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33 4 schemes for the propagation of interval uncertainty. This first part of our work
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47 17 of the problem under consideration at an unreasonable computational cost.
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1. Introduction

Many advanced engineering modeling approaches deal with the solutiomsof systems of
partial differential equations (PDEs) that are formulated over contiiuous domains:
Typically, these problems are formulated as:

N,(u;0) = f,x € D, (1)

with boundary condition: ~
B.(u;0)=b,x T, (2)

where N, is a differential operator, D C R¢ d € [1,4] isathe physical domain,
u = u(x) is the solution of the PDE, and 8 = #(x), € R x D is the vector-
valued field representing the parameters in the PDEAdditionally, f = f(x) is the
forcing term on D, and B, is a boundary condition operator which is defined on
the domain boundary I'. Often, such analyses are performed under the assumption
that all parameters 6 can be quantified exactly at aﬁy point @ € D. This is, of
course, unrealistic in engineering pragtice, as we are faced with both the randomness
of the structure and the uncertainty of euriewn observations of it. These phenomena
manifest themselves to us as analysts @s, respectively, aleatory [1] and epistemic
uncertainty [2]. Often, in practice, Both.sources appear at the same time, as we are
looking through imperfect lens (i.e:jelouded by epistemic uncertainty) to a variable
environment [3, 4]. To deal with this situation, research of the last four decades
accumulated in a plethorasof wery powerful, practical and efficient techniques to
propagate both aleatory and epistemic uncertainty, as well as combinations of those.
However, based on oursobservations of published and unpublished works across all
scientific journals related/to uncertainty quantification and reliability analysis, we
observe two commen pitfalls;

e the assumption of a normal distribution for strictly non-negative model inputs
0 ;

e the application of sampling(-like) schemes for the propagation of epistemic set-
valuéd uncertainty.

In this paper, we want to study the assumptions behind these pitfalls, assess their
impact on the analysis results, and illustrate the problematic nature of either of these
pathways.

Coneerning aleatory uncertainty, it is assumed that the parameters @ = 6;, i =
1,...,ng are affected by uncertainty, which is described by means of independent
random variables with probability density function (PDF) fg,(6;). In view of
the assumption of independence, the joint PDF is fg(0) = [[, fe,(6;), where
0 = [0,...,0,,]. The behavior of the system is synthesized in the so-called
performance function g¢(@), which assumes a value equal to or smaller than zero
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whenever a combination of the uncertain input parameters 8 leads to an undesirable
response, for example, loss of serviceability or collapse (see e.g., [55 6]). Thus, the
chance py that the system undergoes an undesirable behavior is given bythe classical
probability integral [7]:
+oo
b= [ 1) se(0)d0. ®)

with fe (@) the PDF describing the aleatory uncertainty in_the parameters 0, and
I(g(0)) the indicator function, which returns 1 when 8 is part of tlie so-called failure
domain F = {6 | ¢(@) < 0}, and which is 0 otherwises™Both methods based
on design-point related approaches [8] and simulation methods#such as importance
sampling [1], line sampling [9] (also in a Bayesian interpretation [10]), directional
(importance) sampling [6], subset simulation [11, 42]ypBayesian approaches [13], and
many others, have been introduced to estimate p;. Thiswich spectrum of available
methods, in combination with an unprecedented.availability of computational power,
enables us to assess, not only the reliability’ of asstructure but also its sensitivity to
perturbations [14] long before a prototype has been designed. Nonetheless, many
authors default to the assumption of mermality"when modeling fe(€). Not only
might this provide a biased view of reality, butiit could also create serious issues when
the quantity being modeled hasrasstrict nen-negative nature (e.g., a plate thickness
or Young’s modulus of a material), A meore detailed analysis of this phenomenon
and related problems willsbe discussediin Section 2.

For the propagation of epistemic uncertainty, interval models, in particular, have
been shown to offer an objective representation of the extent to which our ignorance
reaches. Efficient techniques based on optimization [15, 16, 17], perturbation
analysis [18, 19, 20], interval arithmetic [21], affine arithmetic [22], improved interval
analysis [23, 24|, surrogate modeling [25, 26] and Bayesian cubature [27] have been
introduced. Note that sampling methods have also been successfully applied based
on Cauchy distributions 428, 29] or scenario optimisation [30]. However, despite
this rich wealth of methods for efficient intrusive and non-intrusive interval analysis,
we have observed that many authors still use one or the other variant of sampling
methodsto propagate intervals. This mistake is even found in highly cited papers
from reputable and respectable journals. Presumably, this stems either from the false
belief that there is some similarity between an interval and a uniform distribution,
or from the belief that such propagation is harmless. In the second part of this
paper, weraim to illustrate that both beliefs are not only incorrect but may also
lead to & catastrophic underestimation of the worst-case behavior of the structure.
Arguably even worse, we observe that many authors today, when proposing new
approaches for the propagation of epistemic uncertainty, be it pure or in hybrid
form, resort to sampling-based propagation to prove the efficacy of their techniques.
Obviously, this is not valid, as new approaches need to be bench-marked against the

https://mc04.manuscriptcentral.com/jrse-isecaep



oNOYTULT D WN =

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Journal of Reliability Science and Engineering

Avoiding Two Common Pitfalls in Uncertainty Propagation 4

most efficient and accurate tools currently available. Sampling-based propagation of
intervals possesses neither of these two properties. This creates assituation, where
‘novel” approaches are being bench-marked against a wrong golden-standard. These
phenomena will be discussed in detail in Section 3. As an additional remark; it.should
be noted that considering a uniform (or bounded) distribution may be challenging
even in the context of classical probabilistic analysis, as it introduces, strong non-
linearities when mapping to the standard normal space [31].

2. Normality assumption

2.1. Context

The normal distribution is one of the most commonly, used in structural reliability
analysis to describe uncertainty associated withy,model inputs of a numerical model
[6]. Its widespread application is driven by several factors that make it both practical
and mathematically convenient. Some of these factors¥are the following.

e Data scarcity and maximum entropy.. In situations where data is scarce,
the only available information mayibe limited to the mean and standard
deviation of the input variables. When this is the case, the normal distribution
becomes a natural choice du¢ toithe principle of maximum entropy [32, 33].
The normal distribution maximizes entropy for a given mean and variance,
making it the least biased assumption. It does not introduce any additional
information beyond what is'provided by these two statistical moments, making
it a reasonable model in the absence of further data.

e Standard normal sﬁice. A significant advantage of modeling uncertainty
via normal random yariables is its ease of transformation into standard normal
space. In“structural.reliability analysis, methods such as the First-Order
Reliability Method (FORM) and the Second-Order Reliability Method (SORM)
frequently rely on such transformations[34]. The ability to map uncertain inputs
to a standard normal distribution with mean zero and variance one simplifies
failure probability calculations, especially for multidimensional problems.

o Central limit theorem. The central limit theorem further supports the use
of the normal distribution. Indeed, according to the central limit theorem, the
sum of a large number of independent, identically distributed random variables
tendssto follow a normal distribution, regardless of their initial distributions[6].
I structural systems, where uncertainties often result from the combination
of several factors, the aggregated effect of these uncertainties may naturally
approximate a normal distribution.

e Mathematical convenience. The normal distribution offers significant
mathematical convenience. Its properties, such as symmetry and smoothness,
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allow for analytical solutions and efficient numerical integration. These features
are especially valuable in structural reliability analysis, where computational
efficiency is often critical.

However, while the normal distribution has appealing properties, its adoption may
lead to issues in particular cases. Indeed, as discussed in [35, 36}y using a normal
distribution to describe the uncertainty associated with a stri¢tly positive quantity
assigns nonzero probability to negative values. This in turm can lead to loss of
coercivity, which is a mathematical condition ensuring that thedifferential operator
remains well-behaved (i.e., bounded below by a positiveonstant)./When coercivity
is lost, the associated boundary value problem may becomeyill-posed. To address
this issue, the use of uniform or lognormal distributiong,has been investigated in the
literature, as discussed in e.g. [37, 38]. In additionjusing the maximum entropy
principle based on moments only may not be appropriate. In fact, when considering
the first two moments of an uncertain variable®plus the condition of strict positivity,
the maximum entropy distribution is no longer normYal. Therefore and based on
the previous discussion, application of the normal distribution for modeling strictly
positive quantities is wrong from both a mathematical viewpoint and the maximum
entropy principle.

While there are several cases where the normal distribution may not be an
appropriate choice for modeling uneertainty, this paper will not attempt to address
all such instances, as that,would be aidaunting task. Instead, the focus will be
limited to a specific case study»where the uncertain input parameter of a structural
model is strictly positive due to physical constraints. In such a case, using a normal
distribution is particularlysproblematic, as it allows for negative values, which are
physically impossible/ This analysis will demonstrate how the assumption of a normal
distribution in such seenarios can lead to inaccurate representations of uncertainty
and, consequently, unreliable model predictions.

2.2. Case Study: Linear Spring

The casefstudy considered here is a simple linear spring subjected to a unit force
f =1, as depicted schematically in Figure 1.

Wfl

Figure 1. Linear spring with stiffness k subject to unit load f.

The spring is characterized by its stiffness, denoted as k. The system follows
Hooke’s law, where the displacement u under the unit force is inversely proportional

https://mc04.manuscriptcentral.com/jrse-isecaep
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to the stiffness k, leading to the expression for displacement:

1

U= Ev (4)
where physical units have been omitted for the sake of simplicity." Note that the
numerical model as cast in Eq. (4) is extremely simple. Such a.model is selected
on purpose to allow for analytical derivations. However, even Such a simple model
allows to extract very relevant conclusions which can be straightforwardly extended

towards more complex models. ~
It is assumed that the spring stiffness £ is affecteds by incertainty and hence,
it is modeled as a random variable. Note that due to physical’éonsiderations, it is
known that k£ > 0. In particular, three different randem variable models are chosen

to characterize uncertainty, as described below.

e The first model considers a random wariable Ky following a normal
distribution. Specifically, Ky ~ N(ug @) wheze 1 is the mean stiffness, and
o > 0 is the standard deviation représenting thé uncertainty. However, this
model presents a limitation: themormal distribution allows Ky to take negative
values, which violates the physical condition that the stiffness k£ must be positive.
The probability density function (PDF) associated with Ky is given by:

i1 g (-0 5)

where k € (—o00,00), even, though negative values are non-physical.

e The second model i based on a truncated normal distribution. Here,
the random variable. K¢y follows a truncated normal distribution with shape
parameters p and o and whose support is restricted to [a,00), where a is a
real constant such/that /a > 0. This restriction ensures that the stiffness
k remains non-negative, in contrast to the normal distribution which allows
negative yalues.  [he truncated normal distribution modifies the standard
normal distribution by renormalizing the probability density function (PDF)
over theinterval [a, o0), ensuring that the total probability over this range equals
1. The PDF associated with Kpp is given by:

2
1 exp <_ (k2o‘L2L)

" ovar 1- @ (F)

where ® () is the cumulative distribution function (CDF') of the standard normal

fKTN<k) ) , k>a (6)

distribution. Note that the shape parameters p and o are in general different
from the mean and standard deviation, respectively, due to the parameter a
restricting the support. However, if the renormalization constant 1 — & (“TT“) is
close to 1, then p and o become very close to the mean and standard deviation
of the distribution.
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e The third model assumes that k follows a lognormal distribution. This means
that the natural logarithm of &, denoted by In(k), follows a normal distribution
with mean pg and standard deviation og. The lognormal distribuition ensures
that the stiffness k remains strictly positive, making it a natural cheice for
modeling physical quantities that cannot be negative. The PDF associated with
the lognormal distribution K7, is given by:

1 (Ink — MG)2>
S PSS (it U<Di D 7
koaV2m P ( 202, ™

The parameters pug and og (mean and standard deviation of the underlying

fKL(k>

normal distribution) can be computed in term&rof the mean p and standard
deviation o of the lognormal distribution as follows:

e —1n (ﬁ) ®)

&2
og =ufn( 1+ —) 9

¢ ( p? )
Please note that in all definitionsyin Fgs. (7)-(9), it is implicitly considered that

p>0and o > 0.

Sections 2.3 and 2.4 focus omranalyzing the consequences of adopting any of the three
probabilistic models described above for calculating the second-order statistics and
probability of exceedance ‘of the displacement of the linear spring problem described

in Eq. (4). N

2.3. Mean and Variance ofthe Response

In the analysis”ofysystems with random inputs, second-order statistics (namely,
mean and standard deviation) are fundamental in quantifying the uncertainty of the
response output [39]./With reference to the spring with uncertain stiffness, the mean
py of the randomedisplacement U gives an idea of the system’s typical behavior, while
the standard deyiation oy quantifies the spread or uncertainty of the displacement
about the mean. However, while second-order statistics are important, they are often
not sufficient for capturing the complete behavior of a random system. The third- and
fourth-order statistics (that is, skewness and kurtosis, respectively) provide deeper
insights into the asymmetry and tail behavior of the displacement distribution [40].
These higher-order moments are particularly important when the system exhibits
non-normal behavior or when the tails of the distribution significantly influence the
system’s risk and performance. However, for the sake of simplicity, the focus is on
second-order statistics in the following.

https://mc04.manuscriptcentral.com/jrse-isecaep
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The PDF of the random variable K modeling the uncertain stiffness of the spring
is considered to compute the mean and standard deviation of the displacement.
Note that K can assume any of the three PDF's defined previously, that.is: normal,
truncated normal, or lognormal. Thus, the mean of the displacement p isidefined

as [5]: ,
po = Efu] = EfK(k) dk (10)
Qi

where € denotes the domain associated with K and E[-] denotes-expectation. The
standard deviation oy is equal to the square root of the variance, which is defined
as[5]:

0% = V] = /Q (% - w)Q Fieth) ak (11)

where V[-] denotes variance. In the following, the valuesiassumed by the mean gy
and standard deviation oy of the displacementrare discussed, considering the three
distribution models for the random stiffness, namely.tormal, truncated normal and
lognormal distributions.

2.3.1. Mean and Variance of the Response = Case of Stiffness Following Normal
Distribution  To start calculating'specific values for the mean and standard deviation
of the displacement, the case of a normal distribution for the stiffness is considered
first. The expected value®f U is given by the following integral:

*1
S / (k) (12)

N
The last integral is split into two parts to facilitate its calculation.

= /_Z %fKN(k:) dk = /Oo %fKN(k) dk +/OOO %fm(k) dk (13)

i

-~

11 I2

To analyze the behavior of I5, it is split into two parts:

| 1 1
Lt [ he®di= [ Lo Wit [ phemd ()
0 JOo _ K Y

where s, covers the range [0, ], and I, covers the range [u, oo]. Now, focusing on

. Bl (k — p)?
—

La= | - exp [ — 1) . 15

2 /0 koo Xp( 902 ) ( )
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This last integral can be bounded from below by replacing (k — p) by p as argument
of the exponential function, leading to:

k11 2 ) 1 ( 2 ) /“ 1
Iy, > - exp | —=—= | dk = exp | —— —dk 16
2 _/O k o\/2m p( 202 oV 2 p 202 0 k ( )

The integral foﬂ % dk is known to diverge as kK — 0. Thereforej I, diverges to +oo

due to the behavior of % as k — 0. Given this result, it can.be readily shown that

the integral I, tends to +oo as well. Using similar arguments, its¢an be shown that
I; tends to —oo. This implies that the expected value pgisundefined because of the
behavior of the integrals I; and I,. As the expected value'is,undefined, it becomes
evident that the standard deviation oy is also undefined, beecause its calculation
depends on the mean value puy; for a formal proof; ‘pleasewefer to [41], as it covers
precisely the calculation of the second-order moment. To gain further insight into the
non-existence of the mean and standard deviatien of the displacement, the following
numerical experiment is carried out. It is assumed $#hat the mean and standard
deviation of the normally-distributed stiffness are u = 2 and o = 1, respectively.
Then, a set of N samples of the stiffnessis generated, which is used to calculate the
corresponding samples of the displacement with Eq. (4). Thereafter, we attempt to
calculate the mean value of thedisplacement using the classical formula % Zf\;l u®,
where 1 is the i-th sample of theidisplacement. The results obtained are shown in
Fig. (2) as a function of the sample set'size N for three independent runs, which are
shown with yellow, orange and, blue colors. For these three independent runs, it is
possible to observe that the estimate of the mean does not converge to any particular
value. Thus, this numericakexperiment confirms the analytical results.

5

1ol

1 Lo 1 sl 1 +oa il 1 sl 1 PR 11 1 I
10° 10! 102 10% 10* 10° 106

N

Figure 2. Estimator for the mean value of the displacement of the spring when
the stiffness follows a normal distribution.

The fact that both the mean and standard deviation of the displacement do
not exist when the stiffness of the spring follows a normal distribution may seem
surprising at first. However, such behavior has already been acknowledged before,

https://mc04.manuscriptcentral.com/jrse-isecaep
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as discussed in, e.g. [42, 43]. In fact, as long as the PDF associated (with the
stiffness value k& = 0 is larger than zero, the mean and standard deviation of
the displacement become undefined or tend to infinity, depending omisthe specific
situation. Furthermore, it should be noted that the non-existenge of the mean
and standard deviation of the displacement does not depend on the particular
values assumed by the statistical properties of the spring stiffness. In other words,
assuming a normal distribution for the stiffness of the spring immediately leads to a
displacement without mean or standard deviation, no matter howssmall the tail of
the normal distribution is for negative values of the stiffness:

2.3.2.  Mean and Variance of the Response — Case of ‘Stiffness Following a
Truncated Normal Distribution The second casesumder eonSideration corresponds
to the stiffness following a truncated normal distributiomover the interval [a, +00).
For such a case, the expected value of the displacement is:

2
_/ool ! eXp(JkZﬁ))dk; (17)
YT e 1wl

while the standard deviation of the displacement is:

00 1 2 1 exp (_ (k‘Q—o-léh) .
oy = - — . 18
v /a (k NU> oV 2w 1—@(%) (18)
For the case where a = 0, the expeeted value integral in Eq. (17) is similar to the
one in Eq. (14), exceptsforsthe factor 1 — @ (%) Thus, it is readily seen that for
the case where the stiffness isanodeled as a truncated normal distribution over the

support [a = 0, 00), thefmean value of the displacement tends to infinity. To verify
such a result, the following numerical experiment is carried out. N samples of the
stiffness following a truncated distribution with parameters =2, 0 =1 and a =0
are generated. Then, the mean value of the displacement is estimated, as shown in
Figure 3. ‘The results obtained for three independent runs (which are denoted with
yellow, orangé and blue colors) show that the estimated mean values increase as the
number of drawn samples N increases.

Arguments similar to the ones discussed before allow deducing that the standard
deviation of the displacement becomes undefined for the case where the stiffness
follows atruncated distribution over the interval [a = 0, 00). Demonstrating such a
result i8 straightforward, however, the detailed steps are omitted here for the sake of
brevity.

Whenever the uncertainty of the stiffness is modeled using a truncated normal
distribution with a > 0, then both the mean uy and standard deviation oy of the
displacement become real numbers. While there are no closed-form formulas for the

https://mc04.manuscriptcentral.com/jrse-isecaep
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2 T T T T T
run 1
1\\ fffffff run 2
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Figure 3. Estimator for the mean value of the displacement of the spring when
the stiffness follows a truncated normal distribution with a = 0.

mean and standard deviation of the displacement in Eqs. (17) and (18), respectively,
efficient one-dimensional quadrature schemes’cansbe implemented to calculate these
second-order statistics. Nevertheless, when characte?izing the uncertainty of the
stiffness with a truncated normal disteibution, care must be taken in choosing the
truncation parameter a, as it may possess assignificant effect on the calculated second-
order statistics. To demonstrate the latter,pointy consider the following example. The
stiffness in Eq. (4) is modeled following,a, truncated normal distribution as shown in
Eq. (6) with parameters y = 4, 0 =hand a € [1075 107|. The results obtained for
the mean py and standard deviation o of the displacement are shown in Figure 4.
It is noted that while the meansis more or less stable around the value of 0.27, the
standard deviation varies between two orders of magnitude depending on the specific
value chosen for the truncation parameter a. This highlights that the standard
deviation of the displacement is extremely sensitive to the particular selection of the
truncation parameter. In consequence, considering a truncated normal distribution
for modeling the‘uneertainty of the stiffness may not be convenient unless the effect
of the truncation parameter is studied in depth, or solid engineering arguments exist
to impose such a bound.

To gain further<insight into the challenges associated with the application of a
truncated normal distribution, a particular setting of the last example is investigated.
The parameters/of the truncated normal distribution that characterize the stiffness
are(selectedtas ;1 = 4, 0 = 1 and a = 107%. Then, both the mean py and standard
deviation oy of the displacement are estimated using Monte Carlo simulation (MCS)
with aset of samples of size N. The evolution of the estimates of yy and oy as a
function of NV are shown in Figure 5 with solid blue line. In addition, the reference
values calculated with quadrature (Q) are shown with a dashed red line. An analysis
ofthe results obtained with Monte Carlo indicates that while the mean py can
be reasonably well estimated with about N = 10% samples, the estimator for the
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Figure 4. Mean value py and standard deviation oy of the displacement of the
spring when the stiffness follows'a truncated normal distribution with parameters
p=4,0=1and a €10 5100

standard deviation oy does not converge even after drawing N = 10% samples. In
fact, it is observed that when N &3 x 10°, there is an abrupt jump in the estimators
of both py and op. Thereason is that a value of the stiffness k£ which is close to the
lower bound a = 10~%4s sampled, thus leading to a huge sample of the displacement
that explains the jump.Such an issue only highlights again that the selection of the
truncation parameter for atruncated normal distribution plays a major role. Hence,
extreme care must, berapplied when considering a truncated normal distribution,
especially with respeet, to its truncation parameter.

2.3.3.  [Mean and»Variance of the Response — Case of Stiffness Following a
Lognormal{ Distribution The third case under consideration corresponds to the
stiffness following a lognormal distribution with mean p and standard deviation
o, whose probability density function fg, (k) is defined in Egs. (7)-(9). In such a
case, theimean p; and standard deviation oy of the displacement in Eq. (4) can be
calculated in closed-form, as shown below.

*1 1 o2
= — kKYdk = — /1 + — 19
Hu /0 kaL( ) I 12 (19)
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2(1) sz As the lognormal distribution ensures that the stiffness k is strictly positive, both
42 23 values of the second-order statistics of the displacement, as shown in Egs. (19) and
43 s (20) , are well defined for different combinations of the mean g > 0 and standard
Zg us  deviation gs> 0ef the stiffness.
46
47 us  2.4. Probability of Exceedance of the Response
48
49 sz The probability of exceedance is a key metric in assessing the performance of
?1) us Systems, under uncertainty. This probability quantifies the chances that a given
57 a0 [ outputdresponse variable of a system will exceed a specified threshold, which is
53 ;0 erucial for evaluating both serviceability and ultimate limit states. In the following
gg ;51 analysis, attention is focused on the exceedance probability associated with the tip
56 32 displacement of the spring as described in Eq. (4) when the uncertainty of the stiffness
57 33 is modeled as a random variable following normal, truncated normal, and lognormal
58
59
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distributions. The probability of exceedance is defined as the chances that the
random variable U associated with the displacement exceeds a threshold w, that
is:

PlU>ul=1-P[U<u|=1- Fy(u) (21)

where P[] denotes probability of the argument and Fy; is the CDE associated with
the random variable U. Hence, calculating the exceedance probabilityds equivalent
to calculating one minus the CDF. In the following, this CDF is deduced for the
three specific distributions considered to characterize the uficertainty of the stiffness.
These expressions are then compared to each other in Séetion 2.4.4.

2.4.1.  Cumulative Distribution Function — Case “ofaStiffness Following Normal
Distribution To calculate the sought CDF in gase where the uncertainty in the
stiffness is described by a normal distribution, it is necessary to solve:

EMQ:PW<M:P{%§4. (22)

As the random variable K admits negative and positive values for the stiffness, the
inequality %
u > 0. Starting with the case 4 <0y the solution of the inequality % < u becomes

% < K <0. Then, when u < 0, the X€DF 1s:

< w must be solved taking inte,account the cases where v < 0 and

puwnggxg@. (23)

Recalling that K followsra mormal distribution with mean p and standard deviation

o, it is found that:
1
" 1_
i ( o ) ( 0 ) 24)

Now for the case where w > 0, the inequality % < u implies that either K < 0 or
K > % Therefore:

FHM:PW§N+PFZ§} (25)

Recalling againthat K follows a normal distribution, the last expression simplifies

s FU(u):CI><—§)+(1—<I>(%;M>). (26)

Combining both cases analyzed above, it is found that the sought CDF Fy;(u) is:

O (=) — @ () ifu <0,
Fo(u) = ) - (=) ) (27)

(=) + (1-@ (=), ifuzo0.
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It is important to note that although the displacement does not possess/ mean ox
variance, its CDF does exist. Such characteristic is also observed in other well-known
cases such as, e.g. the Cauchy distribution, and is typical of uncertain quantities that
exhibit a heavy-tailed behavior.

2.4.2. Cumulative Distribution Function — Case of Stiffness Following Truncated
Normal Distribution In this case, the stiffness adopts values belonging to the
interval [a > 0,00). To calculate the sought CDF, the starting pommtiis again:

Fﬁ@:PWgM:PL%gq. (28)

Three cases need to be distinguished when solving the inequality % < u. First,
u cannot be negative, as the stiffness is always positive; Therefore, F;(u) = 0
whenever u < 0. The second case is that the upper bound for the displacement is é,
as the smallest value that the stiffness may/assumeis@. Thus, Fy;(u) = 1 whenever
uw > 1/a. The third case is considering that 0/ < u/< é, which is fulfilled whenever

K > % Thus:

1
Fy(u) ="P [K > —} . (29)
u
For a truncated normal distributiony this probability is:
.
F = —F. 30
U(U‘) 1— (D (a;p,) ( )

Combining the three cases?escribed above, the complete CDF of U is:

(0, if u <0,
1
1-¢ u*
Fulu) = %, ifo<u<?i, (31)
1, if u > 1
\ a

2.4.8. Cumulative Distribution Function — Case of Stiffness Following Lognormal
Distribution. When the uncertainty associated with the stiffness is modeled as a
lognormal:random variable, the stiffness adopts values belonging to the interval
(0,00)% To calculate the CDF of the displacement, it is noted that u cannot be
negative, as the stiffness is always positive and thus, Fy;(u) = 0 whenever u < 0. For
the case where u > 0:

FM@:PWgM:PL%g@:J{KE%. (32)

u
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Recalling that In K follows a normal distribution with mean pug and standard
deviation og (see Egs. (8) and (9)), the last expression is equal to:

ﬂmozpanzh%?)]:1—@(Eﬁaﬁﬁ9>. (33)

u oG
In summary, the sought CDF is in this case equal to:

0, if u <0, =

F =
o) TOEANE

(34)

2.4.4. Probability of Exceedance — Comparison Between, Different Distribution Types
Associated with Stiffness Now that the CDFssassociatedwith the displacement U
for the three different distribution types for«the, stiffness have been determined, it
is possible to calculate the probability of éxceedance and also compare the results
obtained with each of these three different models. For such purpose, the parameters
p and o for the three distributions (mormal, truncated normal and lognormal) are
chosen as 4y = 5 and ¢ = 1, while the truncation parameter for the truncated normal
is selected as either a = 0.1 orda =10:2._The results obtained are depicted in Figure
6. From these results, it is observed that the four cases analyzed provide similar
probabilities of exceedanc@wup to the threshold level of about u ~ 0.25. However, for
larger threshold levels, the results associated with the normal and truncated normal
distribution differ significantly withyrespect to those of the lognormal distribution.
Furthermore, there are.alsodifferences (albeit less pronounced) between the normal
and truncated normal cases. The differences between normal /truncated normal and
lognormal cases, can be' explained as follows. In both normal/truncated normal
cases, the probability density associated with small values of the stiffness is too
large, at leastswhen, compared to the lognormal case. Assigning more probability
density to those small values implies that the probability distribution associated
with the displacement becomes heavy-tailed, leading to values of the probability
of exceedance whichrare orders of magnitude larger than those associated with the
lognormal distribution. Such a behavior is not surprising. It had already been shown
preyiously that when considering a normal distribution for modeling the stiffness, the
displacement does not possess second-order statistics (see e.g. Figure 2). And for
the case of a truncated normal distribution, the variance is highly sensitive to the
truncation parameter (see e.g. Figure 4). Such behavior is typical of heavy-tailed
distributions (such as the Cauchy distribution) and is clearly observed in Figure 6.
All of the observations described above suggest that the normal or truncated
normal distributions may lead to overly conservative values of the probability of
exceedance. Such overly conservative results may be undesirable, as they defeat one
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Figure 6. Probability that the displacement U exceeds a threshold level u. The
random variable models considered for/ the, stiffness are normal (N), truncated
normal (TN), and lognormal (LN) distributions.

of the primary purposes of structural reliability, which is to provide a rational tool
for decision-making under uncertainty. Indeed, while an overly conservative estimate
of a failure probability would be on, the safe side, it could nevertheless be harmful
when weighted against, e.g. construction, costs of a system.

3. Interval analysis via sampling

3.1. Interval analysis

As mentioned impthe Introduction, the second part of this paper deals with a common
pitfall in interval‘analysis, namely the use of sampling(-like) schemes to calculate the
bounds of a response.u; of interest. The main goal of performing interval analysis is to
examine thetfull potential range of values that u; might assume, while accounting for
the epistemic uncertainty that is present in the model input parameters 0. Since we
are looking for extremes in the response, it is important to ensure that our estimates
are conservative/as to avoid making unsafe decisions.

3. 10Formal definitions In interval analysis, we consider the epistemic uncertainty
in a single parameter @ to be bounded by an interval scalar #/ C R, which is defined
as

0" =0, 0] ={0eRE <0 <0}, (35)

where 0 and 0, with § < 6, are bounds between which the unknown values of the
uncertain parameter ¢ are deemed to lie. Similarly, when multiple parameters are
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jointly uncertain, an interval vector 8/ C R%s is defined by the Cartesian product of
ng interval scalars: @7 = 0f x 01 x ... x 9,{9, with x denoting the Cartesian product
operator. As a result, the interval scalars 67, i = 1,...,ny are indepéhdent and.as
such describe a hyper-rectangular polytope in R™. The main point is that wemneither
have sufficient information to define a precise value for #, nor to characterize a crisp
probability distribution Fy(#). The bounds as such represent our ‘honest” worst-case
estimation of the values the parameter # could take. Intervals and interval vectors
can be fit on data using methods such as scenario optimization [44}, Bayesian extreme
value methods [45], or Chebyshev’s inequality [46].

In the context of engineering analysis, 87 effectively represents’an ng dimensional
hyper-rectangle describing the epistemic uncertaintyave have asranalysts on the true
value of 8. The main goal of interval analysis is inthis context to evaluate the worst
and best possible behaviour of Eq. (1)-(2), given the fact that we are not able to
exactly quantify 8. One particular way to describerthe results of an interval analysis
is to consider that the hyper-cube 6 is processedsthiough a potentially nonlinear
map to a set of possible responses il

U={u|N,(u;0) = f,x @D B,(u;0) =bxcl,0cb}. (36)

3.1.2. Propagation of intervals ~‘This setgdbeffectively contains all possible physical
responses of the system that are comsistent with the description of the epistemic
uncertainty. In other wordspit describes how the system under consideration could
potentially react in correspondence with our lack of knowledge. In engineering
decision-making, we are usually interested in the worst- and best-case behavior of
the system. The mainfissué*herefis that finding the exact set 4 is computationally
intractable within finite #ime. This means that we want to find u, and u;, with
u; < w; for evefyaesponse it = 1,...,n, that is compatible with both Eq. (1)-(2)
and 6':

w; =mindl(i), i=1,..ny
u; = max (i), i=1,...,n,,
0co!

where the notation £(4) is used to denote that we consider only the i*" response of
the solution set:

All intérval propagation methodologies discussed in the Introduction either deal
with Solying the min-max optimization problem formulated in Eq. (37) directly,
or aimbat effectively providing a minimum-encompassing (convex) representation
of 4 by explicitly considering Eq. (36). As discussed in the Introduction, these
methods include techniques based on optimization [15, 16, 17], perturbation
analysis [18, 19, 20], interval arithmetic [47, 21], affine arithmetic [22], improved
interval analysis [48, 24], surrogate modeling [25, 26] and Bayesian cubature [27].
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Also, sampling-based optimization methods, such as sequential Monte Carlg [49] can
safely be used to solve Eq.(37).

3.1.83. Sampling from intervals Since we are interested in the bounds of the response
of the structure, the intervals should be propagated in a conservative way. This
means that our estimated bounds should be at least as wide as the true bounds from
a numerical standpoint. Despite the wide availability of approaches to propagate
intervals in such a conservative way, many researchers seem to fellow a sampling-
based approach that roughly looks like this schematai:

(i) Define the interval uncertainty as @ = 61 x 63 x ... X @k,

(i) Represent 67 as an mg-dimensional random variable @ following a uniform
distribution U, (Q, 5)

(iii) Generate a large space-filling design containing N samples {Oj ,'u,g }, with
j = 1,..., N, based on uniformly distributed ragdom variables and compute

the corresponding responses.

(iv) Determine the bounds uf and u§ based on two sampling estimators:

s _ : I
u; = minay;, &=1,..,n,
g=1,....I\'
. (38)
u, = max u, i=1,...n
S = r =1,...,n,.
7=Ln., N

A rough inspection of this,approach reveals two main assumptions underlying
it. First, authors resorting to thissapproach assume that the uniform distribution
is a good tool to represent\the uncertainty that is actually present in 6. Second,
it is assumed that when/N is taken sufficiently large, w; ~ w,, Vi = 1,...n,
and uw; ~ u;, Vi = 1,a4n, with high accuracy. As we will show in the following
subsections, neither assumption can be proven to hold in general, as there are both
practical and theoretical objections.

As a small final ' comment, we note that some authors do not assume a uniform
distribution-here, but rather discretise the interval in equidistant sampling points.
Even though this approach is similar to the sampling scheme delineated here
before, subtle yet important differences exist with respect to sampling schemes. In
essefice, there exists no theoretical objections against this method as no probabilistic
information| is formally imposed on the uncertain parameter . Therefore, the
interval paradigm is not violated. However, still, from a practical and computational
viewpoint, such approach is quite sub-optimal, as will be explained in Section 3.3.

1 We do not cite papers containing these pitfalls on purpose. Our intention is to be educative, not
provocative.
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Figure 7. Graphical representations of intervals. Leftzran interval as a bounded
segment of the real line. Right: an interval as a p-box. ~

3.1.4. The special case of dependent intervals In case of dependent intervals, the
hyper-rectangle 8! is tightened either into an admissible.set [50], parallelepiped [51],
or (hyper)-ellipsoid [52] model. In case of spatial or time dependence, also interval
processes [18] and -fields [53, 54] have been dntroduced. In all these models of
dependent intervals, this can be recast into & Seriesiof (linear)-inequalities via the
Minkowsky-Weyl theorem [50], potentially aftér a discretisation step. Since the
analyst still has no information about the exact walue of @; all we know is that
the exact value is bounded by some hyper-planes as described by Minkowski-Weyl.
As such, the optimization problem that was introduced in Eq. (37) can be recast
into a very similar constrained‘optimization problem. Therefore, since optimization
still lies at the core, the same arguments that were laid out in subsections 3.1.2 and
3.1.3 also hold in case dependence between the interval scalars is introduced in the
analysis.

3.2. Theoretical objections torsampling from intervals

It appears to the authors that many of the sampling-based approaches stem from
a fundamental misunderstanding of what an interval represents. Indeed, it is very
tempting to resort.to the assumption that the uncertainty in @, when it is represented
by interval bounds @'and 6, can just as well be described by a uniform distribution.
After all, alsonU,, (Q, 5) is defined by a lower and upper bound on @, and a
straightforward application of the maximum entropy principle based on just bounds
yields a‘mniform! distribution. However, such an assumption grossly neglects the
original ideatof interval analysis, namely that we do not have enough knowledge
to specify anything else than the bounds @ and 0. Indeed, when we do assume
@ to follow a uniform distribution, we include extra information in the analysis
that was not there to begin with; namely, that each 8; € 6! is equally likely to
oceur.. This knowledge is not available from the data we have and is, therefore,
inherently subjective and potentially wrong. In essence, there are two compatible
representations of the lack of knowledge on the uncertain-but-bounded uncertainty
in @. These are illustrated in Figure 7.
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The first interpretation, as shown on the left-hand side of Figure 7, shows 0 as
a bounded segment of the real line R. In essence, this corresponds tosstating that one
has no knowledge about the real value of 8, other than that it is bounded. Note that
one does not make a statement here about the true nature of 6, as the parameter
modeled by 6 might be a deterministic value, but also an aleatory uneertain quantity
where we do not have sufficient knowledge to build a probabilistic medel. Note
furthermore that by specifying #', one does not imply that 8 and 6 are perfectly
bounding all possible realizations of 6 in real life. Indeed, several werkshave explored
the reliability of such bounds (see e.g, [45], [30], or [44]).»dt is noteworthy that,
depending on the nature of 6, determining such bounds might bedmpossible (due to
the rarity of finding the corresponding samples experimentally), ‘or undesirable (since
they might be extremely wide, to the point that theamalysis bécomes uninformative).

The second possible interpretation of an interval,“as. shown on the right-hand
side of Figure 7, can be explained when resorting,to the theory of p-boxes [3, 4].
The main idea of a p-box is that there exist§ anunknewn CDF Fg of the uncertain
quantity @ for which only bounds can be provided. Thus, a p-box is described by
a lower CDF Fg € F and an upperCDE Fg €iF, where F expresses the set of all
CDFs on Dg C R. These CDFs are collectedvas a pair [E o F@} which yields a set of
possible CDFs {Fg € F | Fo(Oh< Fo(0)< Fo(0), 6 € Dg} for the unknown CDF
of ©. The definition of a p-box corresponds to defining a lower probability P and
upper probability P on events {© < @h= (—o0,0]N De, i.e., P(© < 0) = Fg(f) and
P(© < 0) = Fo(f) for § €Pg, which yields a credal set of probability measures.
Now, in case we have absolute umneertainty about the real value of 8, we might state
that it could belong to every possible distribution with support Dg = [0, 6]. This
interpretation covers both thelseénario where we have a lack of knowledge about a
deterministic quantity. 6/and the situation where # has a random nature which is
elusive due to the'lack of sufficient data. Note that the p-box has a fundamentally
different interpretation, inyboth cases, and also here care should be taken on how
the analysis ensues. Such a p-box corresponds to defining the lower CDF and upper
CDF, respectively, as' Fo = H(0 — 0) and Fg = H( — 0), with H(e) the Heaviside
functiongas also illustrated on the right-hand side of Figure 7.

It can be observed that both interpretations contain some sort of duality: one
can gpecify that there is a lack of knowledge of the true value of # within the interval
bounds by either providing only the bounds, or treating 6 as if it could belong to any
possiblerdistribution Fig that is bounded on Dg = #'. Neither interpretation allows
for treating 6 as a uniformly distributed random variable.
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3.3. Computational objections against sampling from intervals

Next to the theoretical objections raised in Section 3.2, there are‘very compelling
computational arguments not to solve the interval propagation jproblem using
Eq. (38). Just to specify, we criticize the use of plain MCS in the context of interval
propagation.

3.83.1. Convergence issues Normally, in uncertainty quantification and reliability
engineering, MCS is used to solve integral problems, such as those related to
computing the probability of failure p; (see Eq. (3)),4which is approximated by
using MCS via the estimator py:

by = S 1a(0ff) (39)

It is well-known that the number of samples Nyrequired to build a (1 — «)
confidence interval around p; with an accuracy'level € is bounded from below by:

V= (Y =), (10

with z,/2 the z-score related to the'eonfidence level a. In practice, € is chosen to be
at least € < 0.1p; for accuracy reasons. To solve Eq. (38) in a similar way, one can
argue that it is required that g;(#) — u; to determine u; and g;(6) — u; to determine
u;, with g; the performance-function only considering the it response. Indeed, to
have an accurate estimator of the response bounds, the limit state surfaces of each
response individually muststend towards those bounds. It is easy to see that the
corresponding p; values therefore must tend towards zero. This, in turn, allows the
following analysis for the sample size required to compute wu;, after re-arranging a
few terms in Eq.<(40):

> L) — 4o
Ny, > lim 2,9 (\/p—f +00 (41)

This result shows that one indeed needs a sample size N — +oo to find the
correct value of w;, regardless of the corresponding confidence level. As a sidenote,
py can in thiseontext be viewed as the probability of sampling a point that gives an
extreme (near-bound) response, which grows vanishingly small as that point becomes
more extreme. Of course, one can build a traceable argument that it is sufficient to
find the interval bound with a precision level p. In this case, the equivalent limit
statesfunction for the upper bound becomes ¢;(#) = w; — p. The number of required
samples, in this case, can be shown to be bounded as:

Mo 2 (ran/HT-9)), (12)
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with ¢ the value of p normalized with respect to the width of the output interval

u!. Whereas in this case the required set of samples is not infinite, it will still

i
be prohibitively large when one wants to get reasonably accurate estimators of the
bounds. Take, for instance, the case where we want to thus find the upper, bound
u; with a precision of o = 1-107%, while having a confidence level of 99% and a
precision on the MCS estimator of € = 0.1 % ¢. In case we have an interval with
unit-width (i.e, [u; — ;| = 1), the sample size must be Ny, > 6.635 - 10%.

Furthermore, as these analyses also show, the samplefsizes.arerobtained while
letting g;(#) — w;. This means that one irrevocably obtainsian inner approximation
of the interval boundaries. Indeed, since the problem is solved from the ‘inside’
towards the bounds of the response, while requiring an infinite sample size to
converge, MCS gives inherently an inner interval approximation. This means that
no conservatism can be proven. A fully analogous analysis can be made for the
calculation of the lower bound ;.

Concerning discretisation schemes, the approach boils down to selecting a
structured set of propagation points, consisting of both the interval bounds and
a selection of inner points from the input space.»This method aims to approximate
the worst- and best-case responses without requiring a full MCS. While it is
computationally more efficient, it.fundamentally suffers from the same limitations as
MCS in determining strict response,.bounds. ‘The key issue is that the worst- and best-
case responses may not necessarily oceur at the selected propagation points. If the
extreme responses lie betweemthe chosen inner points due to non-monotonicity in the
response function, they will be missed entirely. This results in an inner approximation
of the response interval, just as in the MCS approach. To ensure finding the correct
bounds, an infinitely fine discretisation would be required. As a final note, we want
to acknowledge that this@pproach has merit in case the analyst is more interested in
learning the nature of themapping between the in- and outputs of the model under
consideration (e«g., Smoothness, convexity, continuity). Therefore, it is not a pitfall
‘per se’, but rather a method that should be used with proper consideration and
care.

3.3.2. Dimensionality issues The problematic convergence of finding the bounds of
the gystem’s response subject to interval uncertainty when using MCS was illustrated
in the last paragraphs. In this context, an additional problem shows up. Whereas
MOS, when used to determine py is insensitive to the dimension of the input vector
0, this is not the case when looking for extremal values in the system’s response.
Let’s just use a very intuitive example to illustrate this. Consider the input to be
defined by the hyper-cube 8 = [0,1]". In the case of ng = 1, when drawing 10
Latin Hypercube samples from U;(0, 1), on average each sample will cover 10% of
the total space. However, when ny = 2, each of those 10 Latin Hypercube samples
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will only still cover 1% of the total sample space. In general, when drawing N Latin
Hypercube samples over the ny dimensional hyper-cube, each of those samples will
on average cover a fraction of (1/N)" of the total hyper-cubic input spaee. Now, we
have to realize that we are trying to find the realizations 9, € 0 and 6" ¢ 0’ that
solve Eq. (38) for every i = 1,...,n,. As explained, we can allow for a precision level
¢, meaning we are essentially trying to randomly find two ¢ diménsional hyper-cubes
in the nyg dimensional input space. This means, that to find either of the bounds,
we would need, on average, g%g samples, assuming a unit-hypereube. Assuming
a problem that we wish to solve with ny = 20 input variables and a precision of

0'20 samples. Just as a comparison

¢ =1-107% already would cause us to need 1-1
to position this order of magnitude: there are roughly.speakingl - 10%° atoms in the
observable universe.

It should be pointed out that these arguments can be one-on-one transferred to
the case of discretising the interval. Indeed, the mumber of inner points required to
sufficiently approximate the true interval botinds, respglearn how the mapping looks

like, grows rapidly with the dimensionality of the problem.

3.4. Practical examples of sampling from intervals

In this section, we present simple examples to illustrate the under-estimation and
inner-approximation phenomena, as‘well as the slow convergence of the Monte Carlo
estimator for reaching thé bounds of the distribution.

3.4.1.  The Ishigami function Asra first example, consider the 2-dimensional
[shigami function, which"isdefined as:

u = sin 0, + 7sin By + 0.163sin 6;. (43)

The valuessof. the parameters 6;,7 = 1,2, 3 are considered to be unknown, but
bounded by the cube |-, 7r]3. The corresponding bounds on u, namely v and u are
found following.two approaches:

e assuming a uniform distribution in [—, 7T]3. Following Eq. (38), this produces
the estimators u® and u®. To study convergence, we increase the sample size N
in 500 steps from 10 to 5 - 10%.

e performing a brute-force particle swarm optimization that is bounded on
[—7r,7r]3. For both bounds, the built-in Matlab tool particleswarm requires
roughly 1000 samples to converge.

We perform brute-force particle swarm optimization as opposed to the more
sophisticated techniques that are available to strengthen our point that even brute-
force optimization is more efficient and accurate than sampling between the bounds.
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It is pointed out that the application of sophisticated interval propagation techniques
such as those based on active learning Bayesian Optimization can still provideseveral
gains of computational efficiency. Assuming the result of the global optimization.to
be the correct one, we compute the relative error on the lower and upper bound, as
obtained by Monte Carlo sampling, as follows:

a=u —u)/u

6u:<ﬂ_ﬂs)/H

(44)
~
Note that these errors are designed such that theysbecome negative when the
sampling-based method becomes more ‘conservative’ than the.eptimization approach.
Figure 8 illustrates the convergence of the sampling-based interval bound
estimator in a relative sense to the global optimizatien pre¢edure. Observing this
figure, a few points need to be made. First,,when comparing both propagation
schemes for roughly the same computational ecest, one can observe that even in this
very simple 3-dimensional input case, an error/of xomghly 10% is made. Second,
even when using a sample size as large as N &= 5-10%, an error of roughly 0.01%
is made. Both points illustrate the sheer.inefficiency of propagating intervals using
crude sampling methods, especially when we consider that (1) we study a very well-
behaved function here and (2)/he;number of input parameters is very low. Third,
it can be observed that both ¢ and e, arestrictly positive. This, by construction,
means that the samplinggestimators inherently provide an inner estimation of the
interval width of u. Indeed, this clearly shows that u® consistently over-estimates
the lower bound u, just as u® consistently under-estimates the upper bound u. As a
final note, we want to pointiout that the particle swarm optimizer is even easier to
implement compared /o the sampling approach (even though, admittedly, both are
straightforward). As ‘such, we see no reason to use sampling-based methods for the
propagation of interval-valued uncertainty.

3.4.2. Rastrigin’s fumction in 20 dimensions To illustrate that this issue is even
more pronounced in high-dimensional problems, we test both approaches mentioned
in Subsection 3.4.1hon the 20-dimensional Rastrigin function, which is generally

defined as .
u=10n+ Y (67 — 10cos(276)), (45)

i=1
where we set n = 20. Note that Rastrigin’s function is known for its many local
minima, so searching for bounds is non-trivial. The correct bounds of Rastrigin’s
funétion were obtained using the same untuned particle swarm optimization

algorithm as used in Subsection 3.4.1 using approximately 15000 samples.

Due to the very high dimensionality of this problem, as mentioned before, the
probability of randomly finding a point that is even a good approximation of the
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Figure 8. Convergence of ¢; and €, on theiextremes of the Ishigami function with

respect to the sample size N

extreme responses of u drastically deereases, as'we are with 10%® samples still very
far away from the required number of 1 -10!2°. As can be noted, even with 10%
samples, the error that is madeson the relatively easy-to-find upper bound is still
approximately 10%. This indicatesithat for complicated, high-dimensional examples,
sampling-based propagatien schemes are a very bad choice for propagating intervals.
To be fair, in this particular ease, also the global optimization algorithm required a
huge computational efforts

10! E

Y109

10—1 M | i M | PR M | i T
102 10* 108 108

Figure 9. Convergence of ¢; and €, on the extremes of Rastrigins function with
respect to the sample size
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3.4.8. A two-bar truss structure As a final illustration, we include the analysis
of a simple 2-bar truss structure. The structure consists of three,nodes: Node 1
(location: 0,0 m) and Node 2 (location: 2,0 m) are fully fixed (bothftranslational
degrees of freedom restrained), and Node 3 (location: 0,2 m) is free. Two truss
elements connect Node 3 to Nodes 1 and 2, respectively, forming a simple triangular
arrangement. At Node 3, a vertical load is applied. Interval uncertainty ig assumed
on the load F', Young’s modulus of the material £ and the truss cross-sectional
area A. These intervals are considered as F! = [1,5] kN, £ = [2005220] GPa and
A =10.05,0.15] m?. The quantity of interest is the vertical displacement of Node 3,
u.

Since this is a small-displacement-based, linear finite element model, the relation
between the inputs and the displacement of Nodes3uis purely monotonic. By using
engineering judgment, the exact bounds can belcalculated using as few as 2 finite
element model simulations. Indeed, u is related te the triplet {7, E ,A}, and was
found to be w = 0,7 mm. Conversely, u is related to {E, E, Z}, and was found to be
u = 0,04 mm. In addition, sampling is used to‘approximate u and u as resp. u* and
u®. These results are used in the caléulation of the‘error e, as illustrated in Eq. (44).

T T L | - T TR T T T T

100 |-

o 1071

1072

10!

Figure 10. Convergence of ¢; and ¢, of the extreme truss responses with respect
to the sample size

Figure10 illustrates the convergence of ¢; and €, with respect to the sample size
N when u and @ are approximated by sampling as resp. v® and u®. As can be seen,
a sample size of roughly N = 1-10% is required to achieve a relative error of 1%.
At first sight, one may be tempted to say that this is acceptable. However, it should
be kept in mind that by using proper interval techniques, an exact solution can be
achieved in as little as 2 simulations.
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4. Conclusions

The primary objective in uncertainty quantification, whether using prebabilistic or
non-traditional approaches, is to accurately capture and represent unicertainty. The
ultimate goal of such practice is to help analysts and engineers make risk-informed
decisions. Uncertainty quantification involves several key stéps, whieh include
data collection, mathematical modeling, uncertainty propagation, identifying critical
outcomes, and making decisions under uncertainty. Each step introduices potential
challenges and possible sources of error that should be minimized or eliminated.

In this study, we examine two common pitfalls in“uncertainty quantification.
The first issue concerns the assumption of normality for parameters that must be
positive due to physical constraints. This pitfall is often justified by arguments such
as the maximum entropy principle, the central limit theorem, or the fact that the
probability of observing negative numbers is negligible. We illustrate that using a
normal distribution can lead to outputs with undefined second-order statistics and
overly conservative estimates. In other words, ifi a positive quantity is modeled
with a normal distribution, the obtained results will be (at least) questionable or
(plainly) wrong, even if the probability eentent associated to negative values is
extremely small. While the truncated normal distribution can mitigate some of these
issues, it remains highly sensitive to the,truncation parameter. Hence, truncation
of the negative values associated withha normal distribution which is used to model
positive-valued properties may not suffice to ensure correctness and in fact, it may
lead to gross errors. Consequently, modeling approaches should respect the inherent
characteristics of the parameters involved to avoid misleading or invalid results. In a
nutshell, the recommendationsfor' modeling the uncertainty associated with positive-
valued properties of & maodel fare: (1) avoid the normal distribution and (2) use a
truncated norméal/distribution only after investigating the effect of the truncation
parameter.

The second issue, analyzed in this paper, is the inappropriate use of sampling-
based methods, such as Monte Carlo simulation from a uniform distribution,
for propagating interval uncertainties. ~While these methods are powerful for
probabilistict analysis,stheir direct application to interval analysis is problematic.
Due #or their_design, they impose unjustified uniform assumptions, leading to
computationally expensive and inherently non-conservative approximations of the
true response bounds. The key takeaway here is that rigorous interval analysis
shouldarely on methods specifically designed for bounding problems, such as direct
optimization, interval arithmetic, affine arithmetic, or advanced surrogate-assisted
techniques. Otherwise, one risks conducting an expensive analysis only to obtain an
interior approximation of the uncertainty.

Taken together, the findings of both parts of this paper highlight the need for a

https://mc04.manuscriptcentral.com/jrse-isecaep

Page 28 of 32



Page 29 of 32

oNOYTULT D WN =

780

781

782

783

784

785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

823

Journal of Reliability Science and Engineering

Avoiding Two Common Pitfalls in Uncertainty Propagation 29

critical evaluation of standard practices in uncertainty quantification. To ensure
reliable results, it is essential to align modeling choices with the nature,of the
input data and apply the correct mathematical framework to representhuncertainty
properly. By avoiding fundamental errors at each stage of the process| we canidevelop
practical and robust decision-support tools for engineering applications.
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