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A B S T R A C T

This study bridges the concepts of subset simulation with asymptotic approximation theory in multinormal in-
tegrals for the estimation of small probabilities. To meet this aim, for a sequence of scaled limit state functions 
(LSFs) with failure probabilities higher than the original LSF, it is found that the proposed asymptotic approx-
imation and subset simulation can be applied within the same framework, and only a few steps of subset 
simulation could be sufficient to approximate small failure probabilities using extrapolation. The analogy of the 
formulation of the second-order reliability method (SORM) with the proposed concept is studied and, considering 
sequential sampling as a search algorithm, shown that the information obtained from a few steps of the design 
point search process could be enough to approximate the total failure probability of a problem. Solving intricate 
nonlinear and high-dimensional problems confirms the efficiency and robustness of the proposed framework for 
reliability analysis of real-world engineering problems with small probabilities.

1. Introduction

Probability analysis, uncertainty management, and decision making 
under uncertainty are integral to diverse fields like engineering [1–3], 
medicine [4], and computer science [5,6]. Structural reliability theory 
presents a mathematical tool for handling these topics, which clarifies 
the importance of this theory as a multidisciplinary concept with a wide 
range of applications. Reliability analysis in essence requires solving a 
probability integral involving a multi-variable function g (i.e., the 
model), known as performance function, with random variables X (i.e., 
uncertain parameters): 

PE =

∫

E

fD(x)dx, (1) 

where E is the event of interest (e.g., failure as E = {g(x) ≤ 0}) and fD is 
the joint probability density function (PDF) of the set D grouping the 
random variables involved [7]. In this context, extremely low proba-
bilities, complex function topology in probability space, 
high-dimensional problems with numerous and different types of 
random variables, and costly or time-consuming modeling are known as 

the main challenges of reliability analysis [8–10]. To address the 
mentioned challenges, efficient reliability methods (such as first and 
second-order reliability methods (FORM and SORM) [11–13], Monte 
Carlo simulation [14–16], importance sampling [17–19], directional 
sampling [20], line sampling [21–23], subset simulation [24–26], and 
probability density evolution methods [27,28], etc.) have been devel-
oped for solving probability integrals. Broadly speaking, reliability 
methods can be broadly classified as approximate, simulation-based, or 
surrogate-based [29–32].

The approximation approaches mainly relied on first finding the 
important failure region of the problems (usually by using an optimi-
zation algorithm for locating design points) and providing an approxi-
mation of failure probability by employing some assumptions about the 
limit state function (LSF) of the problem [16]. The FORM and SORM 
[11,13] are popular reliability approaches in this category. Having in-
formation about the LSF of the problem (e.g., the number of important 
failure domains of the problem and moderate nonlinearity of LSF around 
design points) would lead to an acceptable approximation of the failure 
probability with a reasonable number of function calls under certain 
conditions [33].

Simulation methods estimate failure probabilities based on random 
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sampling. Monte Carlo simulation (MCS) [34] is a well-known approach 
in this category which approximates the failure probability with no 
assumption about the LSF and therefore always reports proper results 
with a certain confidence interval. For such a performance, MCS is 
required to generate samples in physical space according to the PDF of 
random variables and evaluate the performance of the system for each 
sample which requires a large number of function calls for the estima-
tion of small probabilities. Because of this issue, the application of MCS 
for reliability analysis of many real-world engineering problems (e.g., 
those involving finite element-based models) is very challenging. This 
issue led to the development of other sampling-based methods that 
mainly work based on the idea of MCS but use some assumptions in 
analysis to reduce the burden of function calls for probability estimation 
[17,24,35]. The traditional subset simulation and sequential importance 
sampling are popular approaches in this category [24,36]. The main 
assumption behind this method is that the topology of the performance 
function allows the generating of conditional samples that approach 
important failure regions of the problem [37] (noting the point that 
recently, some new versions of these methods have been developed that 
work without such assumptions [16,25]). In the Line sampling method, 
the main assumption is that (the direction of) the important failure re-
gions is available and this approach captures the curvature of the LSF (at 
important failure regions). Recently, the soft Monte Carlo simulation 
[15] has been developed as an extension of classical line sampling.

While the proposed approaches suitably reduce the function call of 
MCS, their number of full function calls for the estimation of (small) 
failure probabilities might still be too large for real-world applications. 
On top, if the assumption behind the method does not fit the structure of 
the in-hand problem, the same as the approximation methods, they may 
report wrong results [38]. For instance, in contrast with the assumptions 
behind subset simulation, MCMC may fail to transmit samples toward 
proper important failure regions. Similarly, despite interesting attempts 
made to address the drawbacks of line sampling [15,39], specifically in 
the case of high dimensional problems, the employed important direc-
tion may not highlight the proper important failure region of the 
problem.

In the case of surrogate based methods [40,41], the focus of the most 
of approaches is to interpolate the performance function for a set of 
input samples X [42–44]. Nonetheless, there is also a class of methods 
that directly approximate the tail of the PDF/CDF function of g. The 
proposed approaches are generally developed for the estimation of very 
small probabilities and mainly work based on the asymptotic behavior of 
failure probability concerning the change in statistical parameters of 
random variables or performance function g. The asymptotic sampling 
[45–48] and the method developed based on extreme values theory 
[49–51] can be considered as the main cases of this approach. While the 
asymptotic sampling focuses on the behavior of reliability indices of a 

series of scaled LSFs, extreme value theory suggests an exponential 
function for approximating the failure probability (See Fig. 1).

Considering the proposed implementations, the main contribution of 
this study is the connection of the concept of sequential simulation ap-
proaches to the extreme values theory. This paves the way for consoli-
dating some numerical and approximation methods within a unified 
framework and provides the opportunity to use the capabilities of both 
categories in probability estimation.

In the next section, we present the asymptotic subset simulation 
framework by explaining the analogy of subset simulation with the 
asymptotic approximation in multinormal probability integrals. Then, 
the formulation of the SORM is compared with the proposed framework, 
and new extrapolation functions that are specifically suited for the 
approximation of small probabilities are suggested. Section 2.3. presents 
the generalized form of the proposed approach and then, the statistical 
properties of the estimations are investigated in Sections 2.4. The pro-
posed framework is verified in Section 3 and the conclusions are re-
ported in Section 4.

2. Asymptotic subset simulation

2.1. Concept

The probability integral of Eq. (1) can be mapped to standard normal 
space using isoprobabilistic transformations [13]. For such an integral 
with D random variables, consider a problem with a small failure 
probability Pf which g(u) and Ω represent its LSF and failure domain in 
standard normal space (i.e., if u ∈ Ω, then g ≤ 0). Then, the failure 
probability of this system can be presented as: 

Pf(Ω) =
1̅̅
̅̅̅̅

2πD
√

∫

Ω={g(u)≤0}

exp
{

−
1
2
|u|2
}

du, (2) 

which is often difficult to evaluate, e.g., when the function g(u) is highly 
nonlinear, the number of random variables is too large, especially when 
the failure probability is very small (see Section 1 for more details). To 
solve the proposed problem efficiently, by applying a change in the 
parameters of the random variables or function g, we define a weakened 
system with LSF of ĝ and the failure domain of Θ = {ĝ(u) ≤ 0} with a 
failure probability as follows: 

Pf(Θ) =
1̅̅
̅̅̅̅

2πD
√

∫

Θ={ĝ(u)≤0}

exp
{

−
1
2
|u|2
}

du, (3) 

that is aimed to have two main specifications:
1) The target probability Pf(Θ) be suitably higher than the original 

probability (i.e., Pf(Θ)≫Pf(Ω)).

Fig. 1. Left: The asymptotic sampling [45] and, Right: Extreme values theory [50] for small probability estimation.
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2) The failure domain Θ = {ĝ(u) ≤ 0} reflects a scaled version of the 
original failure domain Ω = {g(u) ≤ 0}, while including all important 
failure regions of the original problem (i.e., Ω ∈ Θ).

To meet this dual aim, consider Q(u) and R(u) as load and resistance 
parameters of the problem respectively. Then, one may use a scale 
parameter λ to form a new LSF as ĝ(u) = g(u; λ) = R(u; λ) − Q(u; λ) with 
the failure domain of Θ = {ĝ(u) = g(u; λ) ≤ 0}. For example, based on 
the specification of the in-hand problem, one of the forms of the per-
formance functions in Table 1 may be used to obtain a weakened system 
in which the scaled function meets the original LSF when λ = 1.

Note that the scaling approach is not limited to the cases presented in 
Table 1. In addition, the scale parameter may be used to change the 
statistical parameters of the random variables to obtain a weakened 
system.

Now, without losing generality, the failure probability of the system 
can be reformulated using the control variate technique as follows [8]: 

Pf(Ω) = l Pf(Θ) +
1̅̅
̅̅̅̅

2πD
√

⎛

⎝
∫

Ω

exp
{

−
1
2
|u|2
}

du − l

∫

Θ

exp
{

−
1
2
|u|2
}

du

⎞

⎠,

(4) 

in which l is the control parameter. As shown in Table 1, there are 
several alternative approaches for scaling the failure domain. None-
theless, in this section, we focus on a specific case in which the desired 
failure domain is obtained from the LSF of ĝ(u) = g(u; λ) = g

(
λ− 1u

)

where λ < 1. This is performed to stay close to the concept presented in 
Ref [13] with asymptotic estimations (See also Proposition 1 for more 
details). Mathematically, this approach is equal to the change in vari-
ance of random variables in the original u-space, and therefore, Eq. (4)
can be reformulated as follows: 

Pf(Ω) = l Pf(Θ) +
1̅̅
̅̅̅̅

2πD
√

∫

Ω

(

exp
{

−
1
2
|u|2
}

− λDl ⋅exp
{

−
λ2

2
|u|2
})

du.

(5) 

In Eq. (5), the first term on the right-hand side of the equation (the 
Pf(Θ) with the LSF of ĝ(u) = g(u; λ)) corresponds to a high-probability 
event and is therefore easy to estimate. At the same time, the estima-
tion of the integral which represents the difference of PDFs may be more 
challenging. The geometrical representation of the proposed imple-
mentations is presented in Fig. 2 for the Metaball function (See [37] and 
Section 3.1 for more information).

Consider Ω and Θ respectively as the failure domains of the original 
and fictitious LSFs. By increasing the scale parameter λ from λ1 to 1 (e.g., 
λ = [λ1,λ2,…,λS− 1,λS = 1], λi < λi+1), mapping of the original functions 
to an equivalent space leads to designing S sequences of scaled LSFs 
(with increasing safety domain) between these two LSFs (say g(u; λ1)

and g(u;1)) [13,25]. Using this idea, the failure probability of the scaled 
LSFs can be written as follows: 

Pf(Θ) = P[g(u; λ1) ≤ 0] > P[g(u; λ2) ≤ 0] > ⋯ > P[g(u;1) ≤ 0] = Pf(Ω),

(6) 

This approach is shown in Fig. 3. The same implementations can be 
found in Ref. [13] for deriving the SORM formulation where it is 
assumed that the reliability index for g(u; λ1) = 0 is β = |u∗| = 1.

Instead of relying on the design points to solve the problem, Ref [25] 
suggested an approach for probability estimation using conditional 
probabilities and random sampling, focusing only on the sequence of 
intermediate functions. Considering Ig(u;λ1) as the indicator function, the 

Table 1 
Some alternative approaches for weakening a system and increasing the failure 
probability.

Scaled performance 
function ĝ(u)

Description

1 g(λu) Increasing the variance of random variables

2 g(u) − T(λ) Reducing the performance function based on λ 
Example: ĝ(u) = g(u) − γ(1 − λ) where γ=cte [50]

3 R(uλ) − Q(u) Decreasing the resistance of the systems (or/and) 
increasing the load parameter

4 R(uλ) − Q
(
uλ− 1)

5 T(λ)R(u) − Q(u)
6 R(u) −

T
(
λ− 1)Q(u)

7 T(λ)R(u) −

T
(
λ− 1)Q(u)

Fig. 2. The Metaball function, the original, and the scaled LSF g(u; λ= 0.5) = g
(
0.5− 1u

)
= 0 with higher failure probability.

Fig. 3. Original (g(u; λ5 = 1)) and scaled LSFs (g(u; λi), i = 1 : 4) of Metaball 
functions: The scale parameter λ increased from λ1 = 0.5 to λ5 = 1 which led to 
obtaining nested LSFs between the original LSF of g(u) = g(u; λ5 = 1) = 0 and 
the fictitious function of g(u; λ4 = 0.5) = 0.
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first probability in Eq. (6) can be estimated using crude MCS as: 

Pf(Θ) = P(F1) = P[g(u; λ1) ≤ 0] =
∫

Ig(u;λ1)(u)f(u)du = E
(
Ig(u;λ1)(u)

)
. (7) 

Then, in the case of intermediate LSFs, one may estimate the con-
ditional failure probabilities P(Fi|Fi− 1) for intermediate failure domains 
Fi = {g(u; λi) ≤ 0} using Markov Chain Monte Carlo (MCMC). This leads 
to a total approximation of Lth intermediate LSFs as follows: 

P(FL) = P(F1)
∏L

i=2
P(Fi|Fi− 1), (8) 

which represents the main formulation of the Sequential space conver-
sion method (SESC) [25].

The traditional subset simulation (denoted as Sus) employs inter-
mediate failure domains based on decreasing thresholds (gi) using the 
geometry of performance function (i.e., Fi =

{
g(u; i) ≤ gi

}
), and for-

mulates the failure probability as: 

Pf (Sus) = P(F1)
∏S

i=2
P(Fi|Fi− 1), Fi = {g(u; i) ≤ gi}. (9) 

In contrast to this traditional treatment, as shown in Fig. 4, the 
improved subset simulation (denoted as ISus), uses scaled failure do-
mains (i.e., Fi = {g(u; λi) ≤ 0}) and therefore its estimation of the total 
failure probability is independent of the geometry of performance 
function: 

Pf (ISus) = P(F1)
∏S

i=2
P(Fi|Fi− 1), Fi = {g(u; λi) ≤ 0}, (10) 

which mathematically addresses the main concerns about the transition 
of MCMC toward important failure regions in the subset simulation 
method [25]. The different performances of traditional and improved 
subset simulation (i.e., using Eqs. (9) and (10), respectively) are inves-
tigated in Section 3.1, with details.

Remark 1. It is worth mentioning that the assumption behind the 
SESC (in Eq. (10)) is that the failure domain of scaled LSF is higher than 
the original failure domain and the safety domain of nested LSFs is 
increasing. However, scaling based on ĝ(u) = g

(
λ− 1u

)
may not satisfy 

such a requirement for some problems with island failure domains. 
Therefore, a scaling approach fit to the specification of the in-hand 
problem (e.g., see Table 1) should be used in the analysis to form the 
nested LSFs.

In the proposed formulation, the failure probability of SESC can be 
presented as a function of the scale parameter λ, Pf (ISus) = Pf (λ). In this 
case, the total approximation of failure probability is obtained when λ =
1.

This reformulation of subset simulation presents an analogy with the 
concept of asymptotic approximation in extreme value theory, which 

focuses on the asymptotic behaviors of multi-normal integrals in the tail 
of marginal functions [49,50,52,53].

Considering the point that in the proposed approach, estimation 
starts from λ1 and terminates to λS = 1, it would be possible to shift 
analysis from a numerical to an approximation approach where extreme 
values theory provides an explicit approximation of the failure proba-
bility for λ = 1 as follows [49,50]: 

Pf (λ) ≈ q̃(λ)exp{ − a(λ − b)c
}, λ→1, (11) 

where a, b, and c are constants and q̃(.) is a function that will behave 
very much like a constant [49]. In this approach, Pf (λ) reflects the basic 
assumption of an asymptotic Gumbel distribution of the extremes which 
has proven enough flexible for all cases considered so far [49,50].

According to the proposed perspective, when the scale parameter 
approaches one, Eq. (10) and (11) present the same value (i.e., 
Pf (ISus) ≈ q̃⋅exp{ − a(λ − b)c

}). Based on this analogy, one is only 
required to estimate a few terms of Eq. (6) and then, by estimating the 
parameters of Eq. (11), extrapolate the failure probability for λ=1. For 
this purpose, estimating the first T probabilities of Eq. (6), we may 
consider scale factors λ = [λ1, λ2,…, λT− 1, λT] and the corresponding 

failure probabilities Y (e.g., Y(1) = P(F1) and Y(j) = P(F1)
∏j

i=2
P(Fi|Fi− 1)

where j = 2, 3,…, T) as the input and output to estimate parameters of 
the Eq. (11) and extrapolate failure probability as follows: 

Pf (Asymptotic) ≈ qexp{ − a(λ − b)c
}, (12) 

where the parameters of the proposed extrapolation function, i.e., θ = (q,
a, b, c), can be estimated by minimizing the mean square error between 

the log scale of two sides of Eq (12) as follows [50]: 

Find θ = (q, a, b, c) (13) 

Minimize :
∑T

i=1

(
Log

(
Pf (λi)

)
− Log(q) + a(λi + b)c)2 

Once the parameters are obtained through optimization, the total 
failure probability can be extrapolated for λ = 1 as follows: 

Pf (Asymptotic#1) ≈ qexp( − a(1 + b)c
), (14) 

The Asymptotic subset simulation (Asus) is schematically presented 
in Fig. 5.

Proposition 1. The second-order reliability method (SORM) [13] is a 
specific version of the Eq. (11).

Proof. Following the implementations presented in Section 2.1, for a 
problem with LSF of g(u) and very small failure probability (i. 
e., βg(u)→∞), one can present a weakened version of a system with the 
performance function of ̂g(u) and reliability index of βĝ(u) = 1. Then, the 

Fig. 4. Improved subset simulation (SESC): Employing scaled intermediate LSFs for the transition of MCMC samples toward failure regions.
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scale parameter λ =
βĝ(u)
βg(u)

can be used to design a set of nested LSFs with 

increasing safety domain (then, one obtains 1
βg(u)

< λ < 1 ). On the other 

hand, for a random variable with standard normal PDF, using Mill’s 
ratio, one gets: 

Φ(− β) ≈
β
̅̅̅̅̅̅
2π

√ .exp
{
− 0.5β2}(β→∞). (15) 

As a result, by employing a = 0.5, b = β+ 1, c = 2, and q =

β− 1

̅̅̅̅
2π

√
⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏n− 1

i=1
(1− κi)

√ (κ represents the curvature of function) in Eq. (11), one 

obtains: 

Pf (Asymptotic) ≈
β− 1

̅̅̅̅̅̅
2π

√
⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏n− 1

i=1 (1 − κi)

√ exp
{
− 0.5β2}, λ→1. (16) 

that is the main formula of SORM: 

Pf (SORM) ≈
β− 1

̅̅̅̅̅̅
2π

√
⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏n− 1

i=1 (1 − κi)

√ exp
{
− 0.5β2} = Φ(− β)|J|− 1/2

, (17) 

Fig. 5. Concept of Asymptotic subset simulation (Asus): By employing governing equations in extreme values theory and asymptotic approximation, only a few steps 
of subset simulation (with scaled LSFs) could be enough to extrapolate small failure probabilities.
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where J =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏n− 1

i=1
(1 − κi)

√
√
√
√ .

Using the proposed implementations, one may also review the 
concept of SORM formulation from the perspective of extreme values. As 
a main issue, by focusing on the scale factor λ =

βĝ(u)
βg(u)

, one may find that 

the SORM in Eq. (17) is built upon the following (hidden) assumption: if 
βg(u) > βĝ(u) then P(g(u) ≤ 0) < P(ĝ(u) ≤ 0).

However, similar to that presented in Remark 1 for SESC, for the 
mentioned scaling approach, this assumption may no longer hold for 
some problems (e.g., island failure functions). For such functions, even if 
βg(u) > βĝ(u), we don’t necessarily obtain P(g(u) ≤ 0)<P(ĝ(u) ≤ 0) which 
is the necessary condition of the asymptotic analysis.

Therefore, a richer formulation for asymptotic analysis requires the 
design of scaled LSFs based on the failure probabilities (and not the 
reliability index) using a scale approach that fits the specification of the 
problem (and not only one certain scaling approach). It is worth 
mentioning that, besides a suitable scaling approach, using the general 
reliability index in assumptions (βg(u) = − Φ− 1( Pf(Ω)

)
> − Φ− 1( Pf(Θ)

)
=

βĝ(u)) may also fix the issue.
Nonetheless, since SORM only uses the original LSF g(u) in analysis 

(and not scaled LSFs), the mentioned formulation drawback does not 
affect its reliability results.

Remark 2. Proposition 1 and Section 2.1 reveal that the proposed 
asymptotic subset simulation and SORM share the same formulation and 
therefore, if we consider the random sampling in subset simulation 
(using a suitable scaling approach) as a kind of optimization approach 
looking for the important failure regions, a few steps of the (random) 
search process could be enough to approximate a small failure 
probability.

Proposition 2. In case of problems where MCMC properly conducts 
random samples toward important failure regions, the extrapolation may be 
used in traditional subset simulation and sequential importance sampling to 
approximate the target failure probability.

Proof. As presented in Eq. (9), traditional subset simulation employs 
intermediate failure domains based on the geometry of the performance 
function Fi =

{
g(u; i) ≤ gi

}
. In the first step of this method, let’s consider 

F1 = {g(u;1) ≤ g1} with threshold g1 as the failure domain Θ in Eq. (3): 

Pf(Θ) = P(F1) = P[g(u;1) ≤ g1] =

∫

Θ={g(u;1)≤g1}

f(u)du = E
(
Ig(u;1)(u)

)
.

(18) 

Then, by using intermediate thresholds gi {i = 1,2, …, m}, one may 
define the scale parameter λi as a function of gi as follows: 

λi =

⎛

⎜
⎜
⎝

1
g i
g 1

+ 1

⎞

⎟
⎟
⎠

0.25

. (19) 

In the proposed equation, λi starts from λ1 = 0.84 (since in the first 

step, we obtain λ1 =

(
1

1+1

)0.25

= 0.84) and after m steps, when the 

threshold gi meets the original failure domain, λi approaches to one (i.e., 

when gm = 0, we obtain λi =

(
1

0+1

)0.25

= 1). Therefore, just by per-

forming a few steps of traditional subset simulation, one may form two 
vectors for λ and Pf (λ) to use the extrapolation formula of Eq. (11) for λi 

= 1 (which corresponds to gm = 0): 

Pf (Sus) = P[g(u;m) ≤ 0] ≈ q̃⋅exp{ − a(1 − b)c
}, λ→1. (20) 

The same implementation can be presented for sequential 

importance sampling methods. To meet this aim, let’s call the Pf(Θ) of Eq. 
(3) the “relaxed failure probability” which is easy to estimate, and call 
the scale factor parameter λ the “relaxation parameter”. Then, as 
explained in Ref. [54] in detail, by presenting ηj

(
u; λj

)
=

Ig(u)≤0(u)f
(
u; λj

)
, j = 1, 2, ..., S and employing an optimal probability 

density function as follows: 

k∗
j
(
u; λj

)
=

ηj
(
u; λj

)

Pj
=

Ig(u)≤0(u)f
(
u; λj

)

∫
Ig(u)≤0(u)f

(
u; λj

)
du

, j = 1,2, ...,T. (21) 

Here, one may design a set of “less relaxed” (say intermediate) 
probabilities between the Pf(Θ) and Pf(Ω) (for λ = [λ1,λ2,…,λS− 1,λS = 1]) 
and use sequential sampling to provide an approximation of failure 
probability as a function of the parameter λ: 

Pf (IS) = Pf (λ) = P(F1)
∏S− 1

i=1

f
(
u; λj+1

)

f
(
u; λj

) k∗
j
(
u; λj

)
. (22) 

As a result, according to the explanations presented for subset 
simulation, by estimating a few terms of Eq. (14), one may use the first T 
parameters λ (e.g., λ1 > λ2 > … > λT) and corresponding probabilities 

(e.g., P(F1) > P(F2) > … > P(FT) = P(F1)
∏T− 1

i=1

f
(
u; λj+1

)

f
(
u; λj

) k∗
j
(
u; λj

)
) as input 

and use Eq. (11) to extrapolate the total failure probability for λS = 1.
The same implementations may be used for different versions of 

sequential sampling methods [36].
We should note that using a kernel density function, an attempt to 

extrapolate the PDF of marginal function by traditional subset simula-
tion is proposed in Ref [55] (which is technically and conceptually 
different from the suggested approach). However, the main problem 
regarding using traditional subset simulation (and sequential impor-
tance sampling) for approximation of the total failure probability is that 
the topology may misconduct MCMC samples to find important failure 
domains (as clarified in Ref. [37]). Besides, in the case of Proposition 2, 
the scaling depends on the topology of the performance function which 
may be very different in the vicinity of the origin and the LSF.

Therefore, although extrapolation of traditional subset simulation 
may properly work for many problems, it fails to solve intricate func-
tions and the formulations explained in Proposition 2 cannot be 
considered as a general solution for Eqs. (1) and (2).

2.2. Alternative extrapolation functions and ensemble averaging model

In the proposed framework, Eq. (12) represents a four-parameter 
Gumbel distribution for the approximation of the tail of the marginal 
function in the failure domain and, as explained in Ref. [49], the 
mentioned equation is flexible for all (rare event) cases considered so 
far. Nonetheless, there are some other alternative functions (with few-
er/more parameters) that may be used for extrapolation. For instance, 
the following function is suggested by Butcher [45] to exploit the 
asymptotic behavior of the generalized reliability index of scaled LSFs: 

β(λ) ≈ aλ +
b
λc . (23) 

The parameters θ = (a, b, c) in Eq. (23) can be obtained by using a 
parameter estimation approach for a few scale factors and correspond-
ing probabilities obtained from Eq. (10). Then, asymptotic approxima-
tion for the problem can be estimated as: 

Pf (Asymptotic#2) ≈ Φ(− a − b). (24) 

Separate from this approach, the comparison of the SORM formu-
lation and the extrapolation function of extreme values provides the 
opportunity to study Eq. (11) using the results of Proposition 2. For 
example, the comparison reveals that ̃q(λ) in Eq. (11) mainly applies the 
effect of the curvature of the LSF function (at the important failure re-
gion) to the total probability while the exponential term exp{ −
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a(λ − b)c
} mainly applies the effect of distance of the important failure to 

the origin. Therefore, by employing the results of Proposition 1, one may 
conclude that q̃(λ) is also a function proportional to the inverse of the 
reliability index (the reliability index is also related to the parameter b in 
Eq. (11)) and therefore, it would be more appropriate to represent the 
general form of Eq. (11) as follows: 

Pf (λ) ≈ q̃(λ, b)exp{ − a(λ − b)c
}, λ→1 (25) 

On the other hand, since the curvature of LSFs is a function of the 
scale parameter λ, this study also investigates the following function for 
extrapolation: 

Pf (λ) ≈ q̃(λ, b)⋅exp( − a(λ + b)c
), λ→1 (26) 

q̃(λ, b) =
(λ + b)− 1

̅̅̅̅̅̅
2π

√
⋅j e

,

where θ = (a, b, c, j , e) are the parameters of the proposed extrapolation 
function which can be estimated using the following optimization pro-
cess: 

Find θ = (a, b, c, j , e) (27) 

Minimize :
∑T

i=1

(

Log
(
Pf (λi)

)
− Log

(
(λi + b)− 1

̅̅̅̅̅̅
2π

√
⋅j e

)

+ a(λi + b)c

)2 

Then, the failure probability can be extrapolated for λ = 1 as follows: 

Pf (Asymptotic#3) ≈
(1 + b)− 1

̅̅̅̅̅̅
2π

√
⋅j e

⋅exp( − a(1 + b)c
). (28) 

Using such functions provides the opportunity to obtain more in-
formation about the problem at hand. For instance, we also use fixed 
values for parameters a and c as 0.5 and 2, and employed the following 
function for extrapolation where the scale parameter λi is multiplied to 
the parameter b as follows: 

Pf (λ) ≈
b− 1
̅̅̅̅̅̅
2π

√
(λi⋅a)

⋅exp

(

−
|λi⋅b|2

2

)

, λ→1 (29) 

that results in the following asymptotic approximation of the failure 
probability: 

Pf (Asymptotic#4) ≈
b− 1
̅̅̅̅̅̅
2π

√
⋅a

⋅exp

(

−
|b|2

2

)

, (30) 

which comparison of Eq. (30) with SORM may be used to employ 

extrapolation to exploit some information about the parameters of the 
problem. For example, for problems with one design point, we get |

u∗| = b and 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏n− 1

i=1
(1 − κi)

√
√
√
√ =

Pf (Asymptotic#4)
Φ(− b) that represents the reliability 

index and curvature of the LSF at the design point, respectively.
Besides the mentioned extrapolation functions, three other asymp-

totic formulas are also suggested in this study (See Table 2) and their 
parameters can be estimated according to the implementations proposed 
in this section. Here, because each extrapolation function may tend to 
underestimate/overestimate the true failure probability of the in-hand 
problem, the average ensemble model of the proposed functions is 
suggested as the total approximation of the failure probability by the 
proposed approach: 

Pf ≈ E
(
Pf(λ)

)
(31) 

In cases where a certain extrapolation function presents results too 
far from other functions, the practitioner may delete the result of the 
mentioned function from the analysis.

2.3. Generalization of the framework

A failure probability is generally a function of parameters θ = (θ1, …, 
θk) and, as explained in [57] detail, a richer presentation of the failure 
probability would be as follows: 

P(F|θ) =
∫

{g(u,θ)≤0}

f(u|θ)du. (32) 

Let’s assume that we have changed the parameters of the problem 
from θ to θʹ for obtaining a weakened version of the system with a higher 
failure probability. This change would lead to obtaining a new failure 
probability as: 

P(F|θʹ) =
∫

{g(u,θʹ)≤0}

f(u|θʹ)du. (33) 

In this formulation, as explained in Section 2.1, it is aimed to have 
two main specifications: 

1) By solving Eq. (33), we obtain P(F|θʹ)≫P(F|θ)).
2) The original failure domain (in standard normal space) is a subset of 

the new failure domain g(u, θ́ ) ≤ 0, and the new LSF reflects a scaled 
version of the original LSF.

Based on the specification of the in-hand problem, different scaling 

Table 2 
Suggested extrapolation functions for failure probability approximation.

Extrapolation Function Pf(λ) parameters Cost function for parameter estimation using λi and Pf (λi)

1 qexp( − a(λi + b)c
) [49] (q, a, b, c) ∑T

i=1

(
Log

(
Pf (λi)

)
− Log(q) + a(λi + b)c)2

2 Φ(− a − b) [45,56] (a, b)
β(λ) ≈ aλ+

b
λ́ c

3 exp( − a(λ + b)c
)

̅̅̅̅̅̅
2π

√
⋅(λ + b)⋅j e

(a, b, c, j , e) ∑T
i=1

(

Log
(
Pf (λi)

)
− Log

(
(λi + b)− 1
̅̅̅̅̅̅
2π

√
⋅j e

)

+ a(λi + b)c

)2

4
exp

(

−
|λi⋅b|2

2

)

̅̅̅̅̅̅
2π

√
⋅a⋅λi⋅b

(a, b) ∑T
i=1

(

Log
(
Pf (λi)

)
− Log

(
(λi⋅b)− 1
̅̅̅̅̅̅
2π

√
a

)

+
|λi⋅b|2

2

)2

5
exp

(

−
|λi⋅b|2

2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πλi⋅b⋅a

√

(a, b)
∑T

i=1

⎛

⎝Log
(
Pf (λ)

)
− Log

⎛

⎝(2πλi⋅b⋅a)−
1
2

⎞

⎠+
|λi⋅b|2

2

⎞

⎠

2

6 exp
(
− |λi⋅b|2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅
2π⋅b⋅a

√

(a, b)
∑T

i=1

⎛

⎝Log
(
Pf (λi)

)
− Log

⎛

⎝(2π⋅b⋅a)−
1
2

⎞

⎠+ |λi⋅b|2
⎞

⎠

2

7 exp(q)exp( − a(λi + b)c
) (q, a, b, c) ∑T

i=1

(
Log

(
Pf (λi)

)
− q + a(λi + b)c

)2
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approaches can be used for obtaining P(F|θʹ) with LSF of g(u,θʹ). Also for 
this case, a few approaches are suggested in Table 1. Using the 
mentioned implementations, compared to the P(F|θ), the failure prob-
ability P(F|θʹ) can be very efficiently approximated by crude MCS.

By mapping this problem into standard normal space, since 
1̅̅̅̅
2πD√ exp

{

− 1
2|u|

2
}

is not a function of θʹ, the dependence of the failure 

probability on the parameter θʹ appears only in the LSF and therefore, 
this generates a new LSF for the problem which can be presented as 
ĝ(u, θ́ ) (one also needs to map the failed samples obtained in Eq. (33) to 
the new space). Now, it is only required to present parameter vector θ́  as 
a function of λ, denoted as θʹ(λ), in such a manner that for λ = 1 we get 
θʹ(1) = θ (i.e., if λ→1, then θʹ→θ). For such a situation, the corre-
sponding failure probability for any parameter λL can be estimated using 
SESC formulation: 

P(F|θʹ(λ(L))) = P(F|θʹ(λ(1)))
∏L

i=2
P(Fi|Fi− 1), Fi = {g(u, θʹ(λ(t))) ≤ 0}. (34) 

Therefore, for each value in the vector of λ = [λ1,λ2,…,λT ], we obtain 
a corresponding failure probability as P(F|θʹ(λ))= [P(F|θʹ(λ(1))), 
P(F|θʹ(λ(2))),…, P(F|θʹ(λ(T)))]. Then, according to the implementations 
presented in the former section, the vector λ and its corresponding 
failure probabilities can be used to extrapolate the small probability 
P(F|θʹ(1))= P(F|θ) for λ = 1 using the following general formula (See 
Section 2.2, for more suggestions): 

P(F|θʹ(λ)) ≈ q̃(λ)exp{ − a(λ − b)c
}, λ→1, (35) 

where this study suggests using the ensemble of alternative extrapola-
tion functions of Table 2 to approximate the total failure probability of 
the problem, noting the point that when an extrapolation model fails to 
properly determine the probabilities of the employed support points, it is 
required to delete the result of the mentioned function from the analysis.

2.4. Statistical properties of estimation

Reliability analysis by the proposed approach involves performing 
two main processes, namely, (1) subset simulation using scaled LSFs 
(SESC approach) and, (2) considering failure probabilities of a few 
scaled SLFs as the support points to extrapolate total failure probability 
by the ensemble of asymptotic formulas provided in Table 2. To estimate 
the confidence intervals of the proposed approach, one may estimate the 
confidence intervals for each extrapolation function, separately, and 
then use the minimum of all obtained interval bounds as the lower 
bound of total probability (denoted by CI− ) and the maximum values of 
the confidence interval as the upper bound as CI+. In this context, the 
confidence interval of each extrapolation function can be estimated as 
follows:

If one conducts the crude Monte Carlo for estimation of P(F1), the 
coefficient of variation δ1 can be estimated as follows: 

δ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − P(F1)

NP(F1)

√

, (36) 

where N represents the total number of samples in the step. As presented 
in [58], in the case of sequential sampling, the δj of conditional proba-
bilities P

(
Fj
⃒
⃒Fj− 1

)
j = 2,…, M can be estimated as: 

δj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − P

(
Fj
)

NP
(
Fj
)
(

1 + γj

)
√

, (37) 

where 

γk = 2
∑
N
NS

− 1

k=1

(

1 −
kNS

N

)

ρj(k). (38) 

where NS is the number of seeds of MCMC and ρj(k) is the average k-lag 
auto-correlation coefficient of the stationary sequences and can be 
estimated from the samples [58]. By assumption of independence of the 
conditional probabilities, the coefficient of variation of failure proba-
bility, Cv, of both SESC and traditional subset simulation can be esti-
mated as [24]: 

Cv2 =
∑M

j=1
δ2

j . (39) 

Noting the point that the proposed estimation tends to underestimate 
the true coefficient of variation of failure probability [58,24]. Also in 
this study, one gets the following approximation for estimation of Cv for 
the failure probabilities obtained by simulation (for use as the support 
points for extrapolation): 

Cv2 =
1 − P(F1)

NP(F1)
+
∑M

j=2
δ2

j . (40) 

For estimation of the confidence interval for a predicted value of the 
failure probability provided by the optimal curve, once the Cv(λ) is 
estimated for T support points, one may use λ = [λ2,…, λT− 1, λT ] as input 
and the corresponding Cv(λ) as output (i.e., Y(j) =

∑j
i=1 δ2

i where j =2: 
T) to extrapolate Cv(λ) for λ = 1 using linear regression (the reason is 
that the parameters in Eqs. (37) and (38) are almost fixed values in each 
subset and then, one may find Cv(λ) follows the linear function for j=2 to 
m conditional probabilities). Assuming that sample data is normally 
distributed, a fair approximation of a 95 % confidence interval of each 
predicted probability can be estimated as CI95%(λ) = [C− (λ),C+(λ)]: 

C±(λ) = P̂f (λ)
(
1 ± 1.96⋅Cv

(
P̂f (λ)

))
. (41) 

Noting the fact that in engineering applications, the upper bound of 
probability (minimum Reliability index) is more important than the 
lower bound, one may neglect the potential error associated with very 
small probabilities (See Ref. [57] for more detail) by restricting the 
probability in the lower bound to zero.

As explained former, once the confidence interval for each extrapo-
lation function is estimated by the abovementioned approach, one may 
use the minimum and maximum of the obtained values as the confidence 
interval bounds of total failure probability.

3. Verification from the No-Free-Lunch perspective

According to the No-Free-Lunch theory in reliability analysis (NFLR) 
[38], no universal algorithm performs well across all problem types and, 
if a method is effective for a specific class of problems, it will perform 
poorly on the remaining problems. In this section, we analyze both the 
strengths and limitations of the proposed approach in various reliability 
problems. We present cases where it performs well, identify examples 
where state-of-the-art methods may outperform it, and provide a con-
ceptual comparison with existing approaches.

In the optimization process of Eq. (13), the lower bound and upper 
bounds of parameters θ = (q, a, b, c) are considered as LB=[0,0,-8,0]; 
UB=[20,20,0,4], respectively. Furthermore, in the case of Eq. (26), LB=
[0, 0] and UB=[20, 5] are used for the parameters of j and e.

3.1. Evaluating the efficiency of the proposed framework

The approach #1 is used for scaling the performance function of this 
subsection (see Table 1) where the LSF is scaled as g(λu). The initial scale 
parameter is set to λ1 = 0.5 and the other parameters including the 
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number of support points are reported for each example, separately. As 
explained in Section 2.2, the ensemble average of the suggested 
extrapolation function is used as the total approximation of the failure 
probability.

3.1.1. Intricate numerical example
In the first example, we aim to show the efficiency of the proposed 

approach compared to traditional/improved subset simulation and 
asymptotic sampling. To meet this aim, reliability analysis of the 
Metaball test problem [37] with the standard normal random variables 
and the following LSF is investigated: 

g(u1, u2) =
30

(
4(u1+2)2

9 +
u2

2
25

)2

+ a
+

20
(

(u1 − 2.5)2

4 +
(u2 − 0.5)2

25

)2

+ a
− 5, (42) 

The problem is studied for two situations, namely: Case 1, for a = 1,
and, Case 2, for a = 2 (a is the parameter of the denominator in Eq. 
(42)). The main specification of this example is having several important 
failure regions in different directions and also, its intricate geometry of 
the performance function that produces difficulties for search algo-
rithms to find most important failure region of the problem (See Fig. 6).

This problem is considered in Ref [37] as a counter-example of the 
subset simulation since, as shown in Fig. 7, the traditional method (and 
also sequential IS [36]) fails to provide a proper approximation of the 
failure probability (for both Cases 1 and 2). The reason is that the 

topology of the performance function conducts MCMC samples toward 
the un-important failure region of the problem which results in an 
improper approximation of total failure probability.

However, as clarified in [25] and shown in Fig. 7, performing subset 
simulation based on the SESC approach addresses the above-mentioned 
drawback of the traditional approach, and using scaled LSFs would lead 
to transitions of MCMC toward the important failure region of the 
problem. As previously illustrated in Fig. 5 and reported in Table 3, by 
employing only a few steps of improved subset simulation, the proposed 
approach provides a suitable approximation of the failure probability 
with a portion of the function call required in the SESC approach. Be-
sides, the function call of the method would be appropriately less than 
the asymptotic sampling [45] (less than 1/3) which requires performing 

Fig. 6. Left: The geometry of the Metaball function (with parameter a=1) and Right: the LSF and most important failure region of the problem.

Fig. 7. Left: Traditional subset simulation and sequential IS fail to properly solve the Metaball problem. Right: Improved subset simulation (SESC) with scaled LSFs as 
intermediate thresholds.

Table 3 
The reliability results of the Metaball function for parameter a=2 (the same 
accuracy and function call obtained for a=1).

Method Pf β #g-call

MCS 1.5×10− 5 4.17 107

Subset simulation 2.58×10− 7 5.02 5500
Sequential IS 1.69×10− 7 5.01 10,000
SESC 1.55×10− 5 4.16 7321
Asymptotic sampling 8.28×10− 6 4.31 9000
Asus 1.21×10− 5 4.22 2367

M. Rashki et al.                                                                                                                                                                                                                                 Reliability Engineering and System Safety 260 (2025) 111034 

9 



separate MCS (for scale values of 0.25, 0.33, 0.4, and, 0.5) to obtain 
support points.

In Table 3, we have not reported the results of design point-based 
methods mainly because the accuracy of the obtained results and the 
number of function calls of these approaches highly depend on the de-
cisions/skills of the practitioner. To clarify this issue, in the following, 
we investigated the Metaball problem for two mentioned cases: 

• Case 1 with a=1 in Eq. (42), as follows: 

g(u1, u2) =
30

(
4(u1+2)2

9 +
u2

2
25

)2

+ 1
+

20
(

(u1 − 2.5)2

4 +
(u2 − 0.5)2

25

)2

+ 1
− 5,

(42A) 

For solving the proposed example using a design point-based 
approach, a practitioner (say P#1) may decide to start the search pro-
cess from the origin for a gradient-based optimization approach (e.g., 
SQP method) which is a popular approach in reliability analysis). As 
shown in Fig. 8, this idea would lead to properly finding the important 
failure region of the problem. Then, Line sampling, importance sam-
pling, or SORM may be used in analysis to apply the effect of the cur-
vature in analysis (e.g., by addition of around 500~1000 function calls 
in estimation) which would lead to a suitable approximation of the 
failure probability of the problem.

In this case, if a practitioner (say P#2) initializes the optimization 
process from different random points (that is a wise approach in reli-
ability analysis), obtains four different design points in different di-
rections within about 600 function calls (See Fig. 9). Then, since one is 
not aware of the shape of LSFs around each design point and it is not 
clear which domains will have maximum participation in the total 
failure probability, it would be required to perform three extra 

Fig. 8. Performing a gradient-based optimization algorithm from the origin 
would lead to properly finding important failure regions of Case 1 of the 
Metaball function (Eq. 42).

Fig. 9. History of 10 different optimization processes with random initial 
search points for Case 1 of the Metaball function.

Fig. 10. History of design point search process for Case 2, initialized from the 
origin, which results in a wrong approximation of the important failure region.

Fig. 11. History of 10 times optimization process with random initial search 
points for Case 2 of Metaball function: a wrong approximation of important 
failure region and failure probability.
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postprocessing (e.g., Line sampling, importance sampling or SORM) for 
the other design points to check the curvature and obtain probability. 
This would lead to an approximation of the failure probability with 
much more functional calls compared to the decision of P#1. 

• Case 2, with a=2 in the denominator, as follows: 

g(u1, u2) =
30

(
4(u1+2)2

9 +
u2

2
25

)2

+ 2
+

20
(

(u1 − 2.5)2

4 +
(u2 − 0.5)2

25

)2

+ 2
− 5,

(42B) 

In this case, in contrast with Case 1, not only starting a gradient- 
based search process from the origin but also the addition of 10 times 
optimization from different random points would not be enough to find 
important failure region of the problem for probability estimation (See 
Figs. 10 and 11). Therefore, in Case 2, relaying on the former experience 
of Metaball functions (i.e., Case 1) would lead to a wrong approximation 
of failure probability and proper reliability analysis requires optimiza-
tion with random initial points which considerably increases the func-
tion call of analysis.

This example clearly shows that, in case of such problems with 
intricate geometry and nonlinear LSFs, not only one search process but 
also 10 times optimization may not be enough/wise in reliability anal-
ysis. On the other hand, there is no clear answer to this question: how 
many optimization processes with random initial points are required to 
find all design points of a problem (which highlights the requirement of 
having a skilled optimization practitioner in reliability analysis)? Be-
sides, having several design points in hand, performing postprocessing 
by SORM/Line sampling would be necessary for probability approxi-
mation which considerably increases the function call of analysis.

Using the proposed implementations, we also aim to clarify major 
drawbacks of employing gradient-based methods in analysis: 1) even by 
performing a huge number of function calls, there is no guarantee of 
finding all important failure regions of a problem and therefore, the 
accuracy of a design point-based method may be always in doubt, 2) the 
(huge) number of function calls required in search process cannot help 
the practitioner to obtain information about the curvature of LSF. For 
instance, while many points are required in the design point search 
process to discover failure regions, the function calls and information 
obtained in the search process are useless in SORM/Line sampling and 
the method disregards these function calls in their probability 
estimations.

However, if we consider the random sampling process in subset 
simulation as a kind of search process (e.g., see [38,53]), as explained in 
Section 2 and shown by this example, the suggested asymptotic 
approach uses the information obtained during a few steps of the search 
process to approximate small failure probabilities.

3.1.2. High-dimensional engineering problem
This example investigates the performance of the proposed frame-

work for a problem with 1501 dimensions: calculating the first excursion 
probability of a single-degree-of-freedom (SDOF) non-linear oscillator 
subject to a stochastic force. The SDOF is assumed to possess a bilinear 
conservative restoring force fS, as shown in Fig. 12.

The stiffness of the oscillator is k1=40,000 [N/m] whenever the 
absolute value of the displacement is equal or smaller than k1=0.016 
[m]; otherwise, the stiffness is k2=0.25 k1. The mass of the oscillator is 
m=10,000 [kg] and the damping ratio is d=2 % (concerning the stiffness 
k1). The force applied over the stiffness is modeled as a discrete white 
noise of spectral intensity S=10,000 [N^2 s]. The duration of the load is 
15 [s] and time is discretized at intervals of 0.01 [s], leading to a total of 
1501 random variables for the discrete representation of the stochastic 
process. The failure event involves the absolute displacement of the 
SDOF exceeding a threshold δ=0.032 [m].

The problem is solved by the crude MCS, SESC, traditional subset 
simulation, sequential IS and suggested extrapolation approach for 
different numbers of support points, and the results are reported in 
Fig. 13 and Table 4. Results confirm the robustness of the proposed 
approach for solving this high-dimensional problem noticing the point 
that the extrapolation by using few support points significantly reduced 
the function call of SESC (about 45 % and 70 % for 15 and 8 support 
points, respectively). The performance of the proposed problem is pre-
sented in Figs 14 and 15.

Based on the explanations presented in former examples, one may 
conclude that the proposed approach provides a suitable trade-off be-
tween the function call of analysis and accuracy. Ensuring the accuracy 
of results for a design point-based method requires performing several 
optimization algorithms to find all design points, which greatly in-
creases the function calls for such high-dimensional problems.

3.2. Main limitations and potential inefficiencies of the method

Following the NFLR, to achieve optimal results, the practitioner 
should choose an approach fit to the structure of the in-hand problem 

Fig. 12. Bilinear restoring force in the SDOF problem.

Fig. 13. Results of MCS for SDOF non-linear oscillator.

Table 4 
The reliability results of the SDOF non-linear oscillator.

Method Pf β #g-call

MCS 6.95×10− 6 4.35 2×107

Subset simulation 8.19×10− 6 4.31 8693
Sequential IS 6.14×10− 6 4.37 6000
SESC 7.87×10− 6 4.45 5456
Asus (15 NSPs*) 3.91×10− 6 4.47 2523
Asus (8 NSPs) 1.17×10− 6 4.57 1319

* NSPs=Number of support points
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which requires familiarity with the pros and cons of existing reliability 
methods. Therefore, identifying the limitations of each method would 
help practitioners make better decisions in reliability analysis. In the 
case of the proposed framework, the assumptions behind the method 
raise two main limitations, which we have discussed in detail. Besides, in 
the case of certain problems, the other extrapolation-based approaches 
present more efficiency than the proposed approach clarified in this 
section.

3.2.1. Problems with high failure probabilities
The basic assumption of the Gumbel distribution is used to approx-

imate failure probabilities, which is more suitable for extremes and 
small probabilities (in other words, the method is calibrated only for 
small probabilities.). In case of problems with high failure probabilities, 
the marginal function’s PDF may not follow the Gumbel distribution, 
and therefore, the proposed extrapolation cannot be applied to high- 
probability events.

3.2.2. Scaling of the Island-shaped failure regions
In Section 2, to weaken a structural system and explain the concept of 

the proposed framework, we suggested a specific scaling approach, 
g(λu), which is equal to an increase in the standard deviation of random 
variables. While this scaling approach can increase the failure proba-
bility of many problems, following the NFLR, this approach could not be 
the optimal solution for all reliability problems. Specifically, for prob-
lems with island failure domains, increasing the standard deviation of 
random variables may paradoxically decrease the failure probability (i. 
e., Pf(Θ)≪Pf(Ω)), violating the first required condition in Section 2.1. 

Therefore, for problems with the Island function, one requires employ-
ing another solution to weaken the system. Acknowledging this fact, we 
provided a list of potential alternative solutions in Table 1 and Propo-
sition 2, which may be used for reliability analysis based on the 

Fig. 14. Results of Asus in solving SDOF reliability problem using 15 support points.

Fig. 15. Results of Asus in solving SDOF reliability problem using 8 support points.

Fig. 16. 10-story nonlinear frame [59].
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specification of the in-hand problem.
To examine this issue, we analyze Case 2 of Example 1 in Ref [59]. 

The problem is a 10-degree-of-freedom lumped-mass nonlinear frame 
structure subjected to nonstationary ground motions. The schematic 
representation of the structure and the random variables of the problem 
are presented in Fig. 16 and Table 5, respectively.

In the case of this problem, the failure regions appear as island- 
shaped regions, and therefore, increases in the standard deviation of 
random variables (i.e., scaling LSF as g(λu)) do not necessarily increase 
the system’s failure probability, presenting a limitation of the proposed 
scaling approach. Therefore, an alternative scaling method is required 
for reliability analysis within the proposed asymptotic framework.

To solve the problem, using a few MCMC conditional sampling steps, 
we employed traditional subset simulation and adapted the scale factor 

λi =

⎛

⎜
⎜
⎝

1
g i
g 1

+1

⎞

⎟
⎟
⎠

0.25 

to obtain the exceedance probabilities of the problem 

(using the solution presented in Proposition 2). For different numbers of 
support points, the results of the proposed approach are compared with 
the first four central moment-based SGLD (CM-SGLD) and the condi-
tional extreme value distribution (CEVD) method where the latter em-
ploys the first two sampling steps of subset simulation to extrapolate 
probabilities.

The results of the mentioned approaches are presented in Fig. 17. 
According to Ref [59], the CEVD and CM-SGLD methods provided a 
proper approximation of exceedance probabilities using only 950 and 
1000 function calls. In the case of the proposed approach, based on the 
curve fitting technique we have used in our study, at least three/four 
steps of subset simulation were required (equal to 1400 function calls 
[59]) to obtain the needed support points for achieving results using Eq. 
(20).

This example reveals that g(λu) fails to properly scale the LSF of these 
types of functions for extrapolation purposes and alternative scaling 

Table 5 
The random variables of the frame problem.

Parameter Distribution type Mean Coefficient of variation

m1 ∼ m3 (kg) Lognormal 1.2×105 0.1
m4 (kg) Lognormal 1.3×105 0.1
m5 (kg) Lognormal 1.1×105 0.1
m6 ∼ m7 (kg) Lognormal 1.0×105 0.1
m8 ∼ m9 (kg) Lognormal 1.1×105 0.1
m10 (kg) Lognormal 0.5×105 0.1
Ec (Pa) Lognormal 3.0×1010 0.1

Fig. 17. Exceedance probabilities of the nonlinear frame: Four (Left) and six (Right) steps of traditional subset simulation are used as the support points in the 
proposed extrapolation approach.

Fig. 18. Example of problems with smooth geometries: For easily predictable problems, alternative algorithms may present more efficiency compared to the pro-
posed approach.
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approaches (scale factor of λi =

⎛

⎜
⎜
⎝

1
gi
g1
+1

⎞

⎟
⎟
⎠

0.25 

in this case) should be used 

to solve the problem within the proposed framework. Besides, since the 
geometry of the performance function is smooth enough, the other 
extreme values approaches such as the CEVD method (see [59]) present 
more efficient performance compared to the proposed approach.

3.2.3. The existence of efficient alternative algorithms for problems with 
smooth geometries

The proposed asymptotic approach is designed to explore the failure 
regions of scaled functions (often requiring over 1000 function calls) to 
approximate small probabilities. It is well-suited for intricate problems 
with complex geometries. However, for easily predictable problems 

Table 6 
The reliability results of the parabola function.

Method Pf δ #g-call

MCS* [55] 3.54×10− 4 0.017 107

Subset simulation [55] 3.20×10− 4 0.184 4312
SESC 1.36×10− 4 0.284 4306
DEA [55] 3.75×10− 4 0.618 1348
Asus 2.12×10− 4 CI=[2.14×10− 5, 5.38×10− 4] 2352

* Performing MCS with 2,000,000 and 3,000,000 samples, the failure proba-
bility obtained by the authors was Pf = 1.27×10− 4.

Fig. 19. Influence of the initial scale parameter λ and the number of support points on the confidence interval of failure probabilities.
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with smooth geometries, the proposed approach may be inefficient 
compared to some state-of-the-art methods, specifically those tailored 
for such well-behaved functions.

To investigate this issue, a parabola function with standard Gaussian 
random variables and two important failure regions is investigated [55]: 

y(u) = − g(u) = u2 + 0.5(u1 − 0.1)2
− 7, (43) 

System failure is defined as when y(u) exceeds the threshold b=0 
(see Fig. 18).

To solve such problems, Ref [55] suggested performing a few steps of 
traditional subset simulation and then extrapolating the PDF of the 
function using an adaptive density extrapolation approach (DEA). This 
idea may fail to solve problems with complex geometries (see next 
subsection), however, as shown in Table 6, it works well for easily 
predictable problems with smooth geometries. To solve this problem, 
DEA has used only two steps of traditional subset simulation to solve the 
problem while the proposed approach employs 8 steps of SESC to 
approximate the failure probability with an acceptable confidence 
interval.

To solve the problems, following our experiences and also the 

conclusion of the former studies [43,46], we used scale parameter λ1 =

0.5 in our computations. To provide a more comprehensive under-
standing of how the parameters of the proposed method influence the 
confidence interval of failure probabilities, we have conducted a reli-
ability analysis by solving this example for varying numbers of support 
points and different initial values of the scale parameter, λ1, within the 
SESC method. The corresponding results are illustrated in Fig. 19.

As shown in this figure, selecting an initial scale parameter λ1 that is 
closer to the one leads to a more desirable confidence interval for the 
estimated failure probabilities. However, this improvement comes at the 
expense of increased computational cost, as a finer adjustment of λ1 
reduces the computational effort for probability estimation (i.e., finer λ1 
values would lead to a higher increase in the failure domain). Further-
more, the figure highlights that incorporating a greater number of 
support points enhances the reliability and robustness of the results. 
Nevertheless, the selection of an appropriate number of support points is 
not straightforward and remains a decision that must be carefully made 
by the practitioner, balancing computational efficiency and the desired 
level of accuracy in the estimation process.

Fig. 20. Example of intricate problems: For such problems with complex geometries, the information obtained from random sampling around the mean may not help 
traditional approaches to obtain proper information about the failure regions.
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3.3. Conceptual comparison with the state-of-the-art methods

Generally, the main strategy behind the conditional extrapolation 
approaches discussed in the literature is generating initial random MCS 
samples and using few/one conditional MCMC samplings to guess the 
trend of (the PDF of) the performance function in the next steps and 
estimate probabilities. However, it is important to consider that this idea 
only works for certain classes of problems with smooth geometries. A 
critical question may help us to clarify the issue:

If we have full information about the geometry of a function around 
the mean, can we use it to extrapolate the geometry far from it?

Generally, except for the smooth functions, the geometry of the 
performance function near the mean may be completely irrelevant to the 
regions far from the origin (see discussions in [33,37,53,57]). We have 
also provided a graphical response to this question in Fig. 20.

In the case of the proposed asymptotic approach, the critical question 
would be as follows:

If we have failure information of scaled versions of LSFs, can we use 
it to extrapolate the failure information of the original problem?

In contrast with the state-of-the-art, the extrapolation technique 
suggested in this study follows the Asymptotic approximation theory 
which was employed to introduce the SORM [13] method. The 
Asymptotic theory provides mathematical proofs for the asked critical 
question and shows that scaled LSF can be used to extrapolate the small 
failure probability of a problem. For clarification purposes, Fig. 21
shows how function g3 (presented in Fig. 20) can be scaled to be solved 
by the proposed approach.

Therefore, in the case of small probabilities estimation, when the 
application range of the former related studies is restricted to problems 
with smooth geometries, using a proper scaling approach, the suggested 
approach can be applied to problems with very complex geometries with 
high reliability in results.

4. Conclusions

In this study, we followed the asymptotic perceptions for extrapo-
lation of the reliability results of the subset simulations. First, by 
applying a change in the parameters of the failure probability integral, 
we suggested presenting a weakened version of a system with a high 
failure probability that can be estimated by the crude MCS using 
reasonable function calls. In an equivalent standard normal space, this 
approach would change the LSF (limit state function) of the problem 
from g(u) to ĝ(u). Then, keeping both mentioned LSFs in design space 
and using the scale parameter λ, we suggested designing a set of nested 
LSFs between g(u) and ĝ(u) (with increasing safety domain) in such a 
manner that for λ = 1, one obtains g(u)= ĝ(u). On one side, we have 
shown that MCMC sampling and formulation of the SESC (an improved 
subset simulation) can be used to estimate the failure probability of 
mentioned nested LSFs (See Eqs. 8 and 10). On the other side, the 

extreme values theory provides an explicit exponential function for the 
failure probability of such a problem when λ approaches one (See Eq. 
12). By the combination of these perceptions, we have shown that if a 
few failure probabilities of the nested LSFs are be estimated by former 
(subset simulation), then, the total failure probability can be extrapo-
lated by the latter (asymptotic approximation in extreme values theory).

The results of this combination are technically important because 
they reveal the mathematical connections of the subset simulation and 
asymptotic approaches (e.g., SORM approach) which at first look, seem 
to not have any connections together. Besides, in case of problems with 
one important failure region, one may use a few steps of the subset 
simulation to exploit information about the curvature of the LSF around 
the design point.

We examined the robustness of the method by solving some intricate 
problems. First, the Metaball example is used to show the capabilities of 
the method compared to design point-based methods, traditional subset 
simulation, and asymptotic sampling.

Then, an engineering problem with 1501 dimensions is solved by the 
proposed approach. In these cases, reducing the 40 % up to 90 % of 
function call of the improved subset simulation in the solved examples 
confirms the potential of the method for application in real-world en-
gineering problems.

Finally, we clarified the main limitations of the proposed approach 
and studied the potential inefficiency of the proposed approach 
compared to the state-of-the-art methods. This approach may help 
practitioners make better decisions in reliability analysis facing related 
examples.
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