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a b s t r a c t

Seepage refers to the flow of water through porous materials. This phenomenon has a crucial role in dam,
slope, excavation, tunnel, and well design. Performing seepage analysis usually is a challenging task, as
one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in
the horizontal and vertical directions that drive this phenomenon. However, at the same time, the data
on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution. In this
context, so-called non-traditional approaches for uncertainty quantification (such as intervals and fuzzy
variables) offer an interesting alternative to classical probabilistic methods, since they have been shown
to be quite effective when limited information on the governing parameters of a phenomenon is
available. Therefore, the main contribution of this study is the development of a framework for con-
ducting seepage analysis in saturated soils, where uncertainty associated with hydraulic conductivity is
characterized using fuzzy fields. This method to characterize uncertainty extends interval fields towards
the domain of fuzzy numbers. In fact, it is illustrated that fuzzy fields are an effective tool for capturing
uncertainties with a spatial component, since they allow one to account for available physical mea-
surements. A case study in confined saturated soil shows that with the proposed framework, it is possible
to quantify the uncertainty associated with seepage flow, exit gradient, and uplift force effectively.
© 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seepage analysis plays a significant role in practical engineering
problems such as the design of dams and hydraulic structures (Jie
et al., 2013), reservoirs (Li et al., 2020), embankments (Liu et al.,
2017a), underground spaces (Wang, 2021), railway ballasts
(Alrdadi and Meylan, 2022), tunnels (Wang et al., 2021), and the
analysis of rainfall-induced landslides (Cai et al., 2017). Seepage
analyses have been carried out using analytical methods such as
flow nets, and numerical methods such as the finite element
method (FEM), the finite difference method (FDM), and the
boundary element method (BEM) (Li et al., 2020). The seepage
phenomenon obeys Darcy's law, and it is governed by the hydraulic
conductivity, the piezometric head, and boundary conditions such
as specified heads and fluxes, under saturated steady-state
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conditions (Richards, 1931; Phoon et al., 2010). Saturated seepage,
which describes the phenomenon of water percolating through the
pores of the soil when the surrounding material is fully saturated, is
commonly used in the design of dams and reservoirs where large
volumes of water are involved, and in foundation projects where
the ground is fully saturated (Hager et al., 2020). Among the pa-
rameters that govern seepage in saturated soils, hydraulic con-
ductivity is particularly challenging to characterize due to
significant soil uncertainty (Santoso et al., 2011). Thus, this imposes
a major obstacle for performing seepage analysis accurately (Le
et al., 2011; Phoon, 2019).

Several assumptions concerning hydraulic conductivity are
included in the standard procedure for dealing with seepage
problems. Deterministic analyses that consider hydraulic conduc-
tivity values from handbooks are usually applied. Nevertheless, this
practice can lead to inaccuracies in the hydraulic conductivity
characterization, due to the lack, scarcity, and imprecision of
available data (Phoon and Kulhawy, 1999). Geologic processes that
have created and continuously altered soil mass do not necessarily
ensure that hydraulic conductivity values collected in one area are
blished by Elsevier B.V. This is an open access article under the CC BY license (http://
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valid in soils of the same classification in other areas (Dane and
Topp, 2002). Furthermore, deterministic seepage analyses are
usually performed under the assumption of homogeneous behavior
of the soil (Shedid, 2019). However, soil properties, especially hy-
draulic conductivity, exhibit considerable heterogeneity at different
spatial scales in conjunction with complex interactions with envi-
ronmental conditions (Lin, 2010; Baroni et al., 2017).

Despite the existence of techniques to measure the hydraulic
conductivity in the field (Elhakim, 2016), hydraulic conductivity
quantification can be affected by the spatial variability of the soil
(Baroni et al., 2017), as well as inaccuracy and sparseness of the field
measurements (Guan and Wang, 2022). Therefore, uncertainty in
hydraulic conductivity can be attributed to two causes. First, the
quantification is affected by the inherent uncertainty of the soil
(Phoon and Kulhawy,1999) which is a consequence of many factors,
such as the void ratio andmineralogy (Teng et al., 2019), size, shape,
packing, and orientation of soil grains (Deng et al., 2011), pore size
distribution of the soil mass, and pore interconnection (Zeng et al.,
2020). Second, the quantification is also affected by the scatter and
error of the measurement data. Whereas databases containing data
collected from various locations are available (Feng and Vardanega,
2019), site-specific data are limited. In a typical project, only a
limited number of soil samples are extracted from a few boreholes.
Therefore, the hydraulic conductivity is known only for a small
number of positions, whereas for the remaining positions, hy-
draulic conductivity values must be estimated from the borehole
measurements (Gong et al., 2020). Furthermore, significant differ-
ences can be observed by comparing the results of different tests.
The work of Elhakim (2016) recorded values of hydraulic conduc-
tivity obtained from different methods that exhibited a coefficient
of variation as high as 240% in the same soil layer. Consequently, an
accurate quantification of hydraulic conductivity is required to
accurately estimate seepage performance, that accounts for both
sources of uncertainty: the spatial variability of the soil and the
imprecision and sparseness of field measurements.

It was not until the pioneering study by Griffiths and Fenton
(1993) that hydraulic conductivity was incorporated into seepage
analysis in a non-deterministic manner. Based on this study, the
uncertainty in hydraulic conductivity has been incorporated from
different perspectives in seepage problems, using probabilistic and
possibilistic approaches. Probabilistic analysis of saturated and
unsaturated steady-state seepage has been applied widely, e.g.
Griffiths and Fenton (1997), Ahmed (2009), Srivastava et al. (2010),
and Sharma et al. (2021). In these approaches, hydraulic conduc-
tivity is treated as a random field (Santoso et al., 2010, 2011), while
assuming a homogeneous soil layer, isotropic soil behavior, and
autocorrelation functions in most cases. Spatial variation in the
hydraulic conductivity has also been accounted for by applying
non-stationary random fields for stochastic analyses in Cho (2012)
and Liu et al. (2017a). Nevertheless, spatial dependencies have been
included using theoretical autocorrelation functions, that did not
consider field measurements in their definition, due to the scarcity
of available data (Montoya-Noguera et al., 2019). Techniques that
allow the incorporation of site-specific data, such as conditional
simulation methods, have been used to constrain the spatial dis-
tribution of soil parameters to the real data for slope reliability
analysis (Jiang et al., 2022). In contrast, very few applications of
possibilistic methods (Beer et al., 2013a) have been developed for
seepage analysis. An example is the affine arithmetic analysis
applied in Degrauwe et al. (2010) for estimating groundwater flow
under a dam. Here, the same nominal value and interval range for
vertical and horizontal hydraulic conductivity were considered.
Another technique within the non-probabilistic methods corre-
sponds to interval fields (Faes and Moens, 2017). Interval fields are
an extension of the interval framework (Moore, 1966) when
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uncertainty is influenced by physical space (Sofi et al., 2019). This
technique is arguably more reasonable in the presence of scarce
measurements of uncertain properties. This is because when the
lack of information is particularly pronounced, it raises concerns
about the ability to specify a probabilistic model for specific pa-
rameters (Beer et al., 2013b). In addition, the potential limitations of
a probabilistic approach in dealing with limited data have recently
been highlighted by the application of imprecise probabilities in
geotechnical engineering. For example, distribution-free P-boxes
provide a robust and consistent way to represent uncertainty when
data are scarce. They provide bounds on the possible cumulative
distribution function (CDF) without relying on specific distribution
assumptions. The work of Faes et al. (2022) shows that in case of
high uncertainty in a geotechnical context, an interval approach is
more appropriate than, for example, assuming a certain distribu-
tion, especially in cases where the tails of the distribution are not
adequately captured. To the best of our knowledge, there are few
applications of interval fields to deal with the uncertainty of hy-
draulic conductivity. The work reported in Verhaeghe et al. (2013)
shows an application of interval fields to a geohydrological prob-
lem in which the transport of solutes in groundwater is solved
considering an uncertain saturated hydraulic conductivity. The
work reported in Feng et al. (2022) also used interval fields, but this
contribution focused on slope stability instead of seepage flow.
Fuzzy set theory has also been applied to seepage analysis (Zhang
et al., 2020, 2022). Nevertheless, these applications have focused
on the use of fuzzy numbers to incorporate uncertainty in reservoir
properties, disregarding the spatial component in soil properties
such as hydraulic conductivity. Therefore, the challenge remains to
develop strategies for seepage analysis that consider available
physical measurements while considering the effects of spatial
uncertainty.

Under such a scenario, this study presents a methodology for
conducting seepage analysis in saturated soils using a fuzzy
approach. This method is chosen due to its inherent advantages
over stochastic methods when dealing with limited and uncertain
input data. The adoption of a possibilistic methodology enables the
characterization of uncertain parameters by simply specifying the
range of possible values for each parameter, i.e. only the bounds of
each of them are required. Moreover, it is not necessary to assume
the marginal distribution and correlation functions of the input
data. Geostatistical methods, such as semi variograms and corre-
lation functions that are essential for Kriging modeling, facilitate
the identification of spatial dependencies within data sets. Never-
theless, their effectiveness depends on the availability of large data
sets that are typically both reasonably dense and homogeneously
distributed across the spatial domain (Hesse et al., 2024). In
contrast, interval-based approaches provide a more flexible
framework for dealing with spatial uncertainty by requiring
comparatively less data. Furthermore, possibilistic methods have
shown considerable potential under severe uncertainty, especially
when their source stems from scarcity and inaccuracy of data (Faes
et al., 2019; Schietzold et al., 2019). Specifically, the proposed
methodology extends the interval field theory to fuzzy analysis. For
constructing the basis functions related to the interval field, only
one parameter needs to be selected. This parameter corresponds to
the exponent of the distance measure considered, which governs
the influence of the available information at specific locations on
the domain over the rest of the field. As a result, utilizing interval
fields facilitates the incorporation of sparse spatial information,
while extending to fuzzy techniques allows for sensitivity inclusion
in the seepage analysis.

Therefore, the objective of this work is to explore the application
of fuzzy fields (Verhaeghe et al., 2010, 2013) as a means for char-
acterizing uncertainty in seepage analysis. This is a novel
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contribution when compared to existing approaches reported in
the literature (Santoso et al., 2011; Liu et al., 2017a; Sharma et al.,
2021), which can be particularly useful when data measurements
are scarce. In this context, fuzzy fields are defined as a natural
extension of interval fields. This is achieved by defining the interval
fields in a fuzzy sense to assess the sensitivity of the predicted
spatial bounds of the uncertain parameters towards the input un-
certainty. Specifically, the fuzzy fields are defined based on an
extension of the Inverse Distance Weighting framework that is
commonly used to construct the required interval field basis
functions (Faes and Moens, 2017). Concerning the propagation of
the fuzzy field, the traditional alpha-level optimization strategy is
adopted for calculating the membership function associated with
seepage responses in a discrete manner (M€oller et al., 2000; Hanss,
2005). A numerical example illustrates that the proposed strategy
allows for accurately characterizing the fuzzy seepage flow, uplift
force, and exit gradient.

It is emphasized that this work addresses the confined saturated
seepage problem to focus on the treatment of spatial uncertainty in
soil properties under limited data. Note that the term spatial un-
certainty is used in this work to consider uncertainty in its widest
form. This means that not only the intrinsic spatial uncertainty of
the soil is considered, but also the potential lack of knowledge that
exists, stemming from scarcity in measurement data. Given the
focus of this work on spatial uncertainty, other relevant cases of
seepage analysis are not considered for the sake of simplicity. For
example, the analysis of unsaturated seepage (Zhai and Rahardjo,
2013; Prakash et al., 2021), which is crucial for the study of e.g.
irrigation canals and drainage systems (Huang and Jia, 2009),
groundwater containment systems (Abd-Elaty et al., 2019), and
rainfall-induced landslides (Gu et al., 2023) (among others), is not
addressed due to the challenges associated with the resulting nu-
merical models, which are costly to solve numerically (Bianchi
et al., 2022). The latter is particularly true in the context of uncer-
tainty quantification, where these numerical models need to be
solved repeatedly.

The structure of the remaining sections of the paper is as fol-
lows. The formulation of the seepage problem considered in this
paper and the spatial component of hydraulic conductivity uncer-
tainty are discussed in Section 2. Section 3 introduces the funda-
mentals of interval and fuzzy field theory. Here, the proposed
strategy for performing seepage analysis with fuzzy fields is dis-
cussed, while its application is illustrated and analyzed bymeans of
an example in Section 4. Conclusions are summarized in Section 5.
2. Seepage analysis

2.1. Governing equations

The partial differential equation that governs the two-
dimensional (2D) steady-state confined seepage problem is

v

vx

�
kH

vh
vx

�
þ v

vy

�
kV

vh
vy

�
¼0 (1)

where kH and kV correspond to the horizontal and vertical hy-
draulic conductivities, respectively; h is the hydraulic head; x and y
are the Cartesian coordinates of the domain U. Eq. (1) is a variant of
Richards' equation (Richards, 1931), which was derived on the
assumption that saturated flow obeys Darcy's law. Eq. (1) is typi-
cally solved in a discrete manner by means of the FEM:

Kh¼q (2)

where K2Rnd�nd is the matrix associated with the soil hydraulic
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conductivity; q2Rnd�1 is the vector representing nodal flow; and
h2Rnd�1 is the vector that describes the system's response, that is,
hydraulic head. The quantity nd corresponds to the degrees-of-
freedom considered. The model described by Eqs. (1) and (2) cor-
responds to the classical deterministic approach for dealing with
seepage problems. After solving Eq. (2), quantities associated with
the seepage phenomenon such as flow, uplift force, and exit gra-
dients can be readily derived.

2.2. Spatial variation of hydraulic conductivity

Hydraulic conductivity is the property of a soil that permits
water or any liquid to flow through its voids (Whitlow, 2000). For a
2D flow, horizontal hydraulic conductivity kH is the hydraulic
conductivity for flow perpendicular to gravity. Conversely, the
vertical hydraulic conductivity kV is the hydraulic conductivity for
flow in the direction aligned with the direction of the gravity field
(Fanchi, 2010). Hydraulic conductivity can be estimated based on
fieldmeasurements from different methods. Pumping tests provide
a good estimation for the representative hydraulic conductivity in a
soil layer (Elhakim, 2016). The hydraulic conductivity is estimated
indirectly using the transmissibility of the saturated soil thickness
(Ahmed et al., 2008). Piezocone tests (commonly known as CPTu)
are another useful tool for estimating hydraulic conductivity as a
function of pore pressure dissipation measured at different depths
(Eslami et al., 2019). Use of the falling head test in boreholes allows
for evaluation of the hydraulic conductivity of the soil layer being
investigated, by measuring the water depth inside the casing at
specific time intervals (Xiang et al., 1997). All these methods pro-
vide, directly or indirectly, spatially distributed hydraulic conduc-
tivity measurements. Nevertheless, it is noteworthy that these
techniques are rather high-cost and, consequently, their applica-
bility cannot be extended to most projects (Singh et al., 2020).
Hence, the values measured at a specific depth in a small fraction of
the soil are considered representative of all soil layers in traditional
seepage analysis, not fully including the heterogeneous behavior of
the soil. Vertical hydraulic conductivity can be measured in the
laboratory or in pressure transient tests in the field (Ahmed et al.,
2008; Elhakim, 2016). In many cases, vertical hydraulic conduc-
tivity is not measured, since it is very complex, expensive, and
time-consuming. For those reasons, normally kV must be assumed
from horizontal hydraulic conductivity measurements. As a rule of
thumb, the vertical hydraulic conductivity is about one-tenth of the
horizontal hydraulic conductivity (Fanchi, 2010). Depending on the
type of soil or rock, occurrence of fractures, voids, and porosity of
the medium, both hydraulic conductivities can become equal
(Shedid, 2019).

The anisotropy governing hydraulic conductivity has its origin in
the heterogeneity of the soil. Soil regions, whether in natural or
compacted soils, are often characterized by a high degree of spatial
heterogeneity due to geomorphological processes or deficient
building control in earth structures (Cho, 2012). The large fluctua-
tions of hydraulic conductivity values recorded in the literature
even for one layer and the wide ranges typically suggested by soil
type indicate this heterogeneity of hydraulic conductivity. Spatial
variations influencing hydraulic conductivity values can appear at
different scales. Variations can be evidenced at very slight dis-
tances, due to changes in soil grain size and shape (Deng et al.,
2011). Similarly, variations on a larger scale may also be observed,
for example, due to soil stratifications (Lu and Zhang, 2007). Thus, it
is challenging to define hydraulic conductivity values for a soil re-
gion. Therefore, a key element to characterize hydraulic conduc-
tivity is to consider strategies that allow for spatial dependencies.
To avoid the use of theoretical assumptions and where data are
scarce, interval and fuzzy sets methods provide an appropriate
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framework for dealing with such uncertainty in a non-probabilistic
manner (Sofi et al., 2019).
3. Fuzzy fields

3.1. General remarks

The nature of hydraulic conductivity outlined in the preceding
section highlights that, for an accurate analysis of seepage, hy-
draulic conductivity must be regarded as uncertain. Therefore, Eq.
(2) can be rewritten as

KðxÞhðxÞ ¼ qðxÞ (3)

where x represents uncertainty in hydraulic conductivity. Specif-
ically, x represents the horizontal and vertical hydraulic conduc-
tivities in the seepage problem, which, unlike the deterministic
approach shown in Eqs. (1) and (2), do not correspond to fixed
values. The approach used to represent x in this study is described
in Section 3.3.2. The intrinsic nature of the hydraulic conductivity of
the soil makes it necessary to include its uncertainty when defining
the properties of the system. Therefore, the matrix associated with
the soil hydraulic conductivity KðxÞwill depend on the uncertainty.
This uncertainty, which is captured in the variable x, is constructed
using the available hydraulic conductivity information. This process
is explained in detail in the following subsections. Thus, x allows
one to incorporate the physical and spatial nature of the hydraulic
conductivity of the soil as well as its uncertainty. As can be seen
from Eq. (3), the uncertainty affecting the hydraulic conductivity
matrix KðxÞ is propagated to the hydraulic head hðxÞ and the flow
qðxÞ: This is due to the propagation of uncertainty that occurs
during the modeling phase. Hence, the necessity to quantify the
uncertainty in the responses of interest of the model (such as
seepage flow, uplift force, and exit gradients) arises.

In this work, a possibilistic approach is considered to quantify
the uncertainty in hydraulic conductivity. Within the possibilistic
approaches, there are several methods to describe uncertainty
(Beer et al., 2013a), that is, to define x. One way is to resort to in-
terval methods (Moens and Vandepitte, 2007). Interval methods
are very convenient in cases where there is imprecise knowledge of
a given variable and just its boundary values can be defined (Imholz
et al., 2020). Interval fields (Faes and Moens, 2017) are a general-
ization of interval methods, which allows for spatial dependence to
be incorporated. For this purpose, a set of functions are used to
describe the effect of spatial coordinates on the uncertain property.
Both techniques, interval, and interval fields are discussed in Sec-
tion 3.2. A further category of possibilistic methods corresponds to
fuzzy approaches (M€oller et al., 2000). These techniques are
described in Section 3.3. Among them, a fuzzy variable can be
interpreted as a collection of intervals indexed by a membership
function. This approach to describe uncertain parameters can be
extended to fuzzy fields (Schietzold et al., 2019) in the same way
that intervals can be extended to interval fields, considering that
there is spatial dependence. Some applications of fuzzy fields can
be found in the literature. Verhaeghe et al. (2013) has presented a
study of solute transport in groundwater pollution problem using
spatial fuzzy numbers, and G€otz et al. (2019) has analyzed un-
known environmental conditions and loading scenarios on an
asphalt structure considering dependencies in fuzzy analysis.

The use of a possibility-based approach to seepage analysis is
complementary to probabilistic methods such as random field
analysis (Vanmarcke, 1983). Intervals (fields) are particularly useful
when dealing with severe uncertainties where spatial data may be
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limited in both quantity and quality (Faes et al., 2019). While
probabilistic approaches are well suited when sufficient data are
available, theymay not be appropriate in scenarios with sparse data
and limited knowledge, such as uncertainties in soil properties. This
is because they are very likely to underestimate the worst-case
behavior of the structure (Beer et al., 2013b). The reasons for
insufficient data to support probabilistic methods are diverse and
include the challenges of collecting statistical data for large-scale
systems, as well as the inherent complexity and cost associated
with obtaining such data (He et al., 2007), being the latter partic-
ularly noticeable for variables such as hydraulic conductivity, as
discussed in Section 2.2. Therefore, non-probabilistic methods are
considered to provide a more objective and accurate quantification
of uncertainty when data are either vague or scarce (Faes et al.,
2019). In addition, unlike random fields, non-probabilistic ap-
proaches such as interval or fuzzy analysis require fewer assump-
tions in characterizing uncertain parameters. There is no need to
assume specific marginal distributions or autocorrelation func-
tions. Instead, only the range of plausible values for these uncertain
parameters needs to be defined, a task that can be accomplished
even with sparse data. Moreover, when using interval fields, the
only parameter that needs to be defined is the exponent used for
the distance measure of the basis functions, a concept which is
elaborated in Sections 3.2.2 and 4.5. Furthermore, the use of fuzzy
techniques enables sensitivity analysis (M€oller and Beer, 2004).
This advantage provides a comprehensive analysis of uncertainties
while minimizing the assumptions required in the modeling pro-
cess when combined with interval methods.

Once uncertainty in hydraulic conductivity is described, it be-
comes necessary to propagate this uncertainty to the quantities of
interest (seepage flow, uplift force, and exit gradients) considering
spatial dependencies. It is crucial to emphasize that in cases where
non-probabilistic methods are used, traditional statistical in-
dicators such as mean, standard deviation, and coefficient of vari-
ation are not applicable to characterize the uncertain responses of
the system. Instead, when using intervals and interval fields, the
response of the system is represented as an interval, whereas in
fuzzy approaches the response is characterized by a membership
function. Furthermore, when interval fields are used to characterize
uncertainty, the correlation concept is replaced by the dependence
concept (Faes and Moens, 2020). Within the different existing
methods for propagating uncertainty, i.e. to obtain the system's
response, the traditional alpha-level optimization strategy (M€oller
et al., 2000) is adopted in this study to estimate the membership
function associated with the seepage responses in a discrete
manner. This methodology is presented in Section 3.4. The analysis
of these responses also differs from the traditional approach when
it comes to decision-making, as it is obtained from a non-
probabilistic approach. The membership functions must be
analyzed in their discrete form, that is, by the intervals associated
with different membership levels. This approach allows the user to
gain insight into the range or extent of the interval that contains
each possible value for the response being analyzed. It also gives an
idea of the effect of uncertainty in the input parameters and how
the sensitivity of the response relates to the membership level
being considered. As a result, users can get feedback on the effect of
the chosen characterization of the uncertain parameters, improving
the comprehensibility and robustness of the analysis. Furthermore,
when it comes to making critical engineering decisions, one of the
key attributes of interval analysis is its remarkable focus on extreme
events. This is particularly advantageous when dealing with risk
assessments involving rare, high-consequence events (Beer et al.,
2013b).
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3.2. Interval approaches

3.2.1. Intervals
Interval methods have been widely used to estimate the

response of engineering systems (Degrauwe et al., 2010; Faes and

Moens, 2019a). By definition, an interval xI corresponds to a set of
possible values that the physical variable x is allowed to assume,

which are bounded by a lower and an upper limit, that is x2
h
x;x

i
.

Therefore, this strategy allows an uncertain variable x to be repre-
sented by a closed finite interval. Interval analysis is an interesting
technique when limited information is available (Faes and Moens,
2019a). Nevertheless, when the uncertain variable is space-
dependent, this approach must be extended to capture such
behavior, as discussed below.

3.2.2. Interval fields
Interval fields are a natural extension of the concept of interval

whenever uncertainty is influenced by space location (Sofi et al.,
2019). To define an interval field, consider that the spatial domain
associated with the interval field is denoted as U and a spatial co-
ordinate within that domain is denoted by means of vector x, thus
x2U. It is assumed that there are a few nb locations within U at
which field measurements are available. The aforementioned lo-
cations are termed as control points and their positions are denoted
as xj, with j ¼ 1;…;nb. Observe that the dimension of the vector xj is
equal to the number of dimensions involved in the study. For
simplicity, these positions are stored as columns of the matrix X,
that is, X ¼ ½x1;…; xnb �: As there are field measurements at the
control points, the uncertain property can be characterized as an

interval, that is, xj2
h
xj; xj

i
, where xj denotes the value of the un-

certain property at the j-th control point. In other words, the in-
terval associated with the uncertain property at location xj is

xIj ¼
h
xj; xj

i
: With these considerations, an interval field xIðxÞ is

defined by

xIðxÞ ¼
Xnb

j¼1

jjðx;XÞxIj (4)

where jjð$; $Þ denotes the basis functions that allow measuring the
influence of the interval associated with the j-th control point on x.
It is important to note that the basis functions capture the spatial
uncertainty in the domain U in patterns, yielding a mapping from
the input domain into a reduced nb �dimensional input space.
Hence, the uncertainty present in a space-dependent property x is

reduced to that contained in the intervals xIj associated with the nb
control points, as shown in Eq. (4). To illustrate this, Fig.1 shows the
interval field obtained when the property x is subject to spatial
uncertainty. In this figure, two control points x1 and x2 are defined
(that is, nb ¼ 2), which are located within the spatial domain U of
the problem of interest. The top of Fig. 1 shows the lower xðxÞ and
upper xðxÞ bounds of the resulting interval field. Note how interval
fields yield an extension of the intervals known at certain locations
to other positions where no measurements are available. It is
noteworthy that, since for both control points an interval is defined,
no assumption is made regarding the probability associated with
certain values within these sets. To explain the role of the basis
functions, see the bottom of Fig. 1, which shows the values of basis
functions across the domain U. It follows from Eq. (4), that for an
arbitrary location within the domain, it is possible to obtain the
interval describing x by evaluating the value of the basis functions
at that position. Note that the basis function j1ðxÞ reaches value 1
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for position x1 and 0 for x2, while for the basis function j2ðxÞ, the
opposite is true.

The basis functions are defined in this work according to the
following equation:

jjðx;XÞ¼
wj

�
x; xj

�
Pnb

j1¼1
wj1

�
x; xj1

� ðj¼1;…;nbÞ (5)

where wjðx; xjÞ is the weight function between a specific spatial
coordinate x and the control point xj. In this work, the weight
functions wj correspond to the inverse distance weighting function
defined by

wj
�
x; xj

� ¼ 1�
d
�
x; xj

� 	p (6)

where dðx; xjÞ is the considered distance measure (e.g. Euclidean
distance) between x and xj and p is a positive real number. This
parameter represents the influence that the information contained
in the control point xj is allowed to influence a given location x
within the domain. Hence, a larger magnitude of p assigns a higher
influence to values closer to x. For the identification of the correct
basis functions, Faes and Moens (2017) proposed to select a value
for p that is low enough to interpolate the spatial uncertainty.
Specifically, for problems in one and two dimensions, those authors
note that using a value of p ¼ 2 gives satisfactory results. In this
contribution, the value of p is considered equal to 2 (van Mierlo
et al., 2021). It is important to emphasize that Eq. (6) enables one
to incorporate the physical anisotropy of the hydraulic conductivity,
i.e. it allows the magnitudes of the conductivities to spatially vary
within the domain. However, it does not allow for incorporating the
effect that the vertical conductivity may fluctuate faster than the
horizontal one.

Most commonly, hydraulic conductivity data are scarce when
dealing with seepage problems, as discussed in Section 2.2. In such
a scenario, the interval field approach described above is useful to
incorporate scarce and uncertain spatial data. For that purpose, it is
necessary to retrieve the hydraulic conductivity data at the control
points, since the uncertainty associatedwith hydraulic conductivity
is reduced to that existing at these locations, as shown in Eq. (4). To
define the information at control points, field-measured data on
hydraulic conductivity can be used. The location of each control
point will be defined by the places where hydraulic conductivity
was measured, for example, at different depths of one or more
boreholes. In contrast, for hydraulic conductivity values, as the
measured data may be scattered, the intervals associated can be
defined by means of convex hulls (see Faes and Moens, 2017). This
enables one to define the upper and lower bounds for hydraulic
conductivity at each control point, as well as allows for assessing
their dependence (Faes and Moens, 2020). These intervals can be
extended to the entire domain by means of basis functions of Eq.
(5), as previously analyzed.
3.3. Fuzzy approaches

3.3.1. Fuzzy variables
Another possible way of quantifying the uncertainty associated

with specific parameters corresponds to applying techniques of
fuzzy analysis (Beer et al., 2013a). Zadeh (1965) formally introduced
this theory, which arises from necessity to represent mathemati-
cally those cases inwhich the knowledge of a given phenomenon is
not precise, and, therefore, cannot be answered by means of clas-
sical set theory (Moens and Vandepitte, 2005; Sofi and Romeo,



Fig. 1. Illustration of interval field with two control points (top), and basis functions associated with interval field (bottom).
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2016).
In fuzzy set theory, an uncertain parameter x is characterized as

a fuzzy variable bx. In this context, a fuzzy variable can be inter-
preted as a collection of intervals, where these intervals are indexed
by a membership function m

x̂
ðxÞ2½0;1�: The latter holds true

whenever the membership function is convex. In other words, for
each of these membership levels a, there will be an interval asso-
ciated with the uncertain variable x, i.e.

xIa ¼ fx2X : m
x̂
ðxÞ � a g; a2ð0;1� (7)

where xIa represents the possible set of values that x can assume for
an a-level of the membership function, and X is the set that con-
tains all physical values that x can accept. Note that this level cor-

responds to an interval whose lower and upper limits are xa and xa,
respectively. To illustrate the fuzzy variable concept, Fig. 2 shows
the intervals associatedwith two specifics a-levels (a1 and a2 in the
figure) of the membership function m

x̂
ðxÞ. One observes that for this

case, the size of these sets of possible values decreases as the cuts
aremade for amembership level close to 1. This behavior is due to a
triangular-shaped membership function adopted in the figure.

The membership function m
x̂
ðxÞ can adopt several forms, such as

triangular, trapezoidal, and sigmoidal functions, among others
(Hanss, 2005). Triangular membership functions are defined by a
lower bound, an upper bound, and a value associated with mem-
bership equal to one. In contrast, trapezoidal functions have an
interval (i.e. collection of values) associated with the membership
level one. Sigmoidal membership functions are S-shaped and have
Fig. 2. Interval xIa1
and xIa2

associated with fuzzy variable bx for membership level a1
and a2, respectively.
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two parameters to define them, one to control the width and one to
control the center of the transition area. In this work, triangular-
shaped membership functions are considered to represent the
uncertainty in hydraulic conductivity. The primary purpose of its
use is as a means of incorporating the sensitivity into the analysis of
the interval defined at m

x̂
ðxÞ/0, by effectively propagating a set of

nested intervals. This allows one to qualitatively and quantitatively
investigate how the magnitude of the input uncertainty affects the
response of interest. Note that this analysis assumes that the in-
terval at m

x̂
ðxÞ ¼ 0 is conservative, or at least an interval that con-

tains as much of the available information within the limited data
set as possible (Imholz et al., 2020). This type of membership
function m

x̂
ðxÞ is characterized by its simplicity in the construction

step and efficiency during the modeling process. Specifically, note
that these membership functions require scarce information for
their construction (i.e. the vertex data). This information can be
obtained based on expert knowledge, data available in the litera-
ture, or bymeans of test results, i.e. from fieldmeasurements. In the
specific scenario of field measurements, the data obtained can be
collected in the interval X, whose lower and upper bounds corre-
spond to the minimum and maximum measured values, respec-
tively. Then, the crisp value to construct the fuzzy variable can be
defined, for example, as the midpoint of the interval. On the other
hand, data can also be visualized using histograms, which provide a
preliminary notion of the shape of the membership function
(M€oller and Beer, 2004).

Therefore, the membership function construction is subjective
and should be understood as a tool to determine how much this
subjectivity affects the response of the system. One can observe
that this choice does not affect the generality of the developments
since in essence any convex membership function can be included
in the analysis. The application of membership functions for hy-
draulic conductivity characterization can be also understood as a
way to perform sensitivity analysis. This is because it allows
different cases to be analyzed, where these cases correspond to
different intervals that are indexed by the a-level under analysis.
This provides additional information on the effect of, for example,
hydraulic conductivity on seepage responses; yielding feedback to
the users on the effect of the selected characterization of the un-
certain parameters (Beer et al., 2013a).
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3.3.2. Fuzzy fields
The characterization of input parameters by means of fuzzy

variables, such as those described above, assumes that parameters
under study are only affected by uncertainty. Nevertheless, for
some variables, such as hydraulic conductivity, uncertainty is also
dependent on spatial coordinates. Therefore, in the presence of
spatial dependencies, the fuzzy variable concept (described in

Section 3.3.1) can be extended as a fuzzy field bxðxÞ. For this purpose,
the interval field definition described in Section 3.2.2 can be
applied. Subsequently, the key step is to define, at each control
point, the membership function to capture the uncertainty in hy-
draulic conductivity, instead of defining intervals.

Consider the case presented in Fig. 3, where an input variable x

exhibits spatial dependence and is characterized by the fuzzy fieldbxðxÞ. This represents the case where there is a spatial dependence
on a single coordinate. Nevertheless, the approach can be readily
extended to higher dimensional problems. In the case in Fig. 3, for
simplicity, there is information (i.e. physical measurements) of the
input parameter at two specific locations in the domainU (x1 and x2
in Fig. 3). These locations correspond to the aforementioned control
points. At each control point, it is possible to characterize the
parameter as a fuzzy variable (bluemembership functions in Fig. 3).
For a specific membership level a, note that it is possible to asso-
ciate an interval as in Eq. (7), but now at each location. These in-

tervals correspond to xI1;a and xI2;a in Fig. 3, and they represent the
possible set of values (at positions x1 and x2, respectively) that x can
assume for a membership value a. Note that for this a-level, the

fuzzy field bxðxÞ can be reduced to an interval field. The resulting

interval field is denoted by xIaðxÞ, and it corresponds to

xIaðxÞ ¼
Xnb

j¼1

jjðx;XÞxIj;a (8)

where xIaðxÞ is the interval field associated with the fuzzy variable bx
at the location x for the membership level a, and xIj;a represents the
interval at the j-th control point for a membership value a. Using
basis functions jj, the information at the control points is projected
to any position on the domain. As a result of that procedure, the
interval field associated with the a-level is obtained (red area in
Fig. 3). Also, note that Fig. 3 corresponds to an extension of the top
of Fig. 1, by including the membership level. It is important to
emphasize that the objective of extending the interval fields to
fuzzy fields is to integrate the sensitivity of the analysis to the
values of the uncertain parameters defined at the control points. To
achieve this, it is proposed to use triangular membership functions
to construct the fuzzy field (see Fig. 3), since it allows to explore the
Fig. 3. Schematic representation of fuzzy field.
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effect of relaxing the bounds of these intervals, by linear pertur-
bation of the input interval. Therefore, this paper does not explore
the effects of using other types of membership functions.

The interval field and fuzzy field approaches provide a frame-
work for characterizing the uncertainty associated with a quantity
xðxÞ, at any location in the domain U under study. When an un-
certain property is represented by a fuzzy field, it is necessary to
determine how this property is discretely represented at the level
of the individual finite elements to apply the FEM. One way to
perform this discretization corresponds to applying the mid-point
method (Der Kiureghian and Ke, 1988), which consists of
assuming that such properties, within a given finite element, can be
completely described by their value at the centroid of that finite
element, whose coordinate is denoted by xC;q; with q ¼ 1;…;ne
and ne is the number of elements. Then, the information of the
uncertain parameters at the control points is propagated for each
a-level, for example, to a specific centroid xC;q by means of

xC;q ¼
Xnb

j¼1

jj
�
xC;q;X

�
xj; xj2xIj;a (9)

where xC;q corresponds to the value of the uncertain parameter at
the centroid of the element q, and jjðxC;q;XÞ are the basis functions
evaluated at the centroid coordinates of the q-th finite element.

Fig. 4 shows an illustration of the construction of the fuzzy field
from measured data. Similar to the construction of interval fields
(see Section 3.2.2), which requires retrieving hydraulic conductivity
data (for seepage analysis) at control points, the first step in con-
structing the fuzzy field from site-specific observations is to define
the hydraulic conductivity at those locations. This is illustrated in
Fig. 4a when measurements are collected at two locations in the
domain. The hydraulic conductivity data used in Fig. 4 can be found
in the work of Arshad et al. (2020). Note that given these field data,
the boundaries of the intervals representing hydraulic conductivity
at both locations can be identified, as shown in Fig. 4b, and the
resulting interval field can be calculated according to Eq. (8). Also
note that since this is a simplified example in terms of dimen-
sionality and number of uncertain parameters, one way to define
these intervals is to consider the minimum andmaximumvalues of
the soil property at these positions. Nevertheless, for more complex
systems, the corresponding intervals can be defined using convex
hulls (see Faes and Moens, 2017), or using a Bayesian approach,
which allows one to assess the reliability of the bounds (see Imholz
et al., 2020). Since the defined bounds are very sensitive to outliers
in the dataset, it is necessary to know how sensitive the response is
to perturbations of the intervals. Hence, the associated intervals
from the interval field framework can be extended to triangular
membership functions when using fuzzy fields, as shown in Fig. 4c.
The triangular membership functions (defined with the aim to
perform a sensitivity analysis) define the mid-point of the intervals
with membership equal to one. Note how the interval field asso-
ciated with the membership level approaching 0 (in green in
Fig. 4d) becomes narrower as the membership level being analyzed
approaches one (see interval fields in yellow). This discrete repre-
sentation of the fuzzy field allows one to perform seepage analysis
considering the uncertainty of the hydraulic conductivity.
3.4. Uncertainty propagation

The previous subsections discussed techniques to incorporate
hydraulic conductivity uncertainty into a finite element model for
performing a seepage analysis. After describing the uncertainty in
hydraulic conductivity, it is necessary to propagate this uncertainty
to the response by considering spatial dependencies. When the



Fig. 4. Procedures for constructing the fuzzy field.
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input parameters are characterized as fuzzy parameters, the
response depends on the analyzedmembership level, whichmeans
that the response of the system r is also a fuzzy variable br . Several
methods are available to perform fuzzy analysis, such as the
transformation method, developed by Hanss (2005) to propagate
the fuzzy uncertainty through a numerical model; and the a-level
optimization (M€oller et al., 2000). Following the latter methodol-
ogy, the membership function associated with the response of a
system mr̂ðrÞ is calculated according to the interpretation of a fuzzy
variable given in Section 3.3.1. For this purpose, the membership
function at each control point m

x̂j
ðxjÞ is analyzed for discrete

membership values al, with l ¼ 1; …; nc, where nc indicates the
number of discrete levels considered. That is, for a given mem-
bership level al, the response of interest r will be contained in an
interval rIa with lower ral

and upper ral bounds. In mathematical
terms, we have

ral
¼ min

xj

�
r
�
x1; x2;…; xnb

� 	
; xj2xIj;al

; j ¼ 1;…;nb; l ¼ 1;…;nc

(10)

ral ¼ max
xj

�
r
�
x1; x2;…; xnb

� 	
; xj2xIj;al

; j ¼ 1;…;nb; l ¼ 1;…;nc

(11)

where x1; x2;…; xnb
denotes the value of the uncertain property at

the j-th control point associated with the membership level al.
Thus, after the optimization procedure, the extreme values of the
response of interest (e.g. total flow, uplift force, and exit gradient)
are computed for the membership level under analysis. The a-level
optimization procedure is schematized in Fig. 5. Consider that hy-
draulic conductivity has been characterized at two positions in the
domain U by means of the membership functions m

x̂1
ðx1Þ and

m
x̂2
ðx2Þ as was discussed in Section 3.3.2. To estimate the
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membership function of the response r, two a-levels were
considered. For each of these levels, the intervals associated with
hydraulic conductivity at each location in U are retrieved. Then, for
both a1 and a2 levels, an interval analysis is performed to estimate
the bounds of the response by solving Eqs. (10) and (11). Note that
to find the response value for a membership level equal to 1, a
deterministic analysis must be performed, since for this member-
ship level there is no associated interval to the uncertain parame-
ters. The aforementioned is valid due to the assumption of using
triangular membership functions. As a result, a discrete represen-
tation of the membership function of the response mr̂ðrÞ can be
obtained for the two membership levels a1 and a2 under
consideration.

In this contribution, the response of interest r can correspond to
the seepage total flow, uplift force, or exit gradient. For example, if
the focus is on total flow as the response of interest, then solving
Eqs. (10) and (11) yields the interval estimates (for each member-
ship level) that provide insight into the degree of uncertainty given
the input uncertain hydraulic conductivity. Note that Eqs. (10) and
(11) are functions of xj ðj ¼ 1; …; nbÞ. Hence, once the hydraulic
conductivity is characterized by means of membership functions at
the control points, the uncertainty in the problem is reduced to that
present at these locations. Therefore, the aim is to propagate the
uncertainty present at the control points to the response of interest
r, for each membership level. The lower ral

and upper ral bounds of
the response from Eqs. (10) and (11), respectively, are determined
by optimization. In this work, to compute the membership levels
taken into account, the Particle Swarm optimization scheme
(Kennedy and Eberhart, 1995) is applied.

Once the uncertainty has been propagated, analysts can gain an
idea of the degree of variation in the seepage responses, as well as
feedback from the definition of the input parameters. Since
obtaining additional field measurements can be costly and time-
consuming, validating the membership functions used to
construct the fuzzy field by analyzing the response membership



Fig. 5. Graphical representation of the a-level optimization procedure, applied to two fuzzy variables bx1 and bx2 to obtain the response br .
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functions is a practical approach. For example, if the membership
functions describing the seepage responses show minimal varia-
tion, it raises the question of whether the definition of the input
parameters adequately accounts for the uncertainty. Thus, analysis
of themembership functions of the response can be a useful tool for
validation, indicating the adequacy of the fuzzy field representation
for capturing and propagating uncertainty in the system.
3.5. Summary of the proposed strategy

The strategy for performing fuzzy seepage analysis considering
that hydraulic conductivity is represented by a fuzzy field can be
summarized in the following steps, which are also illustrated in
Fig. 6:
Fig. 6. Flowchart of the seepage analysis with fuzzy fields.
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(1) Set the interval field according to available data, as explained
in Section 3.2.2.

(2) Set themembership functions at the control points, as shown
in Section 3.3.1.

(3) Define the finite element model. For each element, retrieve
its centroid.

(4) Define the number of membership levels to be considered for
discretely representing the fuzzy field.

(5) For each level, solve the optimization problems of Eq. (10)
(for the lower bound) and (11) (for the upper bound) to
obtain the response of interest r. The specific steps are:

(i) Map the uncertainty from the control points to the finite

element centroids using Eq. (9).
(ii) Solve the governing equation (Eq. (1)) numerically,

considering the uncertainty, i.e. evaluate Eq. (3) for the
values defined in step (i).

(iii) Post-process the result obtained from Eq. (3) to deter-
mine the bounds of the response of interest.
4. Analysis and results

4.1. Illustrative example

The analysis of steady-state confined seepage below an imper-
meable dam containing two cut-off walls is considered to illustrate
the proposed approach. The geometric definition of the system has
been defined for illustrative purposes and is shown in Fig. 7. The
numerical model was based on different studies in the literature
(Griffiths and Fenton, 1993; Hekmatzadeh et al., 2018; Valdebenito
et al., 2019). The dam is founded on a permeable soil layer of 20 m
depth, limited by an impermeable rock layer. The upstream side of
the dam retains awater columnwith a deterministic height of 10m.
Upstream flow occurs where the hydraulic head is 10 m and
downstream flow occurs where the hydraulic head is 0 m. From left
to right, the cut-off walls are 4 m and 10 m long (see Fig. 7). The
flow is assumed to be zero at the boundaries of the cut-off walls and
along the bottom, left, and right edges of the permeable soil layer.
The objective is to determine the flow that drains downstream of
the dam, the uplift force at the base of the dam, and the exit
gradient.

The horizontal kH and vertical kV hydraulic conductivities are
characterized as fuzzy fields. Four control points were considered
to emphasize the effectiveness of the approach when few mea-
surements are available. Note that in previous studies, a sample size



Fig. 7. Finite element mesh and control point locations. The contour lines represent the piezometric head h results for the hydraulic conductivity values associated with a
membership level mk̂ðkÞ ¼ 1.

Table 1
Interval data at control points for horizontal hydraulic conductivity kH. Vertical
hydraulic conductivity kV values are characterized considering the following rela-
tionship: 0:1kH � kV � kH.

Control point Position (m) kH (m/s)

Control point 1 x ¼ 40;y ¼ 15 ½2 � 10�6;5:6 � 10�5�
Control point 2 x ¼ 40;y ¼ 4:5 ½4 � 10�7;1:44 � 10�5�
Control point 3 x ¼ 80;y ¼ 9 ½2 � 10�6;8:2 � 10�5�
Control point 4 x ¼ 80;y ¼ 2 ½7 � 10�8;1:57 � 10�6�

N.A. Manque, K.-K. Phoon, Y. Liu et al. Journal of Rock Mechanics and Geotechnical Engineering 17 (2025) 1302e1320
of less than 7 for a geotechnical context is considered a strong in-
dicator for the use of intervals (Beer et al., 2013b). Therefore, a fuzzy
field approach, which allows one to consider the sensitivity of the
intervals defined at the control points, seems reasonable to incor-
porate the uncertainty in hydraulic conductivity into the seepage
analysis, indicating an awareness of the potential limitations of
using a small number of observations. Hence, it is assumed that
field measurements allow modeling the horizontal hydraulic con-
ductivity through fuzzy sets, as discussed in Section 3.3.2. The
membership function at each control point for horizontal hydraulic
conductivity is shown in Fig. 8. Note that these membership
functions were constructed with the vertex data (see Table 1),
where the values associated with a membership level of one were
considered the mid-point of the intervals. As discussed in Section
3.3.1, this data can be obtained from expert knowledge, existing
evidence in the literature, or by conducting field measurements. In
Fig. 8. Membership function of horizontal hydraulic conductivity at control points. The cont
; y ¼ 9 m; and (d) x ¼ 80 m ; y ¼ 2 m.
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this work, the values for horizontal hydraulic conductivity have
been defined according to field measurements of literature reports
(Elhakim, 2016) for illustrative purposes. On the other hand, ver-
tical hydraulic conductivity values are characterized considering
the following relationship: 0:1kH � kV � kH , which allows one to
account for the dependence between both horizontal and vertical
rol points are located at (a) x ¼ 40 m ; y ¼ 15 m; (b) x ¼ 40 m ; y ¼ 4:5 m; (c) x ¼ 80 m
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hydraulic conductivities, as well as to incorporate the physical
anisotropy of the conductivities. The preceding relation between
horizontal and vertical hydraulic conductivity is based on typical
values available in the literature. The lower bound is selected on the
basis that normally vertical hydraulic conductivity is about one-
tenth of the horizontal hydraulic conductivity (Fanchi, 2010). The
upper bound is defined considering that both hydraulic conduc-
tivities can become equal (Shedid, 2019).

It is noteworthy that since the problem is 2D and physically
anisotropic, it is not possible to visualize the resulting fuzzy field, as
shown in Fig. 3. The reason is that the resulting fuzzy field has two
dimensions related to each hydraulic conductivity (kH and kV),
another two dimensions related to each spatial dimension of the
domain, and the dimension corresponding to the degree of mem-
bership. However, Fig. 9 shows the membership functions defined
for each control point. It is observed that these figures are an
extension of themembership functions shown in Fig. 8, considering
both horizontal and vertical conductivities. These membership
functions correspond to irregular pyramids. The trapezoidal shape
of the base of the membership functions (i.e. when mk̂ðkÞ ¼ 0) is
due to (1) the considered relationship between the vertical kV and
horizontal kH hydraulic conductivities; and (2) the physical
anisotropy of the hydraulic conductivity. Note how, owing to the
logarithmic scale of the axes, the base of the pyramids looks like a
rhomboid. Note that the considered dependence between both
conductivities yields physically sound values for characterizing
hydraulic conductivity.
Fig. 9. Membership function of hydraulic conductivity at control points. The control points
and (d) x ¼ 80 m ; y ¼ 2 m.
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Note also that for a given membership level, it is possible to
visualize the horizontal and vertical hydraulic conductivity fields
separately. Fig. 10 shows three realizations of both hydraulic con-
ductivities from the base of the pyramids of Fig. 9 (i.e. when mk̂ðkÞ ¼
0). This figure shows the change in the resulting field due to vari-
ations in the hydraulic conductivity values at the control points.
The differences between the resulting field for horizontal and
vertical hydraulic conductivities are also observed due to the
anisotropy considered in the soil property. Note how certain re-
alizations result in fields with less spatial variation in the hydraulic
conductivity. As a result, the hydraulic conductivity of the soil layer
tends to be closer to the average of the values associated with the
control points. Conversely, some realizations show more pro-
nounced local effects of the conductivity values at the control
points, resulting in a field with more spatial variation. It is also
generally observed that vertical hydraulic conductivity values tend
to be lower than horizontal values.

A convergence study was performed to determine the layout of
the finite element mesh. For this purpose, it was verified that there
were no significant variations in the interval of response obtained
for a specific membership level. The finite element model selected
comprises 3821 nodes and 1822 quadratic triangular elements. A
total of 10 a-levels have been used to estimate the response
membership function, i.e. nc ¼ 10. The hydraulic conductivity
matrix of each element was calculated using numerical integration,
considering 3 integration points. It is important to highlight that
due to the characterization of the parameters described previously,
are located at (a) x ¼ 40 m ; y ¼ 15 m; (b) x ¼ 40 m ; y ¼ 4:5 m; (c) x ¼ 80 m ; y ¼ 9 m;



Fig. 10. Fuzzy field realizations for horizontal and vertical hydraulic conductivities for membership level approaching zero: Horizontal conductivity (left), and Vertical conductivity
(right).
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the flow rate, uplift force, and exit gradient are also uncertain.
When non-probabilistic methods are used, traditional statistical
measures such as mean, standard deviation, and coefficient of
variation cannot be used to describe the system's response. On the
contrary, when fuzzy approaches are used to characterize uncertain
parameters, the response is fuzzy as well and is obtained in the
form of membership functions. Therefore, the objective of this
study will be to determine the membership function that repre-
sents the uncertainty in the flow rate, uplift force, and exit gradient.
To estimate the membership levels considered for each response,
the particle swarm optimization scheme (Kennedy and Eberhart,
1995) was applied.
Fig. 11. Membership function associated with total flow response. Values normalized
by the total flow equal to 3:87� 10�5 m3/s per m for mr̂q ðrqÞ ¼ 1. The responses
associated with levels a ¼ 0:9 and a ¼ 0:2 are highlighted in yellow and green,
respectively.
4.2. Total flow

The total flow discharge of the dam is a key result of the seepage
analysis and is of utmost importance for design purposes. Accurate
estimation of the total flow discharge is essential for sizing drainage
systems, determining the potential for erosion or piping, and
evaluating the overall stability of the structure (Hekmatzadeh et al.,
2018). The seepage flow rate is calculated in terms of the unit width
of the dam, after determining the piezometric height (Valdebenito
et al., 2019). For this purpose, the summation of the flow over all
boundary nodes on the left side of the dam was computed to yield
the total flow (Degrauwe et al., 2010). The membership function
obtained for the total flow response is shown in Fig. 11. The values
in the figure correspond to the total flow rq normalized by the value
obtained for the deterministic analysis rq0 at mr̂q ðrqÞ ¼ 1. Therefore,
the flow response is denoted as rq=rq0 in Fig. 11. The total flow at the
membership level equal to 1 rq0 is 3:87� 10�5 m3/s per m. This
analysis represents a deterministic evaluation of the system, which
considered the values of the hydraulic conductivities at the control
points associated with a membership equal to one.

As explained earlier in this work, as hydraulic conductivity is
characterized by means of fuzzy fields, then the response in terms
of the total flow becomes fuzzy as well. Hence, the flow response
must be interpreted according to the membership level analyzed,
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which provides insights into the degree of uncertainty associated
with the flow response. For example, for the membership level of
0.9 highlighted in yellow in Fig. 11, the total flow is between 0.88
and 1.12 times the value for membership level 1. Whereas, for the
membership level 0.2, highlighted in green in Fig. 11, the total flow
can take any value between 0.17 and 1.99 times the deterministic
value. The observed variation between the limits of the two in-
tervals mentioned above is explained by the influence of hydraulic
conductivity. Since kH and kV are considered uncertain, this un-
certainty propagates to the flow response, leading to different cases
to analyze. With this information, users can have feedback on the
effect of the selected characterization of the uncertain parameters,
improving the understanding and trustworthiness of the analysis.
Hence, the resulting membership function should be regarded as a
means of analyzing the sensitivity of the bounds of the response.
Furthermore, analyzing the shape of the membership function
obtained for the total flow provides additional valuable informa-
tion. From the shape of the membership function in Fig. 11, a nearly
linear relationship between the membership level under analysis
and the flow response was obtained.
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4.3. Uplift force

The seeping water causes a hydraulic gradient between the
upstream and downstream sides of the dam. This hydraulic
gradient induces a vertical upward pressure. This upward pressure
is known as the uplift force (Terzaghi and Peck, 1967). Uplift pres-
sures can lead to instability and potential failure if not properly
addressed (Mansuri et al., 2014). Thus, uplift is an active force that
should be incorporated into the stability analysis (Norouzi et al.,
2020). In this work, the uplift force at the base of the dam was
calculated by integrating the piezometric head distribution at the
base of the dam. This process was carried out by means of the
trapezoidal numerical integration scheme.

The membership function obtained for the uplift force response
is shown in Fig. 12. The figure shows the values of the uplift force ru
normalized by the value associated with a membership level equal
to 1 ru0. The uplift force for a membership level equal to 1 is
273.14 t/m, which corresponds to a deterministic analysis. A linear
relationship between the membership level under analysis and the
uplift force is noted by the shape of the membership function of
Fig. 12. For practical purposes, the maximum possible value of the
uplift force should be considered for the stability analysis (Mansuri
et al., 2014; Hekmatzadeh et al., 2018). The reason behind this is
that high uplift force reduces the effective normal stress and, as a
result, decreases the frictional resistance, causing the structure to
be more susceptible to sliding failure (Terzaghi and Peck, 1967). For
the particular case in Fig. 12, the variation of the maximum uplift
forcewith respect to that associatedwith amembership level 1 was
close to 1.7 times.

The optimization of the a-level reveals the presence of two
distinct uplift force responses, representing the best scenario
(minimum ru) and the worst scenario (maximum ru) across the ten
a-levels considered to estimate the fuzzy response. These re-
sponses correspond to the extreme cases where the uncertainty in
hydraulic conductivities has the greatest impact on the uplift force.
By exploring these two distinct responses, the analysis captures the
range of possible values of uplift force and provides valuable in-
sights into its potential variability under different scenarios. For
example, if the membership level 0.3 is studied (see yellow interval
in Fig. 12), the uplift force is between 0.47 and 1.52 times the
deterministic value. Whereas, for the membership level
approaching 0 (see green interval in Fig. 12), the uplift force can
take any value between 0.24 and 1.74 times the deterministic value.
This variation, between the boundaries of the two intervals, was
less than the one observed with the flow response. Such behavior is
explained because the uplift response is strongly influenced by the
value of the water height retained upstream of the dam, which was
considered deterministic.
Fig. 12. Membership function associated with uplift force response. Values normalized
by the uplift force equal to 273.14 t/m for mr̂u ðruÞ ¼ 1. The responses associated with
levels a ¼ 0.3 and a ¼ 0 are highlighted in yellow and green, respectively.
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The application of a fuzzy approach in this study also enables
one to understand the behavior of the seepage flow for the critical
cases identified in the uplift force analysis. Fig. 13 shows the vari-
ation of the piezometric heights of levels 1, 3, 6, and 9 m obtained
for the solution associated with a membership level equal to one
(Case A in the figure), with respect to the solution considering the
hydraulic conductivities associated with the lower bound (Case B)
and upper bound (Case C) of the uplift force response at an a-level
approaching 0. For Case B, the contour lines appear shifted to the
left with respect to the nominal solution for mk̂ðkÞ. The minimum
uplift force response was associated with smaller hydraulic con-
ductivities at the control points on the left compared to the right
(see Fig. 14). This leads to slower flow and, therefore, lower pres-
sures at the base of the dam. In contrast, for Case C, the curves shift
considerably to the right compared to the nominal solution for
mk̂ðkÞ ¼ 1 (see Fig. 14), resulting in increased pressures below the
dam. These results are attributed to higher values of hydraulic
conductivities on the control points to the left compared to the
right, leading to faster water flow. The examination of such cases
provides a more comprehensive view of the behavior of the
seepage flow. For instance, this analysis permits to detect drainage
or water retention problems (Hager et al., 2020).
4.4. Exit gradient

The exit gradient corresponds to the rate of change of the
piezometric head at the exit point closest to the dam at the
downstream end (Griffiths and Fenton, 1993). For exit gradient
recovery, the first derivative of the piezometric head at super-
convergent points (Zienkiewicz, 2000) was calculated. In this
work, these points corresponded to the Gauss points of the reduced
integration scheme (Previati et al., 2019; Ding et al., 2021). The exit
gradient obtained after the seepage analysis is usually compared to
the critical gradient ic. Revising the exit gradient is of utmost
importance since a value higher than the critical gradient would
initiate piping (Griffiths and Fenton, 1998; Liu et al., 2017b). This
phenomenon refers to the movement of soil particles carried away
by the percolating water, creating underground pathways or tun-
nels (Mansuri et al., 2014). It is usually accepted that the critical
hydraulic gradient is approximately equal to 1 for vertical flow
conditions in deterministic analyses (Terzaghi and Peck, 1967),
however, some evidence shows that ic can range from 0.88 to 1.27
(Meyer et al., 1994).

The membership function obtained for the exit gradient
response is shown in Fig. 15. The figure shows the values of the exit
gradient ri normalized by the value associated with a membership
level equal to 1 ri0. Due to the shape of the membership function, a
nonlinear relationship between hydraulic conductivity and the exit
gradient was observed. The exit gradient for mr̂i ðriÞ ¼ 1 corresponds
to 0.14, which is less than the value of the critical gradient ic ¼ 1. In
comparison with the total flow and uplift force analyzed, a bit
wider variation with respect to the value associated with a mem-
bership level equal to 1 was obtained for the exit gradient. Hence,
this response exhibited a larger sensitivity with respect to the
membership level under analysis. This higher sensitivity was ob-
tained at the right end of the exit gradient membership function.
This phenomenon is strongly significant since this portion of the
membership function exhibits the maximum values of the exit
gradient that may indicate the possibility of piping. Furthermore,
users can analyze the evolution of the safety factor against piping
according to the membership level.

As previously shown for the results in terms of total flow and
uplift force, the response associated with the exit gradient must be
interpreted as a result of the membership level analyzed. For



Fig. 13. Piezometric head h results for: Case A, mk̂ðkÞ ¼ 1; Case B, piezometric head h for hydraulic conductivities found for lower bound level approaching 0 uplift force; Case C,
piezometric head h for hydraulic conductivities found for upper bound level approaching 0 uplift force.

Fig. 14. Horizontal (left) and vertical (right) hydraulic conductivities for uplift force results. Case A, hydraulic conductivity fields for uplift force results at m
k̂ðkÞ ¼ 1; Case B,

hydraulic conductivity fields for uplift force results at lower bound level approaching 0; Case C, hydraulic conductivity fields for uplift force results at upper bound level approaching
0.

Fig. 15. Membership function associated with exit gradient response. Values
normalized by the exit gradient equal to 0.14 for mr̂i ðriÞ ¼ 1. The responses associated
with levels a ¼ 0:6 and a ¼ 0 are highlighted in yellow and green, respectively.
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example, if the membership level of 0.6 is considered (see yellow
interval in Fig. 15), the exit gradient can take any value between
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0.60 and 1.42 times the exit gradient at mr̂i ðriÞ ¼ 1, which corre-
sponds to the deterministic analysis. The maximum value associ-
ated with a membership level approaching 0 (see green interval in
Fig. 15) is about 2.33 times more than the value obtained by the
deterministic analysis, which agreeswith the reported values in the
literature (Griffiths and Fenton, 1993, 1998).

Similar to the analysis conducted for the variation of the seepage
flow for the extreme cases of the uplift force response, the same
procedure was applied while considering the results of the exit
gradient for the membership level approaching 0. Fig. 16 shows the
variation of the levels of piezometric heights 1, 3, 6, and 9 m with
respect to the nominal solution for mk̂ðkÞ ¼ 1. For Case B, the levels
1, 3, and 6 were displaced to the left with respect to the nominal
solution for mk̂ðkÞ ¼ 1, with behavior similar to that observed for
the uplift force response. Nevertheless, the 9-m contour curve
exhibited a smaller shift (with respect to the nominal solution)
compared to that obtained for the uplift force response. On the
other hand, for Case C the curves for 1, 3, and 6 m are slightly



Fig. 16. Piezometric head h results for: Case A, mk̂ðkÞ ¼ 1. Case B, piezometric head h for hydraulic conductivities found for lower bound level approaching 0 of exit gradient; Case C,
piezometric head h for hydraulic conductivities found for upper bound level approaching 0 of exit gradient.

Fig. 18. Membership function associated with uplift force response for p ¼ 1;1:5 and 2.
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displaced to the right compared to the nominal solution for mk̂ðkÞ ¼
1, while the 9-m contour curve shifted to the right. Moreover, for
Case C, the piezometric head values in the vicinity of the dam exit
were higher than in the case analyzedwith the uplift force response
for the membership level approaching 0. The aforementioned
scenario is of utmost importance since a high piezometric head at
the exit of the dam necessitates proper monitoring to ensure the
safe and efficient operation of the dam (Hager et al., 2020).

4.5. Sensitivity analysis

A sensitivity analysis was carried out to study the influence of
parameter p of the basis functions on the membership functions of
the responses. This parameter affects how the interpolation of the
intervals works based on the distance to the control points. Values
of p ¼ 1; 1:5, and 2 have been studied. These values of p were
defined according to those reported in the literature (De Mulder
et al., 2012).

The membership functions obtained for the flow response, for
the different cases analyzed, are shown in Fig. 17. The flow response
exhibited minimal sensitivity to the variation of the parameter p.
The low variation of this response for the different values of p tested
can be explained because very similar ranges of hydraulic con-
ductivities were obtained over the domain. Even though a lower
value of p increases the local influence of the interval defined at
control points, as the flow quantity represents an integrated,
overall behavior of the system, local fluctuations in uncertainty do
not affect the fuzzy response. Furthermore, for the deterministic
case, i.e. for mr̂q ðrqÞ ¼ 1, no significant differences were observed for
the different values of p analyzed.

The membership functions calculated for the uplift force
response for p ¼ 1;1:5; and 2, are shown in Fig. 18. The uplift force
response shows a high sensitivity to the value of p at the left-end,
Fig. 17. Membership function associated with seepage flow response for p ¼ 1;1:5 and
2.
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which increases closer to mr̂u ðruÞ ¼ 0. This is because this quan-
tity is influenced by the local effects of the control points near the
base of the dam. The case of p ¼ 2 corresponds to the worst-case
scenario for the right-hand side of the membership function.
Nevertheless, for the response shown in Fig. 18, the intervals ob-
tained for the different a-cuts for the values of p ¼ 1 and 1.5, are
contained in the intervals determined for p ¼ 2, which is a product
of local effects. Precisely, a smaller value of p yields a localisation of
the uncertainty in a more compact sub-domain of the physical
domain. Regarding the deterministic scenario, i.e. for mr̂u ðruÞ ¼ 1,
quite small differences were observed for the different values of p
analyzed.

Sensitivity analysis results of the exit gradient with respect to
the values of the parameter p are shown in Fig. 19. The exit gradient
response shows similar behavior to the uplift force. The member-
ship functions obtained showa high sensitivity at the left endwhen
comparing the results for p ¼ 1; 1:5, and 2. Therefore, local
Fig. 19. Membership function associated with exit gradient response for p ¼ 1; 1:5 and
2.
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influences on the intervals near the control points, adjacent to the
dam exit, are controlling the exit gradient fuzzy response. More-
over, the effect of the parameter p yielded a larger difference on the
left side of the membership functions, where this difference
became larger as the membership levels closer to 0 were analyzed.
The largest values for the right end, which are relevant for design
purposes, were obtained for a value of p ¼ 2. Concerning the
deterministic analysis, i.e. for mr̂i ðriÞ ¼ 1, small differences were
observed for the different values of p.
4.5.1. Random or fuzzy fields?
The decision to propose fuzzy fields as an alternative tool for

dealing with uncertainty in soil hydraulic conductivity in seepage
analysis, compared to traditional stochastic approaches such as
random fields, was driven by several factors in this study. These
factors can be summarized as the amount of data typically available
for seepage analysis, the number of assumptions to be made, and
the intended purpose of the analysis. Within the same system
under analysis, if the user has sufficient information to select an
appropriate probability density function, autocorrelation function,
and corresponding length parameter, then a random field can be
used to accurately describe the uncertainty. As a result, the random
field characterization will provide a comprehensive probabilistic
representation of the response of interest, which can be used for
reliability analysis (Liu et al., 2017a; Sharma et al., 2021). However,
if only a fewmeasurements are available and only the bounds of the
uncertain parameters can be defined, then an interval or fuzzy field
representation allows one to account for those measurements to
describe the uncertainty and, moreover, to study the sensitivity of
those bounds (Chen et al., 2020). Here, the only assumption other
than the bounds on the uncertain parameters (at the positions
where the data were measured) is the power p of the basis func-
tions, which, as shown in the previous section, does not have a large
impact on the critical values of the analyzed responses. The result of
a characterization by means of fuzzy fields will then lead to
extreme values of the response for different membership levels,
which can be interpreted in terms of interval estimates with their
Table 2
Systematic comparison of random fields and fuzzy fields.

Aspect Random fields

Amount of data Requires significant amounts of informative data to accurately captu
uncertain property (Sharma et al., 2021)

Spatial properties Usually assumes stationarity and statistical properties remain cons
area (Cho, 2012). Non- stationary requires space-dependent correl
et al., 2017a)

Purpose of the
study

From any statistical property (Griffiths and Fenton, 1997; Srivastava
probability of failure (Valdebenito et al., 2019) and sensitivity anal

Type of
information
obtained

Full probabilistic descriptions of the response of interest (Santoso e

Model parameters
and
assumptions

Distribution types and families of (auto)correlation functions (Sriva

Uncertainty
propagation
approaches

Monte Carlo simulation, perturbation methods, spectral methods, a
methods (Stefanou, 2009), as well as geostatistical methods (Phoon
commonly used to propagate uncertainty

Interpretability of
results

Full probabilistic description of subjective knowledge, reliability an
failure of the system (Vanmarcke, 1983)
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sensitivity, providing insight into the degree of uncertainty. More
recently, hybrid approaches have been developed. For example,
distribution-free P-boxes provide a robust and consistent way to
characterize uncertainty when data are sparse but random in na-
ture (Faes et al., 2022). Another example is Gaussian random fields
using the Karhunen-Lo�eve (K-L) expansion with imprecise covari-
ance kernels. This imprecise random fields have also been devel-
oped to deal with limited data or the analyst's technical judgment
in defining covariance kernels (Faes and Moens, 2019b).

Therefore, the choice of one approach or the otherwill depend on
both the available data resources and the objective of the study.
Given limited information, users should ask themselves which
approach will provide the most meaningful results. The main factors
that the authors consider relevant to make this decision are sum-
marized in the comparison Table 2, based on the previous discus-
sion. In geotechnical studies, this is amatter of considerable concern.
First, the nature of uncertainty in soil properties lies in spatial
variability and lack of knowledge, as opposed to, for example,
manufacturing processes where there is a high random component.
Thus, if the purpose is to quantify the uncertainty associated with
the response of interest, the choice of an interval-based approach
could provide results that are more consistent with the information
measured in the field. On the other hand, if the purpose of the study
is to update previous knowledge and sufficient information is
available, then a Bayesian approach may be more appropriate for
decision making. However, if the information is limited, an interval
approach for inverse uncertainty quantification will provide a more
objective uncertainty analysis at the cost of providing only worst-
case information to the users (Faes et al., 2019). Second, it is
important to note that one of themain features of the interval-based
approach is its emphasis on extreme events for critical engineering
decisions. This feature makes this method more suitable in cases
where complete knowledge of the response of interest is not desired,
but rather information is needed for an early stage of design. For
detailed numerical comparisons between random field approaches
and interval-basedmethods, readers are referred to thework of Beer
et al. (2013b) and Chen et al. (2020).
Fuzzy fields

re the nature of the Requires less data to objectively describe the nature of the
uncertain property (Chen et al., 2020), can handle vagueness
and scarcity of data (Verhaeghe et al., 2013; Schietzold et al.,
2019)

tant over the study
ation functions (Liu

Does not assume stationarity, can handle spatial
dependencies (Faes andMoens, 2017) due to the construction
of the basis functions (Faes and Moens, 2020)

et al., 2010), to the
ysis (Sudret, 2008)

Often limited to study worst-case scenarios (Degrauwe et al.,
2010) by computing the extreme values of the response (Feng
et al., 2022), and sensitivity analysis of the bounds of the
uncertain parameters (Beer et al., 2013b)

t al., 2010, 2011) Spatial distribution of the bounds on the epistemic
uncertainty including their spatial dependence (Faes and
Moens, 2019a), as well as a measure of the sensitivity
concerning input uncertainty (Beer et al., 2013b)

stava et al., 2010) Bounds of the uncertainty property at the control points (Faes
and Moens, 2017). Power p to construct the basis functions
(van Mierlo et al., 2021)

nd sampling
et al., 2004) are

Fuzzy analysis (M€oller and Beer, 2004), interval arithmetic
(Moore, 1966), parallel Bayesian global optimization (Dang
et al., 2020), and interval analysis (Faes andMoens, 2019a) are
often used to propagate uncertainty

d probability of Results can be interpreted in terms of interval estimates with
their sensitivity, providing insight into the degree of
uncertainty (Moens and Vandepitte, 2005; Verhaeghe et al.,
2013). Helps to identify which parameters need further
measurement to reduce uncertainty (Beer et al., 2013b)
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5. Conclusions

This paper presents a methodology to estimate the responses of
a confined saturated seepage problem using fuzzy fields to capture
the spatial uncertainty in hydraulic conductivity. The approach is
formulated to propagate the uncertain hydraulic conductivity
through the a-level optimization scheme. In particular, the subse-
quent challenges are addressed: (1) to include spatial dependencies
in the horizontal and vertical hydraulic conductivity, and (2) to
propose an approach for seepage analysis that allows scarce field
measurements to be incorporated.

The results in terms of flow rate, uplift force, and exit gradient
exhibit that fuzzy fields are useful for spatial uncertainty quantifi-
cation under limited data. Fuzzy fields simplify the characterization
of uncertain input parameters, requiring only the boundaries of
each variable and (subjectively defined) membership functions.
This flexibility allows users to define the location and number of
control points based on available data, allowing spatial de-
pendencies to be incorporated into the analysis. Despite the limited
number of observations considered available for the illustrative
example, it was found that it is possible to construct the fuzzy field
and gain an understanding of the degree of uncertainty of the
seepage responses of total flow, uplift force, and exit gradient. As a
result, even when limited uncertain information is available, it can
be considered for seepage analysis. Therefore, fuzzy fields offer an
attractive alternative to classical probabilistic seepage analysis.
Furthermore, fuzzy field analysis must be understood as a way to
perform sensitivity analysis. The response concerning the exit
gradient showed the highest variation with respect to the deter-
ministic analysis, being the most sensitive response to the vari-
ability present in hydraulic conductivity. Conversely, the uplift
force was the least variant with respect to the uncertainty consid-
ered in hydraulic conductivity. The reason for that behavior was its
strong dependence on the upstream head, which was considered
deterministic.

Regarding the sensitivity analysis, the most extreme values of
the responses analyzed were obtained with a value of p ¼ 2. The
aforementioned behavior is relevant for design proposes and sta-
bility studies. Moreover, particular attention regarding the selec-
tion of the parameter p should be made to avoid the effect of local
influences. However, despite variations in the analyzed responses
with respect to the value of p considered, the differences among
them were not significant for the critical values (right tail of the
membership functions). This implies that the selection of the value
of p has a minor influence on the extreme responses, with this
being the only parameter to be selected for the construction of the
fuzzy field. This is an advantage over probabilistic approaches
which often require the assumption of marginal distributions and
correlation functions of the input data. Therefore, the fuzzy field
methodology presented in this study provides an approach that
requires few assumptions to deal with seepage analysis.

Nevertheless, the exhibited results should be regarded as an
initial approximation of fuzzy field analysis for seepage problems.
First, the sensitivity analysis performed in this study must be
treated as a preliminary approach to understanding the spatial
dependence structure of soil hydraulic conductivity. Forthcoming
studies steps will explore challenges such as improved strategies to
propagate uncertainty when fuzzy fields are involved, and the
gradient of the basis functions and its relation to the finite element
mesh to avoid convergence studies. Another focus of future studies
will be the inclusion of machine learning techniques to define the
dependency structure of the data at control points and implement
fuzzy fields based on real data for more complex systems and other
types of analyses. For example, to extend the fuzzy field framework
to unsaturated seepage analysis, considering soil-water
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characteristic curves to incorporate uncertainty in hydraulic con-
ductivity, and employing efficient strategies to overcome the
associated numerical cost.

CRediT authorship contribution statement

Nataly A. Manque: Writing e original draft, Methodology,
Investigation, Formal analysis. Kok-Kwang Phoon: Writing e re-
view & editing, Validation, Methodology. Yong Liu: Writing e re-
view & editing, Validation, Methodology. Marcos A. Valdebenito:
Writing e review & editing, Validation, Supervision, Methodology,
Conceptualization.Matthias G.R. Faes:Writing e review & editing,
Validation, Supervision, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

Abd-Elaty, I., Zelenakova, M., Straface, S., Vranayov�a, Z., Abu-hashim, M., 2019. In-
tegrated modelling for groundwater contamination from polluted streams us-
ing new protection process techniques. Water 11, 2321.

Ahmed, A.A., 2009. Stochastic analysis of free surface flow through earth dams.
Comput. Geotech. 36, 1186e1190.

Ahmed, S., Jayakumar, R., Salih, A., 2008. Groundwater Dynamics in Hard Rock
Aquifers Sustainable Management and Optimal Monitoring Network Design.
Springer.

Alrdadi, R., Meylan, M.H., 2022. Modelling water flow through railway ballast with
random permeability and a free boundary. Appl. Math. Model. 103, 36e50.

Arshad, M., Nazir, M.S., O'Kelly, B.C., 2020. Evolution of hydraulic conductivity
models for sandy soils. Proc. Inst. Civil Eng.-Geotech. Eng. 173, 97e114.

Baroni, G., Zink, M., Kumar, R., Samaniego, L., Attinger, S., 2017. Effects of uncertainty
in soil properties on simulated hydrological states and fluxes at different spatio-
temporal scales. Hydrol. Earth Syst. Sci. 21, 2301e2320.

Beer, M., Ferson, S., Kreinovich, V., 2013a. Imprecise probabilities in engineering
analyses. Mech. Syst. Signal Process. 37, 4e29.

Beer, M., Zhang, Y., Quek, S.T., Phoon, K.K., 2013b. Reliability analysis with scarce
information: comparing alternative approaches in a geotechnical engineering
context. Struct. Saf. 41, 1e10.

Bianchi, D., Gallipoli, D., Bovolenta, R., Leoni, M., 2022. Analysis of unsaturated
seepage in infinite slopes by means of horizontal ground infiltration models.
Geotechnique 74 (8), 820e828.

Cai, J.S., Yeh, T.C.J., Yan, E.C., Hao, Y.H., Huang, S.Y., Wen, J.C., 2017. Uncertainty of
rainfall- induced landslides considering spatial variability of parameters.
Comput. Geotech. 87, 149e162.

Cho, S.E., 2012. Probabilistic analysis of seepage that considers the spatial variability
of permeability for an embankment on soil foundation. Eng. Geol. 133e134,
30e39.

Chen, Z.-Y., Imholz, M., Li, L., Faes, M., Moens, D., 2020. Transient landing dynamics
analysis for a lunar lander with random and interval fields. Appl. Math. Model.
88, 827e851.

Dane, J.H., Topp, G.C. (Eds.), 2002. Methods of Soil Analysis. Soil Sci. Soc. Am.
Dang, C., Wei, P., Faes, M.G.R., Valdebenito, M.A., Beer, M., 2020. Interval uncertainty

propagation by a parallel Bayesian global optimization method. Appl. Math.
Model. 108, 220e235.

De Mulder, W., Moens, D., Vandepitte, D., 2012. Modeling uncertainty in the context
of finite element models with distance-based interpolation. In: Uncertainties
2012, Sao Paulo, Brazil.

Degrauwe, D., Lombaert, G., Roeck, G.D., 2010. Improving interval analysis in finite
element calculations by means of affine arithmetic. Comput. Struct. 88,
247e254.

Deng, Y.F., Tang, A.M., Cui, Y.J., Li, X.L., 2011. Study on the hydraulic conductivity of
Boom clay. Can. Geotech. J. 48, 1461e1470.

Der Kiureghian, A., Ke, J.B., 1988. The stochastic finite element method in structural
reliability. Probabilist. Eng. Mech. 3, 83e91.

Ding, S., Shao, G., Huang, Y., Shi, H., 2021. The superconvergence gradient recovery
method for linear finite element method with polygons. Int. J. Numer. Methods
Eng. 122, 4154e4171.

Elhakim, A.F., 2016. Estimation of soil permeability. Alex. Eng. J. 55, 2631e2638.
Eslami, A., Molaabasi, H., Eslami, M.M., Moshfeghi, S., 2019. Piezocone Penetration

Test Application in Foundation Engineering - CPT and CPTu. Elsevier Sci.
Technol.

Faes, M., Broggi, M., Patelli, E., Govers, Y., Mottershead, J., Beer, M., Moens, D., 2019.
A Multivariate Interval Approach for Inverse Uncertainty Quantification with
Limited Experimental Data, vol. 118. Mech. Syst. Signal Proc., pp. 534e548

http://refhub.elsevier.com/S1674-7755(24)00458-X/sref1
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref1
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref1
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref1
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref2
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref2
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref2
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref3
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref3
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref3
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref4
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref4
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref4
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref5
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref5
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref5
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref6
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref6
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref6
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref6
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref7
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref7
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref7
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref8
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref8
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref8
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref8
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref9
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref9
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref9
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref9
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref10
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref10
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref10
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref10
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref11
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref11
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref11
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref11
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref11
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref12
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref12
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref12
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref12
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref13
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref14
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref14
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref14
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref14
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref15
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref15
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref15
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref16
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref16
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref16
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref16
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref17
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref17
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref17
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref18
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref18
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref18
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref19
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref19
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref19
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref19
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref20
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref20
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref21
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref21
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref21
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref22
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref22
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref22
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref22


N.A. Manque, K.-K. Phoon, Y. Liu et al. Journal of Rock Mechanics and Geotechnical Engineering 17 (2025) 1302e1320
Faes, M., Moens, D., 2017. Identification and quantification of spatial interval un-
certainty in numerical models. Comput. Struct. 192, 16e33.

Faes, M., Moens, D., 2019a. Imprecise random field analysis with parametrized
kernel functions. Mech. Syst. Signal Process. 134, 106334.

Faes, M., Moens, D., 2019b. Recent trends in the modeling and quantification of non-
probabilistic uncertainty. Arch. Comput. Methods Eng. 27, 633e671.

Faes, M., Moens, D., 2020. On auto- and cross-interdependence in interval field
finite element analysis. Int. J. Numer. Methods Eng. 121, 2033e2050.

Faes, M.G., Broggi, M., Chen, G., Phoon, K.K., Beer, M., 2022. Distribution-free p-box
processes based on translation theory: definition and simulation. Probabilist.
Eng. Mech. 69, 103287.

Fanchi, J.R., 2010. 4 - porosity and permeability. In: Fanchi, J.R. (Ed.), Integrated
Reservoir Asset Management. Gulf Prof. Publ., Boston, pp. 49e69.

Feng, C., Faes, M., Broggi, M., Dang, C., Yang, J., Zheng, Z., Beer, M., 2022. Application
of interval field method to the stability analysis of slopes in presence of un-
certainties. Comput. Geotech., 105060

Feng, S., Vardanega, P.J., 2019. A database of saturated hydraulic conductivity of
fine-grained soils: probability density functions. Georisk 13, 255e261.

Gong, W., Zhao, C., Juang, C.H., Tang, H., Wang, H., Hu, X., 2020. Stratigraphic un-
certainty modelling with random field approach. Comput. Geotech. 125, 103681.

G€otz, M., Graf, W., Kaliske, M., 2019. Enhanced uncertain structural analysis with
time- and spatial-dependent (functional) fuzzy results. Mech. Syst. Signal
Process. 119, 23e38.

Griffiths, D.V., Fenton, G.A., 1993. Seepage beneath water retaining structures
founded on spatially random soil. Geotechnique 43, 577e587.

Griffiths, D.V., Fenton, G.A., 1997. Three-dimensional seepage through spatially
random soil. J. Geotech. Geoenviron. Eng. 123, 153e160.

Griffiths, D.V., Fenton, G.A., 1998. Probabilistic analysis of exit gradients due to
steady seepage. J. Geotech. Geoenviron. Eng. 124, 789e797.

Gu, X., Wang, L., Ou, Q., Zhang, W., 2023. Efficient stochastic analysis of unsaturated
slopes subjected to various rainfall intensities and patterns. Geosci. Front. 14,
101490.

Guan, Z., Wang, Y., 2022. CPT-based probabilistic liquefaction assessment consid-
ering soil spatial variability, interpolation uncertainty and model uncertainty.
Comput. Geotech. 141, 104504.

Hager, W.H., Schleiss, A.J., Boes, R.M., Pfister, M., 2020. Hydraulic Engineering of
Dams. CRC Press.

Hanss, M., 2005. Applied Fuzzy Arithmetic. Springer, Berlin Heidelberg.
He, L.P., Huang, H.Z., Du, L., Zhang, X.D., Miao, Q., 2007. A review of possibilistic

approaches to reliability analysis and optimization in engineering design. In:
Human-Computer Interaction. HCI Applications and Services. Springer, Berlin
Heidelberg, pp. 1075e1084.

Hekmatzadeh, A.A., Zarei, F., Johari, A., Haghighi, A.T., 2018. Reliability analysis of
stability against piping and sliding in diversion dams, considering four cutoff
wall configurations. Comput. Geotech. 98, 217e231.

Hesse, F., Müller, S., Attinger, S., 2024. Data-driven estimates for the geostatistical
characterization of subsurface hydraulic properties. Hydrol. Earth Syst. Sci. 28,
357e374.

Huang, M., Jia, C.Q., 2009. Strength reduction FEM in stability analysis of soil slopes
subjected to transient unsaturated seepage. Comput. Geotech. 36, 93e101.

Imholz, M., Faes, M., Vandepitte, D., Moens, D., 2020. Robust uncertainty quantifi-
cation in structural dynamics under scarce experimental modal data: a
Bayesian-interval approach. J. Sound Vib. 467, 114983.

Jiang, S.H., Huang, J., Griffiths, D., Deng, Z.P., 2022. Advances in reliability and risk
analyses of slopes in spatially variable soils: a state-of-the-art review. Comput.
Geotech. 141, 104498.

Jie, Y.X., Fu, X.D., Deng, G., 2013. Treatment of transitional element with the Monte
Carlo method for FEM-based seepage analysis. Comput. Geotech. 52, 1e6.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of
ICNN’95- International Conference on Neural Networks. IEEE, Perth, WA,
Australia, pp. 1942e1948.

Le, T.M.H., Gallipoli, D., Sanchez, M., Wheeler, S.J., 2011. Stochastic analysis of un-
saturated seepage through randomly heterogeneous earth embankments. Int. J.
Numer. Anal. Methods GeoMech. 36, 1056e1076.

Li, G., Shen, Z., Yang, C., 2020. A simplified calculation method of seepage flux for
slope-wall rock-fill dams with a horizontal blanket. Appl. Sci. 10, 3848.

Lin, H., 2010. Earth's critical zone and hydropedology: concepts, characteristics, and
advances. Hydrol. Earth Syst. Sci. 14, 25e45.

Liu, K., Vardon, P.J., Hicks, M.A., 2017b. Probabilistic analysis of seepage for internal
stability of earth embankments. Environ. Geotech. 6, 294e306.

Liu, L.L., Cheng, Y.M., Jiang, S.H., Zhang, S.H., Wang, X.M., Wu, Z.H., 2017a. Effects of
spatial autocorrelation structure of permeability on seepage through an
embankment on a soil foundation. Comput. Geotech. 87, 62e75.

Lu, Z., Zhang, D., 2007. Stochastic simulations for flow in nonstationary randomly
heterogeneous porous media using a KL-based moment-equation approach.
Multiscale Model. Simul. 6, 228e245.

Mansuri, B., Salmasi, F., Oghati, B., 2014. Effect of location and angle of cutoff wall on
uplift pressure in diversion dam. Geotech. Geol. Eng. 32, 1165e1173.

Meyer, W., Schuster, R.L., Sabol, M.A., 1994. Potential for seepage erosion of land-
slide dam. J. Geotech. Eng. 120, 1211e1229.

Moens, D., Vandepitte, D., 2005. A survey of non-probabilistic uncertainty treat-
ment in finite element analysis. Comput. Methods Appl. Mech. Eng. 194,
1319
1527e1555.
Moens, D., Vandepitte, D., 2007. Interval sensitivity theory and its application to

frequency response envelope analysis of uncertain structures. Comput.
Methods Appl. Mech. Eng. 196, 2486e2496.

M€oller, B., Beer, M., 2004. Fuzzy Randomness. Springer, Berlin Heidelberg.
M€oller, B., Graf, W., Beer, M., 2000. Fuzzy structural analysis using a-level optimi-

zation. Comput. Mech. 26, 547e565.
Montoya-Noguera, S., Zhao, T., Hu, Y., Wang, Y., Phoon, K.K., 2019. Simulation of

non- stationary non-Gaussian random fields from sparse measurements using
Bayesian compressive sampling and Karhunen-Lo�eve expansion. Struct. Saf. 79,
66e79.

Moore, R.T., 1966. Interval Analysis. Prentice Hall, Englewood Cliffs.
Norouzi, R., Salmasi, F., Arvanaghi, H., 2020. Uplift pressure and hydraulic gradient

in Sabalan Dam. Appl. Water Sci. 10.
Phoon, K.K., 2019. Editorial: flow and transport in porous media in the face of

uncertainty, part i. Environ. Geotech. 6, 186e187.
Phoon, K.K., Kulhawy, F.H., 1999. Characterization of geotechnical variability. Can.

Geotech. J. 36, 612e624.
Phoon, K.K., Quek, S.T., An, P., 2004. Geostatistical analysis of cone penetration test

(CPT) sounding using the modified Bartlett test. Can. Geotech. J. 41, 356e365.
Phoon, K.K., Santoso, A., Quek, S.T., 2010. Probabilistic analysis of soil-water char-

acteristic curves. J. Geotech. Geoenviron. Eng. 136, 445e455.
Prakash, A., Hazra, B., S, S., 2021. Probabilistic analysis of soil-water characteristic

curve using limited data. Appl. Math. Model. 89, 752e770.
Previati, G., Gobbi, M., Ballo, F., 2019. A study on the stress gradient reconstruction

in finite elements problems with application of radial basis function networks.
Meccanica 54, 47e70.

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Phys.
1, 318e333.

Santoso, A., Phoon, K.K., Quek, S.T., 2010. Flow of water through spatially hetero-
geneous soil. In: Li, J.C.C., Lin, M.-L. (Eds.), Seventeenth Southeast Asian
Geotechnical Conference: Geo-Engineering for Natural Hazard Mitigation and
Sustainable Development. Taiwan Geotechnical Society, Taiwan, pp. 249e253.

Santoso, A.M., Phoon, K.K., Quek, S.T., 2011. Effects of soil spatial variability on
rainfall-induced landslides. Comput. Struct. 89, 893e900.

Schietzold, F.N., Schmidt, A., Dannert, M.M., et al., 2019. Development of fuzzy
probability based random fields for the numerical structural design. GAMM-
Mitteilungen 42, e201900004.

Sharma, A., Hazra, B., Sekharan, S., 2021. Stochastic seepage and slope stability
analysis using vine-copula based multivariate random field approach: consid-
eration to non-Gaussian spatial and cross-dependence structure of hydraulic
parameters. Comput. Geotech. 130, 103918.

Shedid, S.A., 2019. Vertical-horizontal permeability correlations using coring data.
Egypt. J. Petrol. 28, 97e101.

Singh, V.K., Kumar, D., Kashyap, P., Singh, P.K., Kumar, A., Singh, S.K., 2020.
Modelling of soil permeability using different data driven algorithms based on
physical properties of soil. J. Hydrol. 580, 124223.

Sofi, A., Romeo, E., 2016. A novel Interval Finite Element Method based on the
improved interval analysis. Comput. Methods Appl. Mech. Eng. 311, 671e697.

Sofi, A., Romeo, E., Barrera, O., Cocks, A., 2019. An interval finite element method for
the analysis of structures with spatially varying uncertainties. Adv. Eng. Softw.
128, 1e19.

Srivastava, A., Babu, G.S., Haldar, S., 2010. Influence of spatial variability of
permeability property on steady state seepage flow and slope stability analysis.
Eng. Geol. 110, 93e101.

Stefanou, G., 2009. The stochastic finite element method: past, present and future.
Comput. Methods Appl. Mech. Eng. 93, 964e979.

Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions.
Reliab. Eng. Syst. Saf. 198, 1031e1051.

Teng, J., Kou, J., Zhang, S., Sheng, D., 2019. Evaluating the influence of specimen
preparation on saturated hydraulic conductivity using nuclear magnetic reso-
nance technology. Vadose Zone J. 18, 1e7.

Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice. Wiley.
Valdebenito, M.A., Hern�andez, H.B., Jensen, H.A., 2019. Probability sensitivity esti-

mation of linear stochastic finite element models applying Line Sampling.
Struct. Saf. 81, 101868.

van Mierlo, C., Faes, M.G., Moens, D., 2021. Inhomogeneous interval fields based on
scaled inverse distance weighting interpolation. Comput. Methods Appl. Mech.
Eng. 373, 113542.

Vanmarcke, E., 1983. Random Fields, Analysis and Synthesis. MIT Press.
Verhaeghe, W., De Munck, M., Desmet, W., Vandepitte, D., Moens, D., 2010. A fuzzy

finite element analysis technique for structural static analysis based on interval
fields. In: Proceedings of the 4th International Workshop on Reliable Engi-
neering Computing. Research Publishing Services, Singapore, pp. 117e128.

Verhaeghe, W., Desmet, W., Vandepitte, D., Joris, I., Seuntjens, P., Moens, D., 2013.
Application of interval fields for uncertainty modeling in a geohydrological
case. In: Computational Methods in Stochastic Dynamics. Springer, Netherlands,
pp. 131e147.

Wang, C., 2021. Reliability-based design of lining structures for underground space
against water seepage. Undergr. Space 6, 290e299.

Wang, R.H., Sun, P.G., Li, D.Q., Tyagi, A., Liu, Y., 2021. Three-dimensional seepage
investigation of riverside tunnel construction considering heterogeneous

http://refhub.elsevier.com/S1674-7755(24)00458-X/sref23
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref23
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref23
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref24
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref24
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref25
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref25
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref25
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref26
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref26
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref26
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref27
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref27
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref27
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref28
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref28
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref28
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref29
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref29
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref29
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref30
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref30
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref30
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref31
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref31
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref32
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref32
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref32
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref32
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref32
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref33
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref33
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref33
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref34
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref34
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref34
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref35
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref35
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref35
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref36
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref36
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref36
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref37
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref37
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref37
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref38
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref38
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref39
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref40
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref40
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref40
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref40
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref40
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref41
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref41
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref41
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref41
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref42
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref42
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref42
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref42
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref43
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref43
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref43
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref44
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref44
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref44
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref45
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref45
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref45
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref46
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref46
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref46
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref47
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref47
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref47
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref47
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref48
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref48
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref48
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref48
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref49
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref49
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref50
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref50
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref50
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref51
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref51
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref51
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref52
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref52
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref52
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref52
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref53
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref53
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref53
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref53
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref54
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref54
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref54
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref55
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref55
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref55
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref56
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref56
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref56
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref56
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref58
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref58
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref58
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref58
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref59
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref59
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref60
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref60
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref60
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref60
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref61
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref62
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref63
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref63
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref64
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref64
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref64
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref65
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref65
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref65
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref66
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref66
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref66
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref67
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref67
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref67
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref68
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref68
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref68
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref69
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref69
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref69
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref69
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref70
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref70
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref70
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref71
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref71
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref71
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref71
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref71
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref72
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref72
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref72
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref73
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref73
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref73
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref74
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref74
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref74
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref74
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref75
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref75
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref75
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref76
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref76
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref76
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref77
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref77
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref77
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref78
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref78
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref78
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref78
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref79
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref79
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref79
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref79
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref80
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref80
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref80
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref81
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref81
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref81
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref82
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref82
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref82
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref82
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref83
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref84
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref84
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref84
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref84
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref85
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref85
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref85
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref86
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref87
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref87
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref87
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref87
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref87
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref88
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref88
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref88
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref88
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref88
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref89
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref89
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref89
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref90
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref90


N.A. Manque, K.-K. Phoon, Y. Liu et al. Journal of Rock Mechanics and Geotechnical Engineering 17 (2025) 1302e1320
permeability. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 7.
Whitlow, R., 2000. Basic Soil Mechanics. Pearson Education (US).
Xiang, J., Scanlon, B., Mullican, W., Chen, L., Goldsmith, R., 1997. A multistep

constant-head borehole test to determine field saturated hydraulic conductivity
of layered soils. Adv. Water Resour. 20, 45e57.

Zadeh, L., 1965. Fuzzy sets. Inf. Control 8 (3), 338e353.
Zeng, Z., Cui, Y.J., Talandier, J., 2020. Evaluating the influence of soil plasticity on

hydraulic conductivity based on a general capillary model. Eng. Geol. 278,
105826.

Zhai, Q., Rahardjo, H., 2013. Quantification of uncertainties in soilewater charac-
teristic curve associated with fitting parameters. Eng. Geol. 163, 144e152.

Zhang, D., Nguang, S.K., Shu, L., Qiu, D., 2022. Multiple fuzzy parameters nonlinear
seepage model for shale gas reservoirs. Int. J. Fuzzy Syst. 24, 2845e2857.

Zhang, D., Shu, L., Li, S., 2020. Fuzzy structural element method for solving fuzzy
dual medium seepage model in reservoir. Soft Comput. 24, 16097e16110.

Zienkiewicz, O.C., 2000. The Finite Element Method. Butterworth-Heinemann.
1320
Nataly A. Manque is currently a PhD student at the Chair
for Reliability Engineering, TU Dortmund University, Ger-
many. She received her BSc degree in Civil Engineering
from the University of La Frontera, Chile in 2020 and her
MSc degree in Civil Engineering from the Adolfo Ib�a~nez
University, Chile in 2022. Her research interests include
geotechnical uncertainty analysis under limited data, in-
terval and fuzzy fields analysis, reduced-order models and
isogeometric analysis.

http://refhub.elsevier.com/S1674-7755(24)00458-X/sref90
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref91
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref92
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref92
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref92
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref92
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref93
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref93
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref94
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref94
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref94
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref95
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref95
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref95
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref95
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref96
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref96
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref96
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref97
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref97
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref97
http://refhub.elsevier.com/S1674-7755(24)00458-X/sref98

	Confined seepage analysis of saturated soils using fuzzy fields
	1. Introduction
	2. Seepage analysis
	2.1. Governing equations
	2.2. Spatial variation of hydraulic conductivity

	3. Fuzzy fields
	3.1. General remarks
	3.2. Interval approaches
	3.2.1. Intervals
	3.2.2. Interval fields

	3.3. Fuzzy approaches
	3.3.1. Fuzzy variables
	3.3.2. Fuzzy fields

	3.4. Uncertainty propagation
	3.5. Summary of the proposed strategy

	4. Analysis and results
	4.1. Illustrative example
	4.2. Total flow
	4.3. Uplift force
	4.4. Exit gradient
	4.5. Sensitivity analysis
	4.5.1. Random or fuzzy fields?


	5. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


