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A B S T R A C T

Estimation of second-order statistics allows characterizing the uncertainty associated with the response of
stochastic finite element models. Two common approaches for estimating these statistics are Monte Carlo
simulation and perturbation. The purpose of this paper is to present a framework to aggregate the results
obtained by means of these two approaches under the umbrella of Control Variates with Splitting. This allows to
produce estimates of the second-order statistics of the system’s response with improved precision and accuracy.
More specifically, Control Variates is implemented in such a way that the variance of the estimates of second-
order statistics is minimized. In addition, the application of intervening variables for enhancing perturbation
is considered as well, showing substantial advantages by increasing the accuracy of the estimates of second-
order statistics. The application of the proposed framework is illustrated by means of an example involving
the estimation of second-order statistics of a model involving confined seepage flow.
1. Introduction

Stochastic finite element models allow representing and capturing
the behavior of systems whose input parameters are uncertain [1–3].
Such task is accomplished by explicitly characterizing the uncertainties
associated with system’s properties or loading by means of appropriate
uncertainty models [4–6]. In particular, random fields allow repre-
senting uncertainties that involve a spatial component [7–10]. Thus,
stochastic finite element analysis provides a powerful tool for modeling
and quantifying the behavior of engineering systems. Although analyti-
cal solutions exist for certain classes of problems (see, e.g. [11,12]), the
practical deployment of stochastic finite element analysis may become
challenging as in more general cases, no closed-form solutions exist.
Therefore, a number of specific approaches have been developed for
coping with stochastic finite element models, such as the Monte Carlo
method and its advanced variants (see, e.g. [13–15]), perturbation
methods (see, e.g. [16–18]), spectral methods (see, e.g. [1,19]), vari-
ability response functions (see, e.g. [12,20]), and probability density
methods (see, e.g. [21,22]), to name a few.

∗ Corresponding author.
E-mail address: marcos.valdebenito@tu-dortmund.de (M.A. Valdebenito).

1 Appendix A discusses the concepts of accuracy and precision in more detail.

As quantifying the uncertainty associated with a stochastic finite
element model is a challenging task, a common approach is charac-
terizing its response in terms of its second-order statistics. In general,
second-order statistics may provide limited information in comparison
to other probabilistic descriptors such as higher-order moments [18]
and probability estimates. However, these statistics can still provide
valuable insight for the problem at hand, particularly because its
calculation is commonly less involved from a numerical viewpoint
than tail probabilities, see e.g. [23,24]. Among the various existing
approaches for calculating second-order statistics (see, e.g. [12,25–
27]), two classical approaches are perturbation analysis and Monte
Carlo simulation. Perturbation analysis (see, e.g. [17]) is based on
constructing a linear expansion of the system’s response with respect
to the uncertain input parameters. Based on this linear expansion,
it is possible to estimate second-order statistics of the response in
closed-form. In this sense, the estimates produced by perturbation are
regarded as precise,1 as they are a deterministic quantity. Nonetheless,
these estimates may lack accuracy,1 as their value may be different
from the true one due to the linearization of the response. How-
ever, this shortcoming can be overcome by resorting to intervening
vailable online 20 January 2024
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variables [28], which significantly enhance the range of application
of classical perturbation [29]. Still, the application of perturbation
methods (with or without considering intervening variables) produces
precise estimates of the sought statistics with no information on the
approximation error. As a counterpart, Monte Carlo simulation (see,
e.g. [13]) offers the possibility of producing accurate estimates of the
second-order statistics, which are calculated based on random samples
of the response. Nonetheless, the precision of these estimates depends on
the number of generated samples. In fact, high precision levels can be
achieved at the expense of a considerable number of random samples.
The level of precision of Monte Carlo estimates can be quantified, for
example, in terms of their variance by post-processing the associated
random samples.

The preceding discussion highlights the advantages and drawbacks
of both perturbation analysis and Monte Carlo simulation for estimating
second-order statistics. A possible means for exploiting the best out of
these two approaches is aggregating them by means of Control Variates
(see, e.g. [30]). Control Variates takes advantage of the approximate
results by constructing an estimator of the second-order statistics which
possesses reduced variability when compared with its plain Monte
Carlo counterpart. The application of Control Variates has been studied
in the literature for different applications (see e.g. [31–34]) and is
closely related to other approaches such as multilevel Monte Carlo (see,
e.g. [31,35–39]).

This work explores the application of Control Variates as a means
for calculating second-order statistics of the response of stochastic
finite element models by aggregating the results produced with Monte
Carlo simulation and perturbation analysis (the latter without and with
intervening variables). The focus is on investigating its application
for a class of problems involving linear systems whose properties
are described by means of a random field. In particular, this work
possesses two novel features. First, the calculation of both mean value
and variance of the stochastic response is addressed. In contrast, most
contributions dealing with Control Variates focus on calculating mean
values only (see, e.g. [32,33]). Second, the application of a Splitting
technique is included in the analysis, as proposed by [40]. This Splitting
technique allows circumventing some issues related with the practical
implementation of the Control Variates estimator while avoiding bias in
the estimates, which is an issue frequently overlooked in the literature,
see e.g. [33,41]. The main contribution of this work is providing the
means to aggregate the results produced by two different methods
or stochastic finite element analysis. In other words, it is assumed
hat results from perturbation analysis (with or without considering
ntervening variables) and Monte Carlo simulation are already available
nd the objective is to aggregate these results to obtain estimates of
he second-order statistics with improved precision and accuracy. The
ggregation of the results is performed such that the variance of the
ought probabilistic descriptors (in this case, the second-order statistics)
s minimized.

The rest of this contribution is organized as follows. Section 2
resents the problem under consideration as well as the basic tools
or analysis, namely Monte Carlo simulation, classical perturbation and
erturbation enhanced with intervening variables. Section 3 focuses on
he framework of Control Variates with Splitting based on Monte Carlo
nd perturbation analysis. The application of the proposed approach is
llustrated by means of an example in Section 4, which involves calcu-
ating the second-order statistics of a confined seepage flow problem
odeled using stochastic finite elements. The paper closes with some

onclusions and outlook for future work in Section 5.

. Estimation of second-order statistics of the response of stochas-
ic finite element models by means of Monte Carlo and perturba-
ion

.1. Stochastic finite element model

Consider an engineering system whose behavior is characterized
2

s linear and which is in an steady state regime. Several practical p
problems fall into that category, such as linear structural mechanics,
heat transfer, seepage, etc., and they can be conveniently modeled
by means of the finite element method [42]. It is further assumed
that a property of the system under study possesses spatial uncertainty
and that this property is described in terms of a random field. This
random field is represented through an appropriate method such as the
Karhunen-Loève expansion (see e.g. [43]) and discretized accordingly
using, e.g. the mid-point method [7]. In this way, the discrete random
field becomes dependent on a random variable vector that groups a to-
tal of 𝑛𝜃 random variables, that is 𝜣 = [𝛩1,… , 𝛩𝑛𝜃 ]

𝑇 , where (⋅)𝑇 denotes
transpose of the argument. Without loss of generality, it is assumed
that the probability density function 𝑝𝜣 (𝜽) associated with this random
ariable vector follows a multivariate standard Gaussian distribution,
here 𝜽 denotes a realization of 𝜣. In such a context, a non-Gaussian

random field can be modeled by a memory-less translation from an
underlying Gaussian random field, see e.g. [8,44–46].

Under the assumptions described above, the behavior of the system
under study can be represented in a discrete way by means of the
following system of linear equations:

𝑲 (𝜽) 𝒖 (𝜽) = 𝒇 (1)

where 𝑲 is a 𝑛𝑑 ×𝑛𝑑 matrix that is related with the system’s properties;
𝑛𝑑 denotes the number of degrees-of-freedom of the finite element
model; 𝒖 and 𝒇 are 𝑛𝑑 × 1 vectors that represent the system’s response
and external action over the system, respectively. Note that in Eq. (1),
it is assumed that the system’s matrix 𝑲(𝜽) is affected by the uncer-
tainty associated with the random field while the external action 𝒇 is
deterministic. The latter is a simplification, as in reality the external
actions are usually subject to uncertainty. Nonetheless, this simplified
representation is retained throughout this contribution to study the
effect of system’s properties uncertainties on its response [17].

2.2. Second-order statistics of the response

The characterization of the system’s behavior in terms of Eq. (1)
allows determining a certain response of interest 𝑟 (𝜽), which is assumed
to be a scalar quantity and a known function of the system’s response,
that is 𝑟 (𝜽) = ℎ (𝒖 (𝜽)). For example, the function ℎ(⋅) may return a
particular component of the response vector, an average over a number
of responses at different degrees-of-freedom, etc. It is noted that the
response of interest 𝑟 is uncertain, as it is a function of the system’s
response 𝒖 (𝜽), which in turn depends on the particular realization 𝜽 of
the input random variable vector 𝜣 associated with the representation
of the random field. Thus, it is of interest quantifying the uncertainty
associated with this response 𝑟 in terms of its mean 𝜇′

1 and variance 𝜇2,
which are defined as [30]:

𝜇′
1 (𝑟(𝜽)) = ∫𝜽∈𝑛𝜃

𝑟(𝜽)𝑝𝜣 (𝜽)𝑑𝜽 (2)

2 (𝑟(𝜽)) = ∫𝜽∈𝑛𝜃
(𝑟(𝜽) − E [𝑟(𝜽)])2𝑝𝜣 (𝜽)𝑑𝜽 (3)

here  represents the set of real numbers; and E[⋅] denotes expec-
ation of the argument. Note that the notation 𝜇′

1 is consistent with
hat of the first order moment of response about zero (which is actually
he mean) while 𝜇2 denotes the second order moment about the mean
which is actually the variance). In other words, the notation 𝜇′

𝑝 denotes
he 𝑝th moment about zero while 𝜇𝑝 denotes the 𝑝th moment about the
ean [47].

For cases of practical interest, solutions for the integrals in Eqs. (2)
nd (3) are not available in closed form because, e.g. the dimen-
ionality 𝑛𝜃 of the vector of random variables may be considerable
thus preventing the application of traditional quadrature rules) or the
esponse 𝑟(𝜽) is not available in closed-form. Two possible approaches
hat allow circumventing these issues are Monte Carlo simulation and

erturbation, which are described in Sections 2.3 and 2.4, respectively.
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As an additional remark, it should be noted that in several cases, one
may be interested in calculating the second-order statistics of a vector-
valued system’s response. In such case, the aim is estimating both the
mean vector and the covariance matrix of the response [17]. Such case,
which can also be treated in the context of the present formulation, is
not pursued further in this work for the sake of simplicity.

2.3. Monte Carlo simulation

Monte Carlo simulation (see, e.g. [13,14,30]) offers a feasible means
for estimating second-order statistics. For such purpose, 𝑛 independent,
identically distributed realizations of the random variable vector 𝜣
are generated and collected in matrix 𝜣𝑛, where the 𝑖th realization is
enoted as 𝜽(𝑖). That is, 𝜣𝑛 =

[

𝜽(1),… ,𝜽(𝑛)
]

. Then, let 𝜇′
1 denote the

ean and 𝜇2 denote the variance of the response of interest. Unbiased
stimators for these quantities are [30]:

′̂
1
(

𝑟,𝜣𝑛
)

= 1
𝑛

𝑛
∑

𝑖=1
𝑟
(

𝜽(𝑖)
)

(4)

2̂
(

𝑟,𝜣𝑛
)

= 1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝑟
(

𝜽(𝑖)
)

− 1
𝑛

𝑛
∑

𝑖1=1
𝑟
(

𝜽(𝑖1)
)

)2

(5)

where (̂⋅) denotes an estimator. As the quantities in Eqs. (4) and (5) are
estimators, they possess a variance, which is quantified by means of the
following expressions [48]:

𝜎2
[

𝜇′
1
(

𝑟,𝜣𝑛
)

]

=
𝜇2

(

𝑟,𝜣𝑛
)

𝑛
(6)

𝜎2
[

𝜇2
(

𝑟,𝜣𝑛
)]

=
𝜇4

(

𝑟,𝜣𝑛
)

𝑛
−

(𝑛 − 3)𝜇2
2
(

𝑟,𝜣𝑛
)

(𝑛 − 1) 𝑛
(7)

where 𝜎2[⋅] denotes an estimator of the variance of the argument; and
4̂
(

𝑟,𝜣𝑛
)

is the estimator of the fourth-order central moment. Unbiased
expressions of 𝜇4

(

𝑟,𝜣𝑛
)

and 𝜇2
2
(

𝑟,𝜣𝑛
)

are given in Appendix C (see
Eqs. (C.6) and (C.9) and consider 𝑞 = 0). Clearly, the variance asso-
ciated with the estimates of the mean and variance of the response as
shown in Eqs. (6) and (7), respectively, tends to decrease as the number
of samples 𝑛 increases. Although estimators with low variability are de-
sirable, this is often not possible in practice, as considerable numerical
efforts may be required for solving the system’s equation (see Eq. (1))
when the number 𝑛 of realizations of the input parameters is large.

2.4. Perturbation analysis

An alternative approach to calculate second-order statistics consists
of approximating the system’s response 𝑟 as an explicit function of 𝜽
by means of a first-order Taylor series (see, e.g. [18,49–51]). Thus,
the first-order expansion of the response (denoted as 𝑟L) about 𝜽(0) =
[0,… , 0]𝑇 becomes equal to:

𝑟(𝜽) ≈ 𝑟L(𝜽) = 𝑟
(

𝜽(0)
)

+
𝑛𝜃
∑

𝑘=1
𝑟,𝑘𝜃𝑘 (8)

where 𝜃𝑘 is the 𝑘th element of 𝜽; 𝑟
(

𝜽(0)
)

denotes the response of the
system evaluated at 𝜽(0); and 𝑟,𝑘 = 𝜕𝑟∕𝜕𝜃𝑘||𝜽=𝜽(0) , 𝑘 = 1,… , 𝑛𝜃 denotes
he partial derivative of the response with respect to the 𝑘th random

variable evaluated at 𝜽(0). Note that the latter partial derivatives can
be calculated with no additional system’s analyses other than the one
associated with the evaluation of 𝑟(𝜽(0)) [52]. Furthermore, analytic
expressions are available in the literature for evaluating these partial
derivatives, see e.g. [52,53].

Considering the linear approximation of the response as cast in
Eq. (8), the mean value and variance of the system’s response can be
calculated in closed-form, that is [17]:

𝜇′ 𝑟(𝜽) ≈ 𝜇′ (𝑟L(𝜽)
)

= 𝑟
(

𝜽(0)
)

(9)
3

1 ( ) 1
𝜇2 (𝑟(𝜽)) ≈ 𝜇2
(

𝑟L(𝜽)
)

=
𝑛𝜃
∑

𝑘=1
𝑟2,𝑘 (10)

Note that the approximate values for the mean and variance of the
response as shown in Eqs. (9) and (10) are precise, in the sense that
they are deterministic numbers. However, they may not be accurate, as
hey are derived from an approximation of the response. In practice, it
as been observed that the approximations in Eqs. (9) and (10) provide
ccurate estimates whenever the levels of uncertainty associated with
he random field are sufficiently small.

.5. Enhancement of perturbation analysis with intervening variables

A natural path for improving the accuracy of the second-order
tatistics described above is increasing the order of the Taylor ex-
ansion. Nonetheless, as discussed in [17,53], the numerical efforts
ssociated with constructing a second-order Taylor expansion may be
onsiderable due to the necessity of calculating the Hessian of the
esponse, while not bringing substantial accuracy improvements for the
ought statistics. A different path for producing more accurate estimates
f the second-order statistics of the response consists of constructing a
irst-order Taylor expansion of the response with respect to intervening
ariables [54]. In essence, an intervening variable is a nonlinear func-
ion of the basic random variables of a problem. A flexible and popular
ntervening variable is the so-called exponential one [29,55,56], which
s defined as 𝑦𝑘 = 𝑒𝑚𝑘𝜃𝑘 , 𝑘 = 1,… , 𝑛𝜃 , where 𝑦𝑘 is the intervening
ariable and 𝑚𝑘 is a real constant. As shown in detail in [29], the first-

order Taylor expansion of the response with respect to this exponential
intervening variable (which is denoted as 𝑟I) is:

𝑟(𝜽) ≈ 𝑟I(𝜽) = 𝑟
(

𝜽(0)
)

+
𝑛𝜃
∑

𝑘=1
𝑟,𝑘

(

𝑒𝑚𝑘𝜃𝑘 − 1
𝑚𝑘

)

. (11)

The exponent 𝑚𝑘, 𝑘 = 1,… , 𝑛𝜃 can be selected by taking into account
the diagonal terms of the Hessian matrix associated with the system’s
response. Appendix B provides a detailed explanation about how this
exponent is calculated.

Considering the approximation in Eq. (11), the second-order statis-
tics of the system’s response are given by the following closed-form
expressions.

𝜇′
1 (𝑟(𝜽)) ≈ 𝜇′

1
(

𝑟I(𝜽)
)

= 𝑟
(

𝜽(0)
)

+
𝑛𝜃
∑

𝑘=1
𝑟,𝑘

(

𝑒𝑚
2
𝑘∕2 − 1
𝑚𝑘

)

(12)

𝜇2 (𝑟(𝜽)) ≈ 𝜇2
(

𝑟I(𝜽)
)

=
𝑛𝜃
∑

𝑘=1
𝑟2,𝑘

(

𝑒2𝑚
2
𝑘 − 𝑒𝑚

2
𝑘

𝑚2
𝑘

)

(13)

Results reported in [29] suggest that the application of exponential
intervening variables for estimating second-order statistics as shown in
Eqs. (12) and (13) offers considerably accuracy improvements when
compared to estimates produced with classical perturbation as shown
in Eqs. (9) and (10). The latter statement becomes more notorious
in problems where the associated random field possesses significant
uncertainty levels.

3. Control variates with splitting

3.1. General remarks

Section 2 has presented two of the most common approaches for
estimating second-order statistics of stochastic finite element models,
namely Monte Carlo simulation and perturbation analysis (both in its
classical formulation and also considering intervening variables). The
estimates produced by Monte Carlo simulation are deemed as accurate,
as they are based on 𝑛 samples of the system’s response of interest.
The level of precision of these estimates will depend upon the number
of simulations 𝑛, where a higher number of simulations ensures a
higher precision at the expense of repeated solution of the equilibrium

equation (see Eq. (1)) for the 𝑛 different samples of the random variable
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𝛾

vector. In this context, the level of precision can be quantified in
terms of, e.g. the variance of the estimators (see Eqs. (6) and (7)). On
the contrary, the results produced by perturbation analysis are precise,
as they are deterministic quantities derived from the approximate
representation of the response. However, the second-order statistics
produced with perturbation analysis most likely lack accuracy, as they
are deduced based on an approximation of the system’s response.
While accuracy can be improved resorting to intervening variables
as described in Section 2.5, the results produced by a perturbation
approach usually do not provide any measure on the approximation
error.

The above discussion highlights the individual advantages of Monte
Carlo simulation and perturbation analysis to estimate second-order
statistics. A possible means to exploit these approaches synergistically
consists of resorting to Control Variates (see, e.g. [30]), which is the
main topic of this Section. Indeed, details about Control Variates are
discussed in Section 3.2. Furthermore, for the practical deployment of
Control Variates, it is required to compute a so-called control parame-
ter. Such parameter can be conveniently calculated within a Splitting
scheme [40], as shown in Section 3.3. Then, Sections 3.4 and 3.5
provide detailed expressions for calculating the mean and variance of
the system’s response by employing Control Variates with Splitting.
Some practical implementation aspects regarding the implementation
of the framework for estimating second-order statistics of the system’s
response of stochastic finite elements are discussed in Section 3.6.

Before presenting Control Variates, it is useful to define 𝑟, which
represents an approximation of the response. In this contribution, 𝑟 can
refer to either the linear approximation of the response 𝑟L as shown
in Eq. (8) or the approximation considering intervening variables 𝑟I as
shown in Eq. (11).

3.2. Control variates

Assume that 𝜇 can represent either mean value 𝜇′
1 or variance 𝜇2.

Then, the Control Variates estimator of 𝜇 is equal to [30]:

̂CV (

𝑟, 𝑟,𝜣𝑛
)

= 𝜇
(

𝑟,𝜣𝑛
)

− 𝛾𝜇
(

𝑟,𝜣𝑛
)

+ 𝛾𝜇 (𝑟) (14)

here 𝜇CV (

𝑟, 𝑟,𝜣𝑛
)

represents the Control Variates estimate of the
tatistic of the system’s response 𝑟 calculated using 𝑛 samples 𝜣𝑛 drawn
sing Monte Carlo and the approximate response 𝑟; 𝜇

(

𝑟,𝜣𝑛
)

is a Monte
arlo estimate of the mean (see Eq. (4)) or variance (see Eq. (5))
onsidering the exact response 𝑟; 𝜇

(

𝑟,𝜣𝑛
)

is analogous to the latter
stimator except that it is calculated using the approximate response
𝑟; 𝜇(𝑟) corresponds to the closed-form expression for the mean (see
q. (9) or (12)) or variance (see eq. (10) or (13)) calculated using the
pproximate response 𝑟; and 𝛾 is a so-called control parameter, which
s a real number. In order to understand the rationale behind Eq. (14),
onsider for a moment that the control parameter is selected such that
= 1 (such restriction is removed later on). Under such an assumption,

he Control Variates estimate can be understood as follows.

• The term 𝛾𝜇 (𝑟) in Eq. (14) is a precise estimate of the sought
statistic, as it is computed in closed-form. However, it may lack
accuracy, as it is calculated using an approximation of the true
response.

• The term 𝜇
(

𝑟,𝜣𝑛
)

− 𝛾𝜇
(

𝑟,𝜣𝑛
)

can be interpreted as a correc-
tion over the previous value, as it computes the difference be-
tween the estimate of the statistic calculated using the exact and
approximate responses, respectively.

he previous discussion highlights the fact that Control Variates as cast
n Eq. (14) successfully aggregates the estimators for a statistic (either
ean or variance) produced with Monte Carlo simulation (which is

epresented by the term 𝜇
(

𝑟,𝜣𝑛
)

) with those produced by perturbation
which is represented by the term 𝜇 (𝑟)).

Fig. 1 provides a schematic representation of the Control Variates
stimator in Eq. (14). This representation considers the probability
4

Fig. 1. Schematic representation of Control Variates.

density functions associated to the different estimators involved. The
green arrow represents the probability density function associated with
𝛾𝜇(𝑟) and corresponds to a Dirac delta, as this is a precise value.
Nonetheless, such estimator is not accurate, as it is different from the
sought statistic 𝜇(𝑟). The red curve illustrates the probability density
function associated with the estimator 𝜇̂(𝑟,𝜣𝑛), which corresponds
o the plain Monte Carlo estimate of the sought statistic considering
he exact response. This estimator is accurate, however, it may lack
ufficient precision because the sample set 𝜣𝑛 is relatively small. The

purple curve represents the probability distribution associated with the
estimator of the correction term 𝜇

(

𝑟,𝜣𝑛
)

− 𝛾𝜇
(

𝑟,𝜣𝑛
)

. As it is expected
that the approximate and exact responses exhibit a considerable corre-
lation, the variance of this probability density is relatively low. The blue
curve represents the probability density associated with the estimator
considering Control Variates, which corresponds to the superposition of
the purple and green curves. This probability density is both accurate
(because it leads to the sought statistic) and precise (as it has reduced
variability when compared to its plain Monte Carlo counterpart).

The advantages of the Control Variates estimate as presented in
Eq. (14) and Fig. 1 can be also understood by examining its variance
estimate, which is equal to [30]:

𝜎2 [𝜇CV (

𝑟, 𝑟,𝜣𝑛
)]

= 𝜎2 [𝜇
(

𝑟,𝜣𝑛
)]

−2𝛾𝛿
[

𝜇
(

𝑟,𝜣𝑛
)

, 𝜇
(

𝑟,𝜣𝑛
)]

+𝛾2𝜎2 [𝜇
(

𝑟,𝜣𝑛
)]

(15)

where 𝛿[⋅, ⋅] denotes the estimator of the covariance between the ar-
guments. A close examination of Eq. (15) indicates that its first and
third terms (that is, 𝜎2

[

𝜇
(

𝑟,𝜣𝑛
)]

and 𝛾2𝜎2
[

𝜇
(

𝑟,𝜣𝑛
)]

, respectively)
measure the variance associated with the first and second terms of
Eq. (14) (that is, 𝜇

(

𝑟,𝜣𝑛
)

and 𝛾𝜇
(

𝑟,𝜣𝑛
)

, respectively) while the second
term of Eq. (15) (that is, 2𝛾𝛿

[

𝜇
(

𝑟,𝜣𝑛
)

, 𝜇
(

𝑟,𝜣𝑛
)]

) appears due to the
covariance between the first and second terms of Eq. (14). In addition,
note that the third term of Eq. (14) (that is, 𝛾𝜇 (𝑟)) is a deterministic
uantity and hence, it does not contribute to the variance expression
n Eq. (15).

It is noted that Eq. (15) is a quadratic function with respect to the
ontrol parameter 𝛾. Thus, by removing the previous assumption that
= 1, one can select 𝛾 such that the variance of the estimator as shown

n Eq. (15) is minimized. This implies taking the derivative of Eq. (15)
ith respect to 𝛾 and equating it to zero, which leads to the optimal
alue of the control parameter [30,57], which is denoted as 𝛾∗:

∗ =
𝛿
[

𝜇
(

𝑟,𝜣𝑛
)

, 𝜇
(

𝑟,𝜣𝑛
)]

𝜎2
[

𝜇
(

𝑟,𝜣𝑛
)] . (16)

As noted from the above equation, the optimal control parameter
involves estimating variance and covariance of the system’s response
𝑟 and its approximation 𝑟. If the optimal control parameter in Eq. (16)
is replaced into Eq. (15), one obtains:

𝜎2min
[

𝜇CV (

𝑟, 𝑟,𝜣𝑛
)]

= 𝜎2
[

𝜇
(

𝑟,𝜣𝑛
)]

−

(

𝛿
[

𝜇
(

𝑟,𝜣𝑛
)

, 𝜇
(

𝑟,𝜣𝑛
)]

)2

𝜎2
[

𝜇
(

𝑟,𝜣𝑛
)] (17)

which expresses the minimum possible variance that the Control Vari-
ates estimate may attain and which is denoted as 𝜎2

[

𝜇CV (

𝑟, 𝑟,𝜣
)]

.
min 𝑛
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By examining Eq. (17), it is noted that the first term represents the
variance of the Monte Carlo estimator. The second term is associated
with the covariance between the statistics calculated with the exact
system’s response 𝑟 and its approximation 𝑟. Hence, provided that 𝑟
closely mimics 𝑟, it is expected that the covariance between estimates
is high and therefore, the variance of the Control Variates estimate can
be significantly smaller than that of its Monte Carlo counterpart. In
fact, if the approximate response 𝑟 were to reproduce the response 𝑟
xactly, the variance of the Control Variates estimate would be zero. Of
ourse, the latter case just illustrates an extreme situation as in practical
pplications, one can expect discrepancies between 𝑟 and 𝑟.

As a summary of the above discussion, it is observed that Control
ariates offers an excellent means to aggregate the results of pertur-
ation analysis and Monte Carlo simulation for problems involving
stimation of second-order statistics of stochastic finite element mod-
ls. In fact, as perturbation is based on constructing an approximate
epresentation of the response, it is expected that there is considerable
ovariance between the statistics estimated with the two approaches
that is, Monte Carlo and perturbation), leading to an estimate with
mproved accuracy (as given by Eq. (14)) and with high precision (that
s, with minimum variance, as expressed in Eq. (17)). In the worst-
ase scenario where there is no covariance between the exact response
and the approximate response 𝑟, Control Variates would still allow

o retrieve the results from classical Monte Carlo simulation. This last
tatement can be easily verified by examining Eq. (16): in case of
ull covariance, the optimal control parameter becomes 𝛾∗ = 0 and
hus, Eqs. (14) and (17) become the classical Monte Carlo estimates.
urthermore, aggregating the results of perturbation and Monte Carlo
imulation under the umbrella provided by Control Variates allows
uantifying the approximation error associated with the estimated
econd-order statistics in terms of their variance. This is a significant
dvantage, as a perturbation approach (with or without considering
ntervening variables) does not usually offer an explicit error estimate.

.3. Splitting

The previous Section has highlighted the advantages of Control
ariates. However, for its practical implementation, it is necessary to
stimate the optimal control parameter 𝛾∗ by means of Eq. (16), which
n turn demands knowledge on the covariance and variance of the
nvolved estimators. If this control parameter were to be calculated
sing the very same samples used to estimate the sought statistic as
hown in Eq. (14), this would introduce bias in the estimates [33,58].
he latter issue could be particularly harmful in case that the number
f samples 𝑛 is small [32], which is expected to be the case in practical
pplications. Fortunately, the effect of bias can be conveniently avoided
y the so-called Splitting technique, as introduced in [40]. Splitting con-
ists of subdividing the pool of 𝑛 samples of the uncertain parameters
𝑛 into 𝑘 subsets. Each of these 𝑘 subsets contains a total of 𝑛∗ = 𝑛∕𝑘

amples, where it is assumed that 𝑛 and 𝑘 are selected such that 𝑛∗ is a
ositive integer number. The 𝑗th sample subset is denoted as 𝜣𝑛∗ ,𝑗 and
t contains the following samples:

𝑛∗ ,𝑗 =
[

𝜽(1+(𝑗−1)𝑛∗),… ,𝜽(𝑛∗+(𝑗−1)𝑛∗)
]

, 𝑗 = 1,… , 𝑘. (18)

n addition, consider the following integer 𝜏 as a function of the sample
ubset identifier 𝑗:

(𝑗) = rem(𝑗, 𝑘) + 1, 𝑗 = 1,… , 𝑘 (19)

here rem(𝑗, 𝑘) returns the remainder of the division between 𝑗 and 𝑘.
ote that in case 𝑘 ≥ 2, it is always ensured that 𝜏(𝑗) ≠ 𝑗, 𝑗 = 1,… , 𝑘.

Taking into account the definitions in Eqs. (18) and (19), the Control
ariates estimator that includes the Splitting scheme is:

̂CV+S (𝑟, 𝑟,𝜣𝑛
)

= 1
𝑘

𝑘
∑

𝜇CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)
)

. (20)
5

𝑗=1
n the above equation, 𝜇CV+S (𝑟, 𝑟,𝜣𝑛
)

denotes the Control Variates
stimator considering Splitting; 𝜇CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗𝜣𝑛∗ ,𝜏(𝑗)

)

is the Control
ariates estimate associated with the 𝑗th and 𝜏(𝑗)-th sample subsets,

hat is defined as [40]:

̂CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)
)

= 𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)

− 𝛾∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)

+ 𝛾∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇 (𝑟) , 𝑗 = 1,… , 𝑘 (21)

here the optimal control parameter 𝛾∗𝜏(𝑗) is calculated as:

∗
𝜏(𝑗)

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

=
𝛿
[

𝜇
(

𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

, 𝜇
(

𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)]

𝜎2
[

𝜇
(

𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)] , 𝑗 = 1,… , 𝑘. (22)

As seen in Eq. (20), the estimator based on Control Variates with
Splitting is simply the average of the basic Control Variates estimates
̂CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

, 𝑗 = 1,… , 𝑘, shown in Eq. (21). Moreover,
by examining Eqs. (21) and (22), it is observed that this basic Control
Variates estimate 𝜇CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

is calculated such that:

• The estimators of the statistics of the exact response 𝑟 and its
approximation 𝑟 are calculated with the 𝑗th sample subset, as
shown in Eq. (21).

• The optimal control parameter 𝛾∗ is calculated using the 𝜏(𝑗)-th
sample subset.

This implies that, in practice, the statistics estimated with one sample
subset are controlled by another sample subset, where controlled means
the application of the optimal control parameter 𝛾∗. Such strategy
allows effectively avoiding the effect of bias in the Control Variates
estimate as long as the number of sample subsets is chosen such that 𝑘 ≥
3 [40]. However, selecting a number 𝑘 of sample subsets which is too
large increases the variance of the estimator. Therefore, for practical
applications, it is recommended that 𝑘 = 3.

The estimator of the variance associated with the estimator applying
Control Variates with Splitting is [40]:

𝜎2
[

𝜇CV+S (𝑟, 𝑟,𝜣𝑛
)]

= 1
𝑘2

𝑘
∑

𝑗=1
𝜎2

[

𝜇CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)
)]

, (23)

where:

𝜎2
[

𝜇CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)
)]

= 𝜎2
[

𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)]

− 2𝛾∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

× 𝛿
[

𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)

, 𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)]

+
(

𝛾∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

)2

× 𝜎2
[

𝜇
(

𝑟,𝜣𝑛∗ ,𝑗
)]

, 𝑗 = 1,… , 𝑘. (24)

As a summary of this Section, it is noted that the Splitting technique
simply consists of performing calculations of the different estimators
and control parameters over sample subsets. The advantage of such an
approach is that it can effectively avoid the effect of bias. Furthermore,
when comparing the estimators based on Control Variates (as shown in
Section 3.2) with those that involve Splitting (as shown in the current
Section), it is noted that Splitting does not demand any additional
evaluations of the system’s response (that is, no additional simulations
of the stochastic finite element model are required). In other words,
the application of Splitting does not involve any substantial numerical
burden, except for the additional calculation required for keeping
track of different sample subsets. Such calculation possesses a small
numerical cost when compared to the efforts spent in the evaluation
of the exact system’s response.

3.4. Estimation of the mean of the response

Sections 3.2 and 3.3 provide a general framework for applying Con-
trol Variates with Splitting. This Section presents specific expressions
for estimating the mean value of the response as well as the variance

of this estimate (that is, variance of the mean). Before presenting these
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expressions, it is useful to define 𝜇𝑝,𝑞 = E [(𝑟 − E[𝑟])𝑝(𝑟 − E[𝑟])𝑞], which
represents the bivariate central co-moment of order (𝑝, 𝑞) between 𝑟
and 𝑟, where 𝑝 and 𝑞 are natural numbers (including zero) while E[⋅]
denotes expectation of the argument (as already defined in Section 2.2).
Appendix C provides detailed expressions for estimating these bivariate
central co-moments based on samples. Furthermore, please recall that
𝑟 represents an approximation of the response, which can refer to
either the linear approximation of the response 𝑟L or the approximation
considering intervening variables 𝑟I, as shown in Eqs. (8) and (11),
respectively.

The estimator for the mean of the system’s response considering
Control Variates with Splitting is denoted as 𝜇′

1

CV+S
and is given by

the following expression:

𝜇′
1

CV+S (
𝑟, 𝑟,𝜣𝑛

)

= 1
𝑘

𝑘
∑

𝑗=1
𝜇′
1

CV,(𝑗) (
𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

. (25)

n the above equation, 𝜇′
1

CV,(𝑗)
is defined as:

′̂
1

CV,(𝑗) (
𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

= 𝜇′
1

(

𝑟,𝜣𝑛∗ ,𝑗
)

− 𝛼∗
𝜏(𝑗)

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇′
1

(

𝑟,𝜣𝑛∗ ,𝑗
)

+ 𝛼∗
𝜏(𝑗)

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇′
1 (𝑟) , 𝑗 = 1,… , 𝑘, (26)

here 𝜇′
1
(

𝑟,𝜣𝑛∗ ,𝑗
)

and 𝜇′
1
(

𝑟,𝜣𝑛∗ ,𝑗
)

are Monte Carlo estimates of the
ean of the exact and approximate responses, respectively, which are

alculated using Eq. (4); 𝜇′
1(𝑟) is the mean value of the approximate

esponse calculated in closed-form considering either the classical per-
urbation solution (see Eq. (9)) or intervening variables (see Eq. (12));
nd 𝛼∗𝜏(𝑗) is the optimal control parameter for estimating the mean,
hich is equal to:

∗
𝜏(𝑗)

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

=
𝜇1,1

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇0,2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
) , 𝑗 = 1,… , 𝑘, (27)

here 𝜇1,1 and 𝜇0,2 denote estimators for bivariate central moments
hich are calculated according to Eqs. (C.3) and (C.4), respectively.
he estimator of the variance of the estimate for the mean in Eq. (25)

s given by:

𝜎2
[

𝜇′
1

CV+S (
𝑟, 𝑟,𝜣𝑛

)

]

= 1
𝑘2

𝑘
∑

𝑗=1
𝜎2

[

𝜇′
1

CV,(𝑗) (
𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

, (28)

here 𝜎2
[

𝜇′
1

CV,(𝑗) (
𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

is equal to:

𝜎2
[

𝜇′
1

CV,(𝑗) (
𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

=
𝜇2,0

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗
− 2𝛼∗

𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

×
𝜇1,1

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗

+
(

𝛼∗
𝜏(𝑗)

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

)2 𝜇0,2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗
,

𝑗 = 1,… , 𝑘, (29)

where 𝜇2,0 is calculated according to Eq. (C.2).

3.5. Estimation of the variance of the response

This Section presents expressions for estimating the variance of the
response as well as the variance of this estimate (that is, variance of
the variance) based on the material presented in Sections 3.2 and 3.3.
The estimator 𝜇2

CV+S denotes the variance of the system’s response
onsidering Control Variates with Splitting and is equal to:

2̂
CV+S (𝑟, 𝑟,𝜣𝑛

)

= 1
𝑘

𝑘
∑

𝑗=1
𝜇2

CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)
)

. (30)

n the last equation, 𝜇2
CV,(𝑗) is equal to:

𝜇 CV,(𝑗) (𝑟, 𝑟,𝜣 ,𝜣
)

= 𝜇
(

𝑟,𝜣
)

− 𝛽∗
(

𝑟, 𝑟,𝜣
)

𝜇
(

𝑟,𝜣
)

6

2 𝑛∗ ,𝑗 𝑛∗ ,𝜏(𝑗) 2 𝑛∗ ,𝑗 𝜏(𝑗) 𝑛∗ ,𝜏(𝑗) 2 𝑛∗ ,𝑗
+ 𝛽∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝜇2 (𝑟) , 𝑗 = 1,… , 𝑘, (31)

where 𝜇2
(

𝑟,𝜣𝑛∗ ,𝑗
)

and 𝜇2
(

𝑟,𝜣𝑛∗ ,𝑗
)

are Monte Carlo estimates of the
ariance of the exact and approximate responses, respectively, which
re calculated using Eq. (5); 𝜇2(𝑟) is the variance of the approximate
esponse calculated in closed form by means of either a linear ap-
roximation (see Eq. (10)) or intervening variables (see Eq. (13)); and
∗
𝜏(𝑗) is the optimal control parameter for estimating the variance. The
xpression for calculating this optimal control parameters is presented
fterwards.

The estimator of the variance of the estimate for the variance in
q. (30) is given by:

𝜎2
[

𝜇2
CV+S (𝑟, 𝑟,𝜣𝑛

)

]

= 1
𝑘2

𝑘
∑

𝑗=1
𝜎2

[

𝜇2
CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

, (32)

where 𝜎2
[

𝜇2
CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

is defined as:

𝜎2
[

𝜇2
CV,(𝑗) (𝑟, 𝑟,𝜣𝑛∗ ,𝑗 ,𝜣𝑛∗ ,𝜏(𝑗)

)

]

= 𝐵1
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

− 2𝛽∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

× 𝐵2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

+
(

𝛽∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

)2

× 𝐵3
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

, 𝑗 = 1,… , 𝑘, (33)

where 𝐵1
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

, 𝐵2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

and 𝐵3
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

are defined as:

𝐵1
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

=
𝜇4,0

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗
−

(𝑛∗ − 3)
(𝑛∗ − 1)𝑛∗

𝜇2
2,0

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

(34)

𝐵2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

=
2𝜇2

1,1

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

(𝑛∗ − 1)𝑛∗
+

𝜇2,2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗
−

𝜇2,0𝜇0,2
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗

(35)

𝐵3
(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

=
𝜇0,4

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

𝑛∗
−

(𝑛∗ − 3)
(𝑛∗ − 1)𝑛∗

𝜇2
0,2

(

𝑟, 𝑟,𝜣𝑛∗ ,𝑗
)

(36)

and estimators for all the bivariate central co-moments that appear in
the above equations can be found in Appendix C. Lastly, the estima-
tor for the optimal control parameter 𝛽∗𝜏(𝑗) is given by the following
expression.

𝛽∗𝜏(𝑗)
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

=
𝐵2

(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
)

𝐵3
(

𝑟, 𝑟,𝜣𝑛∗ ,𝜏(𝑗)
) , 𝑗 = 1,… , 𝑘. (37)

Note that the terms 𝐵2 and 𝐵3 in Eq. (37) are calculated using the
expressions in eqs. (35) and (36), respectively. However, in this case,
one should consider the set of samples 𝜣𝑛∗ ,𝜏(𝑗) instead of 𝜣𝑛∗ ,𝑗 , in
accordance with the Splitting technique.

3.6. Practical implementation

The practical implementation of Control Variates with Splitting as
described in this Section is carried out under the assumption that results
from perturbation analysis (with or without considering intervening
variables) and Monte Carlo simulation are already available, as already
stated in Section 1. Thus, the objective is to aggregate the results al-
ready produced by each of these two methods. The main steps involved
in the proposed approach under the assumption described previously
are the following.

1. Approximate the response of the stochastic finite element model
and calculate the corresponding second-order statistics. Use
Eqs. (8), (9) and (10) in case that the response is approximated
using a first-order Taylor expansion; or Eqs. (11), (12) and (13)
in case that intervening variables are considered.

2. Conduct Monte Carlo simulation. Consider a total of 𝑛 samples.
Calculate for each sample both the exact response 𝑟

(

𝜽(𝑖)
)

, 𝑖 =
1,… , 𝑛 and the approximate response 𝑟

(

𝜽(𝑖)
)

, 𝑖 = 1,… , 𝑛.

Note that the approximate response must be calculated with the
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Fig. 2. Example – Seepage below sheet pile (schematic representation).
approximation selected in the previous step (either first-order
Taylor expansion or intervening variables).

3. Split the sample set generated in the previous step into 𝑘 = 3
subsets following Eq. (18).

4. Apply Eqs. (25) and (28) to estimate the mean of the response
and the variance of mean using Control Variates with splitting.

5. Apply Eqs. (30) and (32) to estimate the variance of the re-
sponse and the variance of variance using Control Variates with
splitting.

For the practical implementation of the framework described above, it
is recommended that the number of samples 𝑛 associated with Monte
Carlo is such that 𝑛 ≥ 60. Such criterion ensures that, at least, there
are 20 samples in each of the subsets required for the splitting step.
Numerical validations suggest that such criterion ensures appropriate
estimation of the sought statistics as well as the required co-moments.

4. Example

4.1. Description

The application of the framework developed in Section 3 is il-
lustrated here by means of the following example, which consists of
quantifying the second-order statistics associated with the seepage flow
beneath the sheet pile illustrated schematically in Fig. 2. This class of
problems is quite challenging from the point of view of uncertainty
quantification, as documented in e.g., [59].

The sheet pile retains a water column of 7 [m] height and rests
over a silty sand soil layer. The permeability of this soil layer is
modeled as a log-normal random field, with mean value 5 × 10−6

[m/s] and standard deviation 5 × 10−6 [m/s]. In this context, note that
the assumption of a log-normal random field is consistent with the
physics of the problem at hand, that is, that the permeability admits
positive values only (see, e.g. [59]). The correlation is modeled using
the quadratic exponential function such that 𝑒−𝑑2∕𝐿2 , where 𝑑 expresses
the Euclidean distance between two points of the random field and
𝐿 is the correlation length, which is taken as 𝐿 = 10 [m]. Note
that the quadratic exponential model for correlation is considered in
here for simplicity, although alternative models have been promoted
in the literature, see e.g. [60,61]. It is observed that the random field
associated with the permeability possesses a high degree of uncertainty,
as its coefficient of variation is equal to 100%. This is consistent with
the high variability observed for this property in practical applications,
see e.g. [62]. Furthermore, it should be noted that in practice, the
vertical and horizontal permeability of a soil are usually distinct, see
e.g. [63]. However, in this contribution, the permeability is modeled
as isotropic for the sake of simplicity.
7

The seepage flow is quantified by solving the associated Laplace
equation, which is discretized by means of the finite element method,
see e.g., [42]. For this purpose, a mesh comprising 6090 quadratic
triangular elements and 12427 nodes is considered, as illustrated
schematically in Fig. 2. The boundary conditions are prescribed water
heads of 7 [m] and 0 [m] over lines AB and CD in Fig. 2 (that is,
a Dirichlet boundary condition), respectively, while a condition of
null flow is imposed over all other boundaries (that is, a Neumann
boundary condition). The log-normal random field associated with the
permeability is discretized considering the mid-point method [7] and it
is represented using the Karhunen-Loève expansion, where 95% of the
total variability of the underlying Gaussian field is retained. This leads
to a discrete representation involving a total of 𝑛𝜃 = 10 standard normal
random variables. The seepage flow and its statistics are approximated
considering both the linear expansion in Eq. (8) as well as intervening
variables in Eq. (11).

4.2. Numerical results

The second-order statistics of the seepage flow are estimated herein
and all results are summarized in Table 1. Note that the physical units
associated with the different statistics consider that seepage flow is
measured as flow ([m3/s]) over unit length of the sheet pile ([m]).
The first column of this table indicates the approach considered while
the second reports the total number of simulations 𝑛 required for
implementing a specific approach. The third column contains the total
numerical cost required for implementing a certain approach in terms
of the number of equivalent simulations 𝑛𝐸 . This number summa-
rizes the total number of simulations required in a certain approach
plus costs associated with tasks such as e.g., calculation of first- or
second-order sensitivities, application of Splitting technique, etc. The
equivalent number of simulations 𝑛𝐸 is calculated as:

𝑛𝐸 = 𝑛 +
𝑡𝐴
𝑡𝑆

(38)

where 𝑡𝐴 denotes the time spent in additional tasks and 𝑡𝑆 is the
time spent in one simulation, that is, the assembly and solution of the
equilibrium equation as reported in Eq. (1). The rest of the columns of
Table 1 report the estimated statistics (either 𝜇′

1 or 𝜇2, see fourth and
seventh columns, respectively), the variance of these statistics (either
𝜎2

[

𝜇′
1

]

or 𝜎2
[

𝜇2
]

, see fifth and eighth columns, respectively) and the

associated coefficient of variation (either CoV
[

𝜇′
1

]

or CoV
[

𝜇2
]

, see sixth
and ninth columns, respectively). Note that the latter is equal to the
square root of the variance of the estimator divided by the estimator.

The second row of Table 1 reports the second-order statistics of
seepage flow estimated using Monte Carlo simulation (MCS) consid-
ering a total of 𝑛 = 3000 samples. This is a relatively large number of



Structural Safety 108 (2024) 102445C.H. Acevedo et al.

c
t
o
p
1
p
o
c
(
𝑛
c
w
d
r
t
h
t

t

r
a

Table 1
Estimation of second-order statistics of seepage flow. MCS: Monte Carlo simulation. Lin: perturbation analysis considering linear approximation. IV: perturbation analysis considering
intervening variables. CV+S: Control Variates with Splitting.

Approach 𝑛 𝑛𝐸 𝜇′
1 [m3/s/m] 𝜎2

[

𝜇′
1

]

[m6/s2/m2] CoV
[

𝜇′
1

]

𝜇2 [m6/s2/m2] 𝜎2 [𝜇2
]

[m12/s4/m4] CoV
[

𝜇2
]

MCS (ref.) 3000 3000 1.48 × 10−5 3.1 × 10−14 1% 9.3 × 10−11 3.2 × 10−23 6%
MCS 60 60 1.46 × 10−5 1.2 × 10−12 7% 7.0 × 10−11 4.5 × 10−22 30%
Lin 1 2.1 1.29 × 10−5 [−] [−] 5.5 × 10−11 [−] [−]
IV 1 17.0 1.55 × 10−5 [−] [−] 9.5 × 10−11 [−] [−]
CV+S+Lin 60 63.4 1.47 × 10−5 2.7 × 10−13 4% 8.6 × 10−11 4.3 × 10−22 24%
CV+S+IV 60 81.2 1.48 × 10−5 6.1 × 10−14 2% 9.3 × 10−11 3.5 × 10−23 6%
samples that is considered in order to produce reference results. It is
observed that the seepage flow possesses a high degree of uncertainty,
as its coefficient of variation is equal to

√

𝜇2∕𝜇1 = 65%. This is a
natural consequence of the high coefficient of variation associated with
the random field modeling the permeability. Moreover, it is observed
that both the estimators for the mean and variance possess a good
level of precision, as their coefficients of variation are relatively small
(below 10%). The third row of Table 1 reports the results obtained
with Monte Carlo simulation considering 𝑛 = 60 simulations. For this
case, the results reported for the second-order statistics are relatively
similar to the reference ones, although it is possible to observe in-
creased coefficient of variation of the estimators, particularly for the
case of the variance of the seepage flow. The estimates for the second-
order statistics obtained with classical perturbation and perturbation
considering intervening variables are shown in the fourth and fifth
rows, respectively. The results associated with intervening variables
demand a higher number of equivalent simulations 𝑛𝐸 when compared
to those of classical perturbation. This is a natural consequence of the
additional information required to produce the estimates. However, the
estimates of the second-order statistics produced by perturbation with
intervening variables are much more accurate than those produced with
classical perturbation, highlighting its advantages.

The sixth row of Table 1 summarizes the results obtained by ag-
gregating the results provided by Monte Carlo simulation in the third
row with those of perturbation analysis and linear approximation in the
fourth row by means of the framework provided by Control Variates
with Splitting (CV+S+Lin). It is observed that the variance of the
estimate for the mean decreases considerably: about one order of
magnitude, from 1.2×10−12 to 2.7×10−13 (physical units are omitted for
onciseness but can be found in the Table). Meanwhile, the accuracy of
he estimated variance of the seepage flows 𝜇2 improves, as the estimate
f 8.6 × 10−11 is closer to the reference value than any of the estimates
roduced individually with Monte Carlo using 𝑛 = 60 samples (7.0 ×
0−11) or perturbation with linearization (5.5 × 10−11). However, the
recision of the estimate does not improve that much, as the variance
f the variance of the seepage flow remains almost unchanged when
omparing the results produced with Control Variance with Splitting
4.3×10−22) to those produced with Monte Carlo simulation considering
= 60 samples (4.5×10−22). From the above comments, it is possible to

onclude that while aggregating the results of Monte Carlo simulation
ith 𝑛 = 60 simulations and perturbation with linear approximation
oes bring advantages, these advantages are not so pronounced. The
eason for such behavior lies in the fact that a linear approximation of
he seepage flow may not be that appropriate, particularly under the
igh level of uncertainty associated with the random field model for
he permeability, which possesses a coefficient of variation of 100%.

Row seven of Table 1 presents the statistics obtained by aggregating
he results from Monte Carlo simulation considering 𝑛 = 60 samples

with those of perturbation considering intervening variables under the
umbrella of Control Variates with Splitting (CV+S+IV). It is interesting
to note that the estimates for the mean and variance of the seepage
flow are the same as those reported for the reference solution involving
Monte Carlo simulation with 𝑛 = 3000 samples, confirming the accu-
acy of the results obtained. Furthermore, the coefficients of variation
8

ssociated with the mean and variance are almost the same as well,
Fig. 3. Example – Comparison of seepage flow calculated using approximations (𝑟) and
the finite element model (𝑟). Lin: linear approximation. IV: approximation considering
intervening variables.

indicating that in this case, Control Variates with Splitting produces
results which are as precise as those produced with Monte Carlo
simulation considering 𝑛 = 3000 simulations. As Control Variates with
Splitting involves a numerical cost of about 80 equivalent simulations,
there is an speedup of about 3000∕80 ≈ 35 times. This highlights the fact
that aggregating the results of perturbation with intervening variables
and Monte Carlo simulation within the framework of Control Variates
with Splitting offers a significant improvement when compared to
the results produced by each approach individually. Moreover, the
observed results also indicate that approximating the seepage flow
considering intervening variables can perform much better than a linear
approximation. In other words, perturbation considering intervening
variables may offer significant advantages over classical perturbation,
as discussed in detail in [29].

To gain further insight on the results discussed previously, the 𝑛 =
60 samples associated with the sixth and seventh rows of Table 1 are
plotted in Fig. 3. More specifically, the red dots in this figure illustrate
pairs of seepage flows calculated for the same sample of the random
field using the finite element model and the linear approximation.
The blue dots are similar, except that they show the calculations with
intervening variables. It is readily observed that the seepage flows
predicted by the model based on intervening variables possess a higher
correlation with the results provided by the finite element model than
those associated with linear approximation. Such observation explains
the improved estimates of the second order statistics obtained when
implementing Control Variates with Splitting together with interven-
ing variables in comparison with its counterpart considering a linear
approximation. Indeed, the high correlation observed between the
seepage flows calculated with the finite element model and interven-
ing variables allows obtaining estimates with reduced variability, as
discussed in Section 3.2.
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Fig. 4. Normalized histograms of the estimator of the mean 𝜇′
1 and variance 𝜇2 considering Monte Carlo simulation (MCS) and Control Variates with Splitting involving linear

pproximation (CV+S+Lin) of the seepage flow.
.3. Normalized histograms

Section 4.2 has reported simulation results obtained out of a single
un of the proposed approach. In this Section, results are reported con-
idering multiple independent runs. For this purpose, 1000 independent
uns of Monte Carlo simulation are considered, each of them compris-
ng a total of 𝑛 = 600 simulations. In addition, 1000 independent runs
f Control Variates with Splitting considering a linear approximation
f the seepage flow are performed, such that the equivalent number
f simulation is 𝑛𝐸 = 600. Such selection for 𝑛𝐸 ensures that the
esults obtained with Monte Carlo and Control Variates with Splitting
re comparable between them from the point of view of numerical
fforts. The above procedure produces a total of 1000 estimates of
he mean and variance of the seepage flow calculated by means of
onte Carlo and Control Variates with Splitting. These estimates are

sed to produce normalized histograms of the estimated statistics, as
eported in Fig. 4. In this context, normalized means that the area
elow the histograms is equal to 1. This provides the approximate shape
f the probability density function associated with the estimators for
he second order statistics. The results presented in the left hand side of
ig. 4 reveal that for the case of the mean 𝜇′

1, there is evident reduction
n the spread of the histogram associated with Control Variates with
plitting when compared to the one produced with Monte Carlo. This
s consistent with the reduced variance of the estimator for the mean
bserved in the sixth row of Table 1 produced with Control Variates
ith Splitting (𝜎2

[

𝜇′
1

]

= 2.7 × 10−13) when compared with the one

n the third row produced with Monte Carlo (𝜎2
[

𝜇′
1

]

= 1.2 × 10−12).
he latter is of course a qualitative comparison only, as the number
f simulations involved is different. In addition, the results presented
n the right hand side of Fig. 4 indicate that the histogram associated
ith the variance 𝜇2 produced with Control Variates with Splitting
resents only a slight reduction in the spread when compared to the one
roduced with Monte Carlo. Again, this is consistent (but not directly
omparable) with the results in Table 1, as the estimate of the variance
f the seepage flow with Control Variates (𝜎2

[

𝜇′
1

]

= 4.3 × 10−22) is
lightly smaller than the one produced with Monte Carlo in the third
ow (𝜎2

[

𝜇′
1

]

= 4.5 × 10−22).
The whole procedure described above is repeated once more, ex-

ept for the fact that Control Variates with Splitting is implemented
onsidering that the approximation of the seepage flow is constructed
sing intervening variables. The results obtained are reported again in
erms of histograms as seen in Fig. 5. In this case, it is evident that the
istograms for the estimates of the mean (𝜇′

1) and variance (𝜇2) of the
eepage flow produced with Control Variates possess less spread than
hose associated with Monte Carlo. This explains the success of Control
9

Variates in producing both accurate and precise estimates of the sought
second-order statistics.

4.4. Effect of correlation length

This section investigates the effect of the correlation length on the
estimates of the second-order statistics of the seepage flow. For this
purpose, two extreme cases are considered, namely correlation lengths
equal to 𝐿 = 2.5 [m] and 𝐿 = 100 [m]. The former corresponds
to a weakly correlated case while the latter is a strongly correlated
case, such that the random field model reduces to a single random
variable. For the weakly correlated case, it is necessary to consider
𝑛𝜃 = 109 terms to retain 95% of the total variability in the random field
representation while for the strongly correlated case, 𝑛𝜃 = 1 suffices.

Table 2 presents the estimates of the second order statistics of the
seepage flow for the aforementioned correlation lengths as well as for
the correlation length of 𝐿 = 10 [m] considered in the original formula-
tion of the problem. All the results were calculated by aggregating the
approximate solution involving perturbation with intervening variables
and 𝑛 = 60 Monte Carlo samples of the exact response. The results
obtained indicate that both the mean and variance of the seepage flow
tend to increase as the correlation length increases. For a short corre-
lation length, it is expected that the permeability varies considerably
with distance. And as the seepage flow captures an average behavior,
the effects of spatial variability tend to cancel out. The effect is exactly
the opposite for a long correlation length.

From the point of view of the coefficient of variation of the estima-
tors reported in Table 2, it is interesting to note that the coefficient
associated with the variance (last column of Table 2) decreases as
the correlation length increases. To understand this behavior, Fig. 6
compares the 𝑛 = 60 exact and approximate seepage flow responses em-
ployed for the calculation with Control Variates for the two correlation
lengths considered in this Section. The plot on the left shows a high
degree of correlation between the exact and approximate responses
while the plot on the right shows an almost perfect correlation. The
latter effect is due to the fact that the random field model reduces
to a single random variable. In such case, the approximate response
based on perturbation considering intervening variables is capable of
emulating almost exactly the exact response. Such an effect had already
been observed in the past when applying intervening variables, see
e.g. [29]. As such, for the strongly correlated case, the approximate
model is practically as good as the exact one and hence, it is capable
of producing very accurate estimates, explaining the small coefficients
of variation of the estimators observed in Table 2 for 𝐿 = 100 [m] for

both mean and variance of the seepage flow (last row of Table 2).
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Fig. 5. Normalized histograms of the estimator of the mean 𝜇′
1 and variance 𝜇2 considering Monte Carlo simulation (MCS) and Control Variates with Splitting involving intervening

ariables (CV+S+IV) for approximation of the seepage flow.
Table 2
Second-order statistics of seepage flow as a function of correlation length 𝐿.

𝐿 [m] 𝜇′
1 [m3/s/m] 𝜎2

[

𝜇′
1

]

[m6/s2/m2] CoV
[

𝜇′
1

]

𝜇2 [m6/s2/m2] 𝜎2 [𝜇2
]

[m12/s4/m4] CoV
[

𝜇2
]

2.5 1.31 × 10−5 8.4 × 10−15 0.7% 9.1 × 10−12 6.6 × 10−25 9%
10 1.48 × 10−5 6.1 × 10−14 2% 9.3 × 10−11 3.5 × 10−23 6%
100 1.82 × 10−5 7.1 × 10−20 < 0.1% 3.3 × 10−10 9.2 × 10−27 < 0.1%
Fig. 6. Example – Comparison of seepage flow calculated using intervening variables (𝑟) and the finite element model (𝑟) for different values of correlation length 𝐿.
T
i
s
a
o
r
a
l
I
a
l
c
S

. Discussion and conclusions

This contribution has explored the application of Control Variates
ith Splitting for aggregating the results produced with Monte Carlo

imulation and perturbation analysis. The scope of application consid-
rs the estimation of second-order statistics of the response of stochastic
inite element models of linear systems under steady-state conditions.
he results obtained indicate that:

• Control Variates offers a framework for aggregating results such
that both accuracy and precision of the sought statistics can be
improved with respect to those statistics estimated with each ap-
proach separately. In the application example, such behavior was
clearly observed for the case where Monte Carlo was aggregated
with perturbation analysis involving intervening variables.

• The success of aggregating results is directly related with the
ability of the approximate response (associated with perturbation
analysis) for mimicking the exact response, as this will increase
the covariance between the estimators of the approximate and
exact models. In the worst-case scenario where the approximate
response does not exhibit significant covariance with the exact
10

model, Control Variates with Splitting retains by construction the n
results provided by Monte Carlo simulation and gives less weight
to the results produced with perturbation analysis.

• Numerical efforts associated with the implementation of Con-
trol Variates with Splitting are not significant. In fact, no ad-
ditional evaluations of the system’s response are required. It is
only required to keep track of the sample subsets involved in the
Splitting technique.

here are several open paths for further development of the framework
nvolving Control Variates and Splitting. One of them would be con-
tructing the approximation for the system’s response using concepts of
ctive learning. In that way, the system’s response can be approximated
n the fly, allocating numerical resources spent in evaluating the exact
esponse in an optimal way. Another path for development is the
pplication of Control Variates with Splitting to problems involving a
arge number of random variables, possibly in the order of hundreds.
n principle, such extension should be possible as long as there is

high correlation between the exact and approximate models. The
atter assertion can be easily verified by reviewing the expressions for
alculating second-order statistics by means of Control Variates with
plitting, that depend explicitly on correlation between models but

ot on the dimensionality of the associated random variable vector.
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An additional path for extending the range of application of Control
Variates with Splitting is investigating the advantages of aggregating
methods other than a perturbation approach. In this sense, it should
be noted that, in principle, the framework provided by Control Vari-
ates is agnostic with respect to the specific approach considered to
approximate the system’s response.
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Appendix A. Accuracy and precision

The terms accuracy and precision are often used to characterize the
appropriateness of measurements. As pointed out in [64], accuracy
reflects the ‘‘closeness of agreement between a quantity value obtained
by measurement and the true value of the measurand’’ while precision
represents ‘‘the closeness of agreement between independent test re-
sults obtained under stipulated conditions’’. Within the context of this
work, accuracy and precision are particularly suitable to characterize
the estimates of second-order statistics obtained using perturbation
analysis and Monte Carlo simulation. In perturbation analysis, it is
expected that the estimates for second-order statistics are precise (be-
cause they are a deterministic value) but possibly not accurate (because
the response is approximated). If the estimator were to be treated
as a probability distribution, it would actually correspond to a Dirac
delta, as the estimated statistics are precise numbers. This situation is
illustrated schematically in Fig. A.7, where the aforementioned Dirac
delta is denoted with a green arrow. As noted from the Figure, there
may be differences between the true statistic and the prediction by
perturbation analysis, which corresponds to lack of accuracy. On the
contrary, an estimator produced with Monte Carlo simulation will be
accurate, because it is calculated based on the actual response of the
system. This is reflected in Fig. A.7 with the red and blue curves
denoting probability distribution of estimators which were calculated
with different number of samples, where the blue curve has associated a
number of samples larger than that of the red curve. The expected value
11

of both probability distributions lies at the true statistic. However,
Fig. A.7. Schematic representation of the concepts of accuracy and precision.

the probability distribution associated with the blue curve offers an
estimate of the statistic with higher precision than that associated
with the red one, as it possesses less dispersion. The latter is a direct
consequence of the number of samples considered for estimating the
statistics, which is larger for the blue curve.

Appendix B. Calculation of exponent associated with exponential
intervening variables

The criterion for calculating the exponent 𝑚𝑘, 𝑘 = 1,… , 𝑛𝜃 associ-
ated with the exponential intervening variable consists of imposing the
condition that the second order partial derivatives of the system’s re-
sponse match the second order derivatives of the approximate system’s
response. This last condition is expressed as:

𝜕2𝑟
𝜕𝜃2𝑘

|

|

|

|

|𝜽=𝜽(0)
= 𝜕2𝑟I

𝜕𝜃2𝑘

|

|

|

|

|𝜽=𝜽(0)
, 𝑘 = 1,… , 𝑛𝜃 . (B.1)

Note that for applying the above equation, knowledge on the diagonal
terms of the Hessian matrix of the system’s response is required. This
is quite advantageous for high-dimensional problems, as off-diagonal
terms are not required. Thus, enforcing the condition of Eq. (B.1), the
coefficients 𝑚𝑘, 𝑘 = 1,… , 𝑛𝜃 are calculated by means of the following
formula:

𝑚𝑘 =
𝑟,𝑘𝑘
𝑟,𝑘

, 𝑘 = 1,… , 𝑛𝜃 . (B.2)

In the above equation, 𝑟,𝑘𝑘 = 𝜕2𝑟∕𝜕𝜃2𝑘
|

|

|𝜽=𝜽(0)
. Note that the definition

for the coefficient 𝑚𝑘 in Eq. (B.2) is undefined in case the associated
first-order derivative is equal to zero and, moreover, may grow rapidly
for small values of 𝑟,𝑘. These issues are prevented if the following
expression is considered for calculating 𝑚𝑘:

𝑚𝑘 =
{

1 if 𝑟,𝑘 = 0
𝑚⋆
𝑘 if 𝑟,𝑘 ≠ 0

(B.3)

where 𝑚⋆
𝑘 is defined as:

𝑚⋆
𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−3𝜒𝑘 if 𝑟,𝑘𝑘
𝑟,𝑘

≤ −3𝜒𝑘
𝑟,𝑘𝑘
𝑟,𝑘

if − 3𝜒𝑘 ≤ 𝑟,𝑘𝑘
𝑟,𝑘

≤ 3𝜒𝑘

3𝜒𝑘 if 𝑟,𝑘𝑘
𝑟,𝑘

≥ 3𝜒𝑘

(B.4)

where 𝜒𝑘 is a coefficient measuring the mean variability associated
with the 𝑘th term of the underlying Gaussian field involved in the
representation of the random field [29].

According to Eq. (B.3), whenever the associated first-order deriva-
tive is equal to zero, 𝑚𝑘 is set arbitrarily as 1. Such arbitrary value
is irrelevant, as the first-order derivative is equal to zero and does
not affect the first order Taylor expansion. Moreover, the criterion in
Eq. (B.4) prevents the coefficient 𝑚𝑘 from growing unboundedly (see,
e.g. [56]). In particular, the bound for the magnitude of the coeffi-
cient 𝑚𝑘 is chosen as 3𝜒𝑘, following the recommendations reported in
[29,65]. Numerical validations as carried out in [29] suggest that such
selection is appropriate.
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Appendix C. Estimation of central co-moments

The bivariate central co-moment between 𝑟 and 𝑟 of order (𝑝, 𝑞) is:

𝑝,𝑞 (𝑟, 𝑟) = E
[

(𝑟 − E [𝑟])𝑝 (𝑟 − E [𝑟])𝑞
]

(C.1)

here E[⋅] denotes expected value. Unbiased estimators 𝜇𝑝,𝑞 for this
bivariate co-moment can be calculated by means of Monte Carlo simu-
lation [66] considering a set of 𝑙 samples of the uncertain input variable
vector, collected in matrix 𝜣𝑙, as shown in the equations below for
ifferent values of 𝑝 and 𝑞. Note that in these equations, the auxiliary
ariable 𝑠𝑝,𝑞 is introduced such that 𝑠𝑝,𝑞 =

∑𝑙
𝑖=1

(

𝑟
(

𝜽(𝑖)
))𝑝 (𝑟

(

𝜽(𝑖)
))𝑞 ,

here 𝜽(𝑖) is the 𝑖th sample of the sample set 𝜣𝑙.

𝜇2,0 =
𝑙𝑠2,0 − 𝑠21,0
(𝑙 − 1)𝑙

(C.2)

𝜇1,1 =
𝑙𝑠1,1 − 𝑠0,1𝑠1,0

(𝑙 − 1)𝑙
(C.3)

𝜇0,2 =
𝑙𝑠0,2 − 𝑠20,1
(𝑙 − 1)𝑙

(C.4)

𝜇2,2 =
1

(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙
((

−2𝑙2 + 4𝑙 − 6
)

𝑠2,1𝑠0,1 +
(

−2𝑙2 + 4𝑙 − 6
)

𝑠1,0𝑠1,2+
(

𝑙3 − 2𝑙2 + 3𝑙
)

𝑠2,2 + 𝑙𝑠2,0𝑠
2
0,1 + 4𝑙𝑠1,0𝑠1,1𝑠0,1 + 𝑙𝑠0,2𝑠

2
1,0+

(6 − 4𝑙)𝑠21,1 + (3 − 2𝑙)𝑠0,2𝑠2,0 − 3𝑠21,0𝑠
2
0,1

)

(C.5)

𝜇4,0 =
1

(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙
((

−4𝑙2 + 8𝑙 − 12
)

𝑠3,0𝑠1,0 +
(

𝑙3 − 2𝑙2 + 3𝑙
)

𝑠4,0+

6𝑙𝑠2,0𝑠21,0 + (9 − 6𝑙)𝑠22,0 − 3𝑠41,0
)

(C.6)

𝜇0,4 =
1

(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙
((

−4𝑙2 + 8𝑙 − 12
)

𝑠0,3𝑠0,1 +
(

𝑙3 − 2𝑙2 + 3𝑙
)

𝑠0,4+

6𝑙𝑠0,2𝑠20,1 + (9 − 6𝑙)𝑠20,2 − 3𝑠40,1
)

(C.7)

The unbiased estimators for the squared co-moments 𝜇2
1,1, 𝜇

2
2,0, 𝜇

2
0,2 and

the co-moment product 𝜇2,0𝜇0,2 are the following [66].

𝜇2
1,1 =

1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

(

(

𝑙2 − 3𝑙 + 2
)

𝑠21,1 +
(

𝑙 − 𝑙2
)

𝑠2,2+

(2 − 2𝑙)𝑠1,0𝑠1,1𝑠0,1 + (2𝑙 − 2)𝑠2,1𝑠0,1 + (2𝑙 − 2)𝑠1,0𝑠1,2+

𝑠21,0𝑠
2
0,1 − 𝑠2,0𝑠

2
0,1 − 𝑠0,2𝑠

2
1,0 + 𝑠0,2𝑠2,0

)

(C.8)

𝜇2
2,0 =

(

𝑙2 − 3𝑙 + 3
)

𝑠22,0 +
(

𝑙 − 𝑙2
)

𝑠4,0 − 2𝑙𝑠2,0𝑠21,0 + (4𝑙 − 4)𝑠3,0𝑠1,0 + 𝑠41,0
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

(C.9)

𝜇2
0,2 =

(

𝑙2 − 3𝑙 + 3
)

𝑠20,2 +
(

𝑙 − 𝑙2
)

𝑠0,4 − 2𝑙𝑠0,2𝑠20,1 + (4𝑙 − 4)𝑠0,3𝑠0,1 + 𝑠40,1
(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙

(C.10)

2̂,0𝜇0,2 =
1

(𝑙 − 3)(𝑙 − 2)(𝑙 − 1)𝑙
((

𝑙2 − 3𝑙 + 1
)

𝑠0,2𝑠2,0 +
(

𝑙 − 𝑙2
)

𝑠2,2+

(2 − 𝑙)𝑠2,0𝑠20,1 + (2𝑙 − 2)𝑠2,1𝑠0,1 + (2 − 𝑙)𝑠0,2𝑠21,0+

(2𝑙 − 2)𝑠1,0𝑠1,2 + 𝑠21,0𝑠
2
0,1 − 4𝑠1,0𝑠1,1𝑠0,1 + 2𝑠21,1

)

(C.11)

References

[1] Ghanem R, Spanos P. Polynomial chaos in stochastic finite elements. J Appl
Mech (ASME) 1990;57(1):197–202.

[2] Jensen H, Iwan W. Response of systems with uncertain parameters to stochastic
excitation. J Eng Mech 1992;118(5):1012–25.

[3] Ávila da Silva Jr C, Beck A. A fast convergence parameter for Monte
Carlo-Neumann solution of linear stochastic systems. ASCE-ASME J Risk
Uncertain Eng Syst B Mech Eng 2015;1(2):021002. http://dx.doi.org/10.
1115/1.4029741, arXiv:https://asmedigitalcollection.asme.org/risk/article-pdf/
1/2/021002/6070906/risk_1_2_021002.pdf.

[4] Schuëller G. On the treatment of uncertainties in structural mechanics and analy-
sis. Comput Struct 2007;85(5–6):235–43. http://dx.doi.org/10.1016/j.compstruc.
2006.10.009.

[5] Faes M, Moens D. Recent trends in the modeling and quantification of non-
probabilistic uncertainty. Arch Comput Methods Eng 2020;27(3):633–71. http:
12

//dx.doi.org/10.1007/s11831-019-09327-x.
[6] Fina M, Panther L, Weber P, Wagner W. Shell buckling with polymorphic
uncertain surface imperfections and sensitivity analysis. ASCE-ASME J Risk
Uncertain Eng Syst B Mech Eng 2021;7(2).

[7] Der Kiureghian A, Ke J-B. The stochastic finite element method in structural
reliability. Probab Eng Mech 1988;3(2):83–91.

[8] Fang P-P, Liu Y, Shields M. Direct simulation methods for a class of normal
and lognormal random fields with applications in modeling material properties.
J Eng Mech 2021;148(2):04021146. http://dx.doi.org/10.1061/(asce)em.1943-
7889.0002076.

[9] Ou-Yang J-Y, Li D-Q, Tang X-S, Liu Y. A patching algorithm for conditional
random fields in modeling material properties. Comput Methods Appl Mech
Engrg 2021;377:113719. http://dx.doi.org/10.1016/j.cma.2021.113719, https://
www.sciencedirect.com/science/article/pii/S0045782521000554.

[10] Hu Z, Du X. A random field approach to reliability analysis with
random and interval variables. ASCE-ASME J Risk Uncertain Eng Syst
B Mech Eng 2015;1(4):041005. http://dx.doi.org/10.1115/1.4030437,
arXiv:https://asmedigitalcollection.asme.org/risk/article-pdf/1/4/041005/
6071907/risk_1_4_041005.pdf.

[11] Shinozuka M. Structural response variability. J Eng Mech 1987;113(6):825–42.
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:6(825).

[12] Papadopoulos V, Deodatis G, Papadrakakis M. Flexibility-based upper bounds
on the response variability of simple beams. Comput Methods Appl
Mech Engrg 2005;194(12):1385–404. http://dx.doi.org/10.1016/j.cma.2004.
06.040, special Issue on Computational Methods in Stochastic Mechan-
ics and Reliability Analysis, http://www.sciencedirect.com/science/article/pii/
S0045782504003986.

[13] Shinozuka M, Jan C-M. Digital simulation of random processes and its
applications. J Sound Vib 1972;25(1):111–28. http://dx.doi.org/10.1016/0022-
460X(72)90600-1, https://www.sciencedirect.com/science/article/pii/
0022460X72906001.

[14] Melchers R. Importance sampling in structural systems. Struct Saf 1989;6(1):3–
10.

[15] Au S, Beck J. Estimation of small failure probabilities in high dimensions by
subset simulation. Probab Eng Mech 2001;16(4):263–77.

[16] Vanmarcke E, Shinozuka M, Nakagiri S, Schuëller G, Grigoriu M. Ran-
dom fields and stochastic finite elements. Struct Saf 1986;3(3):143–66. http:
//dx.doi.org/10.1016/0167-4730(86)90002-0, https://www.sciencedirect.com/
science/article/pii/0167473086900020.

[17] Yamazaki F, Shinozuka M, Dasgupta G. Neumann expansion for stochastic finite
element analysis. J Eng Mech 1988;114(8):1335–54. http://dx.doi.org/10.1061/
(ASCE)0733-9399(1988)114:8(1335).

[18] Kamiński M. On generalized stochastic perturbation-based finite element method.
Commun Numer Methods Eng 2006;22(1):23–31.

[19] Blatman G, Sudret B. An adaptive algorithm to build up sparse poly-
nomial chaos expansions for stochastic finite element analysis. Probab
Eng Mech 2010;25(2):183–97. http://dx.doi.org/10.1016/j.probengmech.2009.
10.003, http://www.sciencedirect.com/science/article/pii/S0266892009000666.

[20] Deodatis G, Shinozuka M. Bounds on response variability of stochastic sys-
tems. J Eng Mech 1989;115(11):2543–63. http://dx.doi.org/10.1061/(ASCE)
0733-9399(1989)115:11(2543).

[21] Papadopoulos V, Kalogeris I. A Galerkin-based formulation of the probability
density evolution method for general stochastic finite element systems. Comput
Mech 2016;57(5):701–16. http://dx.doi.org/10.1007/s00466-015-1256-9.

[22] Huo H, Xu W, Wang W, Chen G, Yang D. New non-intrusive stochastic
finite element method for plate structures. Comput Struct 2022;268:106812.
http://dx.doi.org/10.1016/j.compstruc.2022.106812, https://www.sciencedirect.
com/science/article/pii/S0045794922000724.

[23] Chen G, Yang D. Direct probability integral method for stochastic response
analysis of static and dynamic structural systems. Comput Methods Appl Mech
Engrg 2019;357:112612. http://dx.doi.org/10.1016/j.cma.2019.112612, http://
www.sciencedirect.com/science/article/pii/S0045782519304888.

[24] Li J, Chen J, Sun W, Peng Y. Advances of the probability den-
sity evolution method for nonlinear stochastic systems. Probab Eng Mech
2012;28:132–42. http://dx.doi.org/10.1016/j.probengmech.2011.08.019, http://
www.sciencedirect.com/science/article/pii/S0266892011000749.

[25] Elishakoff I, Ren Y, Shinozuka M. Improved finite element method for stochas-
tic problems. Chaos Solitons Fractals 1995;5(5):833–46. http://dx.doi.org/
10.1016/0960-0779(94)00157-L, http://www.sciencedirect.com/science/article/
pii/096007799400157L.

[26] Ghanem R, Spanos P. Stochastic finite elements: A spectral approach. New York:
Springer; 1991.

[27] Panayirci H, Pradlwarter H, Schuëller G. Efficient stochastic structural analysis
using Guyan reduction. Adv Eng Softw 2011;42(4):187–96.

[28] Fuchs M, Shabtay E. The reciprocal approximation in stochastic analysis of
structures. Chaos Solitons Fractals 2000;11(6):889–900.

[29] Valdebenito M, Labarca A, Jensen H. On the application of intervening variables
for stochastic finite element analysis. Comput Struct 2013;126:164–76. http:
//dx.doi.org/10.1016/j.compstruc.2013.01.001.

[30] Fishman G. Monte Carlo: concepts, algorithms and applications. New York, NY:
Springer; 1996.

http://refhub.elsevier.com/S0167-4730(24)00016-X/sb1
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb1
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb1
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb2
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb2
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb2
http://dx.doi.org/10.1115/1.4029741
http://dx.doi.org/10.1115/1.4029741
http://dx.doi.org/10.1115/1.4029741
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/2/021002/6070906/risk_1_2_021002.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/2/021002/6070906/risk_1_2_021002.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/2/021002/6070906/risk_1_2_021002.pdf
http://dx.doi.org/10.1016/j.compstruc.2006.10.009
http://dx.doi.org/10.1016/j.compstruc.2006.10.009
http://dx.doi.org/10.1016/j.compstruc.2006.10.009
http://dx.doi.org/10.1007/s11831-019-09327-x
http://dx.doi.org/10.1007/s11831-019-09327-x
http://dx.doi.org/10.1007/s11831-019-09327-x
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb6
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb6
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb6
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb6
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb6
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb7
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb7
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb7
http://dx.doi.org/10.1061/(asce)em.1943-7889.0002076
http://dx.doi.org/10.1061/(asce)em.1943-7889.0002076
http://dx.doi.org/10.1061/(asce)em.1943-7889.0002076
http://dx.doi.org/10.1016/j.cma.2021.113719
https://www.sciencedirect.com/science/article/pii/S0045782521000554
https://www.sciencedirect.com/science/article/pii/S0045782521000554
https://www.sciencedirect.com/science/article/pii/S0045782521000554
http://dx.doi.org/10.1115/1.4030437
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/4/041005/6071907/risk_1_4_041005.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/4/041005/6071907/risk_1_4_041005.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/risk/article-pdf/1/4/041005/6071907/risk_1_4_041005.pdf
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:6(825)
http://dx.doi.org/10.1016/j.cma.2004.06.040
http://dx.doi.org/10.1016/j.cma.2004.06.040
http://dx.doi.org/10.1016/j.cma.2004.06.040
http://www.sciencedirect.com/science/article/pii/S0045782504003986
http://www.sciencedirect.com/science/article/pii/S0045782504003986
http://www.sciencedirect.com/science/article/pii/S0045782504003986
http://dx.doi.org/10.1016/0022-460X(72)90600-1
http://dx.doi.org/10.1016/0022-460X(72)90600-1
http://dx.doi.org/10.1016/0022-460X(72)90600-1
https://www.sciencedirect.com/science/article/pii/0022460X72906001
https://www.sciencedirect.com/science/article/pii/0022460X72906001
https://www.sciencedirect.com/science/article/pii/0022460X72906001
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb14
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb14
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb14
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb15
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb15
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb15
http://dx.doi.org/10.1016/0167-4730(86)90002-0
http://dx.doi.org/10.1016/0167-4730(86)90002-0
http://dx.doi.org/10.1016/0167-4730(86)90002-0
https://www.sciencedirect.com/science/article/pii/0167473086900020
https://www.sciencedirect.com/science/article/pii/0167473086900020
https://www.sciencedirect.com/science/article/pii/0167473086900020
http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb18
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb18
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb18
http://dx.doi.org/10.1016/j.probengmech.2009.10.003
http://dx.doi.org/10.1016/j.probengmech.2009.10.003
http://dx.doi.org/10.1016/j.probengmech.2009.10.003
http://www.sciencedirect.com/science/article/pii/S0266892009000666
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2543)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2543)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2543)
http://dx.doi.org/10.1007/s00466-015-1256-9
http://dx.doi.org/10.1016/j.compstruc.2022.106812
https://www.sciencedirect.com/science/article/pii/S0045794922000724
https://www.sciencedirect.com/science/article/pii/S0045794922000724
https://www.sciencedirect.com/science/article/pii/S0045794922000724
http://dx.doi.org/10.1016/j.cma.2019.112612
http://www.sciencedirect.com/science/article/pii/S0045782519304888
http://www.sciencedirect.com/science/article/pii/S0045782519304888
http://www.sciencedirect.com/science/article/pii/S0045782519304888
http://dx.doi.org/10.1016/j.probengmech.2011.08.019
http://www.sciencedirect.com/science/article/pii/S0266892011000749
http://www.sciencedirect.com/science/article/pii/S0266892011000749
http://www.sciencedirect.com/science/article/pii/S0266892011000749
http://dx.doi.org/10.1016/0960-0779(94)00157-L
http://dx.doi.org/10.1016/0960-0779(94)00157-L
http://dx.doi.org/10.1016/0960-0779(94)00157-L
http://www.sciencedirect.com/science/article/pii/096007799400157L
http://www.sciencedirect.com/science/article/pii/096007799400157L
http://www.sciencedirect.com/science/article/pii/096007799400157L
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb26
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb26
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb26
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb27
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb27
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb27
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb28
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb28
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb28
http://dx.doi.org/10.1016/j.compstruc.2013.01.001
http://dx.doi.org/10.1016/j.compstruc.2013.01.001
http://dx.doi.org/10.1016/j.compstruc.2013.01.001
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb30
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb30
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb30


Structural Safety 108 (2024) 102445C.H. Acevedo et al.
[31] Charlton T, Rouainia M, Dawson R. Control variate approach for ef-
ficient stochastic finite-element analysis of geotechnical problems. ASCE-
ASME J Risk Uncertain Eng Syst A 2018;4(3):04018031. http://dx.doi.
org/10.1061/AJRUA6.0000983, arXiv:https://ascelibrary.org/doi/pdf/10.1061/
AJRUA6.0000983, https://ascelibrary.org/doi/abs/10.1061/AJRUA6.0000983.

[32] Nelson B. Control variate remedies. Oper Res 1990;38(6):974–92. http://dx.doi.
org/10.1287/opre.38.6.974.

[33] Pasupathy R, Schmeiser B, Taaffe M, Wang J. Control-variate estimation using
estimated control means. IIE Trans 2012;44(5):381–5. http://dx.doi.org/10.
1080/0740817X.2011.610430.

[34] Rashki M, Ghavidel A, Ghohani Arab H, Mousavi S. Low-cost finite element
method-based reliability analysis using adjusted control variate technique.
Struct Saf 2018;75:133–42, http://www.sciencedirect.com/science/article/pii/
S0167473017301170.

[35] Boyaval S. A fast Monte-Carlo method with a reduced basis of control variates
applied to uncertainty propagation and Bayesian estimation. Comput Methods
Appl Mech Eng 2012;241–244:190–205. http://dx.doi.org/10.1016/j.cma.2012.
05.003.

[36] Geraci G, Eldred M, Iaccarino G. A multifidelity control variate approach for
the multilevel monte carlo technique. Center for Turbulence Research, Annual
Research Brief; 2015.

[37] Giles M. Multilevel Monte Carlo path simulation. Oper Res 2008;56(3):607–17.
http://dx.doi.org/10.1287/opre.1070.0496.

[38] Gorodetsky A, Geraci G, Eldred M, Jakeman J. A generalized approximate
control variate framework for multifidelity uncertainty quantification. J Comput
Phys 2020;408:109257. http://dx.doi.org/10.1016/j.jcp.2020.109257, https://
www.sciencedirect.com/science/article/pii/S0021999120300310.

[39] Pisaroni M, Nobile F, Leyland P. A continuation multi level monte carlo
(C-MLMC) method for uncertainty quantification in compressible inviscid aero-
dynamics. Comput Methods Appl Mech Engrg 2017;326:20–50. http://dx.doi.
org/10.1016/j.cma.2017.07.030, https://www.sciencedirect.com/science/article/
pii/S0045782516308155.

[40] Avramidis A, Wilson J. A splitting scheme for control variates. Oper Res Lett
1993;14(4):187–98. http://dx.doi.org/10.1016/0167-6377(93)90069-S, http://
www.sciencedirect.com/science/article/pii/016763779390069S.

[41] Vidal-Codina F, Nguyen N, Giles M, Peraire J. A model and variance
reduction method for computing statistical outputs of stochastic ellip-
tic partial differential equations. J Comput Phys 2015;297:700–20. http:
//dx.doi.org/10.1016/j.jcp.2015.05.041, http://www.sciencedirect.com/science/
article/pii/S0021999115003757.

[42] Bathe K. Finite element procedures. New Jersey: Prentice Hall; 1996.
[43] Stefanou G. The stochastic finite element method: Past, present and future.

Comput Methods Appl Mech Engrg 2009;198(9–12):1031–51.
[44] Liu P, Der Kiureghian A. Multivariate distribution models with prescribed

marginals and covariances. Probab Eng Mech 1986;1(2):105–12.
[45] Grigoriu M. Simulation of stationary non-Gaussian translation processes. J Eng

Mech 1998;124(2):121–6. http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)
124:2(121).

[46] Faes M, Broggi M, Chen G, Phoon K-K, Beer M. Distribution-free P-box processes
based on translation theory: Definition and simulation. Probab Eng Mech
2022;69:103287. http://dx.doi.org/10.1016/j.probengmech.2022.103287, https:
//www.sciencedirect.com/science/article/pii/S0266892022000558.

[47] Ayyub B, McCuen R. Probability, statistics, and reliability for engineers and
scientists. 3rd ed.. Taylor & Francis; 2011, https://books.google.de/books?id=
zfnltuHc5Y4C.
13
[48] Ang A, Tang W. Probability concepts in engineering: emphasis on applications
to civil and environmental engineering. Wiley; 2007.

[49] Liu W, Mani A, Belytschko T. Finite element methods in probabilistic mechanics.
Probab Eng Mech 1987;2(4):201–13.

[50] Schuëller G, editor. A state-of-the-art report on computational stochastic
mechanics. Probab Eng Mech 1997;12(4):197–321.

[51] Rahman S, Rao B. A perturbation method for stochastic meshless analysis in
elastostatics. Internat J Numer Methods Engrg 2001;50(8):1969–91.

[52] Haftka R, Gürdal Z. Elements of structural optimization. 3rd ed.. Dordrecht, The
Netherlands: Kluwer; 1992.

[53] Matthies H, Brenner C, Bucher C, Soares C. Uncertainties in probabilistic
numerical analysis of structures and solids - stochastic finite elements. Struct
Saf 1997;19(3):283–336.

[54] Schmit L, Farshi B. Some approximation concepts for structural synthesis. AIAA
J 1974;12(5):692–9.

[55] Prasad B. Explicit constraint approximation forms in structural optimization. Part
1: Analyses and projections. Comput Methods Appl Mech Eng 1983;40(1):1–26.
http://dx.doi.org/10.1016/0045-7825(83)90044-0.

[56] Fadel G, Riley M, Barthelemy J. Two point exponential approximation method
for structural optimization. Struct Optim 1990;2(2):117–24.

[57] Nelson B. Batch size effects on the efficiency of control variates in
simulation. European J Oper Res 1989;43(2):184–96. http://dx.doi.org/
10.1016/0377-2217(89)90212-9, http://www.sciencedirect.com/science/article/
pii/0377221789902129.

[58] Box M. Bias in nonlinear estimation. J R Stat Soc Ser B (Methodological)
1971;33(2):171–201, http://www.jstor.org/stable/2985002.

[59] Griffiths D, Fenton G. Seepage beneath water retaining structures founded on
spatially random soil. Geotechnique 1993;43(4):577–87.

[60] Spanos P, Beer M, Red-Horse J. Karhunen-loéve expansion of stochastic processes
with a modified exponential covariance kernel. J Eng Mech 2007;133(7):773–9.
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:7(773).

[61] Faes M, Broggi M, Spanos P, Beer M. Elucidating appealing features of
differentiable auto-correlation functions: A study on the modified exponen-
tial kernel. Probab Eng Mech 2022;69:103269. http://dx.doi.org/10.1016/j.
probengmech.2022.103269, https://www.sciencedirect.com/science/article/pii/
S026689202200042X.

[62] Liu Y, Wang M-Y, Pan Y-T, Yao K. Large-scale 3D random finite element
analysis of embankment seepage stability. In: Weng M-C, Kawamura S, Ding J,
editors. Advancements in geotechnical engineering. Cham: Springer International
Publishing; 2021, p. 1–13.

[63] Cho S. First-order reliability analysis of slope considering multiple failure modes.
Eng Geol 2013;154:98–105, https://www.sciencedirect.com/science/article/pii/
S0013795213000045.

[64] Menditto A, Patriarca M, Magnusson B. Understanding the meaning of accuracy,
trueness and precision. Accreditation Qual Assur 2007;12(1):45–7. http://dx.doi.
org/10.1007/s00769-006-0191-z.

[65] Wood D, Groenwold A. Non-convex dual forms based on exponential intervening
variables, with application to weight minimization. Internat J Numer Methods
Engrg 2009;80(12):1544–72.

[66] Stokes B. mathStatica 2.5. J Stat Softw Softw Rev 2012;47(1):1–12, https:
//www.jstatsoft.org/v047/s01.

http://dx.doi.org/10.1061/AJRUA6.0000983
http://dx.doi.org/10.1061/AJRUA6.0000983
http://dx.doi.org/10.1061/AJRUA6.0000983
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0000983
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0000983
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0000983
https://ascelibrary.org/doi/abs/10.1061/AJRUA6.0000983
http://dx.doi.org/10.1287/opre.38.6.974
http://dx.doi.org/10.1287/opre.38.6.974
http://dx.doi.org/10.1287/opre.38.6.974
http://dx.doi.org/10.1080/0740817X.2011.610430
http://dx.doi.org/10.1080/0740817X.2011.610430
http://dx.doi.org/10.1080/0740817X.2011.610430
http://www.sciencedirect.com/science/article/pii/S0167473017301170
http://www.sciencedirect.com/science/article/pii/S0167473017301170
http://www.sciencedirect.com/science/article/pii/S0167473017301170
http://dx.doi.org/10.1016/j.cma.2012.05.003
http://dx.doi.org/10.1016/j.cma.2012.05.003
http://dx.doi.org/10.1016/j.cma.2012.05.003
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb36
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb36
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb36
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb36
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb36
http://dx.doi.org/10.1287/opre.1070.0496
http://dx.doi.org/10.1016/j.jcp.2020.109257
https://www.sciencedirect.com/science/article/pii/S0021999120300310
https://www.sciencedirect.com/science/article/pii/S0021999120300310
https://www.sciencedirect.com/science/article/pii/S0021999120300310
http://dx.doi.org/10.1016/j.cma.2017.07.030
http://dx.doi.org/10.1016/j.cma.2017.07.030
http://dx.doi.org/10.1016/j.cma.2017.07.030
https://www.sciencedirect.com/science/article/pii/S0045782516308155
https://www.sciencedirect.com/science/article/pii/S0045782516308155
https://www.sciencedirect.com/science/article/pii/S0045782516308155
http://dx.doi.org/10.1016/0167-6377(93)90069-S
http://www.sciencedirect.com/science/article/pii/016763779390069S
http://www.sciencedirect.com/science/article/pii/016763779390069S
http://www.sciencedirect.com/science/article/pii/016763779390069S
http://dx.doi.org/10.1016/j.jcp.2015.05.041
http://dx.doi.org/10.1016/j.jcp.2015.05.041
http://dx.doi.org/10.1016/j.jcp.2015.05.041
http://www.sciencedirect.com/science/article/pii/S0021999115003757
http://www.sciencedirect.com/science/article/pii/S0021999115003757
http://www.sciencedirect.com/science/article/pii/S0021999115003757
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb42
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb43
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb43
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb43
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb44
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb44
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb44
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:2(121)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:2(121)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:2(121)
http://dx.doi.org/10.1016/j.probengmech.2022.103287
https://www.sciencedirect.com/science/article/pii/S0266892022000558
https://www.sciencedirect.com/science/article/pii/S0266892022000558
https://www.sciencedirect.com/science/article/pii/S0266892022000558
https://books.google.de/books?id=zfnltuHc5Y4C
https://books.google.de/books?id=zfnltuHc5Y4C
https://books.google.de/books?id=zfnltuHc5Y4C
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb48
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb48
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb48
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb49
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb49
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb49
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb50
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb50
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb50
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb51
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb51
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb51
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb52
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb52
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb52
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb53
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb53
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb53
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb53
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb53
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb54
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb54
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb54
http://dx.doi.org/10.1016/0045-7825(83)90044-0
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb56
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb56
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb56
http://dx.doi.org/10.1016/0377-2217(89)90212-9
http://dx.doi.org/10.1016/0377-2217(89)90212-9
http://dx.doi.org/10.1016/0377-2217(89)90212-9
http://www.sciencedirect.com/science/article/pii/0377221789902129
http://www.sciencedirect.com/science/article/pii/0377221789902129
http://www.sciencedirect.com/science/article/pii/0377221789902129
http://www.jstor.org/stable/2985002
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb59
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb59
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb59
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:7(773)
http://dx.doi.org/10.1016/j.probengmech.2022.103269
http://dx.doi.org/10.1016/j.probengmech.2022.103269
http://dx.doi.org/10.1016/j.probengmech.2022.103269
https://www.sciencedirect.com/science/article/pii/S026689202200042X
https://www.sciencedirect.com/science/article/pii/S026689202200042X
https://www.sciencedirect.com/science/article/pii/S026689202200042X
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb62
https://www.sciencedirect.com/science/article/pii/S0013795213000045
https://www.sciencedirect.com/science/article/pii/S0013795213000045
https://www.sciencedirect.com/science/article/pii/S0013795213000045
http://dx.doi.org/10.1007/s00769-006-0191-z
http://dx.doi.org/10.1007/s00769-006-0191-z
http://dx.doi.org/10.1007/s00769-006-0191-z
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb65
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb65
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb65
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb65
http://refhub.elsevier.com/S0167-4730(24)00016-X/sb65
https://www.jstatsoft.org/v047/s01
https://www.jstatsoft.org/v047/s01
https://www.jstatsoft.org/v047/s01

	Control variates with splitting for aggregating results of Monte Carlo simulation and perturbation analysis
	Introduction
	Estimation of Second-Order Statistics of the Response of Stochastic Finite Element Models by means of Monte Carlo and Perturbation
	Stochastic Finite Element Model
	Second-Order Statistics of the Response
	Monte Carlo Simulation
	Perturbation Analysis
	Enhancement of Perturbation Analysis with Intervening Variables

	Control Variates with Splitting
	General Remarks
	Control Variates
	Splitting
	Estimation of the Mean of the Response
	Estimation of the Variance of the Response
	Practical Implementation

	Example
	Description
	Numerical Results
	Normalized Histograms
	Effect of Correlation Length

	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Accuracy and Precision
	Appendix B. Calculation of Exponent Associated with Exponential Intervening Variables
	Appendix C. Estimation of Central Co-moments
	References


