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Abstract. This work addresses two common pitfalls present in the wider field of1

Uncertainty Quantification: the usage of a normality assumption for non-negative2

physical quantities, and the application of sampling or so-called discretisation3

schemes for the propagation of interval uncertainty. This first part of our work4

focuses on the normality assumption and its effect on the calculation of moments5

and probability of exceedance and it is developed around a simple yet illustrative6

example. Pitfalls associated with the assumption of normality are discussed and7

highlighted, showing that such an assumption can have a significant detrimental8

effect when performing uncertainty quantification. Assuming normality for non-9

negative physical quantities inherently leads to undesirable properties, such as non-10

existent moments of the response of interest or probabilities of exceedance with tails11

which become unreasonably heavy. With the second part of our work, we want to12

elaborate on both analytical and numerical evidence regarding interval uncertainty13

propagation. Both suggest that using sampling schemes to cope with intervals is14

extremely inefficient and inaccurate. We illustrate that performing sampling to15

propagate intervals yields a dramatic underestimation of the worst-case behavior16

of the problem under consideration at an unreasonable computational cost.17

Keywords: Uncertainty Quantification, reliability analysis, Monte Carlo simulation,18

normal distribution, interval analysis19
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1. Introduction20

Many advanced engineering modeling approaches deal with the solution of systems of21

partial differential equations (PDEs) that are formulated over continuous domains.22

Typically, these problems are formulated as:23

Nx(u;θ) = f ,x ∈ D, (1)

with boundary condition:24

Bx(u;θ) = b,x ∈ Γ, (2)

where Nx is a differential operator, D ⊂ Rd, d ∈ [1, 4] is the physical domain,25

u = u(x) is the solution of the PDE, and θ = θ(x) ∈ Rnθ × D is the vector-26

valued field representing the parameters in the PDE. Additionally, f = f(x) is the27

forcing term on D, and Bx is a boundary condition operator which is defined on28

the domain boundary Γ. Often, such analyses are performed under the assumption29

that all parameters θ can be quantified exactly at any point x ∈ D. This is, of30

course, unrealistic in engineering practice, as we are faced with both the randomness31

of the structure and the uncertainty of our own observations of it. These phenomena32

manifest themselves to us as analysts as, respectively, aleatory [1] and epistemic33

uncertainty [2]. Often, in practice, both sources appear at the same time, as we are34

looking through imperfect lens (i.e., clouded by epistemic uncertainty) to a variable35

environment [3, 4]. To deal with this situation, research of the last four decades36

accumulated in a plethora of very powerful, practical and efficient techniques to37

propagate both aleatory and epistemic uncertainty, as well as combinations of those.38

However, based on our observations of published and unpublished works across all39

scientific journals related to uncertainty quantification and reliability analysis, we40

observe two common pitfalls:41

• the assumption of a normal distribution for strictly non-negative model inputs42

θ ;43

• the application of sampling(-like) schemes for the propagation of epistemic set-44

valued uncertainty.45

In this paper, we want to study the assumptions behind these pitfalls, assess their46

impact on the analysis results, and illustrate the problematic nature of either of these47

pathways.48

Concerning aleatory uncertainty, it is assumed that the parameters θ = θi, i =49

1, ..., nθ are affected by uncertainty, which is described by means of independent50

random variables with probability density function (PDF) fΘi
(θi). In view of51

the assumption of independence, the joint PDF is fΘ(θ) =
∏nθ

i=1 fΘi
(θi), where52

θ = [θ1, . . . , θnθ
]. The behavior of the system is synthesized in the so-called53

performance function g(θ), which assumes a value equal to or smaller than zero54
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whenever a combination of the uncertain input parameters θ leads to an undesirable55

response, for example, loss of serviceability or collapse (see e.g., [5, 6]). Thus, the56

chance pf that the system undergoes an undesirable behavior is given by the classical57

probability integral [7]:58

pf =

∫ +∞

−∞
I(g(θ))fΘ(θ)dθ, (3)

with fΘ(θ) the PDF describing the aleatory uncertainty in the parameters θ, and59

I(g(θ)) the indicator function, which returns 1 when θ is part of the so-called failure60

domain F = {θ | g(θ) ≤ 0}, and which is 0 otherwise. Both methods based61

on design-point related approaches [8] and simulation methods, such as importance62

sampling [1], line sampling [9] (also in a Bayesian interpretation [10]), directional63

(importance) sampling [6], subset simulation [11, 12], Bayesian approaches [13], and64

many others, have been introduced to estimate pf . This rich spectrum of available65

methods, in combination with an unprecedented availability of computational power,66

enables us to assess, not only the reliability of a structure but also its sensitivity to67

perturbations [14] long before a prototype has been designed. Nonetheless, many68

authors default to the assumption of normality when modeling fΘ(θ). Not only69

might this provide a biased view of reality, but it could also create serious issues when70

the quantity being modeled has a strict non-negative nature (e.g., a plate thickness71

or Young’s modulus of a material). A more detailed analysis of this phenomenon72

and related problems will be discussed in Section 2.73

For the propagation of epistemic uncertainty, interval models, in particular, have74

been shown to offer an objective representation of the extent to which our ignorance75

reaches. Efficient techniques based on optimization [15, 16, 17], perturbation76

analysis [18, 19, 20], interval arithmetic [21], affine arithmetic [22], improved interval77

analysis [23, 24], surrogate modeling [25, 26] and Bayesian cubature [27] have been78

introduced. Note that sampling methods have also been successfully applied based79

on Cauchy distributions [28, 29] or scenario optimisation [30]. However, despite80

this rich wealth of methods for efficient intrusive and non-intrusive interval analysis,81

we have observed that many authors still use one or the other variant of sampling82

methods to propagate intervals. This mistake is even found in highly cited papers83

from reputable and respectable journals. Presumably, this stems either from the false84

belief that there is some similarity between an interval and a uniform distribution,85

or from the belief that such propagation is harmless. In the second part of this86

paper, we aim to illustrate that both beliefs are not only incorrect but may also87

lead to a catastrophic underestimation of the worst-case behavior of the structure.88

Arguably even worse, we observe that many authors today, when proposing new89

approaches for the propagation of epistemic uncertainty, be it pure or in hybrid90

form, resort to sampling-based propagation to prove the efficacy of their techniques.91

Obviously, this is not valid, as new approaches need to be bench-marked against the92
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most efficient and accurate tools currently available. Sampling-based propagation of93

intervals possesses neither of these two properties. This creates a situation where94

‘novel’ approaches are being bench-marked against a wrong golden-standard. These95

phenomena will be discussed in detail in Section 3. As an additional remark, it should96

be noted that considering a uniform (or bounded) distribution may be challenging97

even in the context of classical probabilistic analysis, as it introduces strong non-98

linearities when mapping to the standard normal space [31].99

2. Normality assumption100

2.1. Context101

The normal distribution is one of the most commonly used in structural reliability102

analysis to describe uncertainty associated with model inputs of a numerical model103

[6]. Its widespread application is driven by several factors that make it both practical104

and mathematically convenient. Some of these factors are the following.105

• Data scarcity and maximum entropy. In situations where data is scarce,106

the only available information may be limited to the mean and standard107

deviation of the input variables. When this is the case, the normal distribution108

becomes a natural choice due to the principle of maximum entropy [32, 33].109

The normal distribution maximizes entropy for a given mean and variance,110

making it the least biased assumption. It does not introduce any additional111

information beyond what is provided by these two statistical moments, making112

it a reasonable model in the absence of further data.113

• Standard normal space. A significant advantage of modeling uncertainty114

via normal random variables is its ease of transformation into standard normal115

space. In structural reliability analysis, methods such as the First-Order116

Reliability Method (FORM) and the Second-Order Reliability Method (SORM)117

frequently rely on such transformations[34]. The ability to map uncertain inputs118

to a standard normal distribution with mean zero and variance one simplifies119

failure probability calculations, especially for multidimensional problems.120

• Central limit theorem. The central limit theorem further supports the use121

of the normal distribution. Indeed, according to the central limit theorem, the122

sum of a large number of independent, identically distributed random variables123

tends to follow a normal distribution, regardless of their initial distributions[6].124

In structural systems, where uncertainties often result from the combination125

of several factors, the aggregated effect of these uncertainties may naturally126

approximate a normal distribution.127

• Mathematical convenience. The normal distribution offers significant128

mathematical convenience. Its properties, such as symmetry and smoothness,129
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allow for analytical solutions and efficient numerical integration. These features130

are especially valuable in structural reliability analysis, where computational131

efficiency is often critical.132

However, while the normal distribution has appealing properties, its adoption may133

lead to issues in particular cases. Indeed, as discussed in [35, 36], using a normal134

distribution to describe the uncertainty associated with a strictly positive quantity135

assigns nonzero probability to negative values. This in turn can lead to loss of136

coercivity, which is a mathematical condition ensuring that the differential operator137

remains well-behaved (i.e., bounded below by a positive constant). When coercivity138

is lost, the associated boundary value problem may become ill-posed. To address139

this issue, the use of uniform or lognormal distributions has been investigated in the140

literature, as discussed in e.g. [37, 38]. In addition, using the maximum entropy141

principle based on moments only may not be appropriate. In fact, when considering142

the first two moments of an uncertain variable plus the condition of strict positivity,143

the maximum entropy distribution is no longer normal. Therefore and based on144

the previous discussion, application of the normal distribution for modeling strictly145

positive quantities is wrong from both a mathematical viewpoint and the maximum146

entropy principle.147

While there are several cases where the normal distribution may not be an148

appropriate choice for modeling uncertainty, this paper will not attempt to address149

all such instances, as that would be a daunting task. Instead, the focus will be150

limited to a specific case study where the uncertain input parameter of a structural151

model is strictly positive due to physical constraints. In such a case, using a normal152

distribution is particularly problematic, as it allows for negative values, which are153

physically impossible. This analysis will demonstrate how the assumption of a normal154

distribution in such scenarios can lead to inaccurate representations of uncertainty155

and, consequently, unreliable model predictions.156

2.2. Case Study: Linear Spring157

The case study considered here is a simple linear spring subjected to a unit force158

f = 1, as depicted schematically in Figure 1.159

k

f = 1

u

Figure 1. Linear spring with stiffness k subject to unit load f .

The spring is characterized by its stiffness, denoted as k. The system follows160

Hooke’s law, where the displacement u under the unit force is inversely proportional161
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to the stiffness k, leading to the expression for displacement:162

u =
1

k
, (4)

where physical units have been omitted for the sake of simplicity. Note that the163

numerical model as cast in Eq. (4) is extremely simple. Such a model is selected164

on purpose to allow for analytical derivations. However, even such a simple model165

allows to extract very relevant conclusions which can be straightforwardly extended166

towards more complex models.167

It is assumed that the spring stiffness k is affected by uncertainty and hence,168

it is modeled as a random variable. Note that due to physical considerations, it is169

known that k > 0. In particular, three different random variable models are chosen170

to characterize uncertainty, as described below.171

• The first model considers a random variable KN following a normal172

distribution. Specifically, KN ∼ N(µ, σ), where µ is the mean stiffness, and173

σ > 0 is the standard deviation representing the uncertainty. However, this174

model presents a limitation: the normal distribution allows KN to take negative175

values, which violates the physical condition that the stiffness k must be positive.176

The probability density function (PDF) associated with KN is given by:177

fKN
(k) =

1

σ
√
2π

exp

(
−(k − µ)2

2σ2

)
, (5)

where k ∈ (−∞,∞), even though negative values are non-physical.178

• The second model is based on a truncated normal distribution. Here,179

the random variable KTN follows a truncated normal distribution with shape180

parameters µ and σ and whose support is restricted to [a,∞), where a is a181

real constant such that a ≥ 0. This restriction ensures that the stiffness182

k remains non-negative, in contrast to the normal distribution which allows183

negative values. The truncated normal distribution modifies the standard184

normal distribution by renormalizing the probability density function (PDF)185

over the interval [a,∞), ensuring that the total probability over this range equals186

1. The PDF associated with KTN is given by:187

fKTN
(k) =

1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1− Φ

(
a−µ
σ

) , k ≥ a (6)

where Φ (·) is the cumulative distribution function (CDF) of the standard normal188

distribution. Note that the shape parameters µ and σ are in general different189

from the mean and standard deviation, respectively, due to the parameter a190

restricting the support. However, if the renormalization constant 1−Φ
(
a−µ
σ

)
is191

close to 1, then µ and σ become very close to the mean and standard deviation192

of the distribution.193
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• The third model assumes that k follows a lognormal distribution. This means194

that the natural logarithm of k, denoted by ln(k), follows a normal distribution195

with mean µG and standard deviation σG. The lognormal distribution ensures196

that the stiffness k remains strictly positive, making it a natural choice for197

modeling physical quantities that cannot be negative. The PDF associated with198

the lognormal distribution KL is given by:199

fKL
(k) =

1

kσG

√
2π

exp

(
−(ln k − µG)

2

2σ2
G

)
, k > 0 (7)

The parameters µG and σG (mean and standard deviation of the underlying200

normal distribution) can be computed in terms of the mean µ and standard201

deviation σ of the lognormal distribution as follows:202

µG = ln

(
µ2√

µ2 + σ2

)
(8)

203

σG =

√
ln

(
1 +

σ2

µ2

)
(9)

Please note that in all definitions in Eqs. (7)-(9), it is implicitly considered that204

µ ≥ 0 and σ ≥ 0.205

Sections 2.3 and 2.4 focus on analyzing the consequences of adopting any of the three206

probabilistic models described above for calculating the second-order statistics and207

probability of exceedance of the displacement of the linear spring problem described208

in Eq. (4).209

2.3. Mean and Variance of the Response210

In the analysis of systems with random inputs, second-order statistics (namely,211

mean and standard deviation) are fundamental in quantifying the uncertainty of the212

response output [39]. With reference to the spring with uncertain stiffness, the mean213

µU of the random displacement U gives an idea of the system’s typical behavior, while214

the standard deviation σU quantifies the spread or uncertainty of the displacement215

about the mean. However, while second-order statistics are important, they are often216

not sufficient for capturing the complete behavior of a random system. The third- and217

fourth-order statistics (that is, skewness and kurtosis, respectively) provide deeper218

insights into the asymmetry and tail behavior of the displacement distribution [40].219

These higher-order moments are particularly important when the system exhibits220

non-normal behavior or when the tails of the distribution significantly influence the221

system’s risk and performance. However, for the sake of simplicity, the focus is on222

second-order statistics in the following.223
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The PDF of the random variableK modeling the uncertain stiffness of the spring224

is considered to compute the mean and standard deviation of the displacement.225

Note that K can assume any of the three PDFs defined previously, that is: normal,226

truncated normal, or lognormal. Thus, the mean of the displacement µU is defined227

as [5]:228

µU = E [u] =

∫
Ωk

1

k
fK(k) dk (10)

where Ωk denotes the domain associated with K and E[·] denotes expectation. The229

standard deviation σU is equal to the square root of the variance, which is defined230

as[5]:231

σ2
U = V [u] =

∫
Ωk

(
1

k
− µU

)2

fK(k) dk (11)

where V[·] denotes variance. In the following, the values assumed by the mean µU232

and standard deviation σU of the displacement are discussed, considering the three233

distribution models for the random stiffness, namely normal, truncated normal and234

lognormal distributions.235

2.3.1. Mean and Variance of the Response – Case of Stiffness Following Normal236

Distribution To start calculating specific values for the mean and standard deviation237

of the displacement, the case of a normal distribution for the stiffness is considered238

first. The expected value of U is given by the following integral:239

µU =

∫ ∞

−∞

1

k
fKN

(k) dk. (12)

The last integral is split into two parts to facilitate its calculation.240

µU =

∫ ∞

−∞

1

k
fKN

(k) dk =

∫ 0

−∞

1

k
fKN

(k) dk︸ ︷︷ ︸
I1

+

∫ ∞

0

1

k
fKN

(k) dk︸ ︷︷ ︸
I2

(13)

To analyze the behavior of I2, it is split into two parts:241

I2 =

∫ ∞

0

1

k
fKN

(k) dk =

∫ µ

0

1

k
fKN

(k) dk︸ ︷︷ ︸
I2a

+

∫ ∞

µ

1

k
fKN

(k) dk︸ ︷︷ ︸
I2b

(14)

where I2a covers the range [0, µ], and I2b covers the range [µ,∞]. Now, focusing on242

I2a:243

I2a =

∫ µ

0

1

k

1

σ
√
2π

exp

(
−(k − µ)2

2σ2

)
dk. (15)
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This last integral can be bounded from below by replacing (k−µ) by µ as argument244

of the exponential function, leading to:245

I2a ≥
∫ µ

0

1

k

1

σ
√
2π

exp

(
− µ2

2σ2

)
dk =

1

σ
√
2π

exp

(
− µ2

2σ2

)∫ µ

0

1

k
dk (16)

The integral
∫ µ

0
1
k
dk is known to diverge as k → 0. Therefore, I2a diverges to +∞246

due to the behavior of 1
k
as k → 0. Given this result, it can be readily shown that247

the integral I2 tends to +∞ as well. Using similar arguments, it can be shown that248

I1 tends to −∞. This implies that the expected value µU is undefined because of the249

behavior of the integrals I1 and I2. As the expected value is undefined, it becomes250

evident that the standard deviation σU is also undefined, because its calculation251

depends on the mean value µU ; for a formal proof, please refer to [41], as it covers252

precisely the calculation of the second-order moment. To gain further insight into the253

non-existence of the mean and standard deviation of the displacement, the following254

numerical experiment is carried out. It is assumed that the mean and standard255

deviation of the normally-distributed stiffness are µ = 2 and σ = 1, respectively.256

Then, a set of N samples of the stiffness is generated, which is used to calculate the257

corresponding samples of the displacement with Eq. (4). Thereafter, we attempt to258

calculate the mean value of the displacement using the classical formula 1
N

∑N
i=1 u

(i),259

where u(i) is the i-th sample of the displacement. The results obtained are shown in260

Fig. (2) as a function of the sample set size N for three independent runs, which are261

shown with yellow, orange and blue colors. For these three independent runs, it is262

possible to observe that the estimate of the mean does not converge to any particular263

value. Thus, this numerical experiment confirms the analytical results.264

100 101 102 103 104 105 106

N

-1

0

1

2

3

4

5

1 N

P N i=
1
u

(i
)

run 1
run 2
run 3

Figure 2. Estimator for the mean value of the displacement of the spring when

the stiffness follows a normal distribution.

The fact that both the mean and standard deviation of the displacement do265

not exist when the stiffness of the spring follows a normal distribution may seem266

surprising at first. However, such behavior has already been acknowledged before,267
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as discussed in, e.g. [42, 43]. In fact, as long as the PDF associated with the268

stiffness value k = 0 is larger than zero, the mean and standard deviation of269

the displacement become undefined or tend to infinity, depending on the specific270

situation. Furthermore, it should be noted that the non-existence of the mean271

and standard deviation of the displacement does not depend on the particular272

values assumed by the statistical properties of the spring stiffness. In other words,273

assuming a normal distribution for the stiffness of the spring immediately leads to a274

displacement without mean or standard deviation, no matter how small the tail of275

the normal distribution is for negative values of the stiffness.276

2.3.2. Mean and Variance of the Response – Case of Stiffness Following a277

Truncated Normal Distribution The second case under consideration corresponds278

to the stiffness following a truncated normal distribution over the interval [a,+∞).279

For such a case, the expected value of the displacement is:280

µU =

∫ ∞

a

1

k

1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1− Φ

(
a−µ
σ

) dk (17)

while the standard deviation of the displacement is:281

σU =

√√√√∫ ∞

a

(
1

k
− µU

)2
1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1− Φ

(
a−µ
σ

) dk. (18)

For the case where a = 0, the expected value integral in Eq. (17) is similar to the282

one in Eq. (14), except for the factor 1 − Φ
(
a−µ
σ

)
. Thus, it is readily seen that for283

the case where the stiffness is modeled as a truncated normal distribution over the284

support [a = 0,∞), the mean value of the displacement tends to infinity. To verify285

such a result, the following numerical experiment is carried out. N samples of the286

stiffness following a truncated distribution with parameters µ = 2, σ = 1 and a = 0287

are generated. Then, the mean value of the displacement is estimated, as shown in288

Figure 3. The results obtained for three independent runs (which are denoted with289

yellow, orange and blue colors) show that the estimated mean values increase as the290

number of drawn samples N increases.291

Arguments similar to the ones discussed before allow deducing that the standard292

deviation of the displacement becomes undefined for the case where the stiffness293

follows a truncated distribution over the interval [a = 0,∞). Demonstrating such a294

result is straightforward, however, the detailed steps are omitted here for the sake of295

brevity.296

Whenever the uncertainty of the stiffness is modeled using a truncated normal297

distribution with a > 0, then both the mean µU and standard deviation σU of the298

displacement become real numbers. While there are no closed-form formulas for the299
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P N i=
1
u

(i
)

run 1
run 2
run 3

Figure 3. Estimator for the mean value of the displacement of the spring when

the stiffness follows a truncated normal distribution with a = 0.

mean and standard deviation of the displacement in Eqs. (17) and (18), respectively,300

efficient one-dimensional quadrature schemes can be implemented to calculate these301

second-order statistics. Nevertheless, when characterizing the uncertainty of the302

stiffness with a truncated normal distribution, care must be taken in choosing the303

truncation parameter a, as it may possess a significant effect on the calculated second-304

order statistics. To demonstrate the latter point, consider the following example. The305

stiffness in Eq. (4) is modeled following a truncated normal distribution as shown in306

Eq. (6) with parameters µ = 4, σ = 1 and a ∈ [10−6, 10−1]. The results obtained for307

the mean µU and standard deviation σU of the displacement are shown in Figure 4.308

It is noted that while the mean is more or less stable around the value of 0.27, the309

standard deviation varies between two orders of magnitude depending on the specific310

value chosen for the truncation parameter a. This highlights that the standard311

deviation of the displacement is extremely sensitive to the particular selection of the312

truncation parameter. In consequence, considering a truncated normal distribution313

for modeling the uncertainty of the stiffness may not be convenient unless the effect314

of the truncation parameter is studied in depth, or solid engineering arguments exist315

to impose such a bound.316

To gain further insight into the challenges associated with the application of a317

truncated normal distribution, a particular setting of the last example is investigated.318

The parameters of the truncated normal distribution that characterize the stiffness319

are selected as µ = 4, σ = 1 and a = 10−6. Then, both the mean µU and standard320

deviation σU of the displacement are estimated using Monte Carlo simulation (MCS)321

with a set of samples of size N . The evolution of the estimates of µU and σU as a322

function of N are shown in Figure 5 with solid blue line. In addition, the reference323

values calculated with quadrature (Q) are shown with a dashed red line. An analysis324

of the results obtained with Monte Carlo indicates that while the mean µU can325

be reasonably well estimated with about N = 103 samples, the estimator for the326
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<
U

Figure 4. Mean value µU and standard deviation σU of the displacement of the

spring when the stiffness follows a truncated normal distribution with parameters

µ = 4, σ = 1 and a ∈ [10−6, 10−1].

standard deviation σU does not converge even after drawing N = 108 samples. In327

fact, it is observed that when N ≈ 3×106, there is an abrupt jump in the estimators328

of both µU and σU . The reason is that a value of the stiffness k which is close to the329

lower bound a = 10−6 is sampled, thus leading to a huge sample of the displacement330

that explains the jump. Such an issue only highlights again that the selection of the331

truncation parameter for a truncated normal distribution plays a major role. Hence,332

extreme care must be applied when considering a truncated normal distribution,333

especially with respect to its truncation parameter.334

2.3.3. Mean and Variance of the Response – Case of Stiffness Following a335

Lognormal Distribution The third case under consideration corresponds to the336

stiffness following a lognormal distribution with mean µ and standard deviation337

σ, whose probability density function fKL
(k) is defined in Eqs. (7)-(9). In such a338

case, the mean µU and standard deviation σU of the displacement in Eq. (4) can be339

calculated in closed-form, as shown below.340

µU =

∫ ∞

0

1

k
fKL

(k) dk =
1

µ

√
1 +

σ2

µ2
(19)
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Figure 5. Estimators for the mean value µU and standard deviation σU of

the displacement of the spring as a function of the number of samples N when

applying Monte Carlo simulation (MCS). The dashed lines show the reference

results obtained through numerical quadrature (Q).

341

σU =

√∫ ∞

0

(
1

k
− µU

)2

fKL
(k) dk =

√√√√ 1

µ2

(
1 +

σ2

µ2

)
− 1

µ2

√
1 +

σ2

µ2
(20)

As the lognormal distribution ensures that the stiffness k is strictly positive, both342

values of the second-order statistics of the displacement, as shown in Eqs. (19) and343

(20) , are well defined for different combinations of the mean µ > 0 and standard344

deviation σ > 0 of the stiffness.345

2.4. Probability of Exceedance of the Response346

The probability of exceedance is a key metric in assessing the performance of347

systems under uncertainty. This probability quantifies the chances that a given348

output response variable of a system will exceed a specified threshold, which is349

crucial for evaluating both serviceability and ultimate limit states. In the following350

analysis, attention is focused on the exceedance probability associated with the tip351

displacement of the spring as described in Eq. (4) when the uncertainty of the stiffness352

is modeled as a random variable following normal, truncated normal, and lognormal353
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distributions. The probability of exceedance is defined as the chances that the354

random variable U associated with the displacement exceeds a threshold u, that355

is:356

P [U > u] = 1− P [U ≤ u] = 1− FU(u) (21)

where P [·] denotes probability of the argument and FU is the CDF associated with357

the random variable U . Hence, calculating the exceedance probability is equivalent358

to calculating one minus the CDF. In the following, this CDF is deduced for the359

three specific distributions considered to characterize the uncertainty of the stiffness.360

These expressions are then compared to each other in Section 2.4.4.361

2.4.1. Cumulative Distribution Function – Case of Stiffness Following Normal362

Distribution To calculate the sought CDF in case where the uncertainty in the363

stiffness is described by a normal distribution, it is necessary to solve:364

FU(u) = P [U ≤ u] = P

[
1

K
≤ u

]
. (22)

As the random variable K admits negative and positive values for the stiffness, the365

inequality 1
K

≤ u must be solved taking into account the cases where u < 0 and366

u ≥ 0. Starting with the case u < 0, the solution of the inequality 1
K

≤ u becomes367

1
u
≤ K ≤ 0. Then, when u < 0, the CDF is:368

FU(u) = P

[
1

u
≤ K ≤ 0

]
. (23)

Recalling that K follows a normal distribution with mean µ and standard deviation369

σ, it is found that:370

FU(u) = Φ

(
−µ

σ

)
− Φ

( 1
u
− µ

σ

)
(24)

Now for the case where u ≥ 0, the inequality 1
K

≤ u implies that either K ≤ 0 or371

K ≥ 1
u
. Therefore:372

FU(u) = P [K ≤ 0] + P

[
K ≥ 1

u

]
. (25)

Recalling again that K follows a normal distribution, the last expression simplifies373

to:374

FU(u) = Φ
(
−µ

σ

)
+

(
1− Φ

( 1
u
− µ

σ

))
. (26)

Combining both cases analyzed above, it is found that the sought CDF FU(u) is:375

FU(u) =


Φ
(−µ

σ

)
− Φ

(
1
u
−µ

σ

)
, if u < 0,

Φ
(
−µ

σ

)
+
(
1− Φ

(
1
u
−µ

σ

))
, if u ≥ 0.

(27)
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It is important to note that although the displacement does not possess mean or376

variance, its CDF does exist. Such characteristic is also observed in other well-known377

cases such as, e.g. the Cauchy distribution, and is typical of uncertain quantities that378

exhibit a heavy-tailed behavior.379

2.4.2. Cumulative Distribution Function – Case of Stiffness Following Truncated380

Normal Distribution In this case, the stiffness adopts values belonging to the381

interval [a ≥ 0,∞). To calculate the sought CDF, the starting point is again:382

FU(u) = P [U ≤ u] = P

[
1

K
≤ u

]
. (28)

Three cases need to be distinguished when solving the inequality 1
K

≤ u. First,383

u cannot be negative, as the stiffness is always positive. Therefore, FU(u) = 0384

whenever u < 0. The second case is that the upper bound for the displacement is 1
a
,385

as the smallest value that the stiffness may assume is a. Thus, FU(u) = 1 whenever386

u > 1/a. The third case is considering that 0 ≤ u ≤ 1
a
, which is fulfilled whenever387

K ≥ 1
u
. Thus:388

FU(u) = P

[
K ≥ 1

u

]
. (29)

For a truncated normal distribution, this probability is:389

FU(u) =
1− Φ

(
1
u
−µ

σ

)
1− Φ

(
a−µ
σ

) . (30)

Combining the three cases described above, the complete CDF of U is:390

FU(u) =



0, if u ≤ 0,

1−Φ

(
1
u−µ

σ

)
1−Φ(a−µ

σ )
, if 0 < u ≤ 1

a
,

1, if u > 1
a
.

(31)

2.4.3. Cumulative Distribution Function – Case of Stiffness Following Lognormal391

Distribution When the uncertainty associated with the stiffness is modeled as a392

lognormal random variable, the stiffness adopts values belonging to the interval393

(0,∞). To calculate the CDF of the displacement, it is noted that u cannot be394

negative, as the stiffness is always positive and thus, FU(u) = 0 whenever u ≤ 0. For395

the case where u > 0:396

FU(u) = P [U ≤ u] = P

[
1

K
≤ u

]
= P

[
K ≥ 1

u

]
. (32)
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Recalling that lnK follows a normal distribution with mean µG and standard397

deviation σG (see Eqs. (8) and (9)), the last expression is equal to:398

FU(u) = P

[
lnK ≥ ln

(
1

u

)]
= 1− Φ

(
ln
(
1
u

)
− µG

σG

)
. (33)

In summary, the sought CDF is in this case equal to:399

FU(u) =


0, if u ≤ 0,

1− Φ

(
ln( 1

u)−µG

σG

)
, if u > 0.

(34)

2.4.4. Probability of Exceedance – Comparison Between Different Distribution Types400

Associated with Stiffness Now that the CDFs associated with the displacement U401

for the three different distribution types for the stiffness have been determined, it402

is possible to calculate the probability of exceedance and also compare the results403

obtained with each of these three different models. For such purpose, the parameters404

µ and σ for the three distributions (normal, truncated normal and lognormal) are405

chosen as µ = 5 and σ = 1, while the truncation parameter for the truncated normal406

is selected as either a = 0.1 or a = 0.2. The results obtained are depicted in Figure407

6. From these results, it is observed that the four cases analyzed provide similar408

probabilities of exceedance up to the threshold level of about u ≈ 0.25. However, for409

larger threshold levels, the results associated with the normal and truncated normal410

distribution differ significantly with respect to those of the lognormal distribution.411

Furthermore, there are also differences (albeit less pronounced) between the normal412

and truncated normal cases. The differences between normal/truncated normal and413

lognormal cases can be explained as follows. In both normal/truncated normal414

cases, the probability density associated with small values of the stiffness is too415

large, at least when compared to the lognormal case. Assigning more probability416

density to those small values implies that the probability distribution associated417

with the displacement becomes heavy-tailed, leading to values of the probability418

of exceedance which are orders of magnitude larger than those associated with the419

lognormal distribution. Such a behavior is not surprising. It had already been shown420

previously that when considering a normal distribution for modeling the stiffness, the421

displacement does not possess second-order statistics (see e.g. Figure 2). And for422

the case of a truncated normal distribution, the variance is highly sensitive to the423

truncation parameter (see e.g. Figure 4). Such behavior is typical of heavy-tailed424

distributions (such as the Cauchy distribution) and is clearly observed in Figure 6.425

All of the observations described above suggest that the normal or truncated426

normal distributions may lead to overly conservative values of the probability of427

exceedance. Such overly conservative results may be undesirable, as they defeat one428

Page 16 of 32

https://mc04.manuscriptcentral.com/jrse-isecaep

Journal of Reliability Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



For Review Only

Avoiding Two Common Pitfalls in Uncertainty Propagation 17

0 0.5 1 1.5 2 2.5 3 3.5

u

10!6

10!5

10!4

10!3

10!2

10!1

100

P
[U

>
u
]
=

1
!

F
U
(u

)

N
TN (a=0.1)
TN (a=0.2)
LN

Figure 6. Probability that the displacement U exceeds a threshold level u. The

random variable models considered for the stiffness are normal (N), truncated

normal (TN), and lognormal (LN) distributions.

of the primary purposes of structural reliability, which is to provide a rational tool429

for decision-making under uncertainty. Indeed, while an overly conservative estimate430

of a failure probability would be on the safe side, it could nevertheless be harmful431

when weighted against, e.g. construction costs of a system.432

3. Interval analysis via sampling433

3.1. Interval analysis434

As mentioned in the Introduction, the second part of this paper deals with a common435

pitfall in interval analysis, namely the use of sampling(-like) schemes to calculate the436

bounds of a response u1 of interest. The main goal of performing interval analysis is to437

examine the full potential range of values that ui might assume, while accounting for438

the epistemic uncertainty that is present in the model input parameters θ. Since we439

are looking for extremes in the response, it is important to ensure that our estimates440

are conservative as to avoid making unsafe decisions.441

3.1.1. Formal definitions In interval analysis, we consider the epistemic uncertainty442

in a single parameter θ to be bounded by an interval scalar θI ⊂ R, which is defined443

as444

θI =
[
θ, θ

]
=
{
θ ∈ R|θ ≤ θ ≤ θ

}
, (35)

where θ and θ, with θ ≤ θ, are bounds between which the unknown values of the445

uncertain parameter θ are deemed to lie. Similarly, when multiple parameters are446
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jointly uncertain, an interval vector θI ⊂ Rdnθ is defined by the Cartesian product of447

nθ interval scalars: θI = θI1 × θI2 × . . .× θInθ
, with × denoting the Cartesian product448

operator. As a result, the interval scalars θIi , i = 1, . . . , nθ are independent and as449

such describe a hyper-rectangular polytope in Rnθ . The main point is that we neither450

have sufficient information to define a precise value for θ, nor to characterize a crisp451

probability distribution Fθ(θ). The bounds as such represent our ‘honest’ worst-case452

estimation of the values the parameter θ could take. Intervals and interval vectors453

can be fit on data using methods such as scenario optimization [44], Bayesian extreme454

value methods [45], or Chebyshev’s inequality [46].455

In the context of engineering analysis, θI effectively represents an nθ dimensional456

hyper-rectangle describing the epistemic uncertainty we have as analysts on the true457

value of θ. The main goal of interval analysis is in this context to evaluate the worst458

and best possible behaviour of Eq. (1)-(2), given the fact that we are not able to459

exactly quantify θ. One particular way to describe the results of an interval analysis460

is to consider that the hyper-cube θI is processed through a potentially nonlinear461

map to a set of possible responses U:462

U =
{
u | Nx(u;θ) = f ,x ∈ D,Bx(u;θ) = b,x ∈ Γ,θ ∈ θI

}
. (36)

3.1.2. Propagation of intervals This set U effectively contains all possible physical463

responses of the system that are consistent with the description of the epistemic464

uncertainty. In other words, it describes how the system under consideration could465

potentially react in correspondence with our lack of knowledge. In engineering466

decision-making, we are usually interested in the worst- and best-case behavior of467

the system. The main issue here is that finding the exact set U is computationally468

intractable within finite time. This means that we want to find ui and ui, with469

ui ≤ ui for every response i, i = 1, ..., nu that is compatible with both Eq. (1)-(2)470

and θI :471

ui = min
θ∈θI

U(i), i = 1, ..., nu

ui = max
θ∈θI

U(i), i = 1, ..., nu,
(37)

where the notation U(i) is used to denote that we consider only the ith response of472

the solution set.473

All interval propagation methodologies discussed in the Introduction either deal474

with solving the min-max optimization problem formulated in Eq. (37) directly,475

or aim at effectively providing a minimum-encompassing (convex) representation476

of U by explicitly considering Eq. (36). As discussed in the Introduction, these477

methods include techniques based on optimization [15, 16, 17], perturbation478

analysis [18, 19, 20], interval arithmetic [47, 21], affine arithmetic [22], improved479

interval analysis [48, 24], surrogate modeling [25, 26] and Bayesian cubature [27].480
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Also, sampling-based optimization methods, such as sequential Monte Carlo [49] can481

safely be used to solve Eq.(37).482

3.1.3. Sampling from intervals Since we are interested in the bounds of the response483

of the structure, the intervals should be propagated in a conservative way. This484

means that our estimated bounds should be at least as wide as the true bounds from485

a numerical standpoint. Despite the wide availability of approaches to propagate486

intervals in such a conservative way, many researchers seem to follow a sampling-487

based approach that roughly looks like this schemata‡:488

(i) Define the interval uncertainty as θI = θI1 × θI2 × . . .× θInθ
489

(ii) Represent θI as an nθ-dimensional random variable θ̃ following a uniform490

distribution Unθ

(
θ,θ

)
491

(iii) Generate a large space-filling design containing N samples
{
θj,uj

i

}
, with492

j = 1, ..., N , based on uniformly distributed random variables and compute493

the corresponding responses.494

(iv) Determine the bounds us
i and us

i based on two sampling estimators:495

us
i = min

j=1,...,N
uj
i , i = 1, ..., nu

us
i = max

j=1,...,N
uj
i , i = 1, ..., nu.

(38)

A rough inspection of this approach reveals two main assumptions underlying496

it. First, authors resorting to this approach assume that the uniform distribution497

is a good tool to represent the uncertainty that is actually present in θ. Second,498

it is assumed that when N is taken sufficiently large, us
i ≈ ui, ∀i = 1, ..., nu499

and us
i ≈ ui, ∀i = 1, ..., nu with high accuracy. As we will show in the following500

subsections, neither assumption can be proven to hold in general, as there are both501

practical and theoretical objections.502

As a small final comment, we note that some authors do not assume a uniform503

distribution here, but rather discretise the interval in equidistant sampling points.504

Even though this approach is similar to the sampling scheme delineated here505

before, subtle yet important differences exist with respect to sampling schemes. In506

essence, there exists no theoretical objections against this method as no probabilistic507

information is formally imposed on the uncertain parameter θ. Therefore, the508

interval paradigm is not violated. However, still, from a practical and computational509

viewpoint, such approach is quite sub-optimal, as will be explained in Section 3.3.510

‡ We do not cite papers containing these pitfalls on purpose. Our intention is to be educative, not

provocative.
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Figure 7. Graphical representations of intervals. Left: an interval as a bounded

segment of the real line. Right: an interval as a p-box.

3.1.4. The special case of dependent intervals In case of dependent intervals, the511

hyper-rectangle θI is tightened either into an admissible set [50], parallelepiped [51],512

or (hyper)-ellipsoid [52] model. In case of spatial or time dependence, also interval513

processes [18] and -fields [53, 54] have been introduced. In all these models of514

dependent intervals, this can be recast into a series of (linear)-inequalities via the515

Minkowsky-Weyl theorem [50], potentially after a discretisation step. Since the516

analyst still has no information about the exact value of θ; all we know is that517

the exact value is bounded by some hyper-planes as described by Minkowski-Weyl.518

As such, the optimization problem that was introduced in Eq. (37) can be recast519

into a very similar constrained optimization problem. Therefore, since optimization520

still lies at the core, the same arguments that were laid out in subsections 3.1.2 and521

3.1.3 also hold in case dependence between the interval scalars is introduced in the522

analysis.523

3.2. Theoretical objections to sampling from intervals524

It appears to the authors that many of the sampling-based approaches stem from525

a fundamental misunderstanding of what an interval represents. Indeed, it is very526

tempting to resort to the assumption that the uncertainty in θ, when it is represented527

by interval bounds θ and θ, can just as well be described by a uniform distribution.528

After all, also Unθ

(
θ,θ

)
is defined by a lower and upper bound on θ, and a529

straightforward application of the maximum entropy principle based on just bounds530

yields a uniform distribution. However, such an assumption grossly neglects the531

original idea of interval analysis, namely that we do not have enough knowledge532

to specify anything else than the bounds θ and θ. Indeed, when we do assume533

θ to follow a uniform distribution, we include extra information in the analysis534

that was not there to begin with; namely, that each θi ∈ θI is equally likely to535

occur. This knowledge is not available from the data we have and is, therefore,536

inherently subjective and potentially wrong. In essence, there are two compatible537

representations of the lack of knowledge on the uncertain-but-bounded uncertainty538

in θ. These are illustrated in Figure 7.539
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The first interpretation, as shown on the left-hand side of Figure 7, shows θI as540

a bounded segment of the real line R. In essence, this corresponds to stating that one541

has no knowledge about the real value of θ, other than that it is bounded. Note that542

one does not make a statement here about the true nature of θ, as the parameter543

modeled by θ might be a deterministic value, but also an aleatory uncertain quantity544

where we do not have sufficient knowledge to build a probabilistic model. Note545

furthermore that by specifying θI , one does not imply that θ and θ are perfectly546

bounding all possible realizations of θ in real life. Indeed, several works have explored547

the reliability of such bounds (see e.g, [45], [30], or [44]). It is noteworthy that,548

depending on the nature of θ, determining such bounds might be impossible (due to549

the rarity of finding the corresponding samples experimentally), or undesirable (since550

they might be extremely wide, to the point that the analysis becomes uninformative).551

The second possible interpretation of an interval, as shown on the right-hand552

side of Figure 7, can be explained when resorting to the theory of p-boxes [3, 4].553

The main idea of a p-box is that there exists an unknown CDF FΘ of the uncertain554

quantity θ for which only bounds can be provided. Thus, a p-box is described by555

a lower CDF FΘ ∈ F and an upper CDF FΘ ∈ F, where F expresses the set of all556

CDFs on DΘ ⊆ R. These CDFs are collected as a pair
[
FΘ, FΘ

]
which yields a set of557

possible CDFs {FΘ ∈ F | FΘ(θ) ≤ FΘ(θ) ≤ FΘ(θ), θ ∈ DΘ} for the unknown CDF558

of Θ. The definition of a p-box corresponds to defining a lower probability P and559

upper probability P on events {Θ ≤ θ} = (−∞, θ]∩DΘ, i.e., P (Θ ≤ θ) = FΘ(θ) and560

P (Θ ≤ θ) = FΘ(θ) for θ ∈ DΘ, which yields a credal set of probability measures.561

Now, in case we have absolute uncertainty about the real value of θ, we might state562

that it could belong to every possible distribution with support DΘ = [θ, θ]. This563

interpretation covers both the scenario where we have a lack of knowledge about a564

deterministic quantity θ and the situation where θ has a random nature which is565

elusive due to the lack of sufficient data. Note that the p-box has a fundamentally566

different interpretation in both cases, and also here care should be taken on how567

the analysis ensues. Such a p-box corresponds to defining the lower CDF and upper568

CDF, respectively, as FΘ = H(θ − θ) and FΘ = H(θ − θ), with H(•) the Heaviside569

function, as also illustrated on the right-hand side of Figure 7.570

It can be observed that both interpretations contain some sort of duality: one571

can specify that there is a lack of knowledge of the true value of θ within the interval572

bounds by either providing only the bounds, or treating θ as if it could belong to any573

possible distribution FΘ that is bounded on DΘ = θI . Neither interpretation allows574

for treating θ as a uniformly distributed random variable.575
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3.3. Computational objections against sampling from intervals576

Next to the theoretical objections raised in Section 3.2, there are very compelling577

computational arguments not to solve the interval propagation problem using578

Eq. (38). Just to specify, we criticize the use of plain MCS in the context of interval579

propagation.580

3.3.1. Convergence issues Normally, in uncertainty quantification and reliability581

engineering, MCS is used to solve integral problems, such as those related to582

computing the probability of failure pf (see Eq. (3)), which is approximated by583

using MCS via the estimator p̂f :584

p̂f =
1

N

N∑
i=1

I(g(θi)). (39)

It is well-known that the number of samples N required to build a (1 − α)585

confidence interval around pf with an accuracy level ϵ is bounded from below by:586

N ≥
(
1

ϵ
zα/2

√
pf (1− pf )

)
, (40)

with zα/2 the z-score related to the confidence level α. In practice, ϵ is chosen to be587

at least ϵ ≤ 0.1pf for accuracy reasons. To solve Eq. (38) in a similar way, one can588

argue that it is required that gi(θ) → ui to determine ui and gi(θ) → ui to determine589

ui, with gi the performance function only considering the ith response. Indeed, to590

have an accurate estimator of the response bounds, the limit state surfaces of each591

response individually must tend towards those bounds. It is easy to see that the592

corresponding pf values therefore must tend towards zero. This, in turn, allows the593

following analysis for the sample size required to compute ui, after re-arranging a594

few terms in Eq. (40):595

Nui
≥ lim

pf→0
zα/2

(
1

√
pf

)
= +∞. (41)

This result shows that one indeed needs a sample size N → +∞ to find the596

correct value of ui, regardless of the corresponding confidence level. As a sidenote,597

pf can in this context be viewed as the probability of sampling a point that gives an598

extreme (near-bound) response, which grows vanishingly small as that point becomes599

more extreme. Of course, one can build a traceable argument that it is sufficient to600

find the interval bound with a precision level ϱ. In this case, the equivalent limit601

state function for the upper bound becomes gi(θ) = ui − ϱ. The number of required602

samples, in this case, can be shown to be bounded as:603

Nui
≥
(
1

ϵ
zα/2

√
ς(1− ς)

)
, (42)
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with ς the value of ϱ normalized with respect to the width of the output interval604

uI
i . Whereas in this case the required set of samples is not infinite, it will still605

be prohibitively large when one wants to get reasonably accurate estimators of the606

bounds. Take, for instance, the case where we want to thus find the upper bound607

ui with a precision of ϱ = 1 · 10−06, while having a confidence level of 99% and a608

precision on the MCS estimator of ϵ = 0.1 ∗ ς. In case we have an interval with609

unit-width (i.e, |ui − ui| = 1), the sample size must be Nui
≥ 6.635 · 1008.610

Furthermore, as these analyses also show, the sample sizes are obtained while611

letting gi(θ) → ui. This means that one irrevocably obtains an inner approximation612

of the interval boundaries. Indeed, since the problem is solved from the ‘inside’613

towards the bounds of the response, while requiring an infinite sample size to614

converge, MCS gives inherently an inner interval approximation. This means that615

no conservatism can be proven. A fully analogous analysis can be made for the616

calculation of the lower bound ui.617

Concerning discretisation schemes, the approach boils down to selecting a618

structured set of propagation points, consisting of both the interval bounds and619

a selection of inner points from the input space. This method aims to approximate620

the worst- and best-case responses without requiring a full MCS. While it is621

computationally more efficient, it fundamentally suffers from the same limitations as622

MCS in determining strict response bounds. The key issue is that the worst- and best-623

case responses may not necessarily occur at the selected propagation points. If the624

extreme responses lie between the chosen inner points due to non-monotonicity in the625

response function, they will be missed entirely. This results in an inner approximation626

of the response interval, just as in the MCS approach. To ensure finding the correct627

bounds, an infinitely fine discretisation would be required. As a final note, we want628

to acknowledge that this approach has merit in case the analyst is more interested in629

learning the nature of the mapping between the in- and outputs of the model under630

consideration (e.g., smoothness, convexity, continuity). Therefore, it is not a pitfall631

‘per se’, but rather a method that should be used with proper consideration and632

care.633

3.3.2. Dimensionality issues The problematic convergence of finding the bounds of634

the system’s response subject to interval uncertainty when using MCS was illustrated635

in the last paragraphs. In this context, an additional problem shows up. Whereas636

MCS, when used to determine pf is insensitive to the dimension of the input vector637

θ, this is not the case when looking for extremal values in the system’s response.638

Let’s just use a very intuitive example to illustrate this. Consider the input to be639

defined by the hyper-cube θ = [0, 1]nθ . In the case of nθ = 1, when drawing 10640

Latin Hypercube samples from U1(0, 1), on average each sample will cover 10% of641

the total space. However, when nθ = 2, each of those 10 Latin Hypercube samples642
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will only still cover 1% of the total sample space. In general, when drawing N Latin643

Hypercube samples over the nθ dimensional hyper-cube, each of those samples will644

on average cover a fraction of (1/N)nθ of the total hyper-cubic input space. Now, we645

have to realize that we are trying to find the realizations θi
∗ ∈ θI and θi

∗ ∈ θI that646

solve Eq. (38) for every i = 1, ..., nu. As explained, we can allow for a precision level647

ς, meaning we are essentially trying to randomly find two ς dimensional hyper-cubes648

in the nθ dimensional input space. This means, that to find either of the bounds,649

we would need, on average, 1
ςnθ

samples, assuming a unit-hypercube. Assuming650

a problem that we wish to solve with nθ = 20 input variables and a precision of651

ς = 1 · 10−06, already would cause us to need 1 · 10120 samples. Just as a comparison652

to position this order of magnitude: there are roughly speaking 1 · 1080 atoms in the653

observable universe.654

It should be pointed out that these arguments can be one-on-one transferred to655

the case of discretising the interval. Indeed, the number of inner points required to656

sufficiently approximate the true interval bounds, resp. learn how the mapping looks657

like, grows rapidly with the dimensionality of the problem.658

3.4. Practical examples of sampling from intervals659

In this section, we present simple examples to illustrate the under-estimation and660

inner-approximation phenomena, as well as the slow convergence of the Monte Carlo661

estimator for reaching the bounds of the distribution.662

3.4.1. The Ishigami function As a first example, consider the 2-dimensional663

Ishigami function, which is defined as:664

u = sin θ1 + 7 sin θ2
2 + 0.1θ3 sin θ1. (43)

The values of the parameters θi, i = 1, 2, 3 are considered to be unknown, but665

bounded by the cube [−π, π]3. The corresponding bounds on u, namely u and u are666

found following two approaches:667

• assuming a uniform distribution in [−π, π]3. Following Eq. (38), this produces668

the estimators us and us. To study convergence, we increase the sample size N669

in 500 steps from 10 to 5 · 1008.670

• performing a brute-force particle swarm optimization that is bounded on671

[−π, π]3. For both bounds, the built-in Matlab tool particleswarm requires672

roughly 1000 samples to converge.673

We perform brute-force particle swarm optimization as opposed to the more674

sophisticated techniques that are available to strengthen our point that even brute-675

force optimization is more efficient and accurate than sampling between the bounds.676
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It is pointed out that the application of sophisticated interval propagation techniques677

such as those based on active learning Bayesian Optimization can still provide several678

gains of computational efficiency. Assuming the result of the global optimization to679

be the correct one, we compute the relative error on the lower and upper bound, as680

obtained by Monte Carlo sampling, as follows:681

ϵl = (us − u) /u

ϵu = (u− us) /u
(44)

Note that these errors are designed such that they become negative when the682

sampling-based method becomes more ‘conservative’ than the optimization approach.683

Figure 8 illustrates the convergence of the sampling-based interval bound684

estimator in a relative sense to the global optimization procedure. Observing this685

figure, a few points need to be made. First, when comparing both propagation686

schemes for roughly the same computational cost, one can observe that even in this687

very simple 3-dimensional input case, an error of roughly 10% is made. Second,688

even when using a sample size as large as N = 5 · 1008, an error of roughly 0.01%689

is made. Both points illustrate the sheer inefficiency of propagating intervals using690

crude sampling methods, especially when we consider that (1) we study a very well-691

behaved function here and (2) the number of input parameters is very low. Third,692

it can be observed that both ϵl and ϵu are strictly positive. This, by construction,693

means that the sampling estimators inherently provide an inner estimation of the694

interval width of u. Indeed, this clearly shows that us consistently over-estimates695

the lower bound u, just as us consistently under-estimates the upper bound u. As a696

final note, we want to point out that the particle swarm optimizer is even easier to697

implement compared to the sampling approach (even though, admittedly, both are698

straightforward). As such, we see no reason to use sampling-based methods for the699

propagation of interval-valued uncertainty.700

3.4.2. Rastrigin’s function in 20 dimensions To illustrate that this issue is even701

more pronounced in high-dimensional problems, we test both approaches mentioned702

in Subsection 3.4.1 on the 20-dimensional Rastrigin function, which is generally703

defined as704

u = 10n+
n∑

i=1

(
θ2i − 10 cos(2πθi)

)
, (45)

where we set n = 20. Note that Rastrigin’s function is known for its many local705

minima, so searching for bounds is non-trivial. The correct bounds of Rastrigin’s706

function were obtained using the same untuned particle swarm optimization707

algorithm as used in Subsection 3.4.1 using approximately 15000 samples.708

Due to the very high dimensionality of this problem, as mentioned before, the709

probability of randomly finding a point that is even a good approximation of the710
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Figure 8. Convergence of ϵl and ϵu on the extremes of the Ishigami function with

respect to the sample size

extreme responses of u drastically decreases, as we are with 1008 samples still very711

far away from the required number of 1 · 10120. As can be noted, even with 1008712

samples, the error that is made on the relatively easy-to-find upper bound is still713

approximately 10%. This indicates that for complicated, high-dimensional examples,714

sampling-based propagation schemes are a very bad choice for propagating intervals.715

To be fair, in this particular case, also the global optimization algorithm required a716

huge computational effort.717

Figure 9. Convergence of ϵl and ϵu on the extremes of Rastrigins function with

respect to the sample size
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3.4.3. A two-bar truss structure As a final illustration, we include the analysis718

of a simple 2-bar truss structure. The structure consists of three nodes: Node 1719

(location: 0, 0 m) and Node 2 (location: 2, 0 m) are fully fixed (both translational720

degrees of freedom restrained), and Node 3 (location: 0, 2 m) is free. Two truss721

elements connect Node 3 to Nodes 1 and 2, respectively, forming a simple triangular722

arrangement. At Node 3, a vertical load is applied. Interval uncertainty is assumed723

on the load F , Young’s modulus of the material E and the truss cross-sectional724

area A. These intervals are considered as F I = [1, 5] kN, EI = [200, 220] GPa and725

AI = [0.05, 0.15] m2. The quantity of interest is the vertical displacement of Node 3,726

u.727

Since this is a small-displacement-based, linear finite element model, the relation728

between the inputs and the displacement of Node 3 is purely monotonic. By using729

engineering judgment, the exact bounds can be calculated using as few as 2 finite730

element model simulations. Indeed, u is related to the triplet
{
F ,E,A

}
, and was731

found to be u = 0, 7 mm. Conversely, u is related to
{
F ,E,A

}
, and was found to be732

u = 0, 04 mm. In addition, sampling is used to approximate u and u as resp. us and733

us. These results are used in the calculation of the error ϵ, as illustrated in Eq. (44).734

Figure 10. Convergence of ϵl and ϵu of the extreme truss responses with respect

to the sample size

Figure 10 illustrates the convergence of ϵl and ϵu with respect to the sample size735

N when u and u are approximated by sampling as resp. us and us. As can be seen,736

a sample size of roughly N = 1 · 1006 is required to achieve a relative error of 1%.737

At first sight, one may be tempted to say that this is acceptable. However, it should738

be kept in mind that by using proper interval techniques, an exact solution can be739

achieved in as little as 2 simulations.740
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4. Conclusions741

The primary objective in uncertainty quantification, whether using probabilistic or742

non-traditional approaches, is to accurately capture and represent uncertainty. The743

ultimate goal of such practice is to help analysts and engineers make risk-informed744

decisions. Uncertainty quantification involves several key steps, which include745

data collection, mathematical modeling, uncertainty propagation, identifying critical746

outcomes, and making decisions under uncertainty. Each step introduces potential747

challenges and possible sources of error that should be minimized or eliminated.748

In this study, we examine two common pitfalls in uncertainty quantification.749

The first issue concerns the assumption of normality for parameters that must be750

positive due to physical constraints. This pitfall is often justified by arguments such751

as the maximum entropy principle, the central limit theorem, or the fact that the752

probability of observing negative numbers is negligible. We illustrate that using a753

normal distribution can lead to outputs with undefined second-order statistics and754

overly conservative estimates. In other words, if a positive quantity is modeled755

with a normal distribution, the obtained results will be (at least) questionable or756

(plainly) wrong, even if the probability content associated to negative values is757

extremely small. While the truncated normal distribution can mitigate some of these758

issues, it remains highly sensitive to the truncation parameter. Hence, truncation759

of the negative values associated with a normal distribution which is used to model760

positive-valued properties may not suffice to ensure correctness and in fact, it may761

lead to gross errors. Consequently, modeling approaches should respect the inherent762

characteristics of the parameters involved to avoid misleading or invalid results. In a763

nutshell, the recommendations for modeling the uncertainty associated with positive-764

valued properties of a model are: (1) avoid the normal distribution and (2) use a765

truncated normal distribution only after investigating the effect of the truncation766

parameter.767

The second issue, analyzed in this paper, is the inappropriate use of sampling-768

based methods, such as Monte Carlo simulation from a uniform distribution,769

for propagating interval uncertainties. While these methods are powerful for770

probabilistic analysis, their direct application to interval analysis is problematic.771

Due to their design, they impose unjustified uniform assumptions, leading to772

computationally expensive and inherently non-conservative approximations of the773

true response bounds. The key takeaway here is that rigorous interval analysis774

should rely on methods specifically designed for bounding problems, such as direct775

optimization, interval arithmetic, affine arithmetic, or advanced surrogate-assisted776

techniques. Otherwise, one risks conducting an expensive analysis only to obtain an777

interior approximation of the uncertainty.778

Taken together, the findings of both parts of this paper highlight the need for a779

Page 28 of 32

https://mc04.manuscriptcentral.com/jrse-isecaep

Journal of Reliability Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



For Review Only

Avoiding Two Common Pitfalls in Uncertainty Propagation 29

critical evaluation of standard practices in uncertainty quantification. To ensure780

reliable results, it is essential to align modeling choices with the nature of the781

input data and apply the correct mathematical framework to represent uncertainty782

properly. By avoiding fundamental errors at each stage of the process, we can develop783

practical and robust decision-support tools for engineering applications.784
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[38] C. Ávila da Silva and A. Beck, “Chaos–Galerkin solution of stochastic Timoshenko bending872

Page 30 of 32

https://mc04.manuscriptcentral.com/jrse-isecaep

Journal of Reliability Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



For Review Only

Avoiding Two Common Pitfalls in Uncertainty Propagation 31

problems,” Comput. Struct., vol. 89, no. 7-8, pp. 599–611, 2011.873

[39] F. Yamazaki, M. Shinozuka, and G. Dasgupta, “Neumann expansion for stochastic finite874

element analysis,” J. Eng. Mech., vol. 114, no. 8, pp. 1335–1354, 1988.875

[40] X.-Y. Zhang, Y.-G. Zhao, and Z.-H. Lu, “Unified Hermite polynomial model and its application876

in estimating non-gaussian processes,” J. Eng. Mech., vol. 145, no. 3, p. 04019001, 2019.877

[41] M. Schevenels, G. Lombaert, and G. Degrande, “Application of the stochastic finite element878

method for Gaussian and non-Gaussian systems,” in ISMA2004 International Conference879

on Noise and Vibration Engineering, pp. 3299–3314, 2004.880

[42] W. Piegorsch and G. Casella, “The existence of the first negative moment,” Am. Stat., vol. 39,881

no. 1, pp. 60–62, 1985.882

[43] E. Lehmann and J. Shaffer, “Inverted distributions,” Selected Works of E.L. Lehmann, pp. 833–883

836, 2012.884

[44] L. G. Crespo, S. P. Kenny, and D. P. Giesy, “Interval predictor models with a linear parameter885

dependency,” J. Verif. Valid. Uncertain. Quantif., vol. 1, no. 2, p. 1–10, 2016.886

[45] M. Imholz, M. Faes, D. Vandepitte, and D. Moens, “Robust uncertainty quantification in887

structural dynamics under scarse experimental modal data: A Bayesian-interval approach,”888

J. Sound Vib., vol. 467, p. 114983, Feb. 2020.889

[46] I. Elishakoff and N. Sarlin, “Uncertainty quantification based on pillars of experiment, theory,890

and computation. part ii: Theory and computation,” Mech. Syst. Signal Process.2, vol. 74,891

2016.892

[47] R. Moore, Interval arithmetic and automatic error analysis in digital computing. PhD thesis,893

Ph. D. Dissertation, Department of Mathematics, Stanford University, 1962.894

[48] G. Muscolino and A. Sofi, “Bounds for the stationary stochastic response of truss structures895

with uncertain-but-bounded parameters,” Mech. Syst. Sig. Process., vol. 37, no. 1–2,896

p. 163–181, 2013.897

[49] P. Del Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo samplers,” J. R. Stat. Soc.898

Ser. B Stat. Methodol., vol. 68, p. 411–436, June 2006.899

[50] M. Faes and D. Moens, “Multivariate dependent interval finite element analysis via convex900

hull pair constructions and the extended transformation method,” Comput. Methods Appl.901

Mech. Eng., vol. 347, p. 85–102, Apr. 2019.902

[51] C. Jiang, Q. F. Zhang, X. Han, J. Liu, and D. A. Hu, “Multidimensional parallelepiped model903

– a new type of non-probabilistic convex model for structural uncertainty analysis,” Int. J.904

Numer. Methods Eng., vol. 103, no. 1, p. 31–59, 2015.905

[52] I. Elishakoff and F. Elletro, “Interval, ellipsoidal, and super-ellipsoidal calculi for experimental906

and theoretical treatment of uncertainty: Which one ought to be preferred?,” Int. J. Solids907

Struct., vol. 51, no. 7–8, p. 1576–1586, 2014.908

[53] A. Sofi, “Structural response variability under spatially dependent uncertainty: Stochastic909

versus interval model,” Probab. Eng. Mech., vol. 42, pp. 78–86, 2015.910

[54] W. Verhaeghe, W. Desmet, D. Vandepitte, and D. Moens, “Interval fields to represent911

uncertainty on the output side of a static FE analysis,” Comput. Methods Appl. Mech.912

Eng., vol. 260, no. 0, pp. 50–62, 2013. ISBN: 0045-7825 Publisher: Elsevier B.V.913

914

915

Page 31 of 32

https://mc04.manuscriptcentral.com/jrse-isecaep

Journal of Reliability Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



For Review Only

Avoiding Two Common Pitfalls in Uncertainty Propagation 32

Matthias Faes is full professor at the Chair for Reliability

Engineering of TU Dortmund, Germany.

916

Alba Sofi is associate professor of mechanics of solids

and structures at the University “Mediterranea” of Reggio

Calabria, Italy.

917

Marcos Valdebenito is chief engineer at the Chair for

Reliability Engineering of TU Dortmund, Germany.

918

Page 32 of 32

https://mc04.manuscriptcentral.com/jrse-isecaep

Journal of Reliability Science and Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


