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A B S T R A C T

This work establishes a computational framework for the quantification of the effect of uncertainty of material
model parameters on extremal stress triaxiality and Lode angle values in plastically deformed devices, whereby
stress triaxiality and Lode angle are accepted as key indicators for damage initiation in metal forming processes.
Attention is paid to components, the material response of which can be represented as elasto-plastic with
proportional hardening as a prototype model, whereby the finite element method is used as a simulation
approach generally suitable for complex geometries and loading conditions. Uncertainty about material
parameters is characterized resorting to probability theory. The effects of material parameter uncertainty on
stress triaxiality and Lode angle are quantified by means of a variance-based global sensitivity analysis. Such
sensitivity analysis is most useful for apportioning the variance of the stress triaxiality and Lode angle to
the uncertainty on material properties. The practical implementation of this sensitivity analysis is carried
out resorting to a Gaussian process regression, Bayesian probabilistic integration and active learning in order
to decrease the associated numerical costs. An example illustrates the proposed framework, revealing that
parameters governing plasticity affect stress triaxiality and Lode angle the most.
1. Introduction

Forming processes of metals are of the highest importance in in-
dustrial and manufacturing engineering. Such processes affect material
properties along the respective load paths, in particular in view of
deformation-induced damage effects. These effects, together with initial
material properties, influence, amongst others, performance and life-
time properties of related components. The prediction of properties at
material and component level is typically based on advanced modeling
and simulation approaches; see, e.g., Banabic (2010) and Sprave et al.
(2020) as well as references cited therein. In general however, loading
conditions, geometry and initial material properties are associated with
uncertainties due to inherent variabilities, insufficiency in the available
information, or a combination of both Faes et al. (2021). In this work,
a simulation framework is established to analyze uncertainties related
to initial material properties, respectively material parameters of the
underlying material model. In particular, their influences on measures
used to detect damage effects are of interest here. This approach ulti-
mately contributes to constructing a simulation framework that allows
to optimize the robustness of metal forming processes to variations in
material and manufacturing parameters by explicitly quantifying the
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effect of uncertain or variable quantities on the overall damage state of
the formed metal part.

Stress triaxiality – as a ratio that relates hydrostatic stress to a shape
changing related deviatoric stress contribution – is accepted as one of
the key indicators for quantifying damage initiation (and evolution)
in metal forming processes of mechanical components; see the elab-
orations and models for (ductile) damage discussed in, e.g., Lemaitre
(1996) and Murakami (2012), and related models proposed for non-
local ductile damage in Mediavilla et al. (2006) and Zhu and Engelhardt
(2018). In addition to stress triaxiality, the Lode angle, which can
be considered as the orientation of the stress state within its octahe-
dral plane in principal stress space, is established as a stress measure
relevant for the initiation (and evolution) of damage related phe-
nomena, in particular at states of low stress triaxiality; cf. Bai and
Wierzbicki (2008) and the investigations including finite element anal-
ysis (Malcher et al., 2012; Malcher and Mamiya, 2014; Darlet and
Desmorat, 2015). Moreover, the effect of the respective stress state on
both, damage initiation and evolution is elaborated in Brünig et al.
(2013) with focus of different damage mechanisms depending of stress
triaxiality, Lode angle and stress intensity.
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Stresses cannot be directly measured in experiments, but (typically)
forces and displacements can. At homogeneous states of deformation,
stresses can then be calculated directly from measured force levels
and information of, e.g., cross-sectional area. In general, stresses are
computed based on suitable numerical methods, such as the finite
element method, in combination with a constitutive, respectively ma-
terial model. In consequence, particular values of stress triaxiality and
Lode angle in general depend, amongst other factors, on the particular
constitutive model and the particular material properties associated
with a specific component under consideration. Solving the related
finite element model is usually a challenging task from a numerical
viewpoint, as it may comprise a large number of degrees of freedom
and may demand repeated iterations to capture nonlinear material
behavior.

In summary, stress triaxiality and Lode angle are responses, respec-
tively measures of interest, which are dependent on material properties.
In practice, selecting suitable values for material parameters of a model
reflecting the respective material properties may be challenging due to
uncertainty associated with these, such as variability of raw materials
or production processes, to name but a few; see, e.g., Oakley et al.
(1998). A possible means for capturing uncertainty regarding material
parameters consists of applying probability theory (see e.g., Fishman
(1996)). Indeed, the uncertainty about parameters can be described
in terms of random variables with a probability distribution. The type
of probability distribution (for example, Normal, uniform, etc.) and its
distribution parameters (for example, mean, variance) can be selected
based on prior knowledge combined with experimental measurements.
Following probability theory as described previously, the (predicted)
measure of interest (either stress triaxiality or Lode angle) is no longer
a fixed, crisp value but instead, it becomes a random variable itself.
However, its probability distribution and distribution parameters are
usually different from those prescribed to the material parameters. In
fact, recall that the measure of interest is calculated based on, e.g., a
finite element analysis which is nonlinear in its degrees of freedom
and, moreover, the material model itself may also be nonlinear in
its material parameters. Hence, even if uncertainty regarding material
parameters can be quantified by means of probability distributions,
it is still a challenge to characterize the resulting uncertainty on the
measure of interest, as there is no closed-form access to its probabilistic
characteristics. Hence, when quantifying uncertainty of this measure,
one must focus on specific probabilistic descriptors, such as second-
order statistics (that is, mean and variance), confidence intervals or
probabilities of exceeding a critical value, to name a few.

One probabilistic calculation which is very informative in practice
is the variance-based global sensitivity analysis, which produces the so-
called Sobol’ indices (Sobol’, 1993). In a nutshell, Sobol’ indices explain
which part of the variance of the measure of interest can be attributed
to the uncertainty (described here using the variance) associated with
the input parameters of a certain model. In the case of this work, recall
that the measure of interest is the stress triaxiality or Lode angle and
that the input involves the uncertain material parameters. Thus, Sobol’
indices can reveal which of the material parameters characterizing
the material behavior is the most influential regarding the measure of
interest. Such information is most valuable as, for example, one may
decide to collect additional information on that material parameter
to either reduce its uncertainty or take appropriate measures that
ameliorate its effect on stress triaxiality and ultimately, damage on
metal forming processes. This similarly applies to other stress-based
measures established to predict damage related effects, evolution and
performance, such as the related Lode angle.

The practical calculation of Sobol’ indices is most demanding from
a numerical viewpoint (see, e.g. Saltelli et al. (2008) and Patelli et al.
(2010)). Indeed, such calculation involves repeated evaluations of the
measure of interest for different combinations of the input material
parameters, possibly in the order of tens of thousands. Considering
2

that the solution of a single nonlinear finite element simulation may
demand minutes, hours or even days of CPU time (depending on the
complexity of the underlying model), the direct calculation of Sobol’
indices is usually not feasible from a computational viewpoint. Hence,
specialized numerical approaches are required for their calculation in
practical problems (see, e.g. Sudret (2008)).

Taking into account the challenges described above, the objective
of this work is to implement a framework for performing computa-
tionally efficient variance-based global sensitivity analysis of the stress
triaxiality and Lode angle of a mechanical component. Sensitivity is
considered with respect to the material parameters characterizing an
elasto-plastic stress–strain material behavior. The focus is on conduct-
ing a sensitivity analysis which is efficient from a numerical viewpoint
and that demands a limited number of evaluations of the associated
nonlinear finite element model. In particular, this work implements a
framework introduced in Song et al. (2022) to yield the calculation of
Sobol’ indices feasible. The framework involves constructing a Gaussian
process regression (Rasmussen and Williams, 2006), which replaces
(or surrogates) the nonlinear finite element model and which can be
evaluated at negligible numerical costs. This Gaussian process is trained
with a limited number of realizations of the finite element model
(usually in the order of a few tens). In a post-processing step, the
Gaussian process is employed within a Bayesian probabilistic integra-
tion framework (Briol et al., 2019), that allows calculating the sought
Sobol’ indices. Furthermore, Bayesian probabilistic integration allows
quantifying the error in the estimates that it produces. These error
estimates are most useful for improving the Gaussian process regression
on-the-fly through active learning (Jones et al., 1998), thus allowing to
enhance the estimates of the Sobol’ indices with additional evaluations
of the finite element model.

The rest of this paper is organized as follows: Section 2 describes
the class of problems considered in this contribution from a purely
deterministic viewpoint. That is, essentials of the background on the
assessment of stress triaxiality and Lode angle for materials with fixed
material parameters and exhibiting elasto-plastic response with propor-
tional hardening are (briefly) summarized. The particular model also
serves for the subsequent finite element analysis. Section 3 describes
the framework for uncertainty quantification and global sensitivity
analysis of stress triaxiality and Lode angle with respect to material
properties. Concepts such as Sobol’ indices, Gaussian processes and
Bayesian probabilistic integration are explained in depth. The frame-
work developed in the aforementioned two sections is put into practice
in Section 4, where sensitivity analysis of a tensile test specimen is
carried out. This work closes with a summary and outlook in Section 5.

2. Elasto-plasticity framework

This section briefly introduces essential kinematic relations, men-
tions the underling balance equation (in strong form) and provides
basic background on the finite deformation elasto-plasticity frame-
work applied in this work. Further details on the general theory and
implementation are addressed in Simo (1998), or e.g. Sprave and
Menzel (2020), even though the present paper does not focus on ductile
damage modeling, and references cited therein.

2.1. Essential kinematics

A finite deformation setting shall be considered, with referential
placements in the reference configuration denoted by 𝑿 ∈ 0, whereas
spatial placements in the spatial configuration are represented by 𝒙 ∈
𝑡. The motion is introduced as a nonlinear mapping and, together with
he related so-called deformation gradient, denoted as

= 𝝋(𝑿, 𝑡) and 𝑭 = ∇𝑿𝝋 , (1)

wherein 𝑡 represents time and 𝐽 = det(𝑭 ) > 0.
A multiplicative decomposition of the deformation gradient into an
elastic (e) and plastic (p) contribution is assumed as this work proceeds,
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i.e. 𝑭 = 𝑭 e ⋅ 𝑭 p with 𝐽e = det(𝑭 e) > 0. These deformation quantities
llow introduction of representative strain measure such as spatial
lastic logarithmic strains of the form

e =
1
2 ln(𝑭 e ⋅ 𝑭 t

e) =
1
2 ln(𝒃e) = 𝜺vole + 𝜺isoe , (2)

wherein ∙t denotes transposition and 𝜺vole = 1
3 tr(𝜺e) 𝑰 with 𝑰 the

econd-order identity tensor.

.2. Finite isotropic elasto-plasticity

The Helmholtz energy is considered for an isothermal setting and
ssumed to decompose additively into an elastic volumetric, an elastic
sochoric and a proportional hardening related contribution of the form

(𝒃e, 𝛼) =
1
2 𝐾 tr2(𝜺e) + 𝐺 tr(𝜺isoe ⋅ 𝜺isoe ) + ℎ

𝑛p + 1
𝛼𝑛p+1 , (3)

herein 𝛼 is a proportional hardening related internal variable and 𝐾,
, ℎ, 𝑛p are material parameters.

Based on this (isotropic) specification, the (mechanical) dissipation
ontribution results in

= 𝒎t ∶ 𝒍 − 𝛹̇ = 𝒎t ∶ 𝒍p + 𝛽 𝛼̇ ≥ 0 , (4)

herein ∙̇ denotes the material time derivative, 𝒍 = ∇𝒙𝝋̇ = 𝒍e + 𝒍p with
p = 𝑭 e ⋅ 𝑭̇ p ⋅ 𝑭 −1, together with

t = 2 𝜕𝛹
𝜕𝒃e

⋅ 𝒃e and 𝛽 = − 𝜕𝛹
𝜕𝛼

= −ℎ 𝛼𝑛p . (5)

tresses 𝒎 can be interpreted as spatial Mandel-type stresses, are further
pecified in e.g. Sprave and Menzel (2020), and relate to the Kirchhoff
tresses via the spatial contra-variant metric tensor, i.e. 𝝉 = 𝒈−1 ⋅𝒎t = 𝝉 t .

In this work rate-independent von Mises plasticity is considered in
ombination with nonlinear proportional hardening. The related yield
unction reads

(𝒎t , 𝛽) = ‖𝒎t dev
‖ −

√

2
3 [ 𝜎𝑦0 − 𝛽 ] , (6)

ith 𝒎t dev = 𝒎t − 1
3 tr(𝒎

t ) 𝑰 and ‖ ∙ ‖ =
√

∙ ∶ ∙. This yields the set of
material parameters considered, here represented in vectorial form, as
𝜽 = [𝐾 𝐺 𝜎𝑦0 ℎ 𝑛p].

Moreover, associative plastic flow is considered so that

p = 𝜆 𝜕𝛷
𝜕𝒎t = 𝜆 𝒎t dev

‖𝒎t dev
‖

, (7)

𝛼̇ = 𝜆 𝜕𝛷
𝜕𝛽

= 𝜆
√

2
3 , (8)

together with the Karush-Kuhn–Tucker conditions 𝛷 ≤ 0, 𝜆 ≥ 0,
and 𝜆𝛷 = 0. While Euler backward integration is applied to the
proportional hardening variable, i.e. 𝛼𝑛+1 = 𝛼𝑛 +

√

2∕3𝛥𝜆 for 𝛥𝜆 = 𝛥𝑡 𝜆
and time increment 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛, plastic incompressibility preserving
xponential integration is applied to 𝒍p, respectively 𝑭 p; see, e.g., Simo

(1998) and Sprave and Menzel (2020) for further details.

2.3. Balance of linear momentum

An isothermal setting shall be considered in this work. In conse-
quence, the only balance equation to be solved is the balance of linear
momentum, with balance of angular momentum intrinsically satisfied
by the symmetry of Kirchhoff stresses 𝝉, respectively symmetry of
Cauchy stresses 𝝈 = 𝝉∕𝐽 = 𝝈t = 𝜎𝑖 𝒏𝑖 ⊗ 𝒏𝑖, whereby 𝜎𝑖 denote the prin-
cipal stresses with related principal vectors 𝒏𝑖. Neglecting acceleration
contributions and volume forces, balance of linear momentum in local
form and spatial representation reduces to

∇𝒙 ⋅ 𝝈 = 𝟎 in 𝑡 and 𝝈 ⋅ 𝒏 = 𝒕̄ on 𝜕𝒕
𝑡 , (9)

wherein 𝒏 denotes the normal surface unit vector and 𝒕̄ the prescribed
traction vector on the Neumann boundary 𝜕𝒕. The global weak form
3

𝑡

representation of Eq. (9) is the basis of the (implicit) finite element
formulation considered as this work proceeds.

Different stress-based measures represent local loading states most
relevant for reliable prediction purpose of, e.g., damage states and
failure initiation processes. In this work, such measures are referred to
the Cauchy stresses 𝝈. Basic measures are the hydrostatic stress state
𝜎𝑚, the von Mises equivalent stress 𝜎𝑒, and stress triaxiality 𝜂, i.e.

𝑚 = 1
3 tr(𝝈) , 𝜎𝑒 =

√

3
2 ‖𝝈

dev
‖ , 𝜂 =

𝜎𝑚
𝜎𝑒

, (10)

ee, e.g., Davis and Connelly (1959) in view of application of stress
riaxiality in metal plasticity. Moreover, the Lode angle 𝜗, as introduced
n Lode (1926), represents properties of the stress state, namely the
rientation of the stress state within its octahedral plane in principal
tress space. To be specific, the Lode angle 𝜗 can be generated based
n the stress mode (triaxiality) factor 𝜁 via

=

√

27
2

𝐽3
𝐽 3∕2
2

= 27
2

𝐽3
𝜎3𝑒

and 𝜗 = 1
3 arccos(𝜁 ) , (11)

with the (deviatoric) Cauchy stress invariants 𝐽2 = 1
2 tr(𝝈

dev ⋅ 𝝈dev) =
1
2 ‖𝝈

dev
‖

2 = 1
3 𝜎

2
𝑒 and 𝐽3 = det(𝝈dev).

. Uncertainty quantification and sensitivity analysis

The preceding section has discussed the calculation of stress tri-
xiality and Lode angle for a mechanical component. In this section,
he aim is to study the sensitivity of stress triaxiality and Lode angle
ith respect to the material parameters. For that purpose, Section 3.1
xplains how the finite element analysis is abstracted as a black-
ox function. Then, the characterization of uncertainty on material
arameters is addressed in Section 3.2. Probabilistic descriptors for
haracterizing uncertainty and performing sensitivity analysis of the
easures of interest (either stress triaxiality or Lode angle) are de-

cribed in Sections 3.3 and 3.4. The numerical strategies for calculating
hese descriptors are discussed in detail in Sections 3.5 and 3.6.

.1. Abstraction of the finite element analysis as a black-box

The measures of interest (stress triaxiality and Lode angle) are
alculated by means of a nonlinear finite element model. The different
aterial parameters associated with this model – that is bulk modu-

us 𝐾, shear modulus 𝐺, yield stress 𝜎𝑦0, hardening modulus ℎ, and
ardening exponent 𝑛p – are collected in vector 𝜽, cf. Section 2.2. In
ddition, recall that the stress triaxiality 𝜂 as well as the Lode angle 𝜗
re scalar quantities with the respective values dependent on position
∈ 𝑡, respectively 𝑿 ∈ 0, as well as on the particular values of

he material parameters included in 𝜽. In order to perform sensitivity
nalysis, stress triaxiality and Lode parameter are synthesized each in a
ingle scalar quantity by considering the respective maximum value of
ts field distribution. The subsequent analysis shall emphasis one such
aximum value and the framework similarly applied to both, stress

riaxiality 𝜂 and Lode angle 𝜗. In this context, let such maximum value
e denoted as 𝑦, introduced as

= max
{𝑿,𝑡}∈0×R

(𝜂(𝑿, 𝑡,𝜽)) , (12)

here max(∙) is a function that returns the maximum value of the
rgument. This last equation can be rewritten in compact form as

= 𝑔(𝜽), (13)

here 𝑔(∙) denotes a function that involves taking the maximum value
f the measure of interest from a nonlinear finite element analysis
f the mechanical component under consideration for a given set of
alues of the material parameter vector and along prescribed boundary
onditions, respectively loading history. Clearly, Eq. (13) provides a
ompact, abstract representation of the finite element analysis as a
lack-box function.
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3.2. Uncertainty characterization of material parameters

It is assumed that the material parameters 𝜽 governing the stress–
strain relations are uncertain. Such assumption is often met in reality:
due to variability in raw materials and manufacturing process of steel,
it may be challenging to identify these parameters in a crisp manner.
A possible means to quantify the uncertainty associated with these
parameters is resorting to probability theory, see e.g. Elnashai and
Chryssanthopoulos (1991). Under such framework, it is considered
that 𝜽 is actually a realization of a random variable vector 𝜣. The
components of 𝜣 are considered as independent and therefore, the
joint probability density function becomes 𝑓𝜣 (𝜽) =

∏𝑛𝜃
𝑖=1 𝑓𝛩𝑖

(𝜃𝑖), where
𝜃𝑖 denotes the 𝑖th component of 𝜽; 𝑓𝛩𝑖

(𝜃𝑖) is the probability density
function associated with 𝛩𝑖, which is the 𝑖th component of the random
variable vector 𝜣; and 𝑛𝜃 the number of material parameters (𝑛𝜃 = 5
in this case). It is assumed that 𝑓𝛩𝑖

(𝜃𝑖), 𝑖 = 1,… , 𝑛𝜃 is prescribed for
𝑖 = 1,… , 𝑛𝜃 . Nonetheless, in a more general situation, it is possible to
infer 𝑓𝛩𝑖

(𝜃𝑖), for 𝑖 = 1,… , 𝑛𝜃 , based on prior knowledge and actual mea-
surements through Bayesian updating; see e.g. Sivia (1996), or resort to
more general models for the description of the uncertainty (Faes et al.,
2021).

As the uncertainty associated with material parameters 𝜽 is modeled
through random variables and considering the relation established in
Eq. (13), the maximum value 𝑦 becomes uncertain as well. That is,
𝑦 is actually a realization of a random variable 𝑌 . To quantify the
uncertainty associated with the maximum value 𝑦, one can resort
to probabilistic descriptors, such as mean and variance or variance-
based global sensitivity analysis, as discussed in Sections 3.3 and 3.4,
respectively.

3.3. Mean and variance

A simple means for quantifying the uncertainty associated with
the maximum value 𝑦 is calculating its second-order statistics, namely
expected value E𝜣 (𝑦) and variance V𝜣 (𝑦), which are defined as (see,
e.g., Fishman (1996))

E𝜣 (𝑦) = ∫𝜽∈𝛺𝜽

𝑔(𝜽)𝑓𝜣 (𝜽) d𝜽 , (14)

V𝜣 (𝑦) = ∫𝜽∈𝛺𝜽

(

𝑔(𝜽) − E𝜣 (𝑦)
)2 𝑓𝜣 (𝜽) d𝜽 , (15)

where 𝛺𝜽 denotes the support of 𝜽.
Expected value and variance are most useful for providing a rough

idea on the uncertainty associated with stress triaxiality, respectively
Lode angle. In fact, variance measures the level of dispersion and can
provide an intuitive means for assessing the ranges in which these stress
quantities may vary. Nonetheless, second-order statistics are generally
regarded as a first step in an uncertainty quantification analysis. There-
fore, more advanced probabilistic descriptors must be considered, such
as variance-based global sensitivity indices, as discussed in the next
section.

3.4. Variance-based global sensitivity indices

Variance-based sensitivity analysis aims at apportioning the vari-
ance of the response of interest (in this case stress triaxiality and Lode
angle) with respect to the parameters that affect that response (in this
case the material parameters). The result of the sensitivity analysis is
expressed in terms of the so-called Sobol’ indices (Sobol’, 1993). The
first-order (or main) Sobol’ sensitivity indices 𝑆𝑖 are defined as (see,
e.g. Saltelli et al. (2008))

𝑆𝑖 =
V𝛩𝑖

(

E𝜣−𝑖

(

𝑦|𝜃𝑖
)

)

V𝜣 (𝑦)
, 𝑖 = 1,… , 𝑛𝜃 (16)

herein V𝛩𝑖
(⋅) denotes that variance is calculated only with respect

o 𝛩 . Moreover, 𝜣 is the vector of all random variables except for
4

𝑖 −𝑖
𝑖; E𝜣−𝑖
(⋅) denotes expectation with respect to 𝜣−𝑖; and 𝑦|𝜃𝑖 denotes

hat the maximum value 𝑦 is calculated considering a fixed value 𝜃𝑖 for
he 𝑖th material parameter. The first-order Sobol’ index 𝑆𝑖 as shown in
q. (16) can be interpreted as follows.

• Its numerator represents the variance with respect to 𝑖th material
parameter (associated with 𝛩𝑖) once the effects of the remaining
material parameters (associated with 𝜣−𝑖) have been averaged by
means of the conditional expectation.

• Its denominator represents the total variance.

hus, the first-order Sobol’ index is a dimensionless quantity that ex-
resses the fraction of the variance associated with the maximum value
that can be attributed to the uncertainty of the 𝑖th material parameter.
or those cases where the 𝑖th material parameter has a high impact on
with respect to the remaining material parameters, it is expected that

he aforementioned numerator will be close to the denominator and
hus the Sobol’ index will be close to 1 while the opposite holds true. It
s noted that first-order Sobol’ indices are always bounded between zero
nd one, that is 0 ≤ 𝑆𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛𝜃 . Moreover, the summation of
ll first-order Sobol’ indices is always equal or smaller than one, that is
𝑛𝜃
𝑖=1 𝑆𝑖 ≤ 1. Whenever the summation of the first-order Sobol’ indices

s close to 1, one is in presence of a so-called additive model, meaning
hat there are no significant interaction effects between the different
aterial parameters and hence, the variability of the output response

in this case stress triaxiality and Lode angle) is mainly explained as
he superposition of the individual effects of each input (in this case
aterial parameters).

In addition to the first-order sensitivity indices, there are also the
o-called total Sobol’ sensitivity indices 𝑆𝑇 ,𝑖, which are defined as (see,
.g. Saltelli et al. (2008))

𝑇 ,𝑖 =
V𝜣 (𝑦) − V𝜣−𝑖

(

E𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

V𝜣 (𝑦)
, 𝑖 = 1,… , 𝑛𝜃 . (17)

From the above equation, note that V𝜣−𝑖

(

E𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

represents the
ariance that can be attributed to all material parameters except for
he 𝑖th one (that is, the variance associated with 𝜣−𝑖) once the ef-

fect of the 𝑖th material parameter has been averaged by means of
the conditional expectation. Thus, the subtraction between V𝜣 (𝑦) and
V𝜣−𝑖

(

E𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

in the numerator of Eq. (17) represents the variance
that can be attributed to uncertainty in the 𝑖th material parameter
and its interaction with other material parameters. The total sensitivity
indices are always bounded between zero and one, just like the first-
order sensitivity indices, that is 0 ≤ 𝑆𝑇 ,𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛𝜃 .
Furthermore, the total sensitivity index associated with the 𝑖th variable
will be always equal or larger than its first-order counterpart, that is
𝑆𝑇 ,𝑖 ≥ 𝑆𝑖 for 𝑖 = 1,… , 𝑛𝜃 . A significant difference between 𝑆𝑇 ,𝑖 and
𝑆𝑖 may reveal a strong interaction of the 𝑖th material parameter and
the other material parameters on the variance of the maximum stress
triaxiality or Lode angle, respectively (Patelli et al., 2010).

3.5. Calculation of probabilistic descriptors

The probabilistic descriptors presented in Sections 3.3 and 3.4 are
calculated by means of surrogate modeling, see e.g. Sudret (2008).
In this way, it is possible to avoid repeated and numerically costly
nonlinear finite element analyses. Section 3.5.1 describes Gaussian
process regression (GPR), which is the type of surrogate model con-
sidered in this work. The calculation of the probabilistic descriptors is
carried out by performing Bayesian probabilistic integration over the
GPR surrogate model, as considered in Section 3.5.2. In addition, the
accuracy of the calculated probabilistic descriptors can be improved
by refining the GPR through active learning, as discussed in detail in
Section 3.5.3.



Advances in Industrial and Manufacturing Engineering 7 (2023) 100128M. Böddecker et al.

c

d
m
o
v

Fig. 1. Schematic representation of Latin hypercube sampling. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.5.1. Gaussian process regression
A surrogate is a mathematical model which is inexpensive to calcu-

late and that approximates a function whose evaluation is numerically
involved. There are several types of surrogate models available, such
as polynomial response surface, polynomial chaos and artificial neural
networks, to name a few (see, e.g., Faravelli (1989), Hurtado and
Alvarez (2001) and Sudret (2008)). One of the most popular surrogate
models is Gaussian process regression (GPR), as it provides both an
estimate of the function being surrogated as well as a measure on the
level of confidence of that estimate (Rasmussen and Williams, 2006).
Therefore, GPR is considered in this work.

The first step for constructing a GPR is choosing its prior, which
means defining its parametric form in terms of a mean 𝜇𝐼 (𝜽) and
ovariance function 𝜅𝐼 (𝜽,𝜽′). Note that the mean 𝜇𝐼 (𝜽) expresses ex-

pected value of 𝑦 at 𝜽 while the covariance 𝜅𝐼 (𝜽,𝜽′) represents the joint
variability between 𝑦 and 𝑦′ for two different realizations 𝜽 and 𝜽′ of the
material parameters. Without loss of generality and for simplicity, the
mean function can be chosen as a real constant 𝜇0 while the covariance
can be chosen as a squared exponential function:

𝜅𝐼 (𝜽,𝜽′) = 𝜎20 exp
(

−1
2

𝑛𝜃
∑

𝑖=1

[

𝜃𝑖−𝜃′𝑖
𝐿𝑖

]2)

(18)

where 𝜎20 is the variance of the prior GPR and 𝐿𝑖, for 𝑖 = 1,… , 𝑛𝜃 , are
scale length parameters associated with each of the material parame-
ters. It is noted that the GPR previously described involves a total of
(𝑛𝜃 + 2) hyperparameters

[

𝜇0 𝜎20 𝐿1 … 𝐿𝑛𝜃

]

which must be identified.
For that purpose, it is necessary to generate a set of training data
points (𝒚𝑑 ,𝜣𝑑 ), where 𝒚𝑑 is a vector of dimension 𝑛𝑑 while 𝜣𝑑 is a
matrix of dimension 𝑛𝑑 × 𝑛𝜃 . The 𝑗th row of matrix 𝜣𝑑 contains a
realization 𝜽(𝑗) of the material parameters while the 𝑗th entry of vector
𝒚𝑑 contains the maximum value 𝑦 associated with that realization, that
is, 𝑦(𝑗)𝐷 = 𝑔

(

𝜽(𝑗)
)

. The latter step implies that a total of 𝑛𝑑 nonlinear
finite element analyses must be carried out. The set of realizations
𝜣𝑑 for training the GPR is usually generated by means of a design-of-
experiments scheme such as Latin hypercube sampling (McKay et al.,
1979). This sampling scheme is illustrated in Fig. 1 and it involves
two main concepts. First, the space of feasible values for each random
variable 𝜃𝑖 is divided into strata of equal probability (represented with
blue color in Fig. 1) and then, a random sample is drawn into each
strata (represented with orange dots in Fig. 1). Second, the samples
associated with the different random variables are paired at random.
These randomly paired samples are shown with red dots in Fig. 1. In
practical applications, it has been observed that Latin hypercube sample
offers an excellent balance between space coverage and robustness with
respect to the number of involved random variables 𝑛𝜃 .

Once that the training data set has been generated, the hyper-
parameters

[

𝜇0 𝜎20 𝐿1 … 𝐿𝑛𝜃

]

of the GPR are inferred by maximum
likelihood, which is a well-established statistical procedure for iden-
tifying parameters of a probability model (see, e.g., Rasmussen and
5

Williams (2006)). After identifying the hyperparameters of the GPR
Fig. 2. Schematic representation of Gaussian process regression. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

model, it is possible to predict maximum value 𝑦 for an arbitrary
realization of the material parameters 𝜽∗. For that purpose, one consid-
ers the hyperparameters identified previously in combination with the
training data set (𝒚𝑑 ,𝜣𝑑 ), which leads to the posterior mean 𝜇𝑃 (𝜽) and
posterior covariance 𝜅𝑃 (𝜽,𝜽′). In this sense, the term posterior indicates
that all available information is reflected into the mean and covariance.
To further discuss this point, consider Fig. 2, that illustrates a Gaussian
process regression which, for simplicity, depends on a single material
parameter 𝜃. The training set consists of 𝑛𝑑 = 5 points, which are
enoted with red dots in the figure. This means that five values of the
aterial parameter 𝜃(𝑗), for 𝑗 = 1,… , 5, were generated using a design-

f-experiments scheme and that for each of those values, the maximum
alue 𝑦(𝑗)𝑑 = 𝑔

(

𝜃(𝑗)
)

, for 𝑗 = 1,… , 5, was calculated by means of
nonlinear finite element analysis. After identifying the hyperparameters
of the GPR and taking into account the training data, it is possible to
deduce the posterior mean value 𝜇𝑃 (𝜃), which is the dashed black line
in the figure. It is observed that this dashed line passes over each of
the training data points and that it closely mimics the true curve 𝑔(𝜃).
Furthermore, the posterior covariance 𝜅𝑃 (𝜃, 𝜃′) quantifies the amount of
uncertainty regarding the prediction of the Gaussian process regression
and is shown in the figure as a confidence interval around the mean
𝜇𝑃 (𝜃) by means of the cyan shaded area. It is noted that at the training
data points the confidence interval collapses, as in those points there
is actually no uncertainty: the value of 𝑦 is known exactly as it was
evaluated using nonlinear finite element analyses.

3.5.2. Bayesian probabilistic integration
The probabilistic descriptors described in Sections 3.3 and 3.4 must

be computed by solving multidimensional integrals that comprise the
maximum value of interest as a function of the material parameters. To
avoid repeated nonlinear finite element analyses, the maximum value
is approximated by means of a GPR surrogate model, as described
previously. However, it should be recalled that for a given value of
the material parameters, the GPR model provides both an estimate of
the maximum value of interest as well as the level of confidence on
that estimate. This is a salient feature from a practical viewpoint for
calculating the respective probabilistic descriptor. For example, if the
aim is calculating the expected value as shown in Eq. (14) and the GPR
model is considered, it is possible to produce a mean estimate (that is,
the mean of the expectation) as well as the variance of that estimate
(that is, the variance of the expectation). The latter variance is most
important, as it expresses the degree of uncertainty in the estimation
of a probabilistic descriptor due to the surrogate model.

The task of producing estimates of the probabilistic descriptors as
well as a measure of their uncertainty based on the GPR surrogate
is carried out by means of Bayesian probabilistic integration; see,
e.g., Briol et al. (2019). In fact, in this work the Bayesian probabilistic
integration approach developed in Song et al. (2022) is implemented,
in which
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Fig. 3. Schematic representation of Gaussian process regression with additional train-
ing data point. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

• The mean and variance of the expectation (see Eq. (14)) are
calculated by means of closed-form solutions.

• The mean and variance of the variance (see Eq. (15)) as well
as the variances associated with the first and total order Sobol’
indices (see Eqs. (16) and (17)) can be calculated through analyt-
ical expressions that are integrated numerically (that is, partially
closed form).

The specific expressions associated with Bayesian probabilistic integra-
tion of the mean, variance, first-order and total order Sobol’ indices are
not reproduced in here due to their length. Detailed derivations, as well
as specific expressions for computing these probabilistic descriptors,
can be found in Song et al. (2022).

3.5.3. Active learning
Bayesian probabilistic integration provides the mean estimate of

a probabilistic descriptor as well its variance. This variance provides
important information for deciding whether the current GPR model
provides sufficiently accurate estimates of the sought probabilistic de-
scriptors. If the variance is too high, one may decide to improve the
quality of the estimate by including an additional training data point
and updating the GPR model. Fig. 3 illustrates this idea. In fact, Fig. 3
is identical to Fig. 2, except that an additional training point marked
with green color is introduced. As noted from the figure, the mean of
the GPR 𝜇𝑃 (𝜃) reproduces almost exactly the reference curve 𝑔(𝜃) at the
eft hand side of the plot while the confidence interval collapses almost
o zero, revealing a high degree of confidence regarding the prediction
rovided by the GPR model in that location. This is due to the inclusion
f the new data point in green color.

The process of selecting a new training data point for improving the
PR surrogate model can be interpreted as a refinement or enrichment
rocedure. In practice, it has been observed that such data point can be
elected by maximizing a so-called learning function that involves the
ariance associated with the probabilistic descriptor in Eq. (15), that
s, the variance of the variance, see Song et al. (2022). This learning
unction balances the expected improvement in the variance estimator
ersus the likelihood of observing a particular combination of material
arameters 𝜽. More importantly, this learning function involves evalu-
ting the GPR model only. Hence, nonlinear finite element analysis is
arried out once the new point for enlarging the training data set has
een identified. Specific details about the learning function considered
n this work can be found in Song et al. (2022).

The procedure for improving the accuracy of the probabilistic de-
criptors described above can be regarded as active learning. Indeed,
tarting from an initial data set generated with Latin hypercube sam-
ling for training the GPR surrogate model, one assesses the quality
f the estimated probabilistic descriptors and decides to improve their
uality based on the variance associated with those descriptors. Then,
ne identifies a new training data point and performs an additional
onlinear analysis, which allows to enlarge the training data set and to
mprove both the quality of the GPR and the accuracy of the estimated
6

robabilistic descriptors.
Table 1
Reference material parameter set (ref.) identified for DP800 steel, taken from Sprave
and Menzel (2020), and upper (u.b.) and lower bound (l.b.) used for uncertainty
quantification.

𝐾
[

GPa
]

𝐺
[

GPa
]

𝜎𝑦0
[

MPa
]

ℎ
[

MPa
]

𝑛p [−]

u.b 124.92 89.82 273.45 1876.20 0.2389
ref. 118.97 85.54 248.59 1705.64 0.2654
l.b. 113.02 81.26 223.73 1535.08 0.2920

3.6. Outline of procedure for uncertainty quantification

From an algorithmic viewpoint, the framework of uncertainty quan-
tification in elasto-plasticity presented in Sections 2 and 3 can be
summarized in the following steps.

1. Set up a nonlinear finite element model of the mechanical com-
ponent of interest that allows calculating maximum stress triax-
iality and maximum Lode parameter.

2. Characterize the uncertainty regarding material parameters us-
ing appropriate probability distributions.

3. Generate a set of training data points involving realizations of
the material parameters and compute their respective maximum
stress triaxiality and maximum Lode parameter by means of the
nonlinear finite element model established in step 1.

4. Train the GPR surrogate model and calculate probabilistic de-
scriptors using Bayesian probabilistic integration.

5. Check the variance of the estimated probabilistic descriptors.
If the variance is too high, identify an additional point in the
training data set through active learning, perform nonlinear
finite element analysis and return to step 4. Otherwise, retain
the current probabilistic descriptors and finish the procedure.

All of these algorithmic steps have been implemented within in-house
software. Uncertainty quantification (involving sampling, Gaussian pro-
cess regression and Bayesian probabilistic integration) has been imple-
mented in Matlab. Routines for analysis of elasto-plasticity within the
nonlinear finite element method have been implemented using C++.

4. Example

In this section, the effect of uncertainty of material parameters
on damage initiation indicators of stress triaxiality and Lode angle is
quantified for an exemplary boundary value problem of a plastically de-
forming mechanical component. For this purpose, the computationally
efficient variance-based global sensitivity analysis strategy proposed in
Section 3 is applied to a finite element model of a tensile test specimen.
Basic characteristics and properties of the underlying material model
are analyzed in Appendix, where states under uniaxial tension are
considered.

In this regard, a nonlinear finite element model for the boundary
value problem considered is established to identify maximum stress tri-
axiality and Lode angle values on the Gauss point level. This is achieved
by evaluating the finite elasto-plasticity constitutive model outlined in
Section 2.2 for a given set of material parameters. The uncertainty
associated with the material parameters characterizing elasto-plasticity
is described via the axioms of probability theory. Uniform distributions
with lower and upper bounds, as described in Table 1, are assumed. The
respective GPR surrogate model is trained based on stress triaxiality,
respectively Lode angle, obtained on the Gauss point level as maxi-
mum values over the entire loading history. Finite element analyses
are conducted for an initial batch of training data points, i.e. sets of
material parameters. The initial training data set is generated by Latin
hypercube sampling through a design-of-experiments scheme and is
applied to both GPR surrogate models of maximum stress triaxiality and
Lode angle. A subsequent active learning strategy further enhances each
GPR surrogate model through finite element simulation evaluations
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Fig. 4. Tensile test specimen geometry and dimensions in millimeters taken from Sprave and Menzel (2020). A spatial discretization of 𝑛el = 8000 eight-noded trilinear hexahedral
F-bar elements with full integration is motivated by a mesh convergence study at a maximum tensile displacement of 𝑢𝑥 = 0.65 mm on the basis of reaction force history, maximum
stress triaxiality and Lode angle.
Fig. 5. Mesh convergence study for full loading of 𝑢𝑥 = 2 mm shows mesh-dependent results due to severe necking. Localization of the proportional hardening variable 𝛼 in one
single element row for 𝑛el = 8000 observed for the reference material parameter set at a maximum tensile displacement of 𝑢𝑥 = 2 mm.
at additional training data points generated by maximizing the so-
called learning function. Active learning is continued until convergence
in the maximum coefficient is achieved for the variances involved
in the analysis; that is, total or partial variances, as appearing in
Eqs. (15), (16) and (17). In this context, note that the coefficient of
variation represents the square root of the variance of an estimator
divided by the expected value of that estimator. The converged Sobol’
sensitivity indices for both damage initiation indicators resulting from
Bayesian probabilistic integration over the respective GPR surrogate
model are analyzed regarding the most influential material parameters
and interaction effects between the material parameters. Thus, uncer-
tainty on maximum stress triaxiality and Lode angle is identified and
characterized.

4.1. Boundary value problem

The underlying material model is applied to the finite element
setting for solving a boundary value problem of a tensile test specimen.
This enables a first investigation of the effects of material parameters
on the damage initiation indicators of stress triaxiality and Lode angle.
To this end, a nonlinear finite element model is set up. The geometry
and dimensions of the tensile specimen are taken from Sprave and
Menzel (2020) and are specified in Fig. 4(a), showing total dimensions
of 52 mm length, 10 mm width and 1.5 mm thickness. To reduce com-
putational costs for the training of the GPR surrogate model, only one
eighth of the specimen is simulated due to symmetry considerations and
isotropic material response. Additionally applied Dirichlet boundary
conditions to the symmetry planes ensure that symmetry conditions are
met. To be specific, the small cross section within the 𝑦-𝑧 symmetry
plane at 𝑥 = 0 mm is constrained in 𝑥-direction, see Fig. 4(b). On the
opposite side, the specimen is quasi-statically loaded by prescribing a
monotonically increasing tensile displacement 𝑢𝑥, while the displace-
ments in the 𝑦 and 𝑧 directions remain unconstrained at this boundary.
7

The bottom 𝑥-𝑧 symmetry plane at 𝑦 = 0 mm remains fixed in 𝑦-
direction, whereas the 𝑥-𝑦 symmetry plane at 𝑧 = 0 mm is fixed in
the 𝑧-direction.

A mesh convergence study is conducted to motivate a computation-
ally efficient and sufficiently accurate spatial discretization. The results
in the form of force–displacement curves, see Fig. 5(a), are based on
the reference material parameter set of DP800 steel, taken from Sprave
and Menzel (2020), see Table 1, and a prescribed maximum tensile
displacement of 𝑢𝑥 = 2 mm. In addition, force–displacement curves
for the identified upper and lower bounds material parameter sets are
also highlighted; see also Fig. 11(f) in Appendix. Spatial discretiza-
tions of 𝑛el ∈ {980, 2120, 4224, 8000, 16128} number of elements are
investigated using eight-noded trilinear hexahedral elements with full
integration, which are additionally enhanced by an F-bar formulation to
reduce non-physical (numerical) stiffening effects related to volumetric
locking. The corresponding force–displacement curves in Fig. 5(a) show
an initially mesh-independent response. With increasing load, the reac-
tion force saturates and then shows a drop in reaction force starting at
𝑢𝑥 ≈ 1 mm for the reference material parameter set due to necking ob-
served in the center region of the specimen. Deformation, respectively
strain eventually localizes in one single element row, as also reflected
by the proportional hardening related internal variable; see Fig. 5(b).
This generally results in mesh-dependent solutions that necessitate a
regularization technique applied to plasticity. Such a regularization ap-
proach is outside the scope of this contribution. For further background
on modeling and simulation frameworks including regularization based
on gradient contributions of plasticity-related quantities see, e.g., Kaiser
and Menzel (2019a,b) and references cited therein. Moreover, gradient-
based regularization of plasticity and damage contributions is discussed
in Friedlein et al. (2023). For the subsequent variance-based global
sensitivity analysis, respectively training of the GPR surrogate model,
loading is reduced to a maximum tensile displacement of 𝑢𝑥 = 0.65 mm
to ensure that necking and, in consequence, mesh-dependent effects are
avoided in the considered loading range — particularly for varying sets
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Fig. 6. Contour plots and loading histories of stress triaxiality 𝜂, Lode angle 𝜗 and proportional hardening variable 𝛼 over tensile displacement for 𝑛el = 8000, evaluated for
reference (ref.), upper bounds (u.b.) and lower bounds (l.b.) material parameter sets.
of material parameters analyzed for the training of the GPR surrogate
model. A mesh convergence analysis based on reaction force history, as
well as maximum stress triaxiality and Lode angle as integral and local
convergence measures, results in a reasonable spatial discretization of
𝑛el = 8000 elements, as depicted in Figs. 4(b) and 5(b).

In Figs. 6(a), 6(c) and 6(e) contour plots of 𝜂, 𝜗 and 𝛼 are shown
for the loading level 𝑢 = 0.65 mm, which corresponds to the loading
8

𝑥

stage before necking as also considered within the uncertainty analysis
as this work proceeds. Moreover, Figs. 6(b), 6(d) and 6(f) highlight
graphs of 𝜂, 𝜗 and 𝛼 at two selected positions of the specimen, whereby
loading levels up to 𝑢𝑥 = 2 mm are considered in order to qualitatively
indicate the values and evolution of these quantities towards and within
the necking stage of loading. As discussed in Appendix, the values
of stress triaxiality and Lode angle are independent of the material



Advances in Industrial and Manufacturing Engineering 7 (2023) 100128M. Böddecker et al.
Fig. 7. Loading histories of hydrostatic stress 𝜎𝑚, von Mises equivalent stress 𝜎𝑒, as well as second and weighted third (deviatoric) invariants 𝐽2 (here represented via 𝜎3
𝑒 ) and 𝐽3

over tensile displacement for full loading 𝑢𝑥 = 2 mm at quadrature points P1 and P2 evaluated for reference (ref.), upper bounds (u.b.) and lower bounds (l.b.) material parameter
sets.
parameter set in case of uniaxial tension, i.e. 𝜂 = 1∕3 and 𝜁 = 1
for 𝝈 = 𝜎∥ 𝒆∥ ⊗ 𝒆∥. The results shown in Figs. 6(a) and 6(c) reveal
moderate values close to, but different from, those obtained for the
stress state of uniaxial tension, cf. Table 5. Hence, an influence of
material parameters on damage initiation indicators of stress triaxiality
and Lode angle is expected. Both contour plots of stress triaxiality and
Lode angle for upper and lower bounds material parameter sets show
almost homogeneous results towards the center of the specimen and in
the outer region of clamping with stress states much closer to uniaxial
tension. In the center region, element average values of 𝜂 ≈ 0.340 and
𝜗 ≈ 1.0◦ are observed for both material parameter sets. In contrast,
in the clamping region, especially at the outer sides, values of nearly
perfect uniaxial tension of 𝜂 ≈ 0.333 and 𝜗 ≈ 0◦ are obtained. In turn,
inhomogeneous results are observed in the transition zone from the
specimen radius towards the clamping region, where overall maximum
stress triaxiality and Lode angle are found on the middle axis of the
specimen taking maximum element average values of 𝜂 ≈ 0.358 and
𝜗 ≈ 5.5◦ for the upper bounds material parameter set and 𝜂 ≈ 0.360
and 𝜗 ≈ 6.3◦ for the lower bounds material parameter set. The contour
plots for the two material parameter sets mainly differ in magnitude,
with the lower bounds material parameter set showing the highest
maximum values. Only a minor shift in the location of maximum values
is observed.

In Figs. 6(b) and 6(d), the loading histories of stress triaxiality
and Lode angle evaluated on the Gauss point level over a tensile
9

displacement of up to 𝑢𝑥 = 2 mm are provided for two representative
quadrature points denoted as P1 and P2, as well as for the three
material parameter sets, as defined in Table 1. The quadrature point P1
denotes the integration points identified to show maximum values for
stress triaxiality and Lode angle at the end of a reduced maximum ten-
sile displacement of 𝑢𝑥 = 0.65 mm, which is also used for the subsequent
training of the GPR surrogate model. For most material parameter sets
at this loading, the identified integration points P1 coincide with a
fixed location for each damage initiation measure taking the positions
indicated in Figs. 6(a) and 6(c). Otherwise, a quadrature point in the
immediate proximity of P1 showing maximum values is identified and
is used for training instead. The representative quadrature point P2
corresponds to one of the integration points of the element closest to
the center of the specimen that exhibits the highest stress triaxiality
and Lode angle values over the entire loading of up to 𝑢𝑥 = 2 mm. The
identified integration point P2 of that element, see Figs. 6(a) and 6(c),
is fixed over the entire loading history.

Figs. 6(b) and 6(d) illustrate that non-trivial loading histories of
stress triaxiality and Lode angle over tensile displacement are obtained
at quadrature point P1. Starting from initial values close to those
identified for the stress state of uniaxial tension, both damage initia-
tion indicators of stress triaxiality and Lode angle increase towards a
plateau, stay approximately constant and increase again at the end of
loading while showing overall moderate values. At quadrature point P1,
the lower bounds material parameter set generally results in the highest
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stress triaxiality and Lode angle values, which agrees with results
obtained from contour plots, cf. Figs. 6(a) and 6(c). More precisely,
for stress triaxiality, the opposite applies to the increase in value at
the beginning and at the end of loading, where, in turn, the upper
bounds material parameter set results in the highest stress triaxiality
values. Comparing results obtained for the force–displacement curves,
see Fig. 5(a), it can be concluded that at quadrature point P1, the lowest
reaction force curve generally results in the highest stress triaxiality,
respectively Lode angle. The loading history of the proportional hard-
ening related internal variable at quadrature point P1 highlighted in
Fig. 6(f) shows that the hardening variable saturates to a constant,
here in comparison, vanishingly small value. The saturation observed
with increasing tensile loading is attributed to geometrically induced
stress concentrations in the center region of the specimen, leading
to a reduction in the load-bearing cross-sectional area, as shown in
(Fig. 5(b)) and ultimately necking, as previously discussed. By increas-
ing material parameters, the necking effect becomes more pronounced
due to an increase in the evolution of plasticity, respectively propor-
tional hardening variable; see Fig. 6(e). As a result, the outer regions of
the specimen unload during increasing loading, effectively reducing the
driving force of plasticity and therefore yielding smaller proportional
hardening variable values at quadrature point P1 for the upper bounds
material parameter set, as seen in Fig. 6(f).

Fig. 7 highlights graphs of 𝜎𝑚, 𝜎𝑒 as well as of combinations of 𝐽2
nd 𝐽3 by analogy with Figs. 6(b), 6(d) and 6(f). In particular, Fig. 7(a)
epicts the loading histories of the hydrostatic stress and von Mises
quivalent stress for different material parameter sets at quadrature
oint P1, which also show an unloading behavior as a result of necking
nce a critical maximum tensile displacement is surpassed. Taking the
raction of both measures results in stress triaxiality, as defined in
q. (10)3. Therefore, in combination, both curves motivate the loading
istory of stress triaxiality of Fig. 6(b) and explain how changes in
aterial parameter sets influence stress triaxiality. For instance, the

on Mises equivalent stress 𝜎𝑒 shows a higher decrease rate for the
pper bounds material parameter set for increasing loads,which is a
esult of increased plastic unloading, leading to a comparatively higher
tress triaxiality towards the end of loading, see Fig. 7(a), cf. Fig. 6(b).
n analogy, following the stress mode factor parametrization in terms
f 𝜁 (𝐽3, 𝜎𝑒), cf. Eq. (11)1, Fig. 7(b) motivates the loading history of
he Lode angle, where the numerator and the denominator are plotted
gainst each other at the quadrature point P1. Both terms of 27∕2 𝐽3
nd 𝜎3𝑒 also show a decrease in values at different rates during necking,
espectively plastic unloading, and motivate the loading history of the
ode angle of Fig. 6(d) over the tensile displacement at quadrature
oint P1.

Quadrature point P2, in turn, shows values for stress triaxiality and
ode angle before the onset of necking, which are slightly smaller,
espectively significantly smaller than those obtained for quadrature
oint P1, see Figs. 6(b) and 6(d). With increasing tensile loading, stress
riaxiality and Lode angle surpass their respective maximum values
t quadrature point P1 and further increase towards high maximum
alues of 𝜂 ≈ 0.7 and 𝜗 ≈ 11◦. Thereafter, a significant reduction in
oth measures is observed. As a result, maximum stress triaxiality and
ode angle switch between quadrature point P1 and P2 over the entire
oading history. The decrease in stress triaxiality can be motivated by
he plots of hydrostatic stress and von Mises equivalent stress evaluated
t quadrature point P2 over the entire loading history, see Fig. 7(c).
s loading increases and necking becomes dominant, the von Mises
quivalent stress increase rate is approximately constant. In contrast,
he hydrostatic stress shows a negative increase rate towards the end
f loading, resulting in a decrease in stress triaxiality, cf. Eq. (10)3.
he reduction in Lode angle towards the end of loading at quadrature
oint P2, respectively the re-increase in stress mode factor, is analyzed
ia Fig. 7(d) using the alternative parametrization of the stress mode
actor, cf. Eq. (11)1. This shows that at the end of loading the increase
10

ate of the weighted third deviatoric stress invariant 27∕2 𝐽3 is higher
han that of the von Mises equivalent stress to the power of three 𝜎3𝑒 due
to a decrease in slope towards the end of loading in the latter quantity,
which results in an increase in stress mode factor, respectively decrease
in Lode angle.

In contrast to quadrature point P1, P2 generally shows the high-
est stress triaxiality, Lode angle and proportional hardening variable
values for the upper bounds material parameter set throughout the
loading, where variations regarding different material parameter sets
are much more pronounced. The proportional hardening variable con-
tinuously increases towards high values, resulting in a necking behavior
at increasing loadings, cf. Fig. 6(f). The results indicate that higher
material parameter values are detrimental regarding damage initiation
and evolution for high loading. For reduced loading, the opposite is
observed. In view of higher maximum tensile displacements of 𝑢𝑥 >
1 mm accompanied by necking, such investigations need to be re-
evaluated in future work for results obtained by, e.g., gradient-based
regularization of plasticity, which enables the quantification of the
effect of uncertainty at high loading.

4.2. Results

In this section, the simulation framework for the quantification of
the effect of uncertainty of material parameters on extremal stress triax-
iality and Lode angle values is established by combining the nonlinear
finite element model of an exemplary boundary value problem of a
tensile test specimen introduced in Section 4.1 and the variance-based
global sensitivity framework outlined in Section 3.

To this end, two GPR surrogate models for maximum stress triax-
iality and Lode angle are trained separately. An initial batch of 𝑛𝑑 =
60 training data points, i.e. sets of material parameters, is generated
through Latin hypercube sampling assuming uniform distributions with
lower and upper bounds defined in Table 1, which forms the basis for
training both GPR surrogate models. To avoid loading into necking
and therefore the necessity of a regularization technique applied to
plasticity, as discussed in Section 4.1, the tensile test specimen is loaded
up to a maximum tensile displacement of 𝑢𝑥 = 0.65 mm. Therefore,
maximum damage initiation indicators of stress triaxiality and Lode
angle are evaluated at the quadrature point P1, as indicated in Figs. 6(a)
and 6(c). To reduce numerical cost involved in finite element analyses,
only one eighth of the specimen is simulated. A spatial discretization of
𝑛el = 8000 number of elements is chosen based on the performed mesh
convergence study in Section 4.1. As an additional remark, it should be
noted that the initial set of 𝑛𝑑 = 60 training data points was evaluated
aking advantage of parallel computing. In this context, please note that
he computation of each of these training data points is completely
ndependent from the others. The evaluation of maximum triaxiality
nd Lode angle for different realizations of material parameters can
e done in parallel by running several instances of the finite element
odel on available CPU cores simultaneously. This corresponds to the

o-called embarrassingly parallel case, see e.g. Pellissetti (2009). While
the relationship between computation time and the number of available
cores is not linear, the parallel execution of simulations optimizes
overall resource utilization by efficiently distributing the workload.
Then, using this training data, each of the trained GPR models is used
to produce estimates of the Sobol’ indices associated with maximum
stress triaxiality and Lode angle through the Bayesian probabilistic
integration approach described in Section 3.5.2. The quality of these
estimators is judged by calculating the coefficient of variation associ-
ated with each of the variances involved in the calculation of Sobol’
indices, as described in Eqs. (16) and (17). More specifically, an es-
timator is deemed as accurate whenever the value of the coefficient
of variation associated with each estimated variance (that involves
the ratio between the standard deviation of the estimator and the
expected value of the estimator) is below 10%. In case such criterion
is not fulfilled, active learning is implemented in order to improve

the quality of the GPR surrogate model. Following this active learning
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Fig. 8. Force–displacement curves and loading histories of stress triaxiality 𝜂 and Lode
angle 𝜗 at quadrature point P1 for representative material parameter sets generated
during training for reduced loading of 𝑢𝑥 = 0.65 mm.

strategy, the GPR model associated with the stress triaxiality demanded
performing 145 additional nonlinear finite analysis, while the GPR
model associated with Lode angle demanded 66 additional analyses. As
a side remark, it should be noted that active learning was implemented
using a sequential approach that does not admit parallel computations.
This is a consequence of the fact that each of the training data points
identified through active learning depends on the training history of
the GPR surrogate model.

Before analyzing the Sobol’ indices estimated through the procedure
described previously, it is of interest to have a closer look at results
obtained for some of the training data points generated during the
11
Fig. 9. Force–displacement curves and loading histories of stress triaxiality 𝜂 and Lode
angle 𝜗 at quadrature point P1 for selected material parameter sets generated during
training for reduced loading of 𝑢𝑥 = 0.65 mm.

training of the GPR surrogate model. For that purpose, Figs. 8 and 9
illustrate the evolution of the tensile reaction force, stress triaxiality
and Lode angle as a function of the tensile boundary displacement
for different combinations of material parameters. More specifically,
Fig. 8 illustrates the aforementioned quantities for the first five mate-
rial parameter sets (m.p.s.) shown in Table 2. The selection of these
parameters was deliberate and intended to capture the entire range
of values observed for stress triaxiality and Lode angle, making them
representative despite not being chosen at random. It is noted from
Figs. 8(a), 8(b) and 8(c) that there is considerable variability between
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Fig. 10. Visualization of first-order and total order Sobol’ sensitivity indices 𝑆𝑖 and 𝑆𝑇 ,𝑖 associated with maximum stress triaxiality 𝜂 and Lode angle 𝜗. Illustration of most
influential material parameters and interaction effects identified by differences in first-order and total order Sobol’ sensitivity indices.
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Table 2
Representative material parameter sets as part of initial batch before active training
and generated during active training.

𝐾
[

GPa
]

𝐺
[

GPa
]

𝜎𝑦0
[

MPa
]

ℎ
[

MPa
]

𝑛p [−]

m.p.s. 201 120.04 87.92 230.50 1575.63 0.2915
m.p.s. 81 119.90 82.22 233.80 1671.09 0.2803
m.p.s. 41 121.78 86.10 239.03 1742.87 0.2643
m.p.s. 164 114.52 88.46 254.03 1791.30 0.2586
m.p.s. 170 115.80 84.65 264.01 1844.13 0.2468

m.p.s. 11 115.74 88.15 267.84 1575.33 0.2426
m.p.s. 152 120.08 86.84 229.48 1643.19 0.2401
m.p.s. 30 118.59 84.58 259.86 1676.22 0.2614
m.p.s. 108 116.07 88.04 265.91 1683.35 0.2662
m.p.s. 188 118.25 88.77 249.00 1747.20 0.2731

Table 3
First-order and total Sobol’ sensitivity indices of stress triaxiality before active learning
for different 𝑛𝑑 and after convergence.
𝑛𝑑 𝑆𝐾 [−] 𝑆𝐺 [−] 𝑆𝜎𝑦0 [−] 𝑆ℎ [−] 𝑆𝑛p [−]

10 0.0000 0.1394 0.0000 0.3586 0.4857
60 0.0185 0.0530 0.0075 0.3125 0.5682
60 + 145 0.0065 0.0622 0.0087 0.3134 0.5825

𝑆𝑇 ,𝐾 [−] 𝑆𝑇 ,𝐺 [−] 𝑆𝑇 ,𝜎𝑦0 [−] 𝑆𝑇 ,ℎ [−] 𝑆𝑇 ,𝑛p [−]

10 0.0000 0.1550 0.0000 0.3721 0.5027
60 0.0322 0.0662 0.0134 0.3403 0.5980
60 + 145 0.0107 0.0690 0.0221 0.3234 0.6015

Table 4
First-order and total Sobol’ sensitivity indices of Lode angle before active learning for
different 𝑛𝑑 and after convergence.
𝑛𝑑 𝑆𝐾 [−] 𝑆𝐺 [−] 𝑆𝜎𝑦0 [−] 𝑆ℎ [−] 𝑆𝑛p [−]

10 0.0000 0.0069 0.1337 0.0000 0.8451
60 0.0007 0.0143 0.1283 0.0043 0.8389
60 + 66 0.0006 0.0146 0.1348 0.0033 0.8428

𝑆𝑇 ,𝐾 [−] 𝑆𝑇 ,𝐺 [−] 𝑆𝑇 ,𝜎𝑦0 [−] 𝑆𝑇 ,ℎ [−] 𝑆𝑇 ,𝑛p [−]

10 0.0000 0.0076 0.1456 0.0000 0.8564
60 0.0010 0.0166 0.1335 0.0088 0.8449
60 + 66 0.0008 0.0157 0.1384 0.0072 0.8445

the maximum values of tensile force, stress triaxiality and Lode angle
for different realizations of the material parameter sets, respectively.
These findings are in agreement with results obtained in Section 4.1,
where for the highest reaction force curves, the lowest stress triaxiality
and Lode angle values are obtained. Upon closer inspection of the
material parameter sets arranged by maximum stress triaxiality value
in Table 2, it is noteworthy that the table entries are ordered perfectly
by yield stress 𝜎 , hardening modulus ℎ, and hardening exponent 𝑛 .
12

𝑦0 p
his unintentional result provides an initial indication of the material
arameters that may have the greatest influence on stress triaxiality and
ode angle. However, it does not provide information about the relative
agnitudes of these effects, nor does it account for possible interactions

mong the parameters, which is considered to be of utmost importance
n this study. Meanwhile, Fig. 9 illustrates tensile force, stress triaxiality
nd Lode angle for the last five material parameter sets (m.p.s.) shown
n Table 2. These sets of parameters are labeled as selected, as they were
hosen such that the maximum tensile force values exhibit almost no
ariability, as observed in Fig. 9(a). Remarkably, Figs. 9(b) and 9(c)
how that there is still considerable variability between the maximum
alues of stress triaxiality and Lode angle for different realizations of
hese selected material parameter sets. Such behavior reveals the inher-
ntly complex relation between the uncertain material parameters and
he responses of interest. Thus, when conducting tensile test specimens
hen calibrating material parameters, close attention must be paid to

hese complexities.
In a next step, the Sobol’ indices associated with stress triaxiality

nd Lode angle are analyzed. Table 3 and Fig. 10(a) report the esti-
ated Sobol’ indices associated with stress triaxiality while Table 4 and

ig. 10(b) report the Sobol’ indices associated with Lode angle. Several
mportant conclusions can be drawn from these tables and figures, as
iscussed in detail below.

• Both Tables 3 and 4 report the estimated indices for different
numbers of training data points, namely 𝑛𝑑 = 10 (that is, con-
sidering a subset of the data generated with Latin Hypercube
sampling), 𝑛𝑑 = 60 (data generated with Latin Hypercube sam-
pling) and 𝑛𝑑 = 60 + 145 or 𝑛𝑑 = 60 + 66 (data generated with
Latin Hypercube sampling and active learning). It is observed that
even with 𝑛𝑑 = 10 data points, it is possible to generate rough
estimates of the Sobol’ indices. The additional simulations over
𝑛𝑑 = 10 contribute mostly to refine the estimates of the indices,
particularly for those that possess a small numerical value.

• Figs. 10(a) and 10(b) show that the first-order and total order
Sobol’ indices are almost identical, while verifying that 𝑆𝑖 ≤ 𝑆𝑇 ,𝑖.
This reveals that for the problem at hand, the effect of uncertainty
on material parameters on stress triaxiality and Lode angle is of
additive nature.

• The results reported in Appendix and Section 4.1 suggested that
material parameters governing plasticity may possess a consider-
able impact on stress triaxiality and Lode angle.

• The Sobol’ indices associated with stress triaxiality (see Fig. 10(a))
indicate that the most relevant material parameters are the hard-
ening exponent 𝑛p, the hardening modulus ℎ and the shear mod-
ulus 𝐺. In contrast, for the case of the Lode angle (see Fig. 10(b)),

only the hardening exponent 𝑛p and the yield stress 𝜎𝑦0 are
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relevant, with the hardening exponent 𝑛p playing the more pre-
ponderant role. Such differences in the number of relevant param-
eters may explain the difference observed regarding the number
of training data points in Tables 3 and 4. Indeed, less data points
may be required in the case of the Lode angle (a total of 126
nonlinear finite element analyses) because there is one parameter
(the hardening exponent) that almost completely dictates all the
variability.

s a summary of the above observations, it is noted that Sobol’ indices
ffers an excellent means for performing a quantitative sensitivity
nalysis that allows learning much about the input–output relations of
hallenging engineering models.

. Summary and outlook

In this work, a variance-based global sensitivity analysis framework
as proposed that allows for an efficient quantification of uncertainty
ffects of material parameters characterizing elasto-plasticity on stress
riaxiality and Lode angle.

Several relevant conclusions can be drawn from the strategies and
esults presented in this work. From a purely algorithmic viewpoint, it
as been shown that a state-of-the-art numerical model for character-
zing the behavior of a mechanical device can be effectively interfaced
ith algorithms for uncertainty quantification. In this regard, the appli-

ation of a surrogate model plays a pivotal role. Indeed, the Gaussian
rocess regression (GPR) model considered in this work is trained
ith a moderate number of nonlinear finite element analysis. Once

his GPR is trained, it is possible to perform uncertainty quantification
t reduced numerical costs. Furthermore, the active learning strategy
mplemented in this work allows to improve the quality of the GPR
urrogate gradually with a limited number of additional nonlinear
inite element analyses. This is quite remarkable, as active learning
llows to enrich the initial training set (generated with Latin hypercube
ampling) such that the uncertainty associated with the estimation of
robabilistic descriptors is minimized. From the point of view of the
esults presented, sensitivity analysis allows performing a quantitative
ssessment of the problem at hand, which is most relevant from a
ractical viewpoint. In fact, the results presented in Fig. 11, which
nvolve a simple sensitivity study, already indicated that the material
arameters governing plasticity affect the most the maximum stress
riaxiality and Lode angle, respectively. While such results as discussed
n Appendix are certainly valuable, they are intrinsically qualitative.
n the contrary, the Sobol’ indices as reported in Section 4.2 provide
uantitative evidence, revealing that most of the variability present in
oth stress triaxiality and Lode angle can be attributed to the vari-
bility associated with the hardening exponent 𝑛p. Such quantitative
vidence suggests that to better control stress triaxiality and Lode
ngle (and eventually damage), it is necessary to pay close attention to
his hardening exponent. This observation is reinforced by the results
btained for selected material parameter sets during GPR surrogate
odel training, where notable differences in stress triaxiality and Lode

ngle were found despite showing nearly identical force–displacement
urves (the latter typically being considered for classic calibration of
aterial parameters). For example, one could attempt to identify more
recisely the range of uncertainty of this exponent by combining prior
nowledge on it plus practical laboratory measurements under the
ramework provided by Bayesian updating.

The computational framework established in the present work con-
ributes to the simulation-based prediction of the influence of uncer-
ainty of material parameters on process-induced material properties.
he particular application analyzed emphasizes evolution of stress
riaxiality and Lode angle in the context of finite deformation elasto-
lasticity since these contributions are typical indicators for damage
volution and thereby for the material properties influenced, respec-
ively induced, by the underlying manufacturing process. Such type
13
of analysis becomes (in future) most important in view of processing
impure raw materials with high uncertainties in initial material prop-
erties – e.g. in the context of saving resources by means of recycling
materials or making use of scrap metal in manufacturing processes.
Moreover, the current contribution provides a basis for continuing
investigations and expansions of the established framework. Further
developments could involve exploring the nonlinear finite element
model of the tensile test specimen under increased loadings, aiming
to quantify uncertainty effects of material parameters near the onset
of necking, where a change in the influence of material parameters on
stress triaxiality and Lode angle has been observed. The highly mesh-
dependent results obtained in the current implementation towards
necking suggest that an extension of the framework by a regularization
technique applied to plasticity is required, resulting in the solution
of, e.g., an additional non-local proportional hardening-related internal
variable field alongside the displacement field. Furthermore, extending
the current framework by a damage formulation would enable a more
comprehensive analysis of uncertainty effects associated with material
parameters that govern the initiation and evolution of damage in the
tested specimen.

Several more sophisticated tensile test specimens are found in the
literature that are designed to provoke different stress states, which
can be adopted into the current framework to investigate the effects
of uncertainty of material parameters at varying levels of stress triax-
iality and Lode angle. Moreover, by considering non-uniform spatially
distributed sets of material parameters, a more realistic analysis can
be achieved, which closely resembles the behavior observed in real-life
applications.

Another venue for improving the numerical performance of the
implemented framework for sensitivity analysis consists of exploiting
parallel process capabilities. From a general perspective, approaches
for uncertainty quantification are usually highly parallelizable, as they
comprise repeated evaluation of a deterministic model. However, for
the current problem at hand, parallelization is not straightforward
to implement in context with an active learning scheme. Henceforth,
specific research in this area is required in order to further improve
the numerical properties of the implemented scheme.
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Appendix. Homogeneous uniaxial tension

In order to illustrate the influence of the material parameters of
the material model discussed in Section 2.2, homogeneous states of
deformation under uniaxial tension are investigated with respect to
a reference material parameter set that was fitted to DP800 steel,
taken from Sprave and Menzel (2020), see Table 1, and variations
thereof. In order to illustrate the main characteristics and properties
of the material model itself, also extreme values for the underlying
materials parameters are considered in the following, which are not
representative for DP800 steel as represented by the reference set of

material parameters; cf. Table 1.
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Fig. 11. Influence of the variation of material parameters on the constitutive response in the form of stress–stretch curves obtained for homogeneous states of deformation under
uniaxial tension. Comparison against the reference material parameter set.
For an isotropic material response, the deformation gradient (re-
lated to a uniaxial stress state) takes the form

𝑭 = 𝜆∥ 𝒆∥ ⊗ 𝒆∥ + 𝜆⊥
[

𝑰 − 𝒆∥ ⊗ 𝒆∥
]

, (19)

wherein 𝜆∥ denotes the prescribed monotonically increasing stretch in
longitudinal tension direction 𝒆∥ with ‖𝒆∥‖ = 1. The stretch 𝜆⊥ results
from the constraint of a uniaxial tension stress state, i.e. 𝝈 = 𝜎∥ 𝒆∥⊗𝒆∥,
with 𝜎∥ being the Cauchy stress in longitudinal tension direction.

In Fig. 11, the material response of the reference material parameter
set in terms of stress–stretch curves of the uniaxial Cauchy stress 𝜎∥
over the longitudinal stretch 𝜆∥ ∈ [1.0 , 1.2] is compared against the
material response obtained for material parameter variations where
one of the parameters is varied at a time. The graphs illustrate that
14
the material parameters governing plasticity exert the most significant
influence on the constitutive behavior in the vicinity of the reference
material parameter set. The bulk and shear moduli 𝐾 and 𝐺 signif-
icantly influence the stress–strain response already before yielding;
see Figs. 11(a) and 11(b). However, this is the case only for high
variations of their reference values, whereby higher values result in
higher stresses. The latter is not expected to occur in practice. Varying
yield stresses 𝜎𝑦0, see Fig. 11(c), shows distinct trends already for
comparatively small variations. Thereby, the elastic and plastic regimes
are clearly distinguishable by the onset of yielding. It is observed that
the curves take a parallel path with a constant offset in the plastic
regime, where the offset is directly related to the difference in yield



Advances in Industrial and Manufacturing Engineering 7 (2023) 100128M. Böddecker et al.

a
p

s
𝜂
s
s
p

R

B

B

B

B

D

D

E

F

F

F

F

H

J

Table 5
Stress triaxiality 𝜂 and stress mode factor 𝜁 evaluation for different stress states with principal Cauchy stresses 𝜎1 , 𝜎2 , 𝜎3.

𝜎1 > 0
𝜎2 = 𝜎1
𝜎3 = 𝜎1

𝜎1 > 0
𝜎2 = 𝜎1
𝜎3 = 0

𝜎1 > 0
𝜎2 = 0
𝜎3 = 𝜎2

𝜎1 > 0
𝜎2 = −𝜎1∕2
𝜎3 = 𝜎2

𝜎1 > 0
𝜎2 = 0
𝜎3 = −𝜎1

𝜎1 > 0
𝜎2 = 𝜎1
𝜎3 = −2 𝜎1

𝜎1 = 0
𝜎2 = 𝜎1
𝜎3 < 0

𝜎1 = 0
𝜎2 < 0
𝜎3 = 𝜎2

𝜎1 < 0
𝜎2 = 𝜎1
𝜎3 = 𝜎1

𝜂 ∞ 2/3 1/3 0 0 0 −1/3 −2/3 −∞
𝜁 ∞ −1 1 1 0 −1 −1 1 −∞
stresses. The hardening modulus ℎ, see Fig. 11(d), significantly influ-
ences the hardening evolution after yielding in terms of the magnitude
of the stress–stretch curve, whereby a vanishing hardening modulus
results in perfect plasticity. Finally, the hardening exponent defines
the nonlinearity of the hardening evolution with 𝑛p = 1 resulting
in linear hardening and 𝑛p = 0 resulting in perfect plasticity, see
Fig. 11(e). In contrast to the other material parameters, the hardening
exponent shows a decrease in stresses for increasing values. The re-
sulting stress–stretch curves for the reference, upper and lower bounds
material parameter sets defined in Table 1 are provided in Fig. 11(f)
for comparison. Based on the discussed results obtained for varying
hardening exponents, the upper bounds material parameter set contains
the lowest hardening exponent, and the opposite applies to the lower
bounds parameter set, with overall ±5% and ±10% variations of elastic
nd plastic material parameters with respect to the reference material
arameter set.

The respective values of stress triaxiality and Lode angle for a stress
tate of uniaxial tension are constant over the entire loading history of
= 1∕3 and 𝜗 = 0◦, respectively 𝜁 = 1, cf. Table 5 with principal Cauchy

tresses 𝜎1, 𝜎2, 𝜎3 of type 𝜎1 > 0, 𝜎2 = 0 and 𝜎3 = 𝜎2. In particular,
tress triaxiality and Lode angle are independent of the set of material
arameters for the stress states shown.
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