
Reliability Engineering and System Safety 262 (2025) 111194 

A
0

 

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress  

Error-informed parallel adaptive Kriging method for time-dependent 
reliability analysis
Zhuo Hu a, Chao Dang b , Da Wang a, Michael Beer c,d,e , Lei Wang f,∗
a School of Civil Engineering, Central South University of Forestry & Technology, Changsha 410004, PR China
b Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany
c Institute for Risk and Reliability, Leibniz University Hannover, Callinstr. 34, Hannover 30167, Germany
d Department of Civil and Environmental Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
e International Joint Research Center for Resilient Infrastructure & International Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji 
University, Shanghai 200092, PR China
f School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China

A R T I C L E  I N F O

Keywords:
Time-dependent reliability analysis
Active learning
Kriging model
Importance sampling
Parallel computing
Estimation error

 A B S T R A C T

Active learning single-loop Kriging methods have gained significant attention for time-dependent reliability 
analysis. However, it still remains a challenge to estimate the time-dependent failure probability efficiently and 
accurately in practical engineering problems. This study proposes a new method, called ‘Error-informed Parallel 
Adaptive Kriging’ (EPAK) for efficient time-dependent reliability analysis. First, a sequential variance-amplified 
importance sampling technique is developed to estimate the time-dependent failure probability based on the 
trained global response Kriging model of the true performance function. Then, the maximum relative error of 
the time-dependent failure probability is derived to facilitate the construction of stopping criterion. Finally, a 
parallel sampling strategy is proposed through combining the relative error contribution and an influence 
function, which enables parallel computing and reduces the unnecessary limit state function evaluations 
caused by excessive clustering. The superior performance of the proposed method is validated through several 
examples. Numerical results demonstrate that the method can accurately estimate the time-dependent failure 
probability with higher efficiency than several compared methods.
1. Introduction

Reliability analysis aims to assess the likelihood that a structural 
system or component will consistently perform the intended functions 
when considering multi-source uncertainties, such as material prop-
erties, applied loads, geometry, model uncertainty, and others [1]. 
The traditional time-invariant reliability analysis neglects the time-
dependent factors and is limited to assessing the reliability at a specific 
time instant. Considering the fact that the performance of engineered 
component or systems usually degrades with the increase of service 
time, time-dependent reliability analysis (TRA) has drawn much atten-
tion in recent decades [2–4]. Incorporating the time dimension adds 
complexity to the problem, which makes the TRA more time-consuming 
than the time-invariant cases [5,6]. The current TRA methods could be 
categorized into three following groups: (1) out-crossing rate methods; 
(2) composite limit state methods; (3) extreme value methods.

In the out-crossing rate methods, the time-dependent failure prob-
ability (TDFP) is approximated by integrating the instantaneous out-
crossing rate over a specified time interval. The origin of this type 
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of methods can be tracked into the 1940s when Rice introduced the 
famous Rice formula [7], laying the theoretical foundation for the 
development of the out-crossing rate methods for time-dependent relia-
bility problems. The out-crossing rate methods can be further classified 
into the two following groups. The first group consists of the numerical 
methods, mainly based on the FORM or the method of moments. The 
representative methods include PHI2 [8], PHI2+ [9], and MPHI2 [10], 
etc. The second is the analytical methods, including but not limited 
to [11–13]. Although the performance of the out-crossing rate methods 
have been improved in the last several decades [14,15], the large com-
putation cost and the inherent assumption still restrict the applicability 
of the out-crossing rate methods in TRA.

The composite limit state methods discretize the time-dependent 
limit state function (LSF) into a series of instantaneous LSFs, thereby 
transforming the time-dependent issue into a time-invariant one with 
the series system reliability concept [16]. Some studies use FORM 
to calculate the instantaneous reliability, including but not limited 
to [17–19]. These methods may produce inaccurate results when the 
https://doi.org/10.1016/j.ress.2025.111194
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LSF is highly nonlinear or contains multiple most probable points 
(MPPs). Simulation-based methods have also been developed for TRA, 
e.g., subset simulation [20], line sampling [21] and importance sam-
pling [22], etc. Despite better accuracy, the simulation-based methods 
still suffer from low efficiency in engineering practices.

The extreme value methods transform the time-dependent problem 
into a time-invariant one, and the TDFP is estimated by solving the 
extreme value distribution [23,24]. Recent advancements in artifi-
cial intelligence have accelerated the application of machine learning 
in predicting the extreme value distribution, where adaptive surro-
gate models have gained significant attention for their effective bal-
ance between accuracy and efficiency [25–27]. The extreme response 
surrogate-based methods, as a type of double-loop methods, need to 
identify the extreme response in the inner loop and build a surrogate 
model for the extreme response in the outer loop [28]. The typical 
methods falling into this category include the parallel efficient global 
optimization [29], confidence-based adaptive extreme response surface 
method [30], importance sampling-based double-loop Kriging [31], 
mixed EGO method [32] and so forth. The double-loop methods may 
suffer from low accuracy due to the fact the accuracy of search-
ing extreme time instant would influence the accuracy of surrogate 
model. Besides, this kind of method requires a large amount LSF 
evaluations for the problems with stochastic process with a long time 
interval. Instead of a double-loop scheme, a single-loop scheme in-
volving constructing the global response surrogate models has been 
extensively investigated [33,34]. Among the various kinds of surro-
gates, the Kriging model is particularly prominent for its capability to 
interpolate and provide a local measure of prediction uncertainty. In 
this regard, the most pioneering is the single-loop Kriging surrogate 
modeling (SILK) method [33]. Some other representative single-loop 
methods include variance reduction-guided adaptive Kriging (VARAK) 
method [35], real-time estimation error-guided active learning Kriging 
(REAL) method [36], single-loop Gaussian process regression based-
active learning (SL-GPR-AL) method [37], and several others [38,39]. 
In the aforementioned single-loop methods, the estimation of the TDFP 
is all based on Monte Carlo Simulation (MCS) and is computation-
ally challenging for small failure probability problems. To solve this 
problem, several methods have been developed by combining the 
single-loop Kriging model with importance sampling technique [40,41] 
and subset simulation [42–45], respectively. Recently, the first author 
and his co-authors [46] have extended the Bayesian active learn-
ing originally developed for time-invariant reliability analysis [47–49] 
to the time-dependent counterpart, and proposed uncertainty-aware 
adaptive Bayesian inference combined with hyper-ring decomposition 
importance sampling for TRA. As mentioned in [36], the estimation 
error of TDFP is an important measure for assessing whether the TDFP 
is sufficiently accurate as the final result throughout the active learning 
process. To the best of authors’ knowledge, however, none of existing 
studies have attempt to quantify and reduce the estimation error of 
TDFP provided by Kriging model and importance sampling. Besides, 
these single-loop methods can only identify one point per iteration, 
hindering their availability of the parallel computing.

This study aims to propose a novel method termed ‘Error-informed 
Parallel Adaptive Kriging’ (EPAK) for efficient TRA. The primary con-
tributions can be outlined as follows:

• The variance-amplified importance sampling (VAIS) proposed 
in [48] is adapted in a sequential way for estimating the small TDFPs. 
The resulting sequential VAIS can reduce the sample size and total 
computation time but also avoid the computer memory issue due to 
the one-shot Kriging prediction on the large amount of samples;

• The maximum relative error of the TDFP is derived under the 
combination of the single-loop Kriging model and VAIS. This allows 
the quantification of error in estimating TDFP, and facilitates the con-
struction of an effective stopping criterion. In this study, the adaptive 
updating of Kriging model is terminated by judging the maximum 
relative error;
2 
• A parallel sampling strategy is developed through combining the 
relative error contribution and an influence function that considers 
the correlation between the existing training points and the candidate 
points. This strategy can select multiple training points and over-
come the problem of unnecessary LSF evaluations caused by excessive 
clustering.

The rest of this study is structured as follows. Section 2 introduces 
the estimation of TDFP based on Kriging and MCS. In Section 3, the 
proposed EPAK method is presented in detail. Four examples are stud-
ied in Section 4 to validate the proposed method. Section 5 concludes 
the present study.

2. Background of time-dependent reliability analysis

In this section, we first give the definition of TDFP. The MCS-based 
TDFP estimation is then reviewed. The Kriging-based global response 
surrogate method is finally introduced.

2.1. Definition of time-dependent failure probability

The key to TRA is to calculate the failure probability (denoted as 
𝑃𝑓 (0, 𝑡𝑒)) of a structural system or component within a predefined time 
interval [0, 𝑡𝑒]. A failure event is defined when the LSF is below zero at 
any time instant within [0, 𝑡𝑒]. Let 𝑔(𝑿, 𝒀 (𝑡), 𝑡) denote the LSF with an 
𝑛-dimensional input vector of random variables 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑛]
and an 𝑚-dimensional input vector of stochastic processes 𝒀 (𝑡) =
[𝑌1(𝑡), 𝑌2(𝑡),… , 𝑌𝑚(𝑡)], where 𝑡 denotes the time parameter. 

The TDFP 𝑃𝑓 (0, 𝑡𝑒) is expressed as follows: 

𝑃𝑓
(

0, 𝑡𝑒
)

= P
{

𝑔 (𝑿, 𝒀 (𝑡) , 𝑡) < 0,∃𝑡 ∈
[

0, 𝑡𝑒
]}

(1)

where P denotes the operation of probability.
Assuming that the stochastic processes 𝒀 (𝑡) are represented by a 

function of a 𝑑0-dimensional vector of random variables 𝜩 and a time 
parameter 𝑡, the TDFP can be expressed as an integral given by: 

𝑃𝑓
(

0, 𝑡𝑒
)

= ∫R𝑛 ∫R𝑑0
𝐼 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡) 𝑓𝑿 (𝒙) 𝑓𝚵 (𝝃) d𝒙d𝝃 (2)

where 𝐼 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡) is the time-dependent indicator function; 𝒙 and 𝝃
are the realizations of 𝑿 and 𝜩, respectively; 𝑓𝑿 (𝒙) and 𝑓𝚵 (𝝃) are the 
joint probability density functions (PDFs) of the random variables 𝑿
and 𝑓𝚵 (𝝃), respectively; 𝐼 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡) is written as: 

𝐼 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡) =

{

1, 𝑔 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡) < 0,∃𝑡 ∈
[

0, 𝑡𝑒
]

0, otherwise
(3)

2.2. Discretization of stochastic processes

The stochastic processes 𝒀 (𝑡) are discretized into random variables 
for computation purposes. The commonly used expansion optimal lin-
ear estimation (EOLE) [50] is adopted in this study due to its high 
efficiency and accuracy. One should note that it is not straightforward 
to simulate non-Gaussian processes with EOLE method. For general 
stochastic processes, some advanced simulation methods can be used, 
e.g., [51,52]. In this study, only Gaussian processes are considered 
for convenience. 𝑛𝑡 time instants are employed to discretize the time 
interval [0, 𝑡𝑒]. Considering a Gaussian process 𝑌 (𝑡) for the sake of 
illustration, 𝑌 (𝑡) is written as: 

𝑌 (𝑡) ≈ 𝜇(𝑡) +
𝑝
∑

𝑖=1

𝜉𝑖
√

𝜆𝑖
𝜙⊤
𝑖 𝝆𝑌 (𝑡) (4)

where 𝜇(𝑡) denotes the mean function; 𝑝 denotes the number of domi-
nated eigenvectors, which can be determined according to [8]. 𝜉𝑖 (𝑖 =
1,… , 𝑝) denote the expanded random variables; For Gaussian process 
𝑌 (𝑡) here, 𝜉𝑖 (𝑖 = 1,… , 𝑝) are the standard normal variables; 𝜆𝑖 and 
𝜙𝑖 represent the dominated eigenvalues and eigenvectors, respectively. 
𝝆𝑌 (𝑡) =

[

𝜎 (𝑡) 𝜎
(

𝑡1
)

𝜌
(

𝑡, 𝑡1
)

,… , 𝜎 (𝑡) 𝜎
(

𝑡𝑛𝑡
)

𝜌
(

𝑡, 𝑡𝑛𝑡
)]⊤

 denotes the vec-
tor of covariance function; 𝜎(𝑡) denotes the standard deviation function; 
𝜌 (𝑡 , 𝑡 ) is the autocorrelation function.
𝑌 𝑖 𝑗
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Fig. 1. Illustrative diagram of MCS.

2.3. TDFP estimation by MCS

After the stochastic processes 𝒀 (𝑡) are discretized, the LSF is ex-
pressed as 𝑔 (𝒙, 𝒚 ((𝝃1, 𝝃2,… , 𝝃𝑚

)

, 𝑡
)

, 𝑡
)

, where 𝝃𝑖 (𝑖 = 1,… , 𝑚) denote 
the vectors of random variables. Based on MCS, the TDFP in Eq. (2) is 
estimated as: 

𝑃𝑓
(

0, 𝑡𝑒
)

= 1
𝑁𝑚𝑐𝑠

𝑁𝑚𝑐𝑠
∑

𝑖=1
𝐼𝑡
(

𝒙(𝑖), (𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 )
)

(5)

where 𝑁𝑚𝑐𝑠 denotes the number of samples; The indicator function 
𝐼𝑡
(

𝒙(𝑖), (𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 )
)

 is expressed as:

𝐼𝑡
(

𝒙(𝑖), (𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 )
)

=

⎧

⎪

⎨

⎪

⎩

1, if 𝑔
(

𝒙(𝑖), 𝒚
(

(𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 ), 𝑡𝑗
)

, 𝑡𝑗
)

< 0,∃𝑗 = 1,… , 𝑛𝑡
0, otherwise

(6)

The coefficient of variation (COV) of 𝑃𝑓
(

0, 𝑡𝑒
) is written as: 

COV(𝑃𝑓
(

0, 𝑡𝑒
)

) =

√

√

√

√

1 − 𝑃𝑓
(

0, 𝑡𝑒
)

(𝑁𝑚𝑐𝑠 − 1) × 𝑃𝑓
(

0, 𝑡𝑒
) (7)

It should be noted that the MCS involves a double loop compu-
tation procedure. That is, the realizations 

{

𝒙(𝑖), (𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 )
}𝑁𝑚𝑐𝑠

𝑖=1

are first generated in the outer loop.  For any realization, the LSF 
is evaluated at 𝑛𝑡 time instants in the inner loop, i.e., 

{

𝑔
(

𝒙(𝑖), 𝒚
(

(𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 ), 𝑡𝑗
)

, 𝑡𝑗
)}𝑛𝑡

𝑗=1
. If the minimum response is less than 

zero (i.e., min
(

{

𝑔
(

𝒙(𝑖), 𝒚
(

(𝝃(𝑖)1 , 𝝃(𝑖)2 ,… , 𝝃(𝑖)𝑚 ), 𝑡𝑗
)

, 𝑡𝑗
)}𝑛𝑡

𝑗=1

)

< 0), the 
realization is regarded to be failed; otherwise, it is considered safe. A 
schematic representation of the MCS is given in Fig.  1, where the failed 
time trajectories are denoted by the red lines. The TDFP is calculated 
by dividing the number of failed time trajectories by the total number 
of time trajectories.

2.4. Kriging-based global response surrogate method

The MCS-based TDFP estimation requires 𝑁𝑚𝑐𝑠 ×𝑛𝑡 LSF evaluations, 
making it prohibitive in many practical engineering problems. To ad-
dress this problem, the Kriging model is adopted to build a global 
response surrogate model for the LSF, enabling efficient estimation of 
the TDFP. The details of Kriging model is presented in Appendix. The 
stochastic processes 𝒀 (𝑡) are expressed using ∑𝑚

𝑖=1 𝑝
(𝑖) random variables. 

Hence, the input dimension of LSF is equal to 𝑛+∑𝑚
𝑖=1 𝑝

(𝑖) + 1. In order 
to avoid dealing with high dimensions, the stochastic processes are 
3 
directly used as inputs of the Kriging model, instead of the expanded 
random variables. The input dimension is thus reduced to 𝑛+𝑚+1. The 
transformation of input can be given as: 
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒙(1)
(

𝝃(1)1 ,… 𝝃(1)𝑚

)

𝑡(1)

𝒙(2)
(

𝝃(2)1 ,… , 𝝃(2)𝑚

)

𝑡(2)

⋮ ⋮ ⋮

𝒙(𝑛0)
(

𝝃(𝑛0)1 ,… , 𝝃(𝑛0)𝑚

)

𝑡(𝑛0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→ Eq. (4)→

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒙(1) 𝒚(1)𝑡 𝑡(1)

𝒙(2) 𝒚(2)𝑡 𝑡(2)

⋮ ⋮ ⋮

𝒙(𝑛0) 𝒚(𝑛0)𝑡 𝑡(𝑛0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

where 𝑛0 is the number of training points.
The adaptive Kriging based TRA methods starts with constructing a 

rough Kriging surrogate model with a small number of initial training 
points. Then, new informative training points are sequentially selected 
through a learning function and the Kriging model is updated. The pro-
cedure is terminated when a predefined stopping criterion is fulfilled. 
Finally, the TDFP is estimated as: 

𝑃𝑓
(

0, 𝑡𝑒
)

= 1
𝑁𝑚𝑐𝑠

𝑁𝑚𝑐𝑠
∑

𝑖=1
𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

(9)

where 𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

 is denoted as: 

𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

=

⎧

⎪

⎨

⎪

⎩

1, if 𝜇𝑔̂
(

𝒙(𝑖), 𝒚(𝑖)𝑡𝑗 , 𝑡𝑗
)

< 0,∃𝑗 = 1,… , 𝑛𝑡
0, otherwise

(10)

where 𝜇𝑔̂
(

𝒙(𝑖), 𝒚(𝑖)𝑡𝑗 , 𝑡𝑗
)

 is the mean prediction of the Kriging model.

3. Error-informed parallel adaptive Kriging

This section proposes a new method called EPAK, which can esti-
mate small TDFPs and enable parallel computing. First, the VAIS is 
adapted in a sequential way to reduce the sample size and compu-
tational cost. Later, the maximum relative error of TDFP is derived 
under the combination of Kriging model and VAIS. Finally, a stopping 
criterion and a parallel sampling strategy are developed to adaptively 
enrich the training point set.

3.1. Sequential variance-amplified importance sampling

As mentioned in the last section, MCS involves a double loop com-
putation procedure and requires 𝑁𝑚𝑐𝑠 × 𝑛𝑡 Kriging model predictions. 
For problems with low TDFPs, a large 𝑁𝑚𝑐𝑠 should be specified to en-
sure the estimation accuracy, rendering the computation cumbersome. 
To address this problem, the VAIS developed in [48] is introduced and 
adapted in a sequential way to replace the MCS in this study, so as to 
reduce the sample size and total computation time.

The TDFP 𝑃𝑓
(

0, 𝑡𝑒
) in Eq. (2) is rewritten as: 

𝑃𝑓
(

0, 𝑡𝑒
)

= ∫R𝑛 ∫R𝑑𝑒
𝐼 (𝒙, 𝒚 (𝝃, 𝑡) , 𝑡)

𝑓𝑿 (𝒙)
ℎ𝑿 (𝒙)

ℎ𝑿 (𝒙) 𝑓𝚵 (𝝃) d𝒙d𝝃 (11)

where 𝑑𝑒 =
∑𝑚

𝑖=1 𝑝
(𝑖); ℎ𝑿 (𝒙) = 𝑓𝑿 (𝒙;𝒎𝑿 , 𝛾 ⋅ 𝝈𝑿 ) denotes the importance 

sampling density (ISD), which is established by enlarging the vector 
of standard deviations 𝝈𝑿 (or enlarging the vector of variances 𝝈2

𝑿) of 
the PDF 𝑓𝑿 (𝒙) (maintain the means 𝒎𝑿 unchanged), where 𝛾 is the 
amplification factor. Note that the stochastic processes are typically 
represented by many random variables, and amplifying the standard 
deviations of these random variables greatly increases the computa-
tional complexity. For simplicity, only the standard deviations of input 
random variables in LSF are amplified.

Then, 𝛥𝑁 samples are generated from ℎ𝑿 (𝒙) and 𝑓𝚵 (𝝃). 𝑃𝑓
(

0, 𝑡𝑒
) in 

Eq. (11) can be estimated as: 

𝑃𝑓
(

0, 𝑡𝑒
)

= 1
𝛥𝑁

𝛥𝑁
∑

𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
) 𝑓𝑿

(

𝒙(𝑖)
)

(

(𝑖)
) (12)
𝑖=1 ℎ𝑿 𝒙
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The variance and COV of 𝑃𝑓
(

0, 𝑡𝑒
) are given as:

V
[

𝑃𝑓
(

0, 𝑡𝑒
)]

=

1
𝛥𝑁 − 1

⎛

⎜

⎜

⎝

1
𝛥𝑁

𝛥𝑁
∑

𝑖=1
𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

(

𝑓𝑿
(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
)

)2

−
(

𝑃𝑓
(

0, 𝑡𝑒
))2

⎞

⎟

⎟

⎠

(13)

COV
[

𝑃𝑓
(

0, 𝑡𝑒
)]

=

√

V
[

𝑃𝑓
(

0, 𝑡𝑒
)]

𝑃𝑓
(

0, 𝑡𝑒
)

(14)

The samples are generated sequentially from the ISD and 𝑓𝚵 (𝝃), 
and then predicted on the Kriging model, which can greatly save the 
computation time. First, 𝛥𝑁 samples are generated. Let the number of 
iteration 𝑠 = 1 and the total number of samples 𝑁0 = 𝑠 × 𝛥𝑁 . The 
TDFP is estimated by Eq. (12) and expressed as 𝑃 (𝑠)

𝑓 . A quantity 𝜛(𝑠)

is introduced to efficiently store the Kriging prediction information for 
𝛥𝑁 samples, minimizing memory usage while enabling the calculation 
of the variance estimator. 𝜛(𝑠) is written as: 

𝜛(𝑠) = 1
𝛥𝑁

𝛥𝑁
∑

𝑖=1
𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

(

𝑓𝑿
(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
)

)2

(15)

Additional 𝛥𝑁 samples are generated and let 𝑠 = 𝑠 + 1. 𝑃 (𝑠)
𝑓  and 

𝜛(𝑠) are estimated by Eqs.  (12) and (15), respectively. The TDFP and 
its variance can be re-estimated as: 

𝑃𝑓
(

0, 𝑡𝑒
)

= 1
𝑠

𝑠
∑

𝑖=1
𝑃 (𝑠)
𝑓 (16)

V
[

𝑃𝑓
(

0, 𝑡𝑒
)]

= 1
𝑁0 − 1

(

1
𝑠

𝑠
∑

𝑖=1
𝜛(𝑠) −

(

𝑃𝑓
(

0, 𝑡𝑒
))2

)

(17)

The sampling process is executed until the COV of the TDFP is lower 
than the target threshold, i.e., COV

[

𝑃𝑓
(

0, 𝑡𝑒
)]

< 𝜖𝑝.

3.2. Relative error of TDFP

According to Eq. (10), 𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

 is estimated based on judging 
the sign of 𝜇𝑔̂

(

𝒙(𝑖), 𝒚(𝑖)𝑡 , 𝑡
)

, which is predicted by Kriging and may be 
wrongly estimated. The relative error of the predicted TDFP 𝑃𝑓

(

0, 𝑡𝑒
)

with respect to the true result 𝑃𝑓
(

0, 𝑡𝑒
) can be defined as: 

𝛿 =
|

|

|

|

|

|

𝑃𝑓
(

0, 𝑡𝑒
)

− 𝑃𝑓
(

0, 𝑡𝑒
)

𝑃𝑓
(

0, 𝑡𝑒
)

|

|

|

|

|

|

(18)

The true result 𝑃𝑓
(

0, 𝑡𝑒
) is expressed as:

𝑃𝑓
(

0, 𝑡𝑒
)

= 1
𝑁0

⎡

⎢

⎢

⎢

⎣

𝑁0
∑

𝑖=1
𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)𝑓𝑿

(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
) +

𝑁̂𝑤
𝑠

∑

ℎ=1

𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) −

𝑁̂𝑤
𝑓

∑

𝑘=1

𝑓𝑿
(

𝒙(𝑘)
)

ℎ𝑿
(

𝒙(𝑘)
)

⎤

⎥

⎥

⎥

⎦

(19)

where 𝑁̂𝑤
𝑠  denotes the total number of time trajectories predicted to be 

safe by Kriging model but misclassified; 𝑁̂𝑤
𝑓  denotes the total number 

of time trajectories predicted to be failed but misclassified. Due to the 
fact that the true number of misclassified time trajectories is unknown, 
the last two terms in Eq. (19) are uncertain. Let ∑𝑁̂𝑤

𝑠
ℎ=1

𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) = N𝑠 and 

∑
𝑁̂𝑤

𝑓
𝑘=1

𝑓𝑿
(

𝒙(𝑘)
)

ℎ𝑿
(

𝒙(𝑘)
) = N𝑓 , the relative error 𝛿 can thus be written as: 

𝛿 =

|

|

|

|

|

|

|

|

1 −

∑𝑁0
𝑖=1 𝐼𝑡

(

𝒙(𝑖), 𝒚(𝑖)𝑡
) 𝑓𝑿

(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
)

∑𝑁0
𝑖=1 𝐼𝑡

(

𝒙(𝑖), 𝒚(𝑖)𝑡
) 𝑓𝑿

(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
) + N𝑠 − N𝑓

|

|

|

|

|

|

|

|

(20)

Although the exact values of N𝑠 and N𝑓  are unknown, it is possible 
to obtain the expectation and variance of the two quantities. To achieve 
this goal, 𝐼𝑠𝑡

(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= 1 is first introduced to denote that the time 
trajectory predicted to be safe by Kriging is actually in a failed status. 
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Correspondingly, 𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= 0 denotes that the time trajectory 
predicted to be safe is correctly classified. N𝑠 can thus be written as: 

N𝑠 =
𝑁̂𝑤

𝑠
∑

ℎ=1

𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) =

𝑁𝑠
∑

ℎ=1
𝐼𝑠𝑡

(

𝒙(ℎ), 𝒚(ℎ)𝑡

) 𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) (21)

where 𝑁𝑠 is the total number of safe time trajectory predicted by 
Kriging.

The expectation and variance of N𝑠 can be expressed as:

E
[

N𝑠
]

= E

[𝑁𝑠
∑

ℎ=1
𝐼𝑠𝑡

(

𝒙(ℎ), 𝒚(ℎ)𝑡

) 𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
)

]

=
𝑁𝑠
∑

ℎ=1
E
[

𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)] 𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) (22)

V
[

N𝑠
]

= V

[𝑁𝑠
∑

ℎ=1
𝐼𝑠𝑡

(

𝒙(ℎ), 𝒚(ℎ)𝑡

) 𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
)

]

=
𝑁𝑠
∑

ℎ=1
V
[

𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)]

(

𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
)

)2

(23)

where the probability of 𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= 0, i.e., the probability of 
correct sign estimate of 

(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

, can be expressed as: 

𝑝𝑠,𝑐
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= P
{

𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= 0
}

= P

{ 𝑛𝑡
⋂

ℎ=1
𝑔̂
(

𝒙(ℎ), 𝒚(ℎ)𝑡𝑗
, 𝑡𝑗

)

> 0

}

(24)

where the computation of 𝑝𝑠,𝑐
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

 is quite cumbersome in prac-
tice. Instead of calculating the exact value of the 𝑝𝑠,𝑐

(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

, it is 
possible to obtain its sub-optimal estimate without sacrificing the esti-
mation accuracy according to our recent study [46]. The sub-optimal 
estimate 𝑝̄𝑠,𝑐

(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

 can be expressed as [46]: 

𝑝̄𝑠,𝑐
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= min
𝑗=1,…,𝑛𝑡

𝛷

⎛

⎜

⎜

⎜

⎝

𝜇𝑔̂
(

𝒙(ℎ), 𝒚(ℎ)𝑡𝑗
, 𝑡𝑗

)

𝜎𝑔̂
(

𝒙(ℎ), 𝒚(ℎ)𝑡𝑗
, 𝑡𝑗

)

⎞

⎟

⎟

⎟

⎠

(25)

The sub-optimal estimate of misclassification probability is written 
as:

𝑝̄𝑠,𝑤
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= P
{

𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

= 1
}

= 1 − min
𝑗=1,…,𝑛𝑡

𝛷

⎛

⎜

⎜

⎜

⎝

𝜇𝑔̂
(

𝒙(ℎ), 𝒚(ℎ)𝑡𝑗
, 𝑡𝑗

)

𝜎𝑔̂
(

𝒙(ℎ), 𝒚(ℎ)𝑡𝑗
, 𝑡𝑗

)

⎞

⎟

⎟

⎟

⎠

(26)

It is easy to find that 𝐼𝑠𝑡
(

𝒙(ℎ), 𝒚(ℎ)𝑡

)

 follows the Bernoulli distribu-
tion. The expectation and variance of N𝑠 are rewritten as: 

E
[

N𝑠
]

=
𝑁𝑠
∑

ℎ=1
𝑝̄𝑠,𝑤

(

𝒙(ℎ), 𝒚(ℎ)𝑡

) 𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
) (27)

V
[

N𝑠
]

=
𝑁𝑠
∑

ℎ=1
𝑝̄𝑠,𝑤

(

𝒙(ℎ), 𝒚(ℎ)𝑡

)(

1 − 𝑝̄𝑠,𝑤
(

𝒙(ℎ), 𝒚(ℎ)𝑡

))

(

𝑓𝑿
(

𝒙(ℎ)
)

ℎ𝑿
(

𝒙(ℎ)
)

)2

(28)

Similarly, let 𝐼𝑓𝑡
(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

= 1 denote that the time trajectory 
predicted to be failed by Kriging is actually in a safe status. Corre-
spondingly, 𝐼𝑠𝑡

(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

= 0 denotes the time trajectory predicted to 
be failed is correctly classified.

The misclassification probability can be written as:

𝑝𝑓,𝑤
(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

= P
{

𝐼𝑓𝑡
(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

= 1
}

= P

{ 𝑛𝑡
⋂

𝑗=1
𝑔̂
(

𝒙(𝑘), 𝒚(𝑘)𝑡𝑗
, 𝑡𝑗

)

> 0

}

(29)
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According to the aforementioned discussion, the corresponding sub-
optimal estimate of 𝑝𝑓,𝑤

(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

 can be defined as: 

𝑝̄𝑓,𝑤
(

𝒙(𝑘), 𝒚(𝑘)𝑡

)

= min
𝑗=1,…,𝑛𝑡

𝛷

⎛

⎜

⎜

⎜

⎝

𝜇𝑔̂
(

𝒙(𝑘), 𝒚(𝑘)𝑡𝑗
, 𝑡𝑗

)

𝜎𝑔̂
(

𝒙(𝑘), 𝒚(𝑘)𝑡𝑗
, 𝑡𝑗

)

⎞

⎟

⎟

⎟

⎠

(30)

The expectation and variance of N𝑓  can be written as: 

E
[

N𝑓
]

=
𝑁𝑓
∑

𝑘=1
𝑝̄𝑓,𝑤

(

𝒙(𝑘), 𝒚(𝑘)𝑡

) 𝑓𝑿
(

𝒙(𝑘)
)

ℎ𝑿
(

𝒙(𝑘)
) (31)

V
[

N𝑓
]

=
𝑁𝑓
∑

𝑘=1
𝑝̄𝑓,𝑤

(

𝒙(𝑘), 𝒚(𝑘)𝑡

)(

1 − 𝑝̄𝑓,𝑤
(

𝒙(𝑘), 𝒚(𝑘)𝑡

))

(

𝑓𝑿
(

𝒙(𝑘)
)

ℎ𝑿
(

𝒙(𝑘)
)

)2

(32)

where 𝑁𝑓  is the total number of failed points predicted by Kriging 
model.

For any time trajectory predicted to be either safe or failed, the 
sub-optimal estimate of the misclassification probability is expressed 
as: 

𝑝̄𝑤
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

= 𝛷

⎛

⎜

⎜

⎜

⎝

−
|

|

|

|

|

|

|

min
𝑗=1,…,𝑛𝑡

𝜇𝑔̂
(

𝒙(𝑖), 𝒚(𝑖)𝑡𝑗 , 𝑡𝑗
)

𝜎𝑔̂
(

𝒙(𝑖), 𝒚(𝑖)𝑡𝑗 , 𝑡𝑗
)

|

|

|

|

|

|

|

⎞

⎟

⎟

⎟

⎠

(33)

With the VAIS technique presented in Section 3.1, the dispersedly 
distributed samples are generated as the candidate samples. It is rea-
sonable to consider that the number of safe time trajectories 𝑁𝑠 and 
the number of failed time trajectories 𝑁𝑓  are both large enough. In 
this case, the confidence intervals of N𝑠 and N𝑓  can be approxi-
mately obtained using the central limit theorem. Besides, N𝑠 and N𝑓
approximately follow normal distributions, which are expressed as: 

N𝑠 ∼ 𝑁
(

E
[

N𝑠
]

,V
[

N𝑠
])

(34)

N𝑓 ∼ 𝑁
(

E
[

N𝑓
]

,V
[

N𝑓
])

(35)

The confidence intervals of N𝑠 and N𝑓  can be obtained as: 

N𝑠 ∈
[

N 𝑙
𝑠 ,N

𝑢
𝑠
]

=
[

𝛷−1
N𝑠

(𝛼∕2) , 𝛷−1
N𝑠

(1 − 𝛼∕2)
]

(36)

N𝑓 ∈
[

N 𝑙
𝑓 ,N

𝑢
𝑓

]

=
[

𝛷−1
N𝑓

(𝛼∕2) , 𝛷−1
N𝑓

(1 − 𝛼∕2)
]

(37)

where 𝛷−1
N𝑠

(⋅) and 𝛷−1
N𝑓

(⋅) denote inverse cumulative distribution func-
tions (CDFs); 𝛼 is the confidence level (𝛼 = 0.05 is used in this 
study).

The maximum relative error of TDFP can thus be obtained by:

𝛿max = max

⎛

⎜

⎜

⎜

⎝

|

|

|

|

|

|

|

|

N 𝑙
𝑠 − N 𝑢

𝑓
∑𝑁0

𝑖=1 𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
) 𝑓𝑿

(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
) + N 𝑙

𝑠 − N 𝑢
𝑓

|

|

|

|

|

|

|

|

,

|

|

|

|

|

|

|

|

N 𝑢
𝑠 − N 𝑙

𝑓
∑𝑁0

𝑖=1 𝐼𝑡
(

𝒙(𝑖), 𝒚(𝑖)𝑡
) 𝑓𝑿

(

𝒙(𝑖)
)

ℎ𝑿
(

𝒙(𝑖)
) + N 𝑢

𝑠 − N 𝑙
𝑓

|

|

|

|

|

|

|

|

⎞

⎟

⎟

⎟

⎠

(38)

It should be noted that the quantification of the relative error of 
TDFP can be regarded as an extension of the study in static reliability 
analysis [53] and the one in time-dependent reliability analysis [36]. 
The significant difference is that the estimation of relative error is based 
on the VAIS in this study, whereas it is based on MCS in the two existing 
studies.

3.3. Stopping criterion and parallel sampling strategy

In adaptive Kriging based TRA method, a suitable stopping criterion 
is required to determine whether the obtained estimate of TDFP is 
accurate enough as the final result. Based on the Eq. (38), the stopping 
5 
criterion can be defined by judging whether the maximum relative error 
of TDFP is below a prescribed threshold: 
𝛿max ⩽ 𝜖𝑟 (39)

where 𝜖𝑟 is the specified threshold. Note that the adaptive updating 
of Kriging model is terminated only when Eq. (39) is satisfied twice 
consecutively to prevent the potential fake convergence.

If the stopping criterion is not met, new training points need to be 
identified and evaluated on the true LSF to update the Kriging model. 
In order to efficiently decrease the maximum relative error of TDFP, 
the number of misclassified time trajectories should be as small as 
possible. In other words, the greater the misclassification of a time 
trajectory, the greater the contribution to reducing the relative error 
of TDFP. That is, the 𝑝̄𝑤

(

𝒙, 𝒚𝑡
) in Eq. (33) measures the contribution 

of the time trajectory to the relative error of TDFP. Therefore, the 
relative error can be minimized as much as possible through evaluating 
the point that maximizes the misclassification probability in Eq. (33). 
However, directly selecting the point with the highest misclassification 
probability overlooks the distance between the newly added training 
point and the existing ones, which may cause excessive clustering and 
lead to unnecessary LSF evaluations. To address this problem, this 
paper introduces a influence function by considering the correlation 
between the existing training points and all candidate points as the 
distance measure, and then proposes a new learning function called 
improved relative error contribution (IREC): 

IREC
(

𝒙, 𝒚𝑡
)

= 𝐼𝐹
(

𝒙;𝒙(1),𝒙(2),… ,𝒙
(

𝑛0
)
)

× 𝑝̄𝑤
(

𝒙, 𝒚𝑡
)

(40)

where 𝐼𝐹
(

𝒙;𝒙(1),𝒙(2),… ,𝒙
(

𝑛0
)
)

 is the introduced influence function 
and denoted as [54]: 

𝐼𝐹
(

𝒙;𝒙(1),𝒙(2),… ,𝒙
(

𝑛0
)
)

=
𝑛0
∏

𝑖=1

[

1 − 𝑅
(

𝒙,𝒙(𝑖)
)]

(41)

where 𝒙(1),𝒙(2),… ,𝒙
(

𝑛0
)

 are the 𝑛0 existing training points; 𝑅(⋅) is the 
Gaussian correlation function of the Kriging model in this study.

The IREC function can be further extended to parallel sampling case 
by exploiting the advantages of the introduced influence function. In 
an active learning iteration, 𝑞 training points are sequentially selected 
and simultaneously enriched to the dataset , which is elaborated as 
follows. First, the time trajectory maximizing the IREC function is se-
lected and then the time instant with the largest prediction uncertainty 
is chosen. Herein, the commonly used U function is used to determine 
the optimal time instant [55]. Therefore, the selection strategy of the 
first added training point 𝒗(𝑛0+1)𝑛𝑒𝑤  is expressed as follows: 

𝒗(𝑛0+1)𝑛𝑒𝑤 =
[

𝒙(𝑖∗), 𝒚(𝑖
∗)

𝑡𝑗∗
, 𝑡𝑗∗

]

𝑖∗ = argmax
𝑖=1,…,𝑁0

𝐼𝐹
(

𝒙;𝒙(1),𝒙(2),… ,𝒙
(

𝑛0
)
)

𝑝̄𝑤
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

,

𝑗∗ = argmin
𝑗=1,…,𝑛𝑡

|

|

|

|

|

𝜇𝑔̂

(

𝒙(𝑖∗) ,𝒚(𝑖
∗)

𝑡𝑗∗
,𝑡𝑗

)

|

|

|

|

|

𝜎𝑔̂

(

𝒙(𝑖∗) ,𝒚(𝑖
∗)

𝑡𝑗∗
,𝑡𝑗

)

(42)

Sequentially, after 𝑞−1 updated training points have been identified, 
the 𝑞th training point can be obtained as: 

𝒗(𝑛0+𝑞)𝑛𝑒𝑤 =
[

𝒙(𝑖∗), 𝒚(𝑖
∗)

𝑡𝑗∗
, 𝑡𝑗∗

]

𝑖∗ = argmax
𝑖=1,…,𝑁0

𝐼𝐹
(

𝒙;𝒙(1),𝒙(2),… ,𝒙
(

𝑛0+𝑞−1
)
)

𝑝̄𝑤
(

𝒙(𝑖), 𝒚(𝑖)𝑡
)

,

𝑗∗ = argmin
𝑗=1,…,𝑛𝑡

|

|

|

|

|

𝜇𝑔̂

(

𝒙(𝑖∗) ,𝒚(𝑖
∗)

𝑡𝑗∗
,𝑡𝑗

)

|

|

|

|

|

𝜎𝑔̂

(

𝒙(𝑖∗) ,𝒚(𝑖
∗)

𝑡𝑗∗
,𝑡𝑗

)

(43)

It is evident from Eqs. (42)–(43) that 𝑞 training points are sequen-
tially identified through considering the relative error contribution and 
the correlation between all training points and candidate points. After 
𝑞 training points are selected within an iteration, the Kriging model 
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Fig. 2. Flowchart of the proposed method.
is updated. Note that the developed parallel sampling strategy may 
be similar to the idea that multiple informative points are sequen-
tially generated by maximizing the product of the learning function 
and influence function, which is recently introduced in the field of 
time-invariant reliability analysis [56,57] and time-dependent system 
reliability analysis [58]. The difference lies mainly in two aspects. 
First, this study develops a new IREC learning function based on the 
concept of minimizing the relative error of TDFP. Second, the several 
existing researches have only considered the correlation between the 
current and previously selected points within an iteration, ignoring the 
correlation of the training points prior to the current iteration, whereas 
this study addresses this problem.

3.4. Implementation of the proposed method

The flowchart of the proposed method is shown in Fig.  2. The 
implementation procedures are summarized as follows:

Step 1: Discretize the time interval [0, 𝑡𝑒] and the stochastic pro-
cesses 𝒀 (𝑡) (if involved).

Step 2: Generate 𝑛0 initial training points by Sobol sequence. The 
sampling domain of these initial points is set to [𝝁 − 3𝝈,𝝁 + 3𝝈], 
where 𝝁 and 𝝈 are the mean and standard deviation of the input 
random variables, respectively. The corresponding responses are cal-
culated by evaluating the LSF 𝑔 (⋅). Establish the initial dataset  =
{[𝒙(𝑖), 𝒚(𝑖)𝑡𝑖 , 𝑡𝑖], 𝑔

(𝑖)}𝑛0𝑖=1 with the EOLE method. Let the number of LSF 
evaluations 𝑁𝑒𝑣𝑎 = 𝑛0 and the number of iterations 𝑁𝑖𝑡𝑒 = 1.

Step 3: Construct the candidate sample pool 𝑺 = [𝒙(𝑖), (𝝃(𝑖)1 ,… ,
𝝃(𝑖)𝑚 )]𝛥𝑁𝑖=1 , where 𝛥𝑁 is the number of initial candidate samples. Let 𝑠 = 1
and the number of total candidate samples 𝑁 = 𝑠 × 𝛥𝑁 .
0

6 
Step 4: Build the Kriging model based on the dataset .
Step 5: Estimate the TDFP 𝑃𝑓 (0, 𝑡𝑒) and its variance V

[

𝑃𝑓
(

0, 𝑡𝑒
)]

based on Eqs. (16)–(17). Calculate the maximum relative error 𝛿max in 
Eq. (38).

Step 6: If the stopping criterion in Eq. (39) is fulfilled twice consec-
utively, turn to Step 8; else, turn to Step 7.

Step 7: Identify 𝑞 points + = [𝒙(𝑖), 𝒚(𝑖)𝑡𝑖 , 𝑡𝑖]
𝑞
𝑖=1 using the developed 

parallel sampling strategy. Evaluate the LSF on the 𝑞 selected points to 
obtain the responses {𝑔(𝑖)}𝑞𝑖=1. Enrich the points and responses into the 
dataset . Let 𝑁𝑒𝑣𝑎 = 𝑁𝑒𝑣𝑎 + 𝑞 and 𝑁𝑖𝑡𝑒 = 𝑁𝑖𝑡𝑒 +1, and return to Step 4.

Step 8: Check if the COV of the TDFP is below the target threshold, 
i.e, COV

[

𝑃𝑓
(

0, 𝑡𝑒
)]

< 𝜖𝑝. If satisfied, go to Step 9; else, generate 
additional 𝛥𝑁 candidate samples and enrich the candidate sample pool 
𝑺, let 𝑠 = 𝑠 + 1 and return to Step 5.

Step 9: Return the estimated TDFP 𝑃𝑓
(

0, 𝑡𝑒
) and end the proposed 

method.

4. Examples and results

The effectiveness of the proposed EPAK method is validated by 
comparing it with several existing non-parallel TRA methods. The two 
compared methods, SILK [33] and REAL [36], are implemented in all 
examples and the number of initial training points is set to be 12. 
Other implementation details follow the default settings in the original 
studies. The results for the remaining compared methods, including 
eSPT [59], STRA [60], SLK-co-SS [45], etc., are taken from the respec-
tive publications unless otherwise stated. The parameter settings for the 
proposed method are as follows: 𝑛0 = 12, 𝛾 = 1.5, 𝛥𝑁 = 104, 𝜖𝑝 = 5%, 
𝜖 = 5%. Different values are specified for 𝑞 to investigate the impact on 
𝑟
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Table 1
TRA results of example 4.1.
 Methods 𝑁𝑖𝑡𝑒 𝑁𝑒𝑣𝑎 𝑃𝑓 𝜖𝑃𝑓

COV[𝑃𝑓 ] CPU time (s) 
 MCS – 101 × 106 0.3079 – 0.15% 1.9  
 eSPTa – 139 0.2986 3.02% – –  
 STRAb 16.4 27.4 0.3041 1.23% – –  
 SLK-co-SSc 35.8 46.8 0.3072 0.23% – –  
 SILK 12.5 23.5 0.3075 0.13% 2.95% 31.1  
 REAL 10.8 21.8 0.3070 0.29% 3.56% 29.5  
 

Proposed method

𝑞 = 1 6.6 17.6 0.3059 0.65% 6.58% 2.5  
 𝑞 = 2 4.3 18.6 0.2995 2.73% 7.02% 2.0  
 𝑞 = 3 4.1 21.3 0.3014 2.11% 5.16% 2.2  
 𝑞 = 4 3.7 22.8 0.3062 0.55% 4.16% 2.2  
 𝑞 = 5 3.8 23.2 0.3031 1.56% 4.95% 2.3  
 𝑞 = 6 3.5 27.0 0.3093 0.45% 3.14% 2.6  
 𝑞 = 7 2.8 24.6 0.3086 0.23% 2.57% 2.2  
 𝑞 = 8 2.8 26.4 0.3081 0.07% 3.51% 2.4  
a The results are taken from research [59].
b The results are taken from research [60].
c The results are taken from research [45].
the results. The reported results are averaged over 10 independent runs 
in MATLAB R2019(b) under the environment (CPU of Intel i5-13400F, 
RAM of 16 GB) unless otherwise stated.

4.1. Mathematical example

A mathematical model is investigated is this section [45,59,60]. The 
LSF is expressed as: 
𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑋2

1𝑋2 +
(

𝑋2 + 1
)

𝑡2 − 5𝑋1(1 + 𝑌 (𝑡))𝑡 − 20 (44)

where the input variables 𝑋1 and 𝑋2 both follow a normal distribution 
with the mean of 3.5 and the standard deviation of 0.25; 𝑌 (𝑡) denotes 
a Gaussian process, where the mean and standard deviation are 0 and 
1, respectively. The autocorrelation function of the Gaussian process is 
defined as 𝜅 (

𝑡1, 𝑡2
)

= exp
[

−
(

𝑡1 − 𝑡2
)2
]

; 𝑡 ∈ [0, 1] represents the time 
parameter.

The time interval and Gaussian process 𝑌 (𝑡) are discretized with 
101 time instants and three independent standard normal variables, 
respectively. Fig.  3 depicts one hundred realizations of 𝑌 (𝑡). The TDFP 
results provided by different methods are listed in Table  1. The TDFP 
𝑃𝑓 = 0.3079 by MCS is considered as the reference result. It is observed 
that all methods can produce results close to the reference result. In 
terms of efficiency, the proposed method requires fewer iterations with 
the help of the developed parallel sampling strategy. When 𝑞 = 1
(indicating that the parallel computing is unavailable), the proposed 
method costs less LSF evaluations than other compared methods though 
it produces slightly larger COVs. Through comparing the computation 
time between different methods, it can be found that the proposed 
method typically requires less CPU time than other active learning TRA 
methods.

4.2. Corroded simply supported beam

In this section, we consider the TRA of a corroded beam [60] shown 
in Fig.  4. The span of the beam is 5m. The bending loads include the 
concentrated load 𝐹 (𝑡) and the uniformly distributed load 𝑝 = 7.85 ×
104𝑏0ℎ0 (N∕m). The LSF is defined as follows: 

𝑔 (𝒙, 𝐹 (𝑡) , 𝑡) =

(

𝑏0 − 2𝜅𝑡
) [

ℎ0 − 2𝜅𝑡
]2 𝑓𝑦

4
−
(

𝐹 (𝑡)𝐿
4

+
7.85 × 104𝑏0ℎ0𝐿2

8

)

(45)

where 𝜅 = 3 × 10−5 m∕year control the corrosion rate and 𝑡 ∈ [0, 20]
years represents time parameter; 𝑏0, ℎ0 and 𝑓𝑦 are the initial width and 
height of the cross section, and the yield strength, respectively. Table 
2 lists the details of the random parameters.
7 
Fig. 3. Realizations of 𝑌 (𝑡) of example 4.1.

The time interval [0, 12] and Gaussian process 𝐹 (𝑡) are discretized 
with 241 time instants and six independent standard normal variables, 
respectively. The TRA results provided by different methods are listed 
in Table  3. One can observe that all investigated methods can yield 
the results close to the reference value provided by MCS. In terms 
of the efficiency, however, the proposed method requires much less 
iterations and LSF evaluations than other methods. The comparison of 
computation time shows that the proposed method requires less CPU 
time than both REAL and SILK methods. When 𝑞 varies from 1 to 
8 in the proposed method, the number of LSF evaluations gradually 
increases. Besides, the proposed method requires the least number of 
iterations and computation time for the setting of 𝑞 = 5. This observa-
tion indicates that selecting too many training points per iteration does 
not necessarily result in a reduction in the number of iterations and the 
total computation time.

Fig.  5 schematically presents the TDFP within the time interval 
[0, 20] years, where the error bar indicate the range of the mean ± 2 
standard deviations of the TDFP. It is found that the TDFP estimates 
obtained by the proposed method are similar to the reference val-
ues provided by MCS. These results confirm that the proposed EPAK 
method is capable of estimating the TDFP across varied subintervals 
with satisfactory accuracy. As shown in Fig.  5, the failure probability 
is rather low (e.g., around 10−3) within small time intervals. The pro-
posed method still maintains high estimation accuracy, which indicates 
the effectiveness of the proposed method in small TDFP problems.
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Table 2
Distributions of inputs of example 4.2.
 Input variable Distribution Mean Standard deviation Autocorrelation function  
 𝑓𝑦 (MPa) Lognormal 240 24 –  
 𝑏0 (m) Lognormal 0.2 0.01 –  
 ℎ0 (m) Lognormal 0.03 0.003 –  
 𝐹 (𝑡) (kN) Gaussian process 3.5 0.7 𝜅

(

𝑡1 , 𝑡2
)

= exp
[

− 1
25

(

𝑡1 − 𝑡2
)2
]

 

Table 3
TRA results of example 4.2.
 Methods 𝑁𝑖𝑡𝑒 𝑁𝑒𝑣𝑎 𝑃𝑓 𝜖𝑃𝑓

COV[𝑃𝑓 ] CPU time (s) 
 MCS – 201 × 106 4.74 × 10−2 – 0.45% 2.0  
 t-IRSa – 171.4 4.71 × 10−2 0.63% – –  
 eSPTa – 113.4 4.88 × 10−2 2.95% – –  
 STRAa 45.4 56.4 4.78 × 10−2 0.84% – –  
 SILK 40.4 51.4 4.73 × 10−2 0.21% 2.51% 432.8  
 REAL 31.1 42.1 4.75 × 10−2 0.21% 3.29% 183.9  
 

Proposed method

𝑞 = 1 8.7 19.7 4.78 × 10−2 0.84% 4.50% 6.1  
 𝑞 = 2 7.3 24.6 4.74 × 10−2 0 8.12% 7.2  
 𝑞 = 3 6.1 27.3 4.69 × 10−2 1.05% 6.63% 6.8  
 𝑞 = 4 4.9 27.6 4.62 × 10−2 2.53% 4.91% 6.5  
 𝑞 = 5 4.2 28.0 4.74 × 10−2 0 3.98% 6.0  
 𝑞 = 6 5.2 37.2 4.79 × 10−2 1.05% 3.14% 6.9  
 𝑞 = 7 4.6 37.2 4.76 × 10−2 0.42% 5.85% 6.3  
 𝑞 = 8 4.5 40.0 4.60 × 10−2 2.95% 3.51% 7.1  
a The results are taken from research [60].
Fig. 4. Schematic diagram of the corroded beam.

Fig. 5. TDFP of example 4.2 (𝑞 = 1).

4.3. Turbine blade

A turbine blade model adapted from Matlab PDE toolbox is in-
vestigated as the third example, whose finite element model (FEM) 
and von Mises stress distribution are shown in Fig.  6. The Young’s 
modulus, Poisson’s ratio, coefficient of thermal expansion and the 
thermal conductivity are denoted as 𝐸, 𝜆, 𝛼 and 𝑇𝑐 , respectively. The 
temperature of the interior cooling air and the suction sides are denoted 
8 
as 𝑇1 and 𝑇2, respectively. In this example, failure is defined as the 
maximum von Mises stress exceeding an allowable threshold. Taking 
into account that the allowable threshold decreases with the time 𝑡, 
the LSF is defined as: 
𝑔 (𝒙, 𝑭 (𝑡) , 𝑡) = 𝜎𝑎𝑡𝑒

−0.02𝑡 − 𝜎𝑚 (𝒙, 𝑭 (𝑡)) (46)

where 𝜎𝑎𝑡 = 1.5GPa represents the initial allowable threshold;
𝜎𝑚(𝒙,𝑭 (𝑡)) denotes the maximum stress provided by FEM; 𝐹1(𝑡) and 
𝐹2(𝑡) in 𝑭 (𝑡) represent the pressure loads at the pressure side and 
suction side, respectively. Table  4 lists the details of the input variables.

The time interval [0, 12] and the Gaussian processes 𝐹1(𝑡) and 𝐹2(𝑡)
are discretized with 121 time instants, five and eight independent 
normal variables, respectively. Table  5 presents the TRA results using 
different methods. For MCS, 121 × 105 LSF evaluations are required to 
ensure the accuracy of TDFP estimate, which is computationally pro-
hibitive. Instead, a simplified simulation with 12,100 LSF evaluations 
(taking approximately 3.76 h) is performed to provide an approximate 
assessment of the computational time. The proposed method, SILK 
and REAL provide similar TDFP estimates, while the proposed method 
exhibits higher efficiency in terms of 𝑁𝑖𝑡𝑒 and computation time than 
the counterparts. When 𝑞 varies from 1 to 8, the proposed method 
requires minimal 𝑁𝑖𝑡𝑒 for the setting of 𝑞 = 5. As for the computation 
time, the setting of 𝑞 = 4 would minimize the computation time in this 
example.

4.4. Arch bridge

In this section, a lower-bearing arch bridge with the calculated 
span of 150 m and the rise-to-span ratio of 1:5 is considered [61], as 
shown in Fig.  7. The arch bridge features 34 suspenders, each spaced 
6.8m apart. A three-dimensional FEM model is built on the OpenSEES 
platform, consisting of 241 nodes and 439 elements, as shown in 
Fig.  8. The elastic beam–column element is adopted to simulate the 
suspenders, main girder and arch ribs. A increasing heavy load 𝐹 (𝑡)
applied in the mid-span is considered and modeled as a non-stationary 
Gaussian process. Considering that the suspenders are subjected to the 
corrosion effect, the residual area is denoted as 𝐴(𝑡) = 𝐴1 × (1 − 0.007𝑡), 
where 𝐴1 is the initial area of the suspenders. The failure is defined as 
the maximum deflection in excess of a safety threshold 𝛥𝑠 = 10 cm. The 
LSF is thus written as: 
𝑔 𝑿, 𝐹 𝑡 , 𝑡 = 𝛥 − 𝛥

(

𝐴 𝑡 , 𝐸 ,𝐴 ,𝐸 , 𝐼, 𝐹 , 𝐹 𝑡
)

(47)
( ( ) ) 𝑠 ( ) 1 2 2 1 ( )
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Fig. 6. FEM and stress distribution of the turbine blade (unit: Pa).
Table 4
Distributions of inputs of example 4.3.
 Variable Distribution Parameter 1 Parameter 2 Autocorrelation function  
 𝐸 Normal 220 22 –  
 𝛼 Normal 1.27 × 10−5 1.27 × 10−6 –  
 𝜆 Lognormal 0.27 0.0216 –  
 𝑇𝑐 Lognormal 11.5 1.38 –  
 𝑇1 Uniform 130 170 –  
 𝑇2 Uniform 950 1050 –  
 𝐹1(𝑡) Gaussian process 500 100 𝜅

(

𝑡1 , 𝑡2
)

= exp
[

− 1
16

(

𝑡1 − 𝑡2
)2
]

 
 𝐹2(𝑡) Gaussian process 450 90 𝜅

(

𝑡1 , 𝑡2
)

= exp
[

− 1
4

(

𝑡1 − 𝑡2
)2
]

 
Note: For the uniform distributions, parameter 1 and 2 respectively represent the lower and upper-bounds; for other 
distributions, they denote the mean and standard deviation, respectively.
Table 5
TRA results of example 4.3.
 Methods 𝑁𝑖𝑡𝑒 𝑁𝑒𝑣𝑎 𝑃𝑓 𝜖𝑃𝑓

𝐶𝑂𝑉 [𝑃𝑓 ] CPU time  
 MCS – 121 × 105 – – – ≈157.0 (days) 
 SILK 369.5 380.5 5.28 × 10−3 – 2.65% 29,962.6 (s)  
 REAL 191.3 202.3 5.28 × 10−3 0 6.86% 8382.3 (s)  
 

Proposed method

𝑞 = 1 110.8 121.8 5.19 × 10−3 1.70% 5.41% 1121.4 (s)  
 𝑞 = 2 58.7 127.4 5.15 × 10−3 2.46% 2.82% 1032.3 (s)  
 𝑞 = 3 42.2 135.6 5.36 × 10−3 1.52% 4.49% 709.8 (s)  
 𝑞 = 4 33.3 141.2 5.33 × 10−3 0.95% 6.08% 432.4 (s)  
 𝑞 = 5 28.9 151.5 5.28 × 10−3 0 5.24% 643.2 (s)  
 𝑞 = 6 36.4 224.4 5.26 × 10−3 0.38% 5.90% 769.4 (s)  
 𝑞 = 7 34.7 247.9 5.17 × 10−3 2.08% 4.59% 858.8 (s)  
 𝑞 = 8 37.9 307.2 5.38 × 10−3 1.89% 4.90% 1180.9 (s)  
Fig. 7. Illustrative diagram of the arch bridge (unit: cm).

Fig. 8. FEM of the arch bridge.
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where the initial area of the arch ribs is denoted as 𝐴2. 𝐸1 and 
𝐸2 represent the Young’s modulus for the suspenders and arch ribs, 
respectively; The main girder’s stiffness is characterized by its area 
moment of inertia 𝐼 ; The total applied load, including both dead and 
live components, is represented as 𝐹1. Table  6 lists the details of input 
variables.

The time interval [0, 50] and the non-stationary Gaussian process 
𝐹 (𝑡) are discretized with 501 time instants and sixteen independent 
normal variables, respectively. Fig.  9 shows one hundred realizations 
of 𝐹 (𝑡). Table  7 presents the obtained TDFP estimates by different 
methods. Similar to the third example, the CPU time required by 
MCS is approximately calculated with 10,200 LSF evaluations in this 
example. The TDFP estimates obtained by all methods are relatively 
close; however, the proposed EPAK method demonstrates significantly 
higher efficiency than the other methods. Specifically, the proposed 
method with 𝑞 = 1 requires 66.6 LSF evaluations on average, while SILK 
and REAL requires 113.8 and 88.0 evaluations, respectively. Besides, 
the proposed method costs much less iterations than the counterparts 
when specifying a large value of 𝑞. As for the computation time, SILK 
and REAL takes 13,702.3 s and 6000.4 s, respectively, whereas the 
proposed EPAK method takes 270.1 to 456.2 s. When 𝑞 varies from 1 
to 8, the required computation time is minimal for the setting of 𝑞 = 5. 
Meanwhile, the corresponding 𝑁𝑖𝑡𝑒 and COV are relatively small.

The time-dependent reliability results are schematically depicted 
in Fig.  10, where the reliability index (denoted as 𝛽) is obtained by 
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Table 6
Distributions of inputs of example 4.4.
 Input variable Distribution Mean Standard deviation Autocorrelation function  
 𝐴1 (m2) Lognormal 3 × 10−3 3 × 10−4 –  
 𝐸1 (Pa) Normal 2 × 1011 2 × 1010 –  
 𝐴2 (m2) Lognormal 2.8 0.28 –  
 𝐸2 (Pa) Normal 2.1 × 1011 2.1 × 1010 –  
 𝐼 (m4) Lognormal 5.6 × 10−2 8.4 × 10−3 –  
 𝐹1 (N∕m) Gumbel 5.5 × 107 1.1×107 –  
 𝐹 (𝑡) (kN) Gaussian process 180 + 180 ln

(

1 + 𝑡
20

)

18 + 18 ln
(

1 + 𝑡
20

)

𝜅
(

𝑡1 , 𝑡2
)

= exp
[

− 1
16

(

𝑡1 − 𝑡2
)2
]

 

Table 7
TRA results of example 4.4.
 Methods 𝑁𝑖𝑡𝑒 𝑁𝑒𝑣𝑎 𝑃𝑓 𝜖𝑃𝑓

COV[𝑃𝑓 ] CPU time  
 MCS – 501 × 106 – – – ≈6543.1 (days) 
 SILK 102.8 113.8 1.57 × 10−3 – 3.55% 13,702.2 (s)  
 REAL 77.0 88.0 1.60 × 10−3 1.91% 4.29% 6000.4 (s)  
 

Proposed method

𝑞 = 1 55.6 66.6 1.61 × 10−3 2.55% 2.84% 456.2 (s)  
 𝑞 = 2 29.4 68.8 1.60 × 10−3 1.91% 6.05% 282.3 (s)  
 𝑞 = 3 22.3 75.9 1.61 × 10−3 2.55% 4.12% 279.0 (s)  
 𝑞 = 4 17.0 76.0 1.58 × 10−3 0.64% 4.14% 354.9 (s)  
 𝑞 = 5 15.3 83.5 1.59 × 10−3 1.27% 3.33% 270.1 (s)  
 𝑞 = 6 15.8 100.8 1.62 × 10−3 3.18% 4.56% 355.8 (s)  
 𝑞 = 7 15.2 111.4 1.61 × 10−3 2.55% 5.91% 389.1 (s)  
 𝑞 = 8 13.8 114.4 1.59 × 10−3 1.27% 4.96% 340.0 (s)  
Fig. 9. Realizations of the Gaussian process of example 4.4.

𝛽 = 𝛷−1(1−𝑃𝑓 ). The error bars show the range of the mean ± 2 standard 
deviations of the TDFP and the reliability index, respectively. It can 
be observed that as the service life increases, the failure probability 
increases. Correspondingly, the reliability index gradually decreases, 
which following an approximately linear trend. Besides, the reliability 
index at 𝑡 = 50 (𝛽50 = 2.95) decreases by 29.76% compared to the initial 
service status (𝛽0 = 4.20), which reflects the necessity of performing 
TRA for this arch bridge problem.

5. Conclusions

This study proposed a new method termed ‘Error-informed Parallel 
Adaptive Kriging’ (EPAK) for efficient TRA. Specifically, the VAIS was 
adapted in a sequential way to estimate the small TDFP based on the 
trained single-loop Kriging model, which could decrease the sample 
size and total computation time. Besides, the maximum relative error 
of TDFP estimation was derived, based on which a stopping criterion 
was developed by judging whether the maximum relative error was 
below a predefined threshold. Finally, a parallel sampling strategy 
was proposed through combining the relative error contribution and 
an introduced influence function, which could not only select mul-
tiple training points but also overcome the problem of unnecessary 
10 
Fig. 10. TDFP and reliability index of example 4.4.

LSF evaluations caused by excessive clustering. Several examples were 
studied to validate the applicability of proposed EPAK method. Results 
demonstrated that the proposed method can estimate small TDFPs with 
satisfactory accuracy. More importantly, the proposed EPAK method 
required much less LSF evaluations, iterations and CPU time when 
compared to other TRA methods, demonstrating its superior efficiency. 
Besides, numerical results showed that selecting too many training 
points in each iteration did not necessarily result in a reduction in the 
number of iterations and the total computation time. According to the 
investigated examples, four or five points was sufficient and effective 
to select, and was therefore suggested for the proposed method.

The proposed EPAK method may perform weakly in high dimen-
sions owing to the inherent limitations of the Kriging model. Further 
research is still required to address this problem. Besides, the proposed 
method could be adapted for time-dependent reliability-based design 
optimization.
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Appendix. Kriging model

Kriging model is an interpolation-based regression method includ-
ing linear regression and stochastic process, which is written as [55]: 

𝑔̂(𝒙) = 𝒇𝑇 (𝒙)𝜻 + 𝜖(𝒙) (A.1)

where 𝑔̂(𝒙) denotes the predicted response; 𝒇 (𝒙) is the basis function 
vector; 𝜻 represents the regression coefficients vector; 𝜖(𝒙) denotes 
a Gaussian process with the mean of zero and the covariance of 
𝜅(𝒙(𝑖),𝒙(𝑗)) = 𝜎2𝑅(𝒙(𝑖),𝒙(𝑗)), where 𝑅(𝒙(𝑖),𝒙(𝑗)) is the correlation function 
and denoted as: 

𝑅(𝒙(𝑖),𝒙(𝑗)) = exp

[

−
𝑛
∑

𝑘=1
𝜃𝑘

(

𝑥(𝑖)𝑘 − 𝑥(𝑗)𝑘

)2
]

(A.2)

where 𝜃𝑘 (𝑘 = 1, 2,… , 𝑛) are correlation parameters and estimated using 
the maximum likelihood method [55]. Given 𝑛0 training points 𝑿 =
[𝒙(1),𝒙(2),… ,𝒙(𝑛0)] and the responses 𝑮 = [𝑔(𝒙(1)), 𝑔(𝒙(2)),… , 𝑔(𝒙(𝑛0))], 𝜻
and 𝜎2 are estimated as: 

𝜻̂ =
(

𝑭 𝑇𝑹−1𝑭
)−1 𝑭 𝑇𝑹−1𝑮 (A.3)

𝜎̂2 =
(𝑮 − 𝜻)𝑇𝑹−1(𝑮 − 𝜻𝑭 )

𝑛0
(A.4)

where 𝑭  is the regression matrix with 𝐹𝑖,𝑗 = 𝑓𝑗 (𝒙(𝑖)), 𝑖 = 1,… , 𝑛0, 
𝑗 = 1,… , 𝑛; 𝑹 = [𝑅(𝒙(𝑖),𝒙(𝑗))] (𝑖, 𝑗 = 1,… , 𝑛0) is the correlation matrix.

The mean prediction 𝜇𝑔̂(𝒙) and the variance prediction 𝜎2𝑔̂ (𝒙) are 
obtained as follows: 

𝜇𝑔̂(𝒙) = 𝒇𝑇 (𝒙)𝜻̂ + 𝒓𝑇 (𝒙)𝑹−1(𝑮 − 𝑭 𝜻̂) (A.5)

𝜎2𝑔̂ (𝒙) = 𝜎̂2
[

1 + 𝒖𝑇 (𝒙)
(

𝑭 𝑇𝑹−1𝑭 𝑇 )−1 𝒖(𝒙) − 𝒓𝑇 (𝒙)𝑹−1𝒓(𝒙)
]

(A.6)

where 𝒖(𝒙) = 𝑭 𝑇𝑹−1𝒓(𝒙) − 𝒇 (𝒙); 𝒓(𝒙) = [

𝑅
(

𝒙,𝒙(1)
)

,… , 𝑅
(

𝒙,𝒙(𝑛0)
)]𝑇  is 

the correlation coefficient vector between the predicted point and the 
training set. Note that the construction and prediction of the Kriging 
model can be easily performed with DACE toolbox. More details may 
refer to [62].

Data availability

Data will be made available on request.
11 
References

[1] Gardoni P. Risk and reliability analysis. Springer; 2017.
[2] Guo H, Zhang J, Dong Y, Frangopol DM. Probability-informed neural network-

driven point-evolution kernel density estimation for time-dependent reliability 
analysis. Reliab Eng Syst Saf 2024;249:110234.

[3] Li S, Wang X, Pang R, Xu B. A novel method for time-dependent small 
failure probability estimation of slope instability subjected to stochastic seismic 
excitations. Reliab Eng Syst Saf 2025;111032.

[4] Zhang B, Wang W, Wang Y, Li Y, Li C-Q. A critical review on meth-
ods for time-dependent structural reliability. Sustain Resilient Infrastruct 
2024;9(2):91–106.

[5] Wang C, Beer M, Ayyub BM. Time-dependent reliability of aging structures: 
Overview of assessment methods. ASCE- ASME J Risk Uncertain Eng Syst Part 
A: Civ Eng 2021;7(4):03121003.

[6] Wang D, Qiu H, Gao L, Jiang C. A subdomain uncertainty-guided kriging method 
with optimized feasibility metric for time-dependent reliability analysis. Reliab 
Eng Syst Saf 2024;243:109839.

[7] Rice SO. Mathematical analysis of random noise. Bell Syst Tech J 
1944;23(3):282–332.

[8] Andrieu-Renaud C, Sudret B, Lemaire M. The PHI2 method: A way to compute 
time-variant reliability. Reliab Eng Syst Saf 2004;84(1):75–86.

[9] Sudret B. Analytical derivation of the outcrossing rate in time-variant reliability 
problems. Struct Infrastruct Eng 2008;4(5):353–62.

[10] Zhang X-Y, Lu Z-H, Wu S-Y, Zhao Y-G. An efficient method for time-
variant reliability including finite element analysis. Reliab Eng Syst Saf 
2021;210:107534.

[11] Zhang B, Wang W, Lei H, Hu X, Li C-Q. An improved analytical solution to 
outcrossing rate for scalar nonstationary and non-gaussian processes. Reliab Eng 
Syst Saf 2024;247:110102.

[12] Yang W, Zhang B, Wang W, Li C-Q. Time-dependent structural reliability under 
nonstationary and non-Gaussian processes. Struct Saf 2023;100:102286.

[13] Li X-W, Zhang X-Y, Zhao Y-G. Outcrossing rate method for nonstationary non-
Gaussian performance functions and its application to time-dependent reliability 
assessment. J Eng Mech 2024;150(10):04024078.

[14] Hu Z, Du X. Time-dependent reliability analysis with joint upcrossing rates. Struct 
Multidiscip Optim 2013;48:893–907.

[15] Wang C. Stochastic process-based structural reliability considering correlation 
between upcrossings. ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng 
2020;6(4):06020002.

[16] Mourelatos ZP, Majcher M, Pandey V, Baseski I. Time-dependent reliability 
analysis using the total probability theorem. J Mech Des 2015;137(3):031405.

[17] Jiang C, Huang X, Han X, Zhang D. A time-variant reliability analysis method 
based on stochastic process discretization. J Mech Des 2014;136(9):091009.

[18] Gong C, Frangopol DM. An efficient time-dependent reliability method. Struct 
Saf 2019;81:101864.

[19] Hu Z, Du X. First order reliability method for time-variant problems using series 
expansions. Struct Multidiscip Optim 2015;51:1–21.

[20] Li H, Wang T, Yuan J, Zhang H. A sampling-based method for high-dimensional 
time-variant reliability analysis. Mech Syst Signal Process 2019;126:505–20.

[21] Yuan X, Zheng W, Zhao C, Valdebenito MA, Faes MG, Dong Y. Line sampling 
for time-variant failure probability estimation using an adaptive combination 
approach. Reliab Eng Syst Saf 2024;243:109885.

[22] Yuan X, Shu Y, Qian Y, Dong Y. Adaptive importance sampling approach for 
structural time-variant reliability analysis. Struct Saf 2024;102500.

[23] Zhang Y, Xu J, Beer M. A single-loop time-variant reliability evaluation via a 
decoupling strategy and probability distribution reconstruction. Reliab Eng Syst 
Saf 2023;232:109031.

[24] Zhang Y, Xu J, Gardoni P. A loading contribution degree analysis-based strategy 
for time-variant reliability analysis of structures under multiple loading stochastic 
processes. Reliab Eng Syst Saf 2024;243:109833.

[25] Ouyang L, Che Y, Park C, Chen Y. A novel active learning Gaussian process 
modeling-based method for time-dependent reliability analysis considering mixed 
variables. Reliab Eng Syst Saf 2024;244:109916.

[26] Hao P, Tian H, Yang H, Zhang Y, Feng S. An efficient sequential kriging model 
for structure safety lifetime analysis considering uncertain degradation. Reliab 
Eng Syst Saf 2025;255:110669.

[27] Zhan H, Xiao N-C. A new active learning surrogate model for time-and space-
dependent system reliability analysis. Reliab Eng Syst Saf 2025;253:110536.

[28] Wang Z, Wang P. A nested extreme response surface approach for time-dependent 
reliability-based design optimization. J Mech Des 2012;134(12):121007.

[29] Wu J, Jiang Z, Song H, Wan L, Huang F. Parallel efficient global optimiza-
tion method: A novel approach for time-dependent reliability analysis and 
applications. Expert Syst Appl 2021;184:115494.

[30] Wang Z, Chen W. Confidence-based adaptive extreme response surface 
for time-variant reliability analysis under random excitation. Struct Saf 
2017;64:76–86.

[31] Li H, Lu Z, Feng K. A double-loop kriging model algorithm combined 
with importance sampling for time-dependent reliability analysis. Eng Comput 
2024;40(3):1539–58.

http://refhub.elsevier.com/S0951-8320(25)00395-3/sb1
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb2
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb2
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb2
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb2
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb2
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb3
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb3
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb3
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb3
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb3
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb4
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb4
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb4
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb4
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb4
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb5
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb5
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb5
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb5
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb5
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb6
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb6
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb6
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb6
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb6
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb7
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb7
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb7
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb8
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb8
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb8
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb9
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb9
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb9
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb10
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb10
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb10
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb10
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb10
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb11
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb11
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb11
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb11
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb11
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb12
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb12
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb12
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb13
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb13
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb13
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb13
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb13
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb14
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb14
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb14
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb15
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb15
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb15
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb15
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb15
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb16
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb16
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb16
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb17
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb17
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb17
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb18
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb18
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb18
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb19
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb19
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb19
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb20
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb20
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb20
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb21
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb21
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb21
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb21
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb21
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb22
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb22
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb22
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb23
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb23
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb23
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb23
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb23
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb24
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb24
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb24
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb24
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb24
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb25
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb25
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb25
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb25
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb25
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb26
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb26
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb26
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb26
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb26
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb27
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb27
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb27
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb28
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb28
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb28
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb29
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb29
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb29
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb29
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb29
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb30
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb30
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb30
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb30
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb30
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb31
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb31
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb31
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb31
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb31


Z. Hu et al. Reliability Engineering and System Safety 262 (2025) 111194 
[32] Hu Z, Du X. Mixed efficient global optimization for time-dependent reliability 
analysis. J Mech Des 2015;137(5):051401.

[33] Hu Z, Mahadevan S. A single-loop kriging surrogate modeling for time-dependent 
reliability analysis. J Mech Des 2016;138(6):061406.

[34] Zha C, Pan C, Sun Z, Liu Q. A single-loop reliability sensitivity analysis strategy 
for time-dependent rare events with both random variables and stochastic 
processes. Reliab Eng Syst Saf 2024;251:110373.

[35] Song Z, Zhang H, Zhang L, Liu Z, Zhu P. An estimation variance reduction-guided 
adaptive kriging method for efficient time-variant structural reliability analysis. 
Mech Syst Signal Process 2022;178:109322.

[36] Jiang C, Qiu H, Gao L, Wang D, Yang Z, Chen L. Real-time estimation error-
guided active learning kriging method for time-dependent reliability analysis. 
Appl Math Model 2020;77:82–98.

[37] Dang C, Valdebenito MA, Faes MG. Towards a single-loop Gaussian process 
regression based-active learning method for time-dependent reliability analysis. 
Mech Syst Signal Process 2025;226:112294.

[38] Qian H-M, Huang H-Z, Li Y-F. A novel single-loop procedure for time-variant 
reliability analysis based on kriging model. Appl Math Model 2019;75:735–48.

[39] Jiang C, Wang D, Qiu H, Gao L, Chen L, Yang Z. An active failure-pursuing 
kriging modeling method for time-dependent reliability analysis. Mech Syst 
Signal Process 2019;129:112–29.

[40] Cao R, Sun Z, Wang J, Guo F. A single-loop reliability analysis strategy for 
time-dependent problems with small failure probability. Reliab Eng Syst Saf 
2022;219:108230.

[41] Yun W, Lu Z, Wang L. A coupled adaptive radial-based importance sampling 
and single-loop kriging surrogate model for time-dependent reliability analysis. 
Struct Multidiscip Optim 2022;65(5):139.

[42] Xin F, Wang P, Chen Y, Yang R, Hong F. A new uncertainty reduction-guided 
single-loop kriging coupled with subset simulation for time-dependent reliability 
analysis. Reliab Eng Syst Saf 2025;111065.

[43] Hong F, Wei P, Fu J, Xu Y, Gao W. A new acquisition function combined 
with subset simulation for active learning of small and time-dependent failure 
probability. Struct Multidiscip Optim 2023;66(4):72.

[44] Guo H, Dong Y, Gardoni P. Adaptive subset simulation for time-dependent 
small failure probability incorporating first failure time and single-loop surrogate 
model. Struct Saf 2023;102:102327.

[45] Wang D, Qiu H, Gao L, Jiang C. A single-loop kriging coupled with sub-
set simulation for time-dependent reliability analysis. Reliab Eng Syst Saf 
2021;216:107931.
12 
[46] Hu Z, Wang D, Dang C, Beer M, Wang L. Uncertainty-aware adaptive Bayesian 
inference method for structural time dependent reliability analysis. Submitt 
Reliab Eng Syst Saf 2024.

[47] Dang C, Wei P, Song J, Beer M. Estimation of failure probability function under 
imprecise probabilities by active learning–augmented probabilistic integration. 
ASCE- ASME J Risk Uncertain Eng Syst Part A: Civ Eng 2021;7(4):04021054.

[48] Dang C, Valdebenito MA, Faes MG, Wei P, Beer M. Structural reliability analysis: 
A Bayesian perspective. Struct Saf 2022;99:102259.

[49] Wang L, Hu Z, Dang C, Beer M. Refined parallel adaptive Bayesian quadrature 
for estimating small failure probabilities. Reliab Eng Syst Saf 2024;244:109953.

[50] Li C-C, Der Kiureghian A. Optimal discretization of random fields. J Eng Mech 
1993;119(6):1136–54.

[51] Phoon K-K, Huang H, Quek ST. Simulation of strongly non-Gaussian processes 
using Karhunen–Loeve expansion. Probabilistic Eng Mech 2005;20(2):188–98.

[52] Deodatis G, Shields M. The spectral representation method: A framework for 
simulation of stochastic processes, fields, and waves. Reliab Eng Syst Saf 
2024;110522.

[53] Wang Z, Shafieezadeh A. ESC: An efficient error-based stopping crite-
rion for kriging-based reliability analysis methods. Struct Multidiscip Optim 
2019;59:1621–37.

[54] Zhan D, Qian J, Cheng Y. Pseudo expected improvement criterion for parallel 
EGO algorithm. J Global Optim 2017;68:641–62.

[55] Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method 
combining kriging and Monte Carlo simulation. Struct Saf 2011;33(2):145–54.

[56] Dang C, Beer M. Semi-Bayesian active learning quadrature for estimating 
extremely low failure probabilities. Reliab Eng Syst Saf 2024;246:110052.

[57] Zhao Z, Lu Z-H, Zhao Y-G. P-AK-MCS: Parallel AK-MCS method for structural 
reliability analysis. Probabilistic Eng Mech 2024;75:103573.

[58] Zhan H, Liu H, Xiao N-C. Time-dependent reliability analysis of structural 
systems based on parallel active learning kriging model. Expert Syst Appl 
2024;247:123252.

[59] Wang Z, Chen W. Time-variant reliability assessment through equivalent 
stochastic process transformation. Reliab Eng Syst Saf 2016;152:166–75.

[60] Hu W, Yan J, Zhao F, Jiang C, Liu H, Cho H, Lee I. Surrogate-based 
time-dependent reliability analysis for a digital twin. J Mech Des 2023;145(9).

[61] Chen X, Lin Z. Structural nonlinear analysis program OpenSEES theory and 
tutorial. Beijing, China: China Architecture & Building Press; 2014, p. 87–9.

[62] Lophaven SN, Nielsen HB, Sondergaard J. DACE: A Matlab Kriging toolbox. 
Technical Report No. IMM-TR-2002-12, Technical University of Denmark; 2002.

http://refhub.elsevier.com/S0951-8320(25)00395-3/sb32
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb32
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb32
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb33
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb33
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb33
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb34
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb34
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb34
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb34
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb34
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb35
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb35
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb35
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb35
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb35
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb36
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb36
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb36
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb36
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb36
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb37
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb37
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb37
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb37
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb37
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb38
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb38
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb38
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb39
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb39
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb39
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb39
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb39
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb40
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb40
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb40
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb40
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb40
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb41
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb41
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb41
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb41
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb41
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb42
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb42
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb42
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb42
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb42
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb43
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb43
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb43
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb43
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb43
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb44
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb44
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb44
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb44
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb44
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb45
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb45
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb45
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb45
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb45
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb46
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb46
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb46
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb46
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb46
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb47
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb47
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb47
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb47
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb47
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb48
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb48
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb48
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb49
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb49
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb49
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb50
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb50
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb50
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb51
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb51
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb51
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb52
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb52
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb52
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb52
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb52
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb53
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb53
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb53
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb53
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb53
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb54
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb54
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb54
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb55
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb55
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb55
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb56
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb56
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb56
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb57
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb57
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb57
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb58
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb58
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb58
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb58
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb58
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb59
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb59
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb59
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb60
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb60
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb60
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb61
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb61
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb61
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb62
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb62
http://refhub.elsevier.com/S0951-8320(25)00395-3/sb62

	Error-informed parallel adaptive Kriging method for time-dependent reliability analysis
	Introduction
	Background of time-dependent reliability analysis
	Definition of time-dependent failure probability
	Discretization of stochastic processes 
	TDFP estimation by MCS
	Kriging-based global response surrogate method

	Error-informed Parallel Adaptive Kriging
	Sequential variance-amplified importance sampling
	Relative error of TDFP
	Stopping criterion and parallel sampling strategy
	Implementation of the proposed method

	Examples and results
	Mathematical example
	Corroded simply supported beam
	Turbine blade
	Arch bridge

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Kriging model
	Data availability
	References


