(: d𝒖	

2 I,                         (4) 
in which ℓ is the control parameter. As shown in Table 1, there are several alternative approaches 
for scaling the failure domain. Nonetheless, in this section, we focus on a specific case in which 
the desired failure domain is obtained from the LSF of 𝑔=(u) = 𝑔(𝑢; 𝜆) = 𝑔(𝜆4&𝑢) where 𝜆 < 1. 
This is performed to stay close to the concept presented in Ref [13] with asymptotic estimations 
(See also proposition 1 for more details). Mathematically, this approach is equal to the change in 
variance of random variables in the original u-space, and therefore, Eq. (4) can be reformulated as 
follows: 
𝑃"($) = ℓ𝑃"(2) +

&

√()! ∫ Gexp 7− &
(
|𝒖|(: − 𝜆!ℓ ∙ exp 7− 5"

(
|𝒖|(:I d𝒖	

$ .                           (5)              
In Eq. (5), the first term on the right-hand side of the equation (the 𝑃"(2) with the LSF of 𝑔=(𝐮) =
𝑔(𝒖; 𝜆)) corresponds to a high-probability event and is therefore easy to estimate. At the same 
time, the estimation of the integral which represents the difference of PDFs may be more 
challenging. The geometrical representation of the proposed implementations is presented in Fig 
2 for the Metaball function (See [37] and Section 3.1 for more information). 
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Fig 2. The Metaball function, the original, and the scaled LSF 𝑔(𝒖; 𝜆 = 0.5) = 𝑔(0.54&𝒖) = 0 

with higher failure probability 
 
Consider Ω	and Θ respectively as the failure domains of the original and fictitious LSFs. By 
increasing the scale parameter 𝜆  from 𝜆&  to 1 (e.g., 𝝀 = [𝜆&, 𝜆(, … , 𝜆64&, 𝜆6 = 1], 𝜆7 < 𝜆78& ), 
mapping of the original functions to an equivalent space leads to designing S sequences of scaled 
LSFs (with increasing safety domain) between these two LSFs (say 𝑔(𝒖; 𝜆&)	and 𝑔(𝒖; 1)) [13], 
[25]. Using this idea, the failure probability of the scaled LSFs can be written as follows: 
𝑃"(2) = 𝑃[𝑔(𝒖; 𝜆&) ≤ 0] 	> 	𝑃[𝑔(𝒖; 𝜆() ≤ 0] > ⋯ > 	𝑃[𝑔(𝒖; 1) ≤ 0] = 𝑃"($),	            (6) 
This approach is shown in Fig 3. The same implementations can be found in Ref. [13] for deriving 
the SORM formulation where it is assumed that the reliability index for 𝑔(𝒖; 𝜆&) = 0 is 𝛽 =
|𝒖∗| = 1.  
 

 
Fig 3. Original (𝑔(𝒖; 𝜆: = 1)) and scaled LSFs (𝑔(𝒖; 𝜆7), 𝑖 = 1: 4) of Metaball functions: The 

scale parameter 𝜆 increased from 𝜆& = 0.5 to 𝜆: = 1 which led to obtaining nested LSFs 
between the original LSF of 𝑔(𝒖) = 𝑔(𝒖; 𝜆: = 1) = 0 and the fictitious function of 

𝑔(𝒖; 𝜆; = 0.5) = 0  
 

Instead of relying on the design points to solve the problem, Ref [25] suggested an approach for 
probability estimation using conditional probabilities and random sampling, focusing only on the 
sequence of intermediate functions. Considering 𝕀-(𝒖;5#)  as the indicator function, the first 
probability in Eq. (6) can be estimated using crude MCS as: 
𝑃"(2) = 𝑃(𝐹&) = 𝑃[𝑔(𝒖; 𝜆&) ≤ 0] = ∫ 𝕀-(=;5#)(𝐮)𝑓(𝒖)d𝑢

	
	 = 𝔼(𝕀-(𝒖;5#)(𝐮)).                  (7) 
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Then, in the case of intermediate LSFs, one may estimate the conditional failure probabilities 
𝑃(𝐹>|𝐹>4&)  for intermediate failure domains 𝐹> = {𝑔(𝒖; 𝜆7) ≤ 0}  using Markov Chain Monte 
Carlo (MCMC). This leads to a total approximation of Lth intermediate LSFs as follows: 
𝑃(𝐹?) = 𝑃(𝐹&)∏ 𝑃(𝐹>|𝐹>4&)@

7+( ,                                                                                         (8) 
which represents the main formulation of the Sequential space conversion method (SESC) [25]. 
The traditional subset simulation (denoted as Sus) employs intermediate failure domains based on 
decreasing thresholds (𝑔7) using the geometry of performance function (i.e., 𝐹> = {𝑔(𝒖; 𝑖) ≤ 𝑔7}), 
and formulates the failure probability as: 
𝑃"(Sus) = 𝑃(𝐹&)∏ 𝑃(𝐹>|𝐹>4&)6

7+( ,						𝐹> = {𝑔(𝒖; 𝑖) ≤ 𝑔7}.                                                (9) 
In contrast to this traditional treatment, as shown in Fig 4, the improved subset simulation (denoted 
as ISus), uses scaled failure domains (i.e., 𝐹> = {𝑔(𝒖; 𝜆7) ≤ 0}) and therefore its estimation of the 
total failure probability is independent of the geometry of performance function: 
𝑃"(ISus) = 𝑃(𝐹&)∏ 𝑃(𝐹>|𝐹>4&),6

7+( 				𝐹> = {𝑔(𝒖; 𝜆7) ≤ 0},                                               (10) 
which mathematically addresses the main concerns about the transition of MCMC toward 
important failure regions in the subset simulation method [25]. The different performances of 
traditional and improved subset simulation (i.e., using Eqs. (9) and (10), respectively) are 
investigated in Section 3.1, with details. 
 
Remark 1. It is worth mentioning that the assumption behind the SESC (in Eq. (10)) is that the 
failure domain of scaled LSF is higher than the original failure domain and the safety domain of 
nested LSFs is increasing. However, scaling based on 𝑔=(𝐮) = 𝑔(𝜆4&𝒖) may not satisfy such a 
requirement for some problems with island failure domains. Therefore, a scaling approach fit to 
the specification of the in-hand problem (e.g., see Table 1) should be used in the analysis to form 
the nested LSFs.    

 
Fig 4. Improved subset simulation (SESC): Employing scaled intermediate LSFs for the transition 

of MCMC samples toward failure regions  
 
In the proposed formulation, the failure probability of SESC can be presented as a function of the 
scale parameter 𝜆, 𝑃"(ISus) = 𝑃"(𝜆). In this case, the total approximation of failure probability is 
obtained when 𝜆 = 1.  
 
This reformulation of subset simulation presents an analogy with the concept of asymptotic 
approximation in extreme value theory, which focuses on the asymptotic behaviors of multi-
normal integrals in the tail of marginal functions [49], [50], [52], [53].  

 

-6 -4 -2 0 2 4 6
x1

-6

-4

-2

0

2

4

6

x 2

-6 -4 -2 0 2 4 6
x1

-6

-4

-2

0

2

4

6

x 2

-6 -4 -2 0 2 4 6
x1

-6

-4

-2

0

2

4

6

x 2

-6 -4 -2 0 2 4 6
x1

-6

-4

-2

0

2

4

6

x 2

MCMC #1 MCMC #2 

… 

Last LSF 



 
 

7 

Considering the point that in the proposed approach, estimation starts from 𝜆& and terminates to 
𝜆6 = 1, it would be possible to shift analysis from a numerical to an approximation approach where 
extreme values theory provides an explicit approximation of the failure probability for 𝜆 = 1 as 
follows [49], [50]: 
𝑃"(𝜆) ≈ 𝑞d(𝜆)exp	{−𝑎(𝜆 − 𝑏)A},  𝜆 ⟶ 1,                                                                          (11)                                 
where 𝑎, 𝑏, and 𝑐 are constants and 𝑞d(. ) is a function that will behave very much like a constant 
[49]. In this approach, 𝑃"(𝜆) reflects the basic assumption of an asymptotic Gumbel distribution 
of the extremes which has proven enough flexible for all cases considered so far [49], [50]. 
According to the proposed perspective, when the scale parameter approaches one, Eq. (10) and 
(11) present the same value (i.e., 𝑃"(ISus) ≈ 𝑞d ∙ exp{−𝑎(𝜆 − 𝑏)A}). Based on this analogy, one is 
only required to estimate a few terms of Eq. (6) and then, by estimating the parameters of Eq. (11), 
extrapolate the failure probability for 𝜆=1. For this purpose, estimating the first 𝑇 probabilities of 
Eq. (6), we may consider scale factors 𝝀 = [𝜆&, 𝜆(, … , 𝜆B4&, 𝜆B] and the corresponding failure 
probabilities 𝒀 (e.g., 𝑌(1) = 𝑃(𝐹&) and 𝑌(𝑗) = 	𝑃(𝐹&)∏ 𝑃(𝐹>|𝐹>4&)

C
7+(  where 𝑗 = 2, 3, … , 𝑇) as 

the input and output to estimate parameters of the Eq. (11) and extrapolate failure probability as 
follows:  
𝑃"(Asymptotic) ≈ 𝑞 exp{−𝑎(𝜆 − 𝑏)A},                                                                              (12) 
where the parameters of the proposed extrapolation function, i.e., 𝜃 = (𝑞, 𝑎, 𝑏, 𝑐), can be estimated 
by minimizing the mean square error between the log scale of two sides of Eq (12) as follows [50]: 
Find 𝜃 = (𝑞, 𝑎, 𝑏, 𝑐)                                                                                                               (13) 

Minimize:	 ∑ GLog G𝑃"(𝜆7)I − Log(𝑞) + 𝑎(𝜆7 + 𝑏)AI
(

B
7+& 	  

Once the parameters are obtained through optimization, the total failure probability can be 
extrapolated for 𝜆 = 1 as follows: 
𝑃"(Asymptotic#1) ≈ 𝑞 exp(−𝑎(1 + 𝑏)A),                                                                         (14) 
The Asymptotic subset simulation (Asus) is schematically presented in Fig 5. 
 
Proposition 1. The second-order reliability method (SORM) [13] is a specific version of the Eq. 
(11). 
Proof. Following the implementations presented in Section 2.1, for a problem with LSF of 𝑔(𝒖) 
and very small failure probability (i.e.,  𝛽-(𝒖) ⟶∞), one can present a weakened version of a 
system with the performance function of 𝑔=(𝑢) and reliability index of 𝛽-3(𝒖) = 1. Then, the scale 

parameter 𝜆 =
D$%(𝒖)
D$(𝒖)

  can be used to design a set of nested LSFs with increasing safety domain 

(then, one obtains &
D$(𝒖)

< 𝜆 < 1).	On the other hand, for a random variable with standard normal 

PDF, using Mill’s ratio, one gets:  
Φ(−𝛽) ≈ 	 D

√()
. exp{−0.5𝛽(}  (𝛽 ⟶ ∞).                                                                            (15) 

As a result, by employing 𝑎 = 0.5, 𝑏 = 𝛽 + 1, 𝑐 = 2, and 𝑞 = D)#

√()∙F∏ (&4H*)+)#
*,#

 (𝜅 represents the 

curvature of function) in Eq. (11), one obtains: 
𝑃"(Asymptotic) ≈ 	

D)#

√()∙F∏ (&4H*)+)#
*,#

exp{−0.5𝛽(}, 	𝜆 → 1.                                                  (16) 

that is the main formula of SORM: 
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𝑃"(SORM) ≈
D)#

√()∙F∏ (&4H*)+)#
*,#

exp{−0.5𝛽(} = 	Φ(−𝛽)|𝐽|4&/(,                                           (17) 

where 𝐽 = �∏ (1 − 𝜅7)J4&
7+& .   

 
Using the proposed implementations, one may also review the concept of SORM formulation from 
the perspective of extreme values. As a main issue, by focusing on the scale factor 𝜆 =

D$%(𝒖)
D$(𝒖)

, one 

may find that the SORM in Eq. (17) is built upon the following (hidden) assumption: 
if 𝛽-(𝒖) > 𝛽-3(𝒖) then 𝑃(𝑔(𝒖) ≤ 0) <	𝑃(𝑔=(𝒖) ≤ 0). 
However, similar to that presented in Remark 1 for SESC, for the mentioned scaling approach, 
this assumption may no longer hold for some problems (e.g., island failure functions). For such 
functions, even if 𝛽-(𝒖) > 𝛽-3(𝒖), we don’t necessarily obtain 𝑃(𝑔(𝒖) ≤ 0)<𝑃(𝑔=(𝒖) ≤ 0) which 
is the necessary condition of the asymptotic analysis.  
Therefore, a richer formulation for asymptotic analysis requires the design of scaled LSFs based 
on the failure probabilities (and not the reliability index) using a scale approach that fits the 
specification of the problem (and not only one certain scaling approach). It is worth mentioning 
that, besides a suitable scaling approach, using the general reliability index in assumptions 
(𝛽-(𝒖) = −Φ4&�𝑃"($)� > −Φ4&�𝑃"(2)� = 𝛽-3(=)) may also fix the issue.  
Nonetheless, since SORM only uses the original LSF 𝑔(𝑢) in analysis (and not scaled LSFs), the 
mentioned formulation drawback does not affect its reliability results. 
 
Remark 2. Proposition 1 and subsection 2.1 reveal that the proposed asymptotic subset simulation 
and SORM share the same formulation and therefore, if we consider the random sampling in subset 
simulation (using a suitable scaling approach) as a kind of optimization approach looking for the 
important failure regions, a few steps of the (random) search process could be enough to 
approximate a small failure probability. 
 
Proposition 2. In case of problems where MCMC properly conducts random samples toward 
important failure regions, the extrapolation may be used in traditional subset simulation and 
sequential importance sampling to approximate the target failure probability.  
Proof. As presented in Eq. (9), traditional subset simulation employs intermediate failure domains 
based on the geometry of the performance function 𝐹> = {𝑔(𝒖; 𝑖) ≤ 𝑔7}. In the first step of this 
method, let’s consider 𝐹& = {𝑔(𝒖; 1) ≤ 𝑔&} with threshold 𝑔&	as the failure domain Θ in Eq. (3): 
𝑃"(2) = 𝑃(𝐹&) = 𝑃[𝑔(𝒖; 1) ≤ 𝑔&] = ∫ 𝑓(𝒖)𝑑𝑢	

		2+{-(𝒖;&)/-#}
= 𝔼(𝕀-(𝒖;&)(𝐮)).                (18) 

Then, by using intermediate thresholds 𝑔7 {𝑖 = 1,2, … ,𝑚}, one may define the scale parameter 𝜆7 
as a function of 𝑔7 as follows: 

 𝜆7 = � &
$	*
$	#

8&
�
0.(:

.                                                                                                              (19) 

In the proposed equation, 𝜆7  starts from 𝜆& = 0.84	 (since in the first step, we obtain 𝜆& =

G &
&8&

I
0.(:

= 0.84) and after 𝑚 steps, when the threshold 𝑔7 meets the original failure domain, 𝜆7 

approaches to one (i.e., when 𝑔L = 0 , we obtain 𝜆7 = G &
08&

I
0.(:

= 1) . Therefore, just by 
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performing a few steps of traditional subset simulation, one may form two vectors for 𝜆 and 
𝑃"(𝜆)	to use the extrapolation formula of Eq. (11) for 𝜆7 = 1 (which corresponds to 𝑔L = 0): 
𝑃"(Sus) = 𝑃[𝑔(𝒖;𝑚) ≤ 0] ≈ 𝑞d ∙ exp{−𝑎(1 − 𝑏)A}, 𝜆 ⟶ 1 .                                        (20) 
The same implementation can be presented for sequential importance sampling methods. To meet 
this aim, let’s call the 𝑃"(2) of Eq. (3) the “relaxed failure probability” which is easy to estimate, 
and call the scale factor parameter 𝜆 the “relaxation parameter”. Then, as explained in Ref. [54] in 
detail, by presenting 𝜂C�𝒖; 𝜆C� = 𝕀-(=)/0(𝐮)𝑓�𝒖; 𝜆C�, 𝑗 = 1,2, . . . , 𝑆  and employing an optimal 
probability density function as follows: 

𝑘C∗�𝒖; 𝜆C� =
M.N𝒖;5.O

P.
=

𝕀$(𝒖)/0(𝐮)"N𝒖;5.O	

∫ 𝕀$(𝒖)/0(𝐮)"N𝒖;5.OT=
	
	

,  		𝑗 = 1,2, . . . , 𝑇.                                             (21) 

Here, one may design a set of “less relaxed” (say intermediate) probabilities between the 𝑃"(2) and 
𝑃"($) (for 𝝀 = [𝜆&, 𝜆(, … , 𝜆64&, 𝜆6 = 1]) and use sequential sampling to provide an approximation 
of failure probability as a function of the parameter 𝜆:   
𝑃"(IS) = 𝑃"(𝜆) = 𝑃(𝐹&) ∏

"		N𝒖;5.1#O
"		N𝒖;5.O

𝑘C∗�𝒖; 𝜆C�64&
7+& .                                                       (22) 

As a result, according to the explanations presented for subset simulation, by estimating a few 
terms of Eq. (14), one may use the first T parameters 𝜆  (e.g., 𝜆& > 𝜆( > ⋯ > 𝜆B ) and 
corresponding probabilities (e.g., 𝑃(𝐹&) > 𝑃(𝐹() > ⋯ > 𝑃(𝐹U) =
𝑃(𝐹&) ∏

"		N𝒖;5.1#O
"		N𝒖;5.O

𝑘C∗�𝒖; 𝜆C�B4&
7+& ) as input and use Eq. (11) to extrapolate the total failure probability 

for 𝜆6 = 1. 
The same implementations may be used for different versions of sequential sampling methods 
[36]. 
We should note that using a kernel density function, an attempt to extrapolate the PDF of marginal 
function by traditional subset simulation is proposed in Ref [55] (which is technically and 
conceptually different from the suggested approach). However, the main problem regarding using 
traditional subset simulation (and sequential importance sampling) for approximation of the total 
failure probability is that the topology may misconduct MCMC samples to find important failure 
domains (as clarified in Ref. [37]). Besides, in the case of Proposition 2, the scaling depends on 
the topology of the performance function which may be very different in the vicinity of the origin 
and the LSF.  
Therefore, although extrapolation of traditional subset simulation may properly work for many 
problems, it fails to solve intricate functions and the formulations explained in Proposition 2 cannot 
be considered as a general solution for Eqs. (1) and (2).  
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Fig 5. Concept of Asymptotic subset simulation (Asus): By employing governing equations in 

extreme values theory and asymptotic approximation, only a few steps of subset simulation (with 
scaled LSFs) could be enough to extrapolate small failure probabilities  

 
2.2. Alternative extrapolation functions and ensemble averaging model 
In the proposed framework, Eq. (12) represents a four-parameter Gumbel distribution for the 
approximation of the tail of the marginal function in the failure domain and, as explained in Ref. 
[49], the mentioned equation is flexible for all (rare event) cases considered so far. Nonetheless, 
there are some other alternative functions (with fewer/more parameters) that may be used for 
extrapolation. For instance, the following function is suggested by Butcher [45] to exploit the 
asymptotic behavior of the generalized reliability index of scaled LSFs: 
𝛽(𝜆) ≈ 𝑎𝜆 + V

52
	.		                                                                                                              (23) 
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The parameters 𝜃 = (𝑎, 𝑏, 𝑐) in Eq. (23) can be obtained by using a parameter estimation approach 
for a few scale factors and corresponding probabilities obtained from Eq. (10). Then, asymptotic 
approximation for the problem can be estimated as: 
𝑃"(Asymptotic#2) ≈ Φ(−𝑎 − 𝑏).                                                                                    (24) 
Separate from this approach, the comparison of the SORM formulation and the extrapolation 
function of extreme values provides the opportunity to study Eq. (11) using the results of 
Proposition 2. For example, the comparison reveals that 𝑞d(𝜆) in Eq. (11) mainly applies the effect 
of the curvature of the LSF function (at the important failure region) to the total probability while 
the exponential term exp	{−𝑎(𝜆 − 𝑏)A} mainly applies the effect of distance of the important 
failure to the origin. Therefore, by employing the results of Proposition 1, one may conclude that 
𝑞d(𝜆) is also a function proportional to the inverse of the reliability index (the reliability index is 
also related to the parameter 𝑏 in Eq. (11)) and therefore, it would be more appropriate to represent 
the general form of Eq. (11) as follows: 
𝑃"(𝜆) ≈ 𝑞d(𝜆, 𝑏)exp	{−𝑎(𝜆 − 𝑏)A},  𝜆 ⟶ 1                                                                      (25)                                 
On the other hand, since the curvature of LSFs is a function of the scale parameter 𝜆, this study 
also investigates the following function for extrapolation: 
𝑃"(𝜆) ≈ 𝑞d(𝜆, 𝑏) ∙ exp(−𝑎(𝜆 + 𝑏)A) ,			𝜆 ⟶ 1                                                                   (26) 

𝑞d(𝜆, 𝑏) = (58V))#

√()∙𝒿3
,  

where 𝜃 = (𝑎, 𝑏, 𝑐, 𝒿, 𝑒) are the parameters of the proposed extrapolation function which can be 
estimated using the following optimization process: 
Find 𝜃 = (𝑎, 𝑏, 𝑐, 𝒿, 𝑒)                                                                                                         (27) 

Minimize:	 ∑ GLog G𝑃"(𝜆7)I − Log G
(5*8V))#

√()∙𝒿3
I + 𝑎(𝜆7 + 𝑏)AI

(
B
7+& 	  

Then, the failure probability can be extrapolated for 𝜆 = 1 as follows: 
𝑃"(Asymptotic#3) ≈

(&8V))#

√()∙𝒿3
∙ exp	(−𝑎(1 + 𝑏)A).                                                            (28) 

Using such functions provides the opportunity to obtain more information about the problem at 
hand. For instance, we also use fixed values for parameters 𝑎 and 𝑐 as 0.5 and 2, and employed 
the following function for extrapolation where the scale parameter 𝜆7 is multiplied to the parameter 
𝑏 as follows:  
𝑃"(𝜆) ≈

V)#

√()(5*∙X)
∙ exp	(− |5*∙V|"

(
)	,			𝜆 ⟶ 1                                                                        (29) 

that results in the following asymptotic approximation of the failure probability: 
𝑃"(Asymptotic#4) ≈

V)#

√()∙X
∙ exp	(− |V|"

(
),                                                                         (30) 

which comparison of Eq. (30) with SORM may be used to employ extrapolation to exploit some 
information about the parameters of the problem. For example, for problems with one design point, 

we get |𝒖∗| = 𝑏	 and �∏ (1 − 𝜅7)J4&
7+& = P4(Z[\]^_`_>a#;)

c(4V)
 that represents the reliability index and 

curvature of the LSF at the design point, respectively.  
Besides the mentioned extrapolation functions, three other asymptotic formulas are also suggested 
in this study (See Table 2) and their parameters can be estimated according to the implementations 
proposed in this section. Here, because each extrapolation function may tend to 
underestimate/overestimate the true failure probability of the in-hand problem, the average 
ensemble model of the proposed functions is suggested as the total approximation of the failure 
probability by the proposed approach: 
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𝑃" ≈ 𝔼(𝑃"(5))																																																					                                                                      (31) 
In cases where a certain extrapolation function presents results too far from other functions, the 
practitioner may delete the result of the mentioned function from the analysis. 
 

Table 2. Suggested extrapolation functions for failure probability approximation  
Extrapolation Function 𝑃"(𝜆) parameters Cost function for parameter estimation using 𝜆5 and 𝑃6(𝜆5) 

1 𝑞 exp(−𝑎(𝜆𝑖 + 𝑏)') [49] (𝑞, 𝑎, 𝑏, 𝑐) $%Log%𝑃6(𝜆5)) − Log(𝑞) + 𝑎(𝜆5 + 𝑏)7)
8

9

5:;

 

2 Φ(−𝑎 − 𝑏) [45], [56] (𝑎, 𝑏) 𝛽(𝜆) ≈ 𝑎𝜆+
𝑏
𝜆<7

 

3 
exp(−𝑎(𝜆 + 𝑏)')
√2𝜋 ∙ (𝜆 + 𝑏) ∙ 𝒿(

 (	𝑎, 
𝑏, 𝑐, 𝒿, 𝑒) $2Log %𝑃6(𝜆5)) − Log 2

(𝜆5 + 𝑏)=;

√2𝜋 ∙ 𝒿>
8 + 𝑎(𝜆5 + 𝑏)78

89

5:;

 

4 exp	(− |𝜆) ∙ 𝑏|
*

2 )

√2𝜋 ∙ 𝑎 ∙ 𝜆) ∙ 𝑏	
 (𝑎, 𝑏) $9Log %𝑃6(𝜆5)) − Log9

(𝜆𝑖 ∙ 𝑏)
−1

√2𝜋𝑎
: +

|𝜆𝑖 ∙ 𝑏|2
2 :

89

5:;

 

5 exp	(− |𝜆) ∙ 𝑏|
*

2 )

F2𝜋𝜆) ∙ 𝑏 ∙ 𝑎
 (𝑎, 𝑏) $2Log %𝑃6(𝜆)) − Log <(2𝜋𝜆5 ∙ 𝑏 ∙ 𝑎)=

;
8= +

|𝜆𝑖 ∙ 𝑏|2
2 8

89

5:;

 

6 
exp	(−|𝜆) ∙ 𝑏|*)
√2𝜋 ∙ 𝑏 ∙ 𝑎

 (𝑎, 𝑏) $<Log %𝑃6(𝜆5)) − Log <(2𝜋 ∙ 𝑏 ∙ 𝑎)=
;
8= + |𝜆𝑖 ∙ 𝑏|2=

89

5:;

 

7 exp	(𝑞) exp(−𝑎(𝜆𝑖 + 𝑏)') (𝑞, 𝑎, 𝑏, 𝑐) $%Log %𝑃6(𝜆5)) − q + 𝑎(𝜆5 + 𝑏)7)
8

9

5:;

 

 
2.3. Generalization of the framework  
A failure probability is generally a function of parameters 𝜽 = (𝜃1, …, 𝜃𝑘) and, as explained in [57] 
detail, a richer presentation of the failure probability would be as follows: 
𝑃(F|𝜃) = ∫ 𝑓(𝒖|𝜽)d𝒖	

{-(𝒖,e)/0} .                                                                                         (32) 
Let’s assume that we have changed the parameters of the problem from 𝜽 to 𝜽f for obtaining a 
weakened version of the system with a higher failure probability. This change would lead to 
obtaining a new failure probability as: 
𝑃(F|𝜃f) = ∫ 𝑓(𝒖|𝜽f)d𝒖	

{-(𝒖,𝜽?)/0} .                                                                                     (33) 
In this formulation, as explained in Section 2.1, it is aimed to have two main specifications:  
1) By solving Eq. (33), we obtain 𝑃(F|𝜽f) ≫ 𝑃(F|𝜽)).  
2) The original failure domain (in standard normal space) is a subset of the new failure domain 
𝑔(𝒖, 𝜽f) ≤ 0, and the new LSF reflects a scaled version of the original LSF.  
Based on the specification of the in-hand problem, different scaling approaches can be used for 
obtaining 𝑃(F|𝜃f) with LSF of 𝑔(𝒖, 𝜽f). Also for this case, a few approaches are suggested in 
Table 1. Using the mentioned implementations, compared to the 𝑃(F|𝜃), the failure probability 
𝑃(F|𝜃f) can be very efficiently approximated by crude MCS.  
By mapping this problem into standard normal space, since &

√()@ exp 7− &
(
|𝒖|(: is not a function of 

𝜽f, the dependence of the failure probability on the parameter 𝜽f appears only in the LSF and 
therefore, this generates a new LSF for the problem which can be presented as 𝑔=(𝐮, 𝜽f) (one also 
needs to map the failed samples obtained in Eq. (33) to the new space). Now, it is only required to 
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present parameter vector 𝜽f as a function of 𝜆, denoted as 𝜽f(𝜆),	in such a manner that for 𝜆 = 1 
we get 𝜽f(1) = 𝜽 (i.e., if 𝜆 ⟶ 1, then 𝜽f ⟶ 𝜽). For such a situation, the corresponding failure 
probability for any parameter 𝜆@ can be estimated using SESC formulation: 
𝑃�F|𝜃f(𝜆(@))� = 𝑃�F|𝜃f(𝜆(&))�∏ 𝑃(𝐹>|𝐹>4&)@

7+( ,  𝐹> = �𝑔�𝑢, 𝜽f(𝜆(h))� ≤ 0�.                     (34)                                                                    
Therefore, for each value in the vector of 𝝀 = [𝜆&, 𝜆(, … , , 𝜆B], we obtain a corresponding failure 
probability as 𝑷(F|𝜃f(𝜆)) = [𝑃�F|𝜃f(𝜆(&))�, 𝑃�F|𝜃f(𝜆(())�,…, 𝑃�F|𝜃f(𝜆(B))�]. Then, according 
to the implementations presented in the former section, the vector 𝝀	and its corresponding failure 
probabilities can be used to extrapolate the small probability 𝑃(F|𝜽f(1))=	𝑃(F|𝜃) for 𝜆 = 1 using 
the following general formula (See subsection 2.2, for more suggestions): 
𝑃(F|𝜃f(𝜆)) ≈ 𝑞d(𝜆)exp	{−𝑎(𝜆 − 𝑏)A},  𝜆 ⟶ 1,                                                                   (35) 
where this study suggests using the ensemble of alternative extrapolation functions of Table 2 to 
approximate the total failure probability of the problem, noting the point that when an extrapolation 
model fails to properly determine the probabilities of the employed support points, it is required 
to delete the result of the mentioned function from the analysis. 
 
2.4. Statistical properties of estimation 
Reliability analysis by the proposed approach involves performing two main processes, namely, 
(1) subset simulation using scaled LSFs (SESC approach) and, (2) considering failure probabilities 
of a few scaled SLFs as the support points to extrapolate total failure probability by the ensemble 
of asymptotic formulas provided in Table 2. To estimate the confidence intervals of the proposed 
approach, one may estimate the confidence intervals for each extrapolation function, separately, 
and then use the minimum of all obtained interval bounds as the lower bound of total probability 
(denoted by 𝐶𝐼4 ) and the maximum values of the confidence interval as the upper bound as 𝐶𝐼8. 
In this context, the confidence interval of each extrapolation function can be estimated as follows: 
If one conducts the crude Monte Carlo for estimation of 𝑃(𝐹&), the coefficient of variation δ& can 
be estimated as follows: 

δ& = �&4P(i#)
jP(i#)

,                                                                                                                     (36) 

where 𝑁 represents the total number of samples in the step. As presented in [58], in the case of 
sequential sampling, the δC of conditional probabilities 𝑃�𝐹k�𝐹k4&� 𝑗 = 2,… ,𝑀 can be estimated 
as: 

δC = �&4PNiAO

jPNiAO
(1 + 𝛾C),                                                                                                       (37) 

where 

𝛾l = 2∑ G1 − ljB
j
I 𝜌C(𝑘)

C
CB
4&

l+& .                                                                                           (38) 
where 𝑁6  is the number of seeds of MCMC and 𝜌C(𝑘)  is the average 𝑘 -lag auto-correlation 
coefficient of the stationary sequences and can be estimated from the samples [58]. By assumption 
of independence of the conditional probabilities, the coefficient of variation of failure probability,	
Cv,	of both SESC and traditional subset simulation can be estimated as [24]: 
Cv( = ∑ δC

(m
C+& .                                                                                                                   (39) 

Noting the point that the proposed estimation tends to underestimate the true coefficient of 
variation of failure probability [58], [24]. Also in this study, one gets the following approximation 
for estimation of Cv for the failure probabilities obtained by simulation (for use as the support 
points for extrapolation): 
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Cv( = &4P(i#)
jP(i#)

+ ∑ δC
(m

C+( .                                                                                                     (40) 
For estimation of the confidence interval for a predicted value of the failure probability provided 
by the optimal curve, once the Cv(𝜆)  is estimated for 𝑇  support points, one may use 𝝀 =
[𝜆(, … , 𝜆B4&, 𝜆B] as input and the corresponding Cv(𝜆) as output (i.e., 𝑌(𝑗) = 	∑ δ7

(C
7+&  where 𝑗 

=2:T) to extrapolate Cv(𝜆) for 𝜆 = 1 using linear regression (the reason is that the parameters in 
Eqs. (37) and (38) are almost fixed values in each subset and then, one may find Cv(𝜆) follows the 
linear function for j=2 to 𝑚 conditional probabilities). Assuming that sample data is normally 
distributed, a fair approximation of a 95% confidence interval of each predicted probability can be 
estimated as 𝐶𝐼n:%(𝜆) = [𝐶4(𝜆), 𝐶8(𝜆)]: 
𝐶±(𝜆) = 𝑃 "(𝜆) ¡1 ± 1.96 ∙ Cv G𝑃 "(𝜆)I¥.                                                                             (41)  
Noting the fact that in engineering applications, the upper bound of probability (minimum 
Reliability index) is more important than the lower bound, one may neglect the potential error 
associated with very small probabilities (See Ref. [57] for more detail) by restricting the 
probability in the lower bound to zero. 
As explained former, once the confidence interval for each extrapolation function is estimated by 
the abovementioned approach, one may use the minimum and maximum of the obtained values as 
the confidence interval bounds of total failure probability. 
 
3. Verification from the No-Free-Lunch perspective 
According to the No-Free-Lunch theory in reliability analysis (NFLR) [38], no universal algorithm 
performs well across all problem types and, if a method is effective for a specific class of problems, 
it will perform poorly on the remaining problems. In this section, we analyze both the strengths 
and limitations of the proposed approach in various reliability problems. We present cases where 
it performs well, identify examples where state-of-the-art methods may outperform it, and provide 
a conceptual comparison with existing approaches. 
In the optimization process of Eq. (13), the lower bound and upper bounds of parameters 𝜃 = (𝑞,
𝑎, 𝑏, 𝑐) are considered as LB=[0,0,-8,0]; UB=[20,20,0,4], respectively. Furthermore, in the case 
of Eq. (26), LB=[0, 0] and UB=[20, 5] are used for the parameters of 𝒿 and	𝑒.  
 
3.1. Evaluating the efficiency of the proposed framework 
The approach #1 is used for scaling the performance function of this subsection (see Table 1) 
where the LSF is scaled as 𝑔(𝜆𝒖). The initial scale parameter is set to 𝜆& = 0.5 and the other 
parameters including the number of support points are reported for each example, separately. As 
explained in subsection 2.2, the ensemble average of the suggested extrapolation function is used 
as the total approximation of the failure probability. 
 
 3.1.1. Intricate numerical example 
In the first example, we aim to show the efficiency of the proposed approach compared to 
traditional/improved subset simulation and asymptotic sampling. To meet this aim, reliability 
analysis of the Metaball test problem [37] with the standard normal random variables and the 
following LSF is investigated: 

𝑔(𝑢%, 𝑢*) =
30

I4(𝑢% + 2)
*

9 + 𝑢**
25M

*

+ a
+

20

I(𝑢% − 2.5)
*

4 + (𝑢* − 0.5)
*

25 M
*
+ a

− 5, 
(42) 
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The problem is studied for two situations, namely: Case 1, for a = 1, and, Case 2, for a = 2 (a is 
the parameter of the denominator in Eq. (42)). The main specification of this example is having 
several important failure regions in different directions and also, its intricate geometry of the 
performance function that produces difficulties for search algorithms to find most important failure 
region of the problem (See Fig 6).  

 
Fig 6. Left: The geometry of the Metaball function (with parameter a=1) and Right: the LSF and 

most important failure region of the problem 
 

This problem is considered in Ref [37] as a counter-example of the subset simulation since, as 
shown in Fig 7, the traditional method (and also sequential IS [36]) fails to provide a proper 
approximation of the failure probability (for both Cases 1 and 2). The reason is that the topology 
of the performance function conducts MCMC samples toward the un-important failure region of 
the problem which results in an improper approximation of total failure probability. 
 

      
Fig 7. Left: Traditional subset simulation and sequential IS fail to properly solve the Metaball 

problem. Right: Improved subset simulation (SESC) with scaled LSFs as intermediate thresholds 
 
However, as clarified in [25] and shown in Fig 7, performing subset simulation based on the SESC 
approach addresses the above-mentioned drawback of the traditional approach, and using scaled 
LSFs would lead to transitions of MCMC toward the important failure region of the problem. As 
previously illustrated in Fig 5 and reported in Table 3, by employing only a few steps of improved 
subset simulation, the proposed approach provides a suitable approximation of the failure 
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probability with a portion of the function call required in the SESC approach. Besides, the function 
call of the method would be appropriately less than the asymptotic sampling [45] (less than 1/3) 
which requires performing separate MCS (for scale values of 0.25, 0.33, 0.4, and, 0.5) to obtain 
support points. 

Table 3: The reliability results of the Metaball function for parameter a=2 (the same accuracy 
and function call obtained for a=1). 

Method 𝑃6 𝛽 #𝑔-call  
MCS 1.5×10-5 4.17 107 

Subset simulation 2.58×10-7 5.02 5,500 
Sequential IS 1.69×10-7 5.01 10,000 

SESC 1.55×10-5 4.16 7,321 
Asymptotic sampling 8.28×10-6 4.31 9,000 

Asus 1.21×10-5 4.22 2,367 
 
In Table 3, we have not reported the results of design point-based methods mainly because the 
accuracy of the obtained results and the number of function calls of these approaches highly 
depend on the decisions/skills of the practitioner. To clarify this issue, in the following, we 
investigated the Metaball problem for two mentioned cases: 

• Case 1 with a=1 in Eq. (42), as follows: 

𝑔(𝑢%, 𝑢*) =
30

I4(𝑢% + 2)
*

9 + 𝑢**
25M

*

+ 1
+

20

I(𝑢% − 2.5)
*

4 + (𝑢* − 0.5)
*

25 M
*
+ 1

− 5, 
(42-A) 

For solving the proposed example using a design point-based approach, a practitioner (say P#1) 
may decide to start the search process from the origin for a gradient-based optimization approach 
(e.g., SQP method) which is a popular approach in reliability analysis). As shown in Fig 8, this 
idea would lead to properly finding the important failure region of the problem. Then, Line 
sampling, importance sampling, or SORM may be used in analysis to apply the effect of the 
curvature in analysis (e.g., by addition of around 500~1000 function calls in estimation) which 
would lead to a suitable approximation of the failure probability of the problem.  
 

 
Fig 8. Performing a gradient-based optimization algorithm from the origin would lead to 

properly finding important failure regions of Case 1 of the Metaball function (Eq. 42) 
 
In this case, if a practitioner (say P#2) initializes the optimization process from different random 
points (that is a wise approach in reliability analysis), obtains four different design points in 
different directions within about 600 function calls (See Fig 9). Then, since one is not aware of the 
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shape of LSFs around each design point and it is not clear which domains will have maximum 
participation in the total failure probability, it would be required to perform three extra 
postprocessing (e.g., Line sampling, importance sampling or SORM) for the other design points 
to check the curvature and obtain probability. This would lead to an approximation of the failure 
probability with much more functional calls compared to the decision of P#1.  
 

 
Fig 9. History of 10 different optimization processes with random initial search points for Case 1 

of the Metaball function 
 

• Case 2, with a=2 in the denominator, as follows: 

𝑔(𝑢%, 𝑢*) =
30

I4(𝑢% + 2)
*

9 + 𝑢**
25M

*

+ 2
+

20

I(𝑢% − 2.5)
*

4 + (𝑢* − 0.5)
*

25 M
*
+ 2

− 5, 
(42-B) 

In this case, in contrast with Case 1, not only starting a gradient-based search process from the 
origin but also the addition of 10 times optimization from different random points would not be 
enough to find important failure region of the problem for probability estimation (See Figs 10 and 
11). Therefore, in Case 2, relaying on the former experience of Metaball functions (i.e., Case 1) 
would lead to a wrong approximation of failure probability and proper reliability analysis requires 
optimization with random initial points which considerably increases the function call of analysis. 
This example clearly shows that, in case of such problems with intricate geometry and nonlinear 
LSFs, not only one search process but also 10 times optimization may not be enough/wise in 
reliability analysis. On the other hand, there is no clear answer to this question: how many 
optimization processes with random initial points are required to find all design points of a problem 
(which highlights the requirement of having a skilled optimization practitioner in reliability 
analysis)? Besides, having several design points in hand, performing postprocessing by 
SORM/Line sampling would be necessary for probability approximation which considerably 
increases the function call of analysis. 
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Fig 10. History of design point search process for Case 2, initialized from the origin, which 

results in a wrong approximation of the important failure region  
 

 
Fig 11. History of 10 times optimization process with random initial search points for Case 2 of 

Metaball function: a wrong approximation of important failure region and failure probability  
 
Using the proposed implementations, we also aim to clarify major drawbacks of employing 
gradient-based methods in analysis: 1) even by performing a huge number of function calls, there 
is no guarantee of finding all important failure regions of a problem and therefore, the accuracy of 
a design point-based method may be always in doubt, 2) the (huge) number of function calls 
required in search process cannot help the practitioner to obtain information about the curvature 
of LSF. For instance, while many points are required in the design point search process to discover 
failure regions, the function calls and information obtained in the search process are useless in 
SORM/Line sampling and the method disregards these function calls in their probability 
estimations.  
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However, if we consider the random sampling process in subset simulation as a kind of search 
process (e.g., see [38], [53]), as explained in Section 2 and shown by this example, the suggested 
asymptotic approach uses the information obtained during a few steps of the search process to 
approximate small failure probabilities.  
 
3.1.2. High-dimensional engineering problem 
This example investigates the performance of the proposed framework for a problem with 1501 
dimensions: calculating the first excursion probability of a single-degree-of-freedom (SDOF) non-
linear oscillator subject to a stochastic force. The SDOF is assumed to possess a bilinear 
conservative restoring force 𝑓0 , as shown in Fig 12. 
The stiffness of the oscillator is 𝑘%=40000 [N/m] whenever the absolute value of the displacement 
is equal or smaller than 𝑘%=0.016 [m]; otherwise, the stiffness is 𝑘*=0.25 𝑘%. The mass of the 
oscillator is m=10000 [kg] and the damping ratio is 𝑑==2% (concerning the stiffness 𝑘%). The force 
applied over the stiffness is modeled as a discrete white noise of spectral intensity S=10000 [N^2 
s]. The duration of the load is 15 [s] and time is discretized at intervals of 0.01 [s], leading to a 
total of 1501 random variables for the discrete representation of the stochastic process. The failure 
event involves the absolute displacement of the SDOF exceeding a threshold 𝛿=0.032 [m]. 
 

 
Fig 12. Bilinear restoring force in the SDOF problem 

 
The problem is solved by the crude MCS, SESC, traditional subset simulation, sequential IS and 
suggested extrapolation approach for different numbers of support points, and the results are 
reported in Fig 13 Table 4. Results confirm the robustness of the proposed approach for solving 
this high-dimensional problem noticing the point that the extrapolation by using few support points 
significantly reduced the function call of SESC (about 45% and 70% for 15 and 8 support points, 
respectively). The performance of the proposed problem is presented in Figs 14 and 15.  
Based on the explanations presented in former examples, one may conclude that the proposed 
approach provides a suitable trade-off between the function call of analysis and accuracy. Ensuring 
the accuracy of results for a design point-based method requires performing several optimization 
algorithms to find all design points, which greatly increases the function calls for such high-
dimensional problems.  



 
 

20 

 
Fig 13. Results of MCS for SDOF non-linear oscillator 

Table 4. The reliability results of the SDOF non-linear oscillator 

Method 𝑃6 𝛽 #𝑔-call  
MCS 6.95×10-6 4.35 2×107 

Subset simulation 8.19×10-6 4.31 8,693 
Sequential IS 6.14×10-6 4.37 6,000 

SESC 7.87×10-6 4.45 5,456 
Asus (15 NSPs*) 3.91×10-6 4.47 2,523 
Asus (8 NSPs) 1.17×10-6 4.57 1,319 

*NSPs=Number of support points 

   
Fig 14. Results of Asus in solving SDOF reliability problem using 15 support points 
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Fig 15. Results of Asus in solving SDOF reliability problem using 8 support points 

 
3.2. Main limitations and potential inefficiencies of the method 
Following the NFLR, to achieve optimal results, the practitioner should choose an approach fit to 
the structure of the in-hand problem which requires familiarity with the pros and cons of existing 
reliability methods. Therefore, identifying the limitations of each method would help practitioners 
make better decisions in reliability analysis. In the case of the proposed framework, the 
assumptions behind the method raise two main limitations, which we have discussed in detail. 
Besides, in the case of certain problems, the other extrapolation-based approaches present more 
efficiency than the proposed approach clarified in this section. 
 
3.2.1. Problems with high failure probabilities  
The basic assumption of the Gumbel distribution is used to approximate failure probabilities, 
which is more suitable for extremes and small probabilities (in other words, the method is 
calibrated only for small probabilities.). In case of problems with high failure probabilities, the 
marginal function’s PDF may not follow the Gumbel distribution, and therefore, the proposed 
extrapolation cannot be applied to high-probability events. 
 
3.2.2. Scaling of the Island-shaped failure regions 
In Section 2, to weaken a structural system and explain the concept of the proposed framework, 
we suggested a specific scaling approach, 𝑔(𝜆𝒖), which is equal to an increase in the standard 
deviation of random variables. While this scaling approach can increase the failure probability of 
many problems, following the NFLR, this approach could not be the optimal solution for all 
reliability problems. Specifically, for problems with island failure domains, increasing the standard 
deviation of random variables may paradoxically decrease the failure probability (i.e., 𝑃"(2) ≪
𝑃"($)), violating the first required condition in Section 2.1. Therefore, for problems with the Island 
function, one requires employing another solution to weaken the system. Acknowledging this fact, 
we provided a list of potential alternative solutions in Table 1 and Proposition 2, which may be 
used for reliability analysis based on the specification of the in-hand problem. 
To examine this issue, we analyze Case 2 of Example 1 in Ref [59]. The problem is a 10-degree-
of-freedom lumped-mass nonlinear frame structure subjected to nonstationary ground motions. 
The schematic representation of the structure and the random variables of the problem are 
presented in Fig. 16 and Table 5, respectively. 
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Fig 16. 10-story nonlinear frame [59] 

 
In the case of this problem, the failure regions appear as island-shaped regions, and therefore, 
increases in the standard deviation of random variables (i.e., scaling LSF as 𝑔(𝜆𝒖)) do not 
necessarily increase the system's failure probability, presenting a limitation of the proposed scaling 
approach. Therefore, an alternative scaling method is required for reliability analysis within the 
proposed asymptotic framework. 
To solve the problem, using a few MCMC conditional sampling steps, we employed traditional 

subset simulation and adapted the scale factor 𝜆7 = � &
$	*
$	#

8&
�
0.(:

 to obtain the exceedance 

probabilities of the problem (using the solution presented in Proposition 2). For different numbers 
of support points, the results of the proposed approach are compared with the first four central 
moment-based SGLD (CM-SGLD) and the conditional extreme value distribution (CEVD) 
method where the latter employs the first two sampling steps of subset simulation to extrapolate 
probabilities.  
The results of the mentioned approaches are presented in Fig 17. According to Ref [59], the CEVD 
and CM-SGLD methods provided a proper approximation of exceedance probabilities using only 
950 and 1000 function calls. In the case of the proposed approach, based on the curve fitting 
technique we have used in our study, at least three/four steps of subset simulation were required 
(equal to 1400 function calls [59]) to obtain the needed support points for achieving results using 
Eq. (20). 
This example reveals that 𝑔(𝜆𝒖) fails to properly scale the LSF of these types of functions for 

extrapolation purposes and alternative scaling approaches (scale factor of 𝜆7 = ¨ &
$*
$#
8&
©
0.(:

 in this 

case) should be used to solve the problem within the proposed framework. Besides, since the 
geometry of the performance function is smooth enough, the other extreme values approaches such 
as the CEVD method (see [59]) present more efficient performance compared to the proposed 
approach. 
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Table 5. The random variables of the frame problem 

Parameter Distribution 
type Mean Coefficient 

of variation 
𝑚;~𝑚D (kg) Lognormal 1.2×105 0.1 
𝑚E (kg) Lognormal 1.3×105 0.1 
𝑚F (kg) Lognormal 1.1×105 0.1 

𝑚G~𝑚H (kg) Lognormal 1.0×105 0.1 
𝑚I~𝑚J (kg) Lognormal 1.1×105 0.1 
𝑚;K (kg) Lognormal 0.5×105 0.1 
𝐸7 (Pa) Lognormal 3.0×1010 0.1 

 

 
Fig 17.  Exceedance probabilities of the nonlinear frame: Four (Left) and six (Right) steps of 

traditional subset simulation are used as the support points in the proposed extrapolation 
approach 

 
3.2.3. The existence of efficient alternative algorithms for problems with smooth geometries  
The proposed asymptotic approach is designed to explore the failure regions of scaled functions 
(often requiring over 1000 function calls) to approximate small probabilities. It is well-suited for 
intricate problems with complex geometries. However, for easily predictable problems with 
smooth geometries, the proposed approach may be inefficient compared to some state-of-the-art 
methods, specifically those tailored for such well-behaved functions.  
To investigate this issue, a parabola function with standard Gaussian random variables and two 
important failure regions is investigated [55]: 
𝑦(𝒖) = −𝑔(𝑢) = 𝑢( + 0.5(𝑢& − 0.1)( − 7,                                                                 (43) 
System failure is defined as when 𝑦(𝒖) exceeds the threshold b=0 (see Fig 18). 
 

0.04 0.05 0.06 0.07 0.08
Thresholds

10-8

10-6

10-4

10-2

100

Fa
ilu

re
 p

ro
ba

bi
lit

y

MCS
CM-SGLD
CEVD
Sus
ASus

0.04 0.05 0.06 0.07 0.08
Thresholds

10-8

10-6

10-4

10-2

100

Fa
ilu

re
 p

ro
ba

bi
lit

y

MCS
CM-SGLD
CEVD
Sus
ASus



 
 

24 

 
Fig 18. Example of problems with smooth geometries: For easily predictable problems, 
alternative algorithms may present more efficiency compared to the proposed approach 

 
To solve such problems, Ref [55] suggested performing a few steps of traditional subset simulation 
and then extrapolating the PDF of the function using an adaptive density extrapolation approach 
(DEA). This idea may fail to solve problems with complex geometries (see next subsection), 
however, as shown in Table 6, it works well for easily predictable problems with smooth 
geometries. To solve this problem, DEA has used only two steps of traditional subset simulation 
to solve the problem while the proposed approach employs 8 steps of SESC to approximate the 
failure probability with an acceptable confidence interval. 
To solve the problems, following our experiences and also the conclusion of the former studies 
[43] [46], we used scale parameter 𝜆& = 0.5  in our computations. To provide a more 
comprehensive understanding of how the parameters of the proposed method influence the 
confidence interval of failure probabilities, we have conducted a reliability analysis by solving this 
example for varying numbers of support points and different initial values of the scale parameter, 
𝜆&, within the SESC method. The corresponding results are illustrated in Fig 19. 
As shown in this figure, selecting an initial scale parameter 𝜆& that is closer to the one leads to a 
more desirable confidence interval for the estimated failure probabilities. However, this 
improvement comes at the expense of increased computational cost, as a finer adjustment of 𝜆&  
reduces the computational effort for probability estimation (i.e., finer 𝜆& values would lead to a 
higher increase in the failure domain). Furthermore, the figure highlights that incorporating a 
greater number of support points enhances the reliability and robustness of the results. 
Nevertheless, the selection of an appropriate number of support points is not straightforward and 
remains a decision that must be carefully made by the practitioner, balancing computational 
efficiency and the desired level of accuracy in the estimation process. 
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Fig 19. Influence of the initial scale parameter 𝜆 and the number of support points on the 
confidence interval of failure probabilities 

Table 6. The reliability results of the parabola function 
Method 𝑃6 𝛿 #𝑔-

call  
MCS* [55] 3.54×10-4 0.017 107 

Subset simulation [55] 3.20×10-4 0.184 4,312 
SESC 1.36×10-4 0.284 4,306 

DEA [55] 3.75×10-4 0.618 1,348 
Asus 2.12×10-4 CI=[2.14×10-5, 

5.38×10-4] 2,352 
* Performing MCS with 2,000,000 and 3,000,000 samples, the 
failure probability obtained by the authors was 𝑃6 =1.27×10-4. 
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Fig 20. Example of intricate problems: For such problems with complex geometries, the 
information obtained from random sampling around the mean may not help traditional 

approaches to obtain proper information about the failure regions 
 
3.3. Conceptual comparison with the state-of-the-art methods 
Generally, the main strategy behind the conditional extrapolation approaches discussed in the 
literature is generating initial random MCS samples and using few/one conditional MCMC 
samplings to guess the trend of (the PDF of) the performance function in the next steps and 
estimate probabilities. However, it is important to consider that this idea only works for certain 
classes of problems with smooth geometries. A critical question may help us to clarify the issue: 
If we have full information about the geometry of a function around the mean, can we use it to 
extrapolate the geometry far from it?  
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Generally, except for the smooth functions, the geometry of the performance function near the 
mean may be completely irrelevant to the regions far from the origin (see discussions in [33], [37], 
[53], [57]). We have also provided a graphical response to this question in Fig 20. 
In the case of the proposed asymptotic approach, the critical question would be as follows:  
If we have failure information of scaled versions of LSFs, can we use it to extrapolate the failure 
information of the original problem?  
In contrast with the state-of-the-art, the extrapolation technique suggested in this study follows the 
Asymptotic approximation theory which was employed to introduce the SORM [13] method. The 
Asymptotic theory provides mathematical proofs for the asked critical question and shows that 
scaled LSF can be used to extrapolate the small failure probability of a problem. For clarification 
purposes, Fig 21 shows how function g3 (presented in Fig 20) can be scaled to be solved by the 
proposed approach.  
Therefore, in the case of small probabilities estimation, when the application range of the former 
related studies is restricted to problems with smooth geometries, using a proper scaling approach, 
the suggested approach can be applied to problems with very complex geometries with high 
reliability in results. 
 

 
Fig 21. Scaled versions of an intricate problem (g3) for probability estimation by the proposed 

approach 
 
4. Conclusions 
In this study, we followed the asymptotic perceptions for extrapolation of the reliability results of 
the subset simulations. First, by applying a change in the parameters of the failure probability 
integral, we suggested presenting a weakened version of a system with a high failure probability 
that can be estimated by the crude MCS using reasonable function calls. In an equivalent standard 
normal space, this approach would change the LSF (limit state function) of the problem from 𝑔(𝒖) 
to 𝑔=(𝒖). Then, keeping both mentioned LSFs in design space and using the scale parameter 𝜆, we 
suggested designing a set of nested LSFs between 𝑔(𝒖) and 𝑔=(𝒖) (with increasing safety domain) 
in such a manner that for 𝜆 = 1, one obtains 𝑔(𝒖)= 𝑔=(𝒖). On one side, we have shown that 
MCMC sampling and formulation of the SESC (an improved subset simulation) can be used to 
estimate the failure probability of mentioned nested LSFs (See Eqs. 8 and 10). On the other side, 
the extreme values theory provides an explicit exponential function for the failure probability of 
such a problem when 𝜆 approaches one (See Eq. 12). By the combination of these perceptions, we 
have shown that if a few failure probabilities of the nested LSFs are be estimated by former (subset 
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simulation), then, the total failure probability can be extrapolated by the latter (asymptotic 
approximation in extreme values theory).  
The results of this combination are technically important because they reveal the mathematical 
connections of the subset simulation and asymptotic approaches (e.g., SORM approach) which at 
first look, seem to not have any connections together. Besides, in case of problems with one 
important failure region, one may use a few steps of the subset simulation to exploit information 
about the curvature of the LSF around the design point. 
We examined the robustness of the method by solving some intricate problems. First, the Metaball 
example is used to show the capabilities of the method compared to design point-based methods, 
traditional subset simulation, and asymptotic sampling.  
Then, an engineering problem with 1501 dimensions is solved by the proposed approach. In these 
cases, reducing the 40% up to 90% of function call of the improved subset simulation in the solved 
examples confirms the potential of the method for application in real-world engineering problems. 
Finally, we clarified the main limitations of the proposed approach and studied the potential 
inefficiency of the proposed approach compared to the state-of-the-art methods. This approach 
may help practitioners make better decisions in reliability analysis facing related examples. 
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