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Abstract
This work addresses two common pitfalls present in the wider field of uncertainty
quantification: the usage of a normality assumption for non-negative physical quantities, and the
application of sampling or so-called discretization schemes for the propagation of interval
uncertainty. This first part of our work focuses on the normality assumption and its effect on the
calculation of moments and probability of exceedance and it is developed around a simple yet
illustrative example. Pitfalls associated with the assumption of normality are discussed and
highlighted, showing that such an assumption can have a significant detrimental effect when
performing uncertainty quantification. Assuming normality for non-negative physical quantities
inherently leads to undesirable properties, such as non-existent moments of the response of
interest or probabilities of exceedance with tails which become unreasonably heavy. With the
second part of our work, we want to elaborate on both analytical and numerical evidence
regarding interval uncertainty propagation. Both suggest that using sampling schemes to cope
with intervals is extremely inefficient and inaccurate. We illustrate that performing sampling to
propagate intervals yields a dramatic underestimation of the worst-case behavior of the problem
under consideration at an unreasonable computational cost.

Keywords: uncertainty quantification, reliability analysis, Monte Carlo simulation,
normal distribution, interval analysis

1. Introduction

Many advanced engineering modeling approaches deal with
the solution of systems of partial differential equations (PDEs)
that are formulated over continuous domains. Typically, these
problems are formulated as:
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Nx (u;θ) = f,x ∈ D, (1)

with boundary condition:

Bx (u;θ) = b,x ∈ Γ, (2)

where Nx is a differential operator, D⊂ Rd,d ∈ [1,4] is the
physical domain, u= u(x) is the solution of the PDE, and
θ = θ(x) ∈ Rnθ ×D is the vector-valued field representing the
parameters in the PDE. Additionally, f= f(x) is the forcing
term on D, and Bx is a boundary condition operator which
is defined on the domain boundary Γ. Often, such analyses
are performed under the assumption that all parameters θ can
be quantified exactly at any point x ∈ D. This is, of course,
unrealistic in engineering practice, as we are faced with both
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the randomness of the structure and the uncertainty of our own
observations of it. These phenomenamanifest themselves to us
as analysts as, respectively, aleatory [1] and epistemic uncer-
tainty [2]. Often, in practice, both sources appear at the same
time, as we are looking through imperfect lens (i.e. clouded
by epistemic uncertainty) to a variable environment [3, 4]. To
deal with this situation, research of the last four decades accu-
mulated in a plethora of very powerful, practical and efficient
techniques to propagate both aleatory and epistemic uncer-
tainty, as well as combinations of those. However, based on
our observations of published and unpublished works across
all scientific journals related to uncertainty quantification and
reliability analysis, we observe two common pitfalls:

• the assumption of a normal distribution for strictly non-
negative model inputs θ;

• the application of sampling(-like) schemes for the propaga-
tion of epistemic set-valued uncertainty.

In this paper, we want to study the assumptions behind these
pitfalls, assess their impact on the analysis results, and illus-
trate the problematic nature of either of these pathways.

Concerning aleatory uncertainty, it is assumed that the
parameters θ = θi, i = 1, . . .,nθ are affected by uncertainty,
which is described by means of independent random variables
with probability density function (PDF) fΘi(θi). In view of
the assumption of independence, the joint PDF is fΘ(θ) =∏nθ

i=1 fΘi(θi), where θ = [θ1, . . . ,θnθ ]. The behavior of the sys-
tem is synthesized in the so-called performance function g(θ),
which assumes a value equal to or smaller than zero whenever
a combination of the uncertain input parameters θ leads to
an undesirable response, for example, loss of serviceability or
collapse (see e.g. [5, 6]). Thus, the chance pf that the system
undergoes an undesirable behavior is given by the classical
probability integral [7]:

pf =
ˆ +∞

−∞
I(g(θ)) fΘ (θ)dθ, (3)

with fΘ(θ) the PDF describing the aleatory uncertainty in
the parameters θ, and I(g(θ)) the indicator function, which
returns 1 when θ is part of the so-called failure domain
F = {θ | g(θ)⩽ 0}, and which is 0 otherwise. Both methods
based on design-point related approaches [8] and simulation
methods, such as importance sampling [1], line sampling [9]
(also in a Bayesian interpretation [10]), directional (import-
ance) sampling [6], subset simulation [11, 12], Bayesian
approaches [13], and many others, have been introduced to
estimate pf. This rich spectrum of available methods, in com-
bination with an unprecedented availability of computational
power, enables us to assess, not only the reliability of a struc-
ture but also its sensitivity to perturbations [14] long before
a prototype has been designed. Nonetheless, many authors
default to the assumption of normality when modeling fΘ(θ).
Not only might this provide a biased view of reality, but
it could also create serious issues when the quantity being
modeled has a strict non-negative nature (e.g. a plate thickness
or Young’s modulus of a material). A more detailed analysis

of this phenomenon and related problems will be discussed in
section 2.

For the propagation of epistemic uncertainty, interval mod-
els, in particular, have been shown to offer an objective repres-
entation of the extent to which our ignorance reaches. Efficient
techniques based on optimization [15–17], perturbation ana-
lysis [18–20], interval arithmetic [21], affine arithmetic [22],
improved interval analysis [23, 24], surrogate modeling [25,
26] and Bayesian cubature [27] have been introduced. Note
that sampling methods have also been successfully applied
based on Cauchy distributions [28, 29] or scenario optimisa-
tion [30]. However, despite this rich wealth of methods for
efficient intrusive and non-intrusive interval analysis, we have
observed that many authors still use one or the other variant of
sampling methods to propagate intervals. This mistake is even
found in highly cited papers from reputable and respectable
journals. Presumably, this stems either from the false belief
that there is some similarity between an interval and a uni-
form distribution, or from the belief that such propagation is
harmless. In the second part of this paper, we aim to illustrate
that both beliefs are not only incorrect but may also lead to a
catastrophic underestimation of the worst-case behavior of the
structure. Arguably even worse, we observe that many authors
today, when proposing new approaches for the propagation
of epistemic uncertainty, be it pure or in hybrid form, resort
to sampling-based propagation to prove the efficacy of their
techniques. Obviously, this is not valid, as new approaches
need to be bench-marked against the most efficient and accur-
ate tools currently available. Sampling-based propagation of
intervals possesses neither of these two properties. This creates
a situation where ‘novel’ approaches are being bench-marked
against a wrong golden-standard. These phenomena will be
discussed in detail in section 3. As an additional remark, it
should be noted that considering a uniform (or bounded) dis-
tribution may be challenging even in the context of classical
probabilistic analysis, as it introduces strong non-linearities
when mapping to the standard normal space [31].

2. Normality assumption

2.1. Context

The normal distribution is one of the most commonly used
in structural reliability analysis to describe uncertainty asso-
ciated with model inputs of a numerical model [6]. Its wide-
spread application is driven by several factors that make it
both practical and mathematically convenient. Some of these
factors are the following.

• Data scarcity and maximum entropy. In situations where
data is scarce, the only available information may be limited
to the mean and standard deviation of the input variables.
When this is the case, the normal distribution becomes a nat-
ural choice due to the principle of maximum entropy [32,
33]. The normal distribution maximizes entropy for a given
mean and variance, making it the least biased assumption. It
does not introduce any additional information beyond what
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is provided by these two statistical moments, making it a
reasonable model in the absence of further data.

• Standard normal space. A significant advantage of mod-
eling uncertainty via normal random variables is its ease
of transformation into standard normal space. In structural
reliability analysis, methods such as the first-order reliabil-
ity method (FORM) and the second-order reliability method
(SORM) frequently rely on such transformations [34]. The
ability to map uncertain inputs to a standard normal dis-
tribution with mean zero and variance one simplifies fail-
ure probability calculations, especially for multidimensional
problems.

• Central limit theorem. The central limit theorem further
supports the use of the normal distribution. Indeed, accord-
ing to the central limit theorem, the sum of a large num-
ber of independent, identically distributed random variables
tends to follow a normal distribution, regardless of their ini-
tial distributions [6]. In structural systems, where uncertain-
ties often result from the combination of several factors,
the aggregated effect of these uncertainties may naturally
approximate a normal distribution.

• Mathematical convenience. The normal distribution offers
significant mathematical convenience. Its properties, such
as symmetry and smoothness, allow for analytical solutions
and efficient numerical integration. These features are espe-
cially valuable in structural reliability analysis, where com-
putational efficiency is often critical.

However, while the normal distribution has appealing prop-
erties, its adoption may lead to issues in particular cases.
Indeed, as discussed in [35, 36], using a normal distribution
to describe the uncertainty associated with a strictly positive
quantity assigns nonzero probability to negative values. This
in turn can lead to loss of coercivity, which is a mathematical
condition ensuring that the differential operator remains well-
behaved (i.e. bounded below by a positive constant). When
coercivity is lost, the associated boundary value problem may
become ill-posed. To address this issue, the use of uniform
or lognormal distributions has been investigated in the liter-
ature, as discussed in e.g. [37, 38]. In addition, using the max-
imum entropy principle based on moments only may not be
appropriate. In fact, when considering the first two moments
of an uncertain variable plus the condition of strict positiv-
ity, the maximum entropy distribution is no longer normal.
Therefore and based on the previous discussion, application of
the normal distribution for modeling strictly positive quantit-
ies is wrong from both a mathematical viewpoint and the max-
imum entropy principle.

While there are several cases where the normal distribution
may not be an appropriate choice for modeling uncertainty,
this paper will not attempt to address all such instances, as that
would be a daunting task. Instead, the focus will be limited
to a specific case study where the uncertain input parameter
of a structural model is strictly positive due to physical con-
straints. In such a case, using a normal distribution is partic-
ularly problematic, as it allows for negative values, which are
physically impossible. This analysis will demonstrate how the
assumption of a normal distribution in such scenarios can lead

Figure 1. Linear spring with stiffness k subject to unit load f.

to inaccurate representations of uncertainty and, consequently,
unreliable model predictions.

2.2. Case study: linear spring

The case study considered here is a simple linear spring
subjected to a unit force f = 1, as depicted schematically in
figure 1.

The spring is characterized by its stiffness, denoted as k.
The system follows Hooke’s law, where the displacement u
under the unit force is inversely proportional to the stiffness k,
leading to the expression for displacement:

u=
1
k
, (4)

where physical units have been omitted for the sake of sim-
plicity. Note that the numerical model as cast in equation (4)
is extremely simple. Such a model is selected on purpose to
allow for analytical derivations. However, even such a simple
model allows to extract very relevant conclusions which can
be straightforwardly extended towards more complex models.

It is assumed that the spring stiffness k is affected by uncer-
tainty and hence, it is modeled as a random variable. Note that
due to physical considerations, it is known that k> 0. In par-
ticular, three different random variable models are chosen to
characterize uncertainty, as described below.

• The first model considers a random variable KN following
a normal distribution. Specifically, KN ∼ N(µ,σ), where
µ is the mean stiffness, and σ> 0 is the standard deviation
representing the uncertainty. However, this model presents
a limitation: the normal distribution allows KN to take neg-
ative values, which violates the physical condition that the
stiffness k must be positive. The PDF associated with KN is
given by:

fKN (k) =
1

σ
√
2π

exp

(
− (k−µ)

2

2σ2

)
, (5)

where k ∈ (−∞,∞), even though negative values are non-
physical.

• The secondmodel is based on a truncated normal distribu-
tion. Here, the random variableKTN follows a truncated nor-
mal distribution with shape parameters µ and σ and whose
support is restricted to [a,∞), where a is a real constant
such that a⩾ 0. This restriction ensures that the stiffness k
remains non-negative, in contrast to the normal distribution
which allows negative values. The truncated normal distri-
bution modifies the standard normal distribution by renor-
malizing the PDF over the interval [a,∞), ensuring that the
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total probability over this range equals 1. The PDF associ-
ated with KTN is given by:

fKTN (k) =
1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1−Φ

( a−µ
σ

) , k⩾ a (6)

where Φ(·) is the cumulative distribution function (CDF)
of the standard normal distribution. Note that the shape
parameters µ and σ are in general different from the mean
and standard deviation, respectively, due to the parameter a
restricting the support. However, if the renormalization con-
stant 1−Φ

( a−µ
σ

)
is close to 1, then µ and σ become very

close to the mean and standard deviation of the distribution.
• The third model assumes that k follows a lognormal distri-
bution. This means that the natural logarithm of k, denoted
by ln(k), follows a normal distribution with mean µG and
standard deviation σG. The lognormal distribution ensures
that the stiffness k remains strictly positive, making it a nat-
ural choice for modeling physical quantities that cannot be
negative. The PDF associated with the lognormal distribu-
tion KL is given by:

fKL (k) =
1

kσG

√
2π

exp

(
− (lnk−µG)

2

2σ2
G

)
, k> 0 (7)

The parameters µG and σG (mean and standard deviation
of the underlying normal distribution) can be computed in
terms of the mean µ and standard deviation σ of the lognor-
mal distribution as follows:

µG = ln

(
µ2√

µ2 +σ2

)
(8)

σG =

√
ln

(
1+

σ2

µ2

)
(9)

Please note that in all definitions in equations (7)–(9), it is
implicitly considered that µ⩾ 0 and σ ⩾ 0.

Sections 2.3 and 2.4 focus on analyzing the consequences of
adopting any of the three probabilistic models described above
for calculating the second-order statistics and probability of
exceedance of the displacement of the linear spring problem
described in equation (4).

2.3. Mean and variance of the response

In the analysis of systems with random inputs, second-order
statistics (namely, mean and standard deviation) are funda-
mental in quantifying the uncertainty of the response output
[39]. With reference to the spring with uncertain stiffness, the
mean µU of the random displacement U gives an idea of the
system’s typical behavior, while the standard deviation σU
quantifies the spread or uncertainty of the displacement about
the mean. However, while second-order statistics are import-
ant, they are often not sufficient for capturing the complete
behavior of a random system. The third- and fourth-order stat-
istics (that is, skewness and kurtosis, respectively) provide

deeper insights into the asymmetry and tail behavior of the dis-
placement distribution [40]. These higher-order moments are
particularly important when the system exhibits non-normal
behavior or when the tails of the distribution significantly
influence the system’s risk and performance. However, for the
sake of simplicity, the focus is on second-order statistics in the
following.

The PDF of the random variable K modeling the uncer-
tain stiffness of the spring is considered to compute the mean
and standard deviation of the displacement. Note that K can
assume any of the three PDFs defined previously, that is: nor-
mal, truncated normal, or lognormal. Thus, the mean of the
displacement µU is defined as [5]:

µU = E [u] =
ˆ
Ωk

1
k
fK (k) dk (10)

where Ωk denotes the domain associated with K and E[·]
denotes expectation. The standard deviation σU is equal to the
square root of the variance, which is defined as [5]:

σ2
U = V [u] =

ˆ
Ωk

(
1
k
−µU

)2

fK (k) dk (11)

where V[·] denotes variance. In the following, the values
assumed by the mean µU and standard deviation σU of the
displacement are discussed, considering the three distribution
models for the random stiffness, namely normal, truncated
normal and lognormal distributions.

2.3.1. Mean and variance of the response—case of stiffness
following normal distribution. To start calculating specific
values for the mean and standard deviation of the displace-
ment, the case of a normal distribution for the stiffness is
considered first. The expected value of U is given by the
following integral:

µU =

ˆ ∞

−∞

1
k
fKN (k) dk. (12)

The last integral is split into two parts to facilitate its
calculation,

µU =

ˆ ∞

−∞

1
k
fKN (k) dk=

ˆ 0

−∞

1
k
fKN (k) dk︸ ︷︷ ︸
I1

+

ˆ ∞

0

1
k
fKN (k) dk︸ ︷︷ ︸
I2

.

(13)

To analyze the behavior of I2, it is split into two parts:

I2 =
ˆ ∞

0

1
k
fKN (k) dk=

ˆ µ

0

1
k
fKN (k) dk︸ ︷︷ ︸
I2a

+

ˆ ∞

µ

1
k
fKN (k) dk︸ ︷︷ ︸
I2b

(14)

where I2a covers the range [0,µ], and I2b covers the range
[µ,∞]. Now, focusing on I2a:

I2a =
ˆ µ

0

1
k

1

σ
√
2π

exp

(
− (k−µ)

2

2σ2

)
dk. (15)
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Figure 2. Estimator for the mean value of the displacement of the
spring when the stiffness follows a normal distribution.

This last integral can be bounded from below by repla-
cing (k−µ) by µ as argument of the exponential function,
leading to:

I2a ⩾
ˆ µ

0

1
k

1

σ
√
2π

exp

(
− µ2

2σ2

)
dk

=
1

σ
√
2π

exp

(
− µ2

2σ2

)ˆ µ

0

1
k
dk. (16)

The integral
´ µ
0

1
k dk is known to diverge as k→ 0. Therefore,

I2a diverges to +∞ due to the behavior of 1
k as k→ 0. Given

this result, it can be readily shown that the integral I2 tends
to +∞ as well. Using similar arguments, it can be shown that
I1 tends to −∞. This implies that the expected value µU is
undefined because of the behavior of the integrals I1 and I2.
As the expected value is undefined, it becomes evident that
the standard deviation σU is also undefined, because its cal-
culation depends on the mean value µU; for a formal proof,
please refer to [41], as it covers precisely the calculation of
the second-order moment. To gain further insight into the non-
existence of the mean and standard deviation of the displace-
ment, the following numerical experiment is carried out. It is
assumed that the mean and standard deviation of the normally-
distributed stiffness are µ= 2 and σ= 1, respectively. Then,
a set of N samples of the stiffness is generated, which is
used to calculate the corresponding samples of the displace-
ment with equation (4). Thereafter, we attempt to calculate
the mean value of the displacement using the classical formula
1
N

∑N
i=1 u

(i), where u(i) is the ith sample of the displacement.
The results obtained are shown in figure 2 as a function of the
sample set size N for three independent runs, which are shown
with yellow, orange and blue colors. For these three independ-
ent runs, it is possible to observe that the estimate of the mean
does not converge to any particular value. Thus, this numerical
experiment confirms the analytical results.

The fact that both the mean and standard deviation of
the displacement do not exist when the stiffness of the
spring follows a normal distribution may seem surprising at
first. However, such behavior has already been acknowledged
before, as discussed in, e.g. [42, 43]. In fact, as long as the
PDF associated with the stiffness value k= 0 is larger than
zero, the mean and standard deviation of the displacement

Figure 3. Estimator for the mean value of the displacement of the
spring when the stiffness follows a truncated normal distribution
with a= 0.

become undefined or tend to infinity, depending on the spe-
cific situation. Furthermore, it should be noted that the non-
existence of the mean and standard deviation of the displace-
ment does not depend on the particular values assumed by the
statistical properties of the spring stiffness. In other words,
assuming a normal distribution for the stiffness of the spring
immediately leads to a displacement without mean or standard
deviation, no matter how small the tail of the normal distribu-
tion is for negative values of the stiffness.

2.3.2. Mean and variance of the response—case of stiffness
following a truncated normal distribution. The second case
under consideration corresponds to the stiffness following a
truncated normal distribution over the interval [a,+∞). For
such a case, the expected value of the displacement is:

µU =

ˆ ∞

a

1
k

1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1−Φ

( a−µ
σ

) dk (17)

while the standard deviation of the displacement is:

σU =

√√√√ˆ ∞

a

(
1
k
−µU

)2 1

σ
√
2π

exp
(
− (k−µ)2

2σ2

)
1−Φ

( a−µ
σ

) dk. (18)

For the case where a= 0, the expected value integral in
equation (17) is similar to the one in equation (14), except
for the factor 1−Φ

( a−µ
σ

)
. Thus, it is readily seen that for

the case where the stiffness is modeled as a truncated nor-
mal distribution over the support [a= 0,∞), the mean value of
the displacement tends to infinity. To verify such a result, the
following numerical experiment is carried out. N samples of
the stiffness following a truncated distribution with parameters
µ= 2, σ= 1 and a= 0 are generated. Then, the mean value of
the displacement is estimated, as shown in figure 3. The res-
ults obtained for three independent runs (which are denoted
with yellow, orange and blue colors) show that the estim-
ated mean values increase as the number of drawn samples
N increases.

Arguments similar to the ones discussed before allow dedu-
cing that the standard deviation of the displacement becomes
undefined for the case where the stiffness follows a truncated

5
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Figure 4. Mean value µU and standard deviation σU of the
displacement of the spring when the stiffness follows a truncated
normal distribution with parameters µ= 4, σ= 1 and
a ∈ [10−6,10−1].

distribution over the interval [a= 0,∞). Demonstrating such a
result is straightforward, however, the detailed steps are omit-
ted here for the sake of brevity.

Whenever the uncertainty of the stiffness is modeled
using a truncated normal distribution with a> 0, then both
the mean µU and standard deviation σU of the displace-
ment become real numbers. While there are no closed-form
formulas for the mean and standard deviation of the dis-
placement in equations (17) and (18), respectively, efficient
one-dimensional quadrature schemes can be implemented to
calculate these second-order statistics. Nevertheless, when
characterizing the uncertainty of the stiffness with a truncated
normal distribution, care must be taken in choosing the trun-
cation parameter a, as it may possess a significant effect on
the calculated second-order statistics. To demonstrate the lat-
ter point, consider the following example. The stiffness in
equation (4) is modeled following a truncated normal distri-
bution as shown in equation (6) with parameters µ= 4, σ= 1
and a ∈ [10−6,10−1]. The results obtained for the mean µU
and standard deviation σU of the displacement are shown
in figure 4. It is noted that while the mean is more or less
stable around the value of 0.27, the standard deviation varies
between two orders of magnitude depending on the specific
value chosen for the truncation parameter a. This highlights
that the standard deviation of the displacement is extremely
sensitive to the particular selection of the truncation parameter.
In consequence, considering a truncated normal distribution
for modeling the uncertainty of the stiffness may not be con-
venient unless the effect of the truncation parameter is studied
in depth, or solid engineering arguments exist to impose such
a bound.

To gain further insight into the challenges associated with
the application of a truncated normal distribution, a particular

Figure 5. Estimators for the mean value µU and standard deviation
σU of the displacement of the spring as a function of the number of
samples N when applying Monte Carlo simulation (MCS). The
dashed lines show the reference results obtained through numerical
quadrature (Q).

setting of the last example is investigated. The parameters of
the truncated normal distribution that characterize the stiff-
ness are selected as µ= 4, σ= 1 and a= 10−6. Then, both the
mean µU and standard deviation σU of the displacement are
estimated using Monte Carlo simulation (MCS) with a set of
samples of sizeN. The evolution of the estimates of µU and σU
as a function of N are shown in figure 5 with solid blue line. In
addition, the reference values calculated with quadrature (Q)
are shown with a dashed red line. An analysis of the results
obtained with Monte Carlo indicates that while the mean µU
can be reasonably well estimated with about N= 103 samples,
the estimator for the standard deviation σU does not converge
even after drawingN= 108 samples. In fact, it is observed that
when N≈ 3× 106, there is an abrupt jump in the estimators of
both µU and σU . The reason is that a value of the stiffness k
which is close to the lower bound a= 10−6 is sampled, thus
leading to a huge sample of the displacement that explains the
jump. Such an issue only highlights again that the selection
of the truncation parameter for a truncated normal distribu-
tion plays a major role. Hence, extreme care must be applied
when considering a truncated normal distribution, especially
with respect to its truncation parameter.

2.3.3. Mean and variance of the response—case of stiffness
following a lognormal distribution. The third case under
consideration corresponds to the stiffness following a lognor-
mal distribution with mean µ and standard deviation σ, whose
PDF fKL(k) is defined in equations (7)–(9). In such a case,
the mean µU and standard deviation σU of the displacement
in equation (4) can be calculated in closed-form, as shown
below,
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µU =

ˆ ∞

0

1
k
fKL (k) dk=

1
µ

√
1+

σ2

µ2
(19)

σU =

√ˆ ∞

0

(
1
k
−µU

)2

fKL (k) dk

=

√√√√ 1
µ2

(
1+

σ2

µ2

)
− 1

µ2

√
1+

σ2

µ2
. (20)

As the lognormal distribution ensures that the stiffness k is
strictly positive, both values of the second-order statistics of
the displacement, as shown in equations (19) and (20) , are
well defined for different combinations of the mean µ> 0 and
standard deviation σ> 0 of the stiffness.

2.4. Probability of exceedance of the response

The probability of exceedance is a key metric in assessing the
performance of systems under uncertainty. This probability
quantifies the chances that a given output response variable
of a system will exceed a specified threshold, which is crucial
for evaluating both serviceability and ultimate limit states. In
the following analysis, attention is focused on the exceedance
probability associated with the tip displacement of the spring
as described in equation (4) when the uncertainty of the stiff-
ness is modeled as a random variable following normal, trun-
cated normal, and lognormal distributions. The probability of
exceedance is defined as the chances that the random vari-
ableU associated with the displacement exceeds a threshold u,
that is:

P [U> u] = 1−P [U⩽ u] = 1−FU (u) (21)

where P[·] denotes probability of the argument and FU is the
CDF associated with the random variable U. Hence, calcu-
lating the exceedance probability is equivalent to calculating
one minus the CDF. In the following, this CDF is deduced for
the three specific distributions considered to characterize the
uncertainty of the stiffness. These expressions are then com-
pared to each other in section 2.4.4.

2.4.1. CDF—case of stiffness following normal distribution.
To calculate the sought CDF in case where the uncertainty in
the stiffness is described by a normal distribution, it is neces-
sary to solve:

FU (u) = P [U⩽ u] = P

[
1
K

⩽ u

]
. (22)

As the random variable K admits negative and positive values
for the stiffness, the inequality 1

K ⩽ u must be solved taking
into account the cases where u< 0 and u⩾ 0. Starting with
the case u< 0, the solution of the inequality 1

K ⩽ u becomes
1
u ⩽ K⩽ 0. Then, when u< 0, the CDF is:

FU (u) = P

[
1
u
⩽ K⩽ 0

]
. (23)

Recalling that K follows a normal distribution with mean µ
and standard deviation σ, it is found that:

FU (u) = Φ

(
−µ

σ

)
−Φ

(
1
u −µ

σ

)
. (24)

Now for the case where u⩾ 0, the inequality 1
K ⩽ u implies

that either K⩽ 0 or K⩾ 1
u . Therefore:

FU (u) = P [K⩽ 0] +P

[
K⩾ 1

u

]
. (25)

Recalling again that K follows a normal distribution, the last
expression simplifies to:

FU (u) = Φ
(
−µ

σ

)
+

(
1−Φ

(
1
u −µ

σ

))
. (26)

Combining both cases analyzed above, it is found that the
sought CDF FU(u) is:

FU (u) =


Φ
(−µ

σ

)
−Φ

(
1
u−µ

σ

)
, if u< 0,

Φ
(
−µ

σ

)
+
(
1−Φ

(
1
u−µ

σ

))
, if u⩾ 0.

(27)

It is important to note that although the displacement does not
possess mean or variance, its CDF does exist. Such charac-
teristic is also observed in other well-known cases such as,
e.g. the Cauchy distribution, and is typical of uncertain quant-
ities that exhibit a heavy-tailed behavior.

2.4.2. CDF—case of stiffness following truncated normal
distribution. In this case, the stiffness adopts values belong-
ing to the interval [a⩾ 0,∞). To calculate the sought CDF, the
starting point is again:

FU (u) = P [U⩽ u] = P

[
1
K

⩽ u

]
. (28)

Three cases need to be distinguishedwhen solving the inequal-
ity 1

K ⩽ u. First, u cannot be negative, as the stiffness is always
positive. Therefore, FU(u) = 0 whenever u< 0. The second
case is that the upper bound for the displacement is 1

a , as
the smallest value that the stiffness may assume is a. Thus,
FU(u) = 1 whenever u> 1/a. The third case is considering
that 0⩽ u⩽ 1

a , which is fulfilled whenever K⩾ 1
u . Thus:

FU (u) = P

[
K⩾ 1

u

]
. (29)

For a truncated normal distribution, this probability is:

FU (u) =
1−Φ

(
1
u−µ

σ

)
1−Φ

( a−µ
σ

) . (30)
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Combining the three cases described above, the complete CDF
of U is:

FU (u) =



0, if u⩽ 0,

1−Φ

(
1
u−µ

σ

)
1−Φ( a−µ

σ )
, if 0< u⩽ 1

a ,

1, if u> 1
a .

(31)

2.4.3. CDF—case of stiffness following lognormal distribu-
tion. When the uncertainty associated with the stiffness is
modeled as a lognormal random variable, the stiffness adopts
values belonging to the interval (0,∞). To calculate the CDF
of the displacement, it is noted that u cannot be negative, as
the stiffness is always positive and thus, FU(u) = 0 whenever
u⩽ 0. For the case where u> 0:

FU (u) = P [U⩽ u] = P

[
1
K

⩽ u

]
= P

[
K⩾ 1

u

]
. (32)

Recalling that lnK follows a normal distribution with mean µG

and standard deviation σG (see equations (8) and (9)), the last
expression is equal to:

FU (u) = P

[
lnK⩾ ln

(
1
u

)]
= 1−Φ

(
ln
(
1
u

)
−µG

σG

)
.

(33)

In summary, the sought CDF is in this case equal to:

FU (u) =


0, if u⩽ 0,

1−Φ

(
ln( 1

u )−µG

σG

)
, if u> 0.

(34)

2.4.4. Probability of exceedance—comparison between dif-
ferent distribution types associated with stiffness. Now that
the CDFs associated with the displacementU for the three dif-
ferent distribution types for the stiffness have been determined,
it is possible to calculate the probability of exceedance and
also compare the results obtained with each of these three dif-
ferentmodels. For such purpose, the parametersµ andσ for the
three distributions (normal, truncated normal and lognormal)
are chosen as µ= 5 and σ= 1, while the truncation parameter
for the truncated normal is selected as either a= 0.1 or a= 0.2.
The results obtained are depicted in figure 6. From these res-
ults, it is observed that the four cases analyzed provide similar
probabilities of exceedance up to the threshold level of about
u≈ 0.25. However, for larger threshold levels, the results asso-
ciated with the normal and truncated normal distribution differ
significantly with respect to those of the lognormal distribu-
tion. Furthermore, there are also differences (albeit less pro-
nounced) between the normal and truncated normal cases. The
differences between normal/truncated normal and lognormal
cases can be explained as follows. In both normal/truncated
normal cases, the probability density associated with small
values of the stiffness is too large, at least when compared

Figure 6. Probability that the displacement U exceeds a threshold
level u. The random variable models considered for the stiffness are
normal (N), truncated normal (TN), and lognormal (LN)
distributions.

to the lognormal case. Assigning more probability density
to those small values implies that the probability distribution
associated with the displacement becomes heavy-tailed, lead-
ing to values of the probability of exceedance which are orders
of magnitude larger than those associated with the lognormal
distribution. Such a behavior is not surprising. It had already
been shown previously that when considering a normal distri-
bution for modeling the stiffness, the displacement does not
possess second-order statistics (see e.g. figure 2). And for the
case of a truncated normal distribution, the variance is highly
sensitive to the truncation parameter (see e.g. figure 4). Such
behavior is typical of heavy-tailed distributions (such as the
Cauchy distribution) and is clearly observed in figure 6.

All of the observations described above suggest that the
normal or truncated normal distributions may lead to overly
conservative values of the probability of exceedance. Such
overly conservative results may be undesirable, as they defeat
one of the primary purposes of structural reliability, which is to
provide a rational tool for decision-making under uncertainty.
Indeed, while an overly conservative estimate of a failure prob-
ability would be on the safe side, it could nevertheless be harm-
ful when weighted against, e.g. construction costs of a system.

3. Interval analysis via sampling

3.1. Interval analysis

As mentioned in the introduction, the second part of this paper
deals with a common pitfall in interval analysis, namely the
use of sampling(-like) schemes to calculate the bounds of a
response ui of interest. The main goal of performing interval
analysis is to examine the full potential range of values that ui
might assume, while accounting for the epistemic uncertainty
that is present in the model input parameters θ. Since we are
looking for extremes in the response, it is important to ensure
that our estimates are conservative as to avoid making unsafe
decisions.
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3.1.1. Formal definitions. In interval analysis, we consider
the epistemic uncertainty in a single parameter θ to be bounded
by an interval scalar θI ⊂ R, which is defined as

θI =
[
θ, θ

]
=
{
θ ∈ R|θ ⩽ θ ⩽ θ

}
, (35)

where θ and θ, with θ ⩽ θ, are bounds between which the
unknown values of the uncertain parameter θ are deemed to lie.
Similarly, when multiple parameters are jointly uncertain, an
interval vector θI ⊂ Rdnθ is defined by the Cartesian product of
nθ interval scalars: θI = θI1 × θI2 × . . .× θInθ , with × denoting
the Cartesian product operator. As a result, the interval scal-
ars θIi , i = 1, . . . ,nθ are independent and as such describe a
hyper-rectangular polytope in Rnθ . The main point is that we
neither have sufficient information to define a precise value
for θ, nor to characterize a crisp probability distribution Fθ(θ).
The bounds as such represent our ‘honest’ worst-case estim-
ation of the values the parameter θ could take. Intervals and
interval vectors can be fit on data using methods such as scen-
ario optimization [44], Bayesian extreme value methods [45],
or Chebyshev’s inequality [46].

In the context of engineering analysis, θI effectively rep-
resents an nθ dimensional hyper-rectangle describing the epi-
stemic uncertainty we have as analysts on the true value of θ.
The main goal of interval analysis is in this context to evaluate
the worst and best possible behavior of equations (1) and (2),
given the fact that we are not able to exactly quantify θ. One
particular way to describe the results of an interval analysis
is to consider that the hyper-cube θI is processed through a
potentially nonlinear map to a set of possible responses U:

U=
{
u | Nx (u;θ) = f,x ∈ D,Bx (u;θ) = b,x ∈ Γ,θ ∈ θI

}
.

(36)

3.1.2. Propagation of intervals. This set U effectively con-
tains all possible physical responses of the system that are
consistent with the description of the epistemic uncertainty.
In other words, it describes how the system under consider-
ation could potentially react in correspondence with our lack
of knowledge. In engineering decision-making, we are usually
interested in the worst- and best-case behavior of the system.
The main issue here is that finding the exact set U is computa-
tionally intractable within finite time. This means that we want
to find ui and ui, with ui ⩽ ui for every response i, i = 1, . . .,nu
that is compatible with both equations (1) and (2) and θI:

ui = min
θ∈θI

U(i) , i = 1, . . .,nu

ui =max
θ∈θI

U(i) , i = 1, . . .,nu,
(37)

where the notation U(i) is used to denote that we consider only
the ith response of the solution set.

All interval propagation methodologies discussed in the
Introduction either deal with solving the min-max optimiz-
ation problem formulated in equation (37) directly, or aim
at effectively providing a minimum-encompassing (convex)
representation of U by explicitly considering equation (36).

As discussed in the Introduction, these methods include
techniques based on optimization [15–17], perturbation ana-
lysis [18–20], interval arithmetic [21, 47], affine arith-
metic [22], improved interval analysis [24, 48], surrog-
ate modeling [25, 26] and Bayesian cubature [27]. Also,
sampling-based optimization methods, such as sequential
Monte Carlo [49] can safely be used to solve equation (37).

3.1.3. Sampling from intervals. Since we are interested in
the bounds of the response of the structure, the intervals should
be propagated in a conservative way. This means that our
estimated bounds should be at least as wide as the true bounds
from a numerical standpoint. Despite the wide availability of
approaches to propagate intervals in such a conservative way,
many researchers seem to follow a sampling-based approach
that roughly looks like this schemata4:

(i) define the interval uncertainty as θI = θI1 × θI2 × . . .× θInθ
(ii) represent θI as an nθ-dimensional random variable θ̃ fol-

lowing a uniform distribution Unθ
(
θ,θ
)

(iii) Generate a large space-filling design containing N

samples
{
θj,uji

}
, with j = 1, . . .,N, based on uniformly

distributed random variables and compute the corres-
ponding responses.

(iv) Determine the bounds usi and u
s
i based on two sampling

estimators:

usi = min
j=1,...,N

uji, i = 1, . . .,nu

usi = max
j=1,...,N

uji, i = 1, . . .,nu.
(38)

A rough inspection of this approach reveals two main
assumptions underlying it. First, authors resorting to this
approach assume that the uniform distribution is a good tool to
represent the uncertainty that is actually present in θ. Second,
it is assumed that when N is taken sufficiently large, usi ≈
ui, ∀i = 1, . . .,nu and usi ≈ ui, ∀i = 1, . . .,nu with high accur-
acy. As we will show in the following subsections, neither
assumption can be proven to hold in general, as there are both
practical and theoretical objections.

As a small final comment, we note that some authors do
not assume a uniform distribution here, but rather discret-
ize the interval in equidistant sampling points. Even though
this approach is similar to the sampling scheme delineated
here before, subtle yet important differences exist with respect
to sampling schemes. In essence, there exists no theoretical
objections against this method as no probabilistic information
is formally imposed on the uncertain parameter θ. Therefore,
the interval paradigm is not violated. However, still, from a
practical and computational viewpoint, such approach is quite
sub-optimal, as will be explained in section 3.3.

4 We do not cite papers containing these pitfalls on purpose. Our intention is
to be educative, not provocative.
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Figure 7. Graphical representations of intervals. Left: an interval as
a bounded segment of the real line. Right: an interval as a p-box.

3.1.4. The special case of dependent intervals. In case of
dependent intervals, the hyper-rectangle θI is tightened either
into an admissible set [50], parallelepiped [51], or (hyper)-
ellipsoid [52] model. In case of spatial or time dependence,
also interval processes [18] and -fields [53, 54] have been
introduced. In all these models of dependent intervals, this
can be recast into a series of (linear)-inequalities via the
Minkowsky–Weyl theorem [50], potentially after a discretiz-
ation step. Since the analyst still has no information about
the exact value of θ; all we know is that the exact value is
bounded by some hyper-planes as described by Minkowski–
Weyl. As such, the optimization problem that was intro-
duced in equation (37) can be recast into a very similar con-
strained optimization problem. Therefore, since optimization
still lies at the core, the same arguments that were laid out in
sections 3.1.2 and 3.1.3 also hold in case dependence between
the interval scalars is introduced in the analysis.

3.2. Theoretical objections to sampling from intervals

It appears to the authors that many of the sampling-based
approaches stem from a fundamental misunderstanding of
what an interval represents. Indeed, it is very tempting to resort
to the assumption that the uncertainty in θ, when it is repres-
ented by interval bounds θ and θ, can just as well be described
by a uniform distribution. After all, also Unθ

(
θ,θ
)
is defined

by a lower and upper bound on θ, and a straightforward applic-
ation of the maximum entropy principle based on just bounds
yields a uniform distribution. However, such an assumption
grossly neglects the original idea of interval analysis, namely
that we do not have enough knowledge to specify anything
else than the bounds θ and θ. Indeed, when we do assume
θ to follow a uniform distribution, we include extra informa-
tion in the analysis that was not there to begin with; namely,
that each θi ∈ θI is equally likely to occur. This knowledge is
not available from the data we have and is, therefore, inher-
ently subjective and potentially wrong. In essence, there are
two compatible representations of the lack of knowledge on
the uncertain-but-bounded uncertainty in θ. These are illus-
trated in figure 7.

The first interpretation, as shown on the left-hand side of
figure 7, shows θI as a bounded segment of the real line R. In
essence, this corresponds to stating that one has no knowledge
about the real value of θ, other than that it is bounded. Note
that one does not make a statement here about the true nature
of θ, as the parameter modeled by θ might be a deterministic
value, but also an aleatory uncertain quantity where we do not

have sufficient knowledge to build a probabilistic model. Note
furthermore that by specifying θI , one does not imply that θ
and θ are perfectly bounding all possible realizations of θ in
real life. Indeed, several works have explored the reliability of
such bounds (see e.g, [30, 45], or [44]). It is noteworthy that,
depending on the nature of θ, determining such bounds might
be impossible (due to the rarity of finding the corresponding
samples experimentally), or undesirable (since they might be
extremely wide, to the point that the analysis becomes unin-
formative).

The second possible interpretation of an interval, as shown
on the right-hand side of figure 7, can be explained when
resorting to the theory of p-boxes [3, 4]. The main idea of a
p-box is that there exists an unknown CDF FΘ of the uncer-
tain quantity θ for which only bounds can be provided. Thus, a
p-box is described by a lower CDF FΘ ∈ F and an upper CDF
FΘ ∈ F, where F expresses the set of all CDFs on DΘ ⊆ R.
These CDFs are collected as a pair

[
FΘ,FΘ

]
which yields a

set of possible CDFs {FΘ ∈ F | FΘ(θ)⩽ FΘ(θ)⩽ FΘ(θ), θ ∈
DΘ} for the unknown CDF ofΘ. The definition of a p-box cor-
responds to defining a lower probability P and upper probab-
ility P on events {Θ⩽ θ}= (−∞,θ]∩DΘ, i.e. P(Θ⩽ θ) =
FΘ(θ) and P(Θ⩽ θ) = FΘ(θ) for θ ∈ DΘ, which yields a
credal set of probability measures. Now, in case we have abso-
lute uncertainty about the real value of θ, we might state that
it could belong to every possible distribution with support
DΘ = [θ,θ]. This interpretation covers both the scenario where
we have a lack of knowledge about a deterministic quantity θ
and the situation where θ has a random nature which is elusive
due to the lack of sufficient data. Note that the p-box has a
fundamentally different interpretation in both cases, and also
here care should be taken on how the analysis ensues. Such a
p-box corresponds to defining the lower CDF and upper CDF,
respectively, as FΘ = H(θ− θ) andFΘ = H(θ− θ), withH(•)
the Heaviside function, as also illustrated on the right-hand
side of figure 7.

It can be observed that both interpretations contain some
sort of duality: one can specify that there is a lack of know-
ledge of the true value of θ within the interval bounds by either
providing only the bounds, or treating θ as if it could belong
to any possible distribution FΘ that is bounded on DΘ = θI.
Neither interpretation allows for treating θ as a uniformly dis-
tributed random variable.

3.3. Computational objections against sampling from
intervals

Next to the theoretical objections raised in section 3.2, there
are very compelling computational arguments not to solve the
interval propagation problem using equation (38). Just to spe-
cify, we criticize the use of plainMCS in the context of interval
propagation.

3.3.1. Convergence issues. Normally, in uncertainty quan-
tification and reliability engineering, MCS is used to solve
integral problems, such as those related to computing the prob-
ability of failure pf (see equation (3)), which is approximated
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by using MCS via the estimator p̂f:

p̂f =
1
N

N∑
i=1

I(g(θi)) . (39)

It is well-known that the number of samples N required to
build a (1−α) confidence interval around pf with an accuracy
level ϵ is bounded from below by:

N⩾
(
1
ϵ
zα/2

√
pf (1− pf)

)
, (40)

with zα/2 the z-score related to the confidence level α. In prac-
tice, ϵ is chosen to be at least ϵ⩽ 0.1pf for accuracy reasons.
To solve equation (38) in a similar way, one can argue that it
is required that gi(θ)→ ui to determine ui and gi(θ)→ ui to
determine ui, with gi the performance function only consider-
ing the ith response. Indeed, to have an accurate estimator of
the response bounds, the limit state surfaces of each response
individually must tend towards those bounds. It is easy to see
that the corresponding pf values therefore must tend towards
zero. This, in turn, allows the following analysis for the sample
size required to compute ui, after re-arranging a few terms in
equation (40):

Nui ⩾ lim
pf→0

zα/2

(
1

√
pf

)
=+∞. (41)

This result shows that one indeed needs a sample size
N→+∞ to find the correct value of ui, regardless of the
corresponding confidence level. As a sidenote, pf can in this
context be viewed as the probability of sampling a point that
gives an extreme (near-bound) response, which grows vanish-
ingly small as that point becomes more extreme. Of course,
one can build a traceable argument that it is sufficient to find
the interval bound with a precision level ϱ. In this case, the
equivalent limit state function for the upper bound becomes
gi(θ) = ui − ϱ. The number of required samples, in this case,
can be shown to be bounded as:

Nui ⩾
(
1
ϵ
zα/2

√
ς (1− ς)

)
, (42)

with ς the value of ϱ normalized with respect to the width of
the output interval uIi . Whereas in this case the required set of
samples is not infinite, it will still be prohibitively large when
one wants to get reasonably accurate estimators of the bounds.
Take, for instance, the case where we want to thus find the
upper bound ui with a precision of ϱ= 1 · 10−06, while having
a confidence level of 99% and a precision on the MCS estim-
ator of ϵ= 0.1 ∗ ς . In case we have an interval with unit-width
(i.e, |ui− ui|= 1), the sample size must be Nui ⩾ 6.635 · 1008.

Furthermore, as these analyses also show, the sample sizes
are obtained while letting gi(θ)→ ui. This means that one irre-
vocably obtains an inner approximation of the interval bound-
aries. Indeed, since the problem is solved from the ‘inside’
towards the bounds of the response, while requiring an infinite
sample size to converge, MCS gives inherently an inner inter-
val approximation. This means that no conservatism can be

proven. A fully analogous analysis can be made for the calcu-
lation of the lower bound ui.

Concerning discretization schemes, the approach boils
down to selecting a structured set of propagation points, con-
sisting of both the interval bounds and a selection of inner
points from the input space. This method aims to approx-
imate the worst- and best-case responses without requiring
a full MCS. While it is computationally more efficient, it
fundamentally suffers from the same limitations as MCS in
determining strict response bounds. The key issue is that the
worst- and best-case responses may not necessarily occur at
the selected propagation points. If the extreme responses lie
between the chosen inner points due to non-monotonicity in
the response function, they will be missed entirely. This res-
ults in an inner approximation of the response interval, just as
in the MCS approach. To ensure finding the correct bounds,
an infinitely fine discretization would be required. As a final
note, we want to acknowledge that this approach has merit in
case the analyst is more interested in learning the nature of the
mapping between the in- and outputs of the model under con-
sideration (e.g. smoothness, convexity, continuity). Therefore,
it is not a pitfall ‘per se’, but rather a method that should be
used with proper consideration and care.

3.3.2. Dimensionality issues. The problematic convergence
of finding the bounds of the system’s response subject to inter-
val uncertainty when using MCS was illustrated in the last
paragraphs. In this context, an additional problem shows up.
Whereas MCS, when used to determine pf is insensitive to the
dimension of the input vector θ, this is not the case when look-
ing for extremal values in the system’s response. Let’s just use
a very intuitive example to illustrate this. Consider the input to
be defined by the hyper-cube θ = [0,1]nθ . In the case of nθ =
1, when drawing 10 Latin Hypercube samples from U1(0,1),
on average each sample will cover 10% of the total space.
However, when nθ = 2, each of those 10 Latin Hypercube
samples will only still cover 1% of the total sample space. In
general, when drawingN Latin Hypercube samples over the nθ
dimensional hyper-cube, each of those samples will on aver-
age cover a fraction of (1/N)nθ of the total hyper-cubic input
space. Now, we have to realize that we are trying to find the
realizations θi

∗ ∈ θI and θi
∗ ∈ θI that solve equation (38) for

every i = 1, . . .,nu. As explained, we can allow for a precision
level ς , meaning we are essentially trying to randomly find
two ς dimensional hyper-cubes in the nθ dimensional input
space. This means, that to find either of the bounds, we would
need, on average, 1

ςnθ samples, assuming a unit-hypercube.
Assuming a problem that we wish to solve with nθ = 20 input
variables and a precision of ς = 1 · 10−06, already would cause
us to need 1 · 10120 samples. Just as a comparison to position
this order of magnitude: there are roughly speaking 1 · 1080
atoms in the observable Universe.

It should be pointed out that these arguments can be one-on-
one transferred to the case of discretizing the interval. Indeed,
the number of inner points required to sufficiently approximate
the true interval bounds, resp. learn how the mapping looks
like, grows rapidly with the dimensionality of the problem.
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Figure 8. Convergence of ϵl and ϵu on the extremes of the Ishigami function with respect to the sample size.

3.4. Practical examples of sampling from intervals

In this section, we present simple examples to illustrate
the under-estimation and inner-approximation phenomena, as
well as the slow convergence of the Monte Carlo estimator for
reaching the bounds of the distribution.

3.4.1. The Ishigami function. As a first example, consider
the two-dimensional Ishigami function, which is defined as:

u= sinθ1 + 7sinθ2
2 + 0.1θ3 sinθ1. (43)

The values of the parameters θi, i = 1,2,3 are considered
to be unknown, but bounded by the cube [−π,π ]

3. The cor-
responding bounds on u, namely u and u are found following
two approaches:

• assuming a uniform distribution in [−π,π ]
3. Following

equation (38), this produces the estimators us and us. To
study convergence, we increase the sample size N in 500
steps from 10 to 5 · 1008.

• performing a brute-force particle swarm optimization that is
bounded on [−π,π ]

3. For both bounds, the built-in Matlab
tool particleswarm requires roughly 1000 samples to
converge.

We perform brute-force particle swarm optimization as
opposed to the more sophisticated techniques that are avail-
able to strengthen our point that even brute-force optimiza-
tion is more efficient and accurate than sampling between the
bounds. It is pointed out that the application of sophisticated
interval propagation techniques such as those based on act-
ive learning Bayesian Optimization can still provide several
gains of computational efficiency. Assuming the result of the
global optimization to be the correct one, we compute the rel-
ative error on the lower and upper bound, as obtained byMonte
Carlo sampling, as follows:

ϵl = (us− u)/u

ϵu = (u− us)/u
(44)

Note that these errors are designed such that they become
negative when the sampling-based method becomes more
‘conservative’ than the optimization approach.

Figure 8 illustrates the convergence of the sampling-based
interval bound estimator in a relative sense to the global optim-
ization procedure. Observing this figure, a few points need to
be made. First, when comparing both propagation schemes
for roughly the same computational cost, one can observe that
even in this very simple three-dimensional input case, an error
of roughly 10% is made. Second, even when using a sample
size as large as N= 5 · 1008, an error of roughly 0.01% is
made. Both points illustrate the sheer inefficiency of propagat-
ing intervals using crude sampling methods, especially when
we consider that (1) we study a very well-behaved function
here and (2) the number of input parameters is very low. Third,
it can be observed that both ϵl and ϵu are strictly positive. This,
by construction, means that the sampling estimators inherently
provide an inner estimation of the interval width of u. Indeed,
this clearly shows that us consistently over-estimates the lower
bound u, just as us consistently under-estimates the upper
bound u. As a final note, we want to point out that the particle
swarm optimizer is even easier to implement compared to the
sampling approach (even though, admittedly, both are straight-
forward). As such, we see no reason to use sampling-based
methods for the propagation of interval-valued uncertainty.

3.4.2. Rastrigin’s function in 20 dimensions. To illustrate
that this issue is even more pronounced in high-dimensional
problems, we test both approaches mentioned in section 3.4.1
on the 20-dimensional Rastrigin function, which is generally
defined as

u= 10n+
n∑

i=1

(
θ2i − 10cos(2πθi)

)
, (45)

where we set n= 20. Note that Rastrigin’s function is known
for its many local minima, so searching for bounds is non-
trivial. The correct bounds of Rastrigin’s function were
obtained using the same untuned particle swarm optimization
algorithm as used in section 3.4.1 using approximately 15 000
samples. The results obtained are shown in figure 9.
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Figure 9. Convergence of ϵl and ϵu on the extremes of Rastrigins function with respect to the sample size.

Figure 10. Convergence of ϵl and ϵu of the extreme truss responses with respect to the sample size.

Due to the very high dimensionality of this problem, as
mentioned before, the probability of randomly finding a point
that is even a good approximation of the extreme responses of
u drastically decreases, as we are with 1008 samples still very
far away from the required number of 1 · 10120. As can be noted
from figure 9, even with 1008 samples, the error that is made on
the relatively easy-to-find upper bound is still approximately
10%. This indicates that for complicated, high-dimensional
examples, sampling-based propagation schemes are a very bad
choice for propagating intervals. To be fair, in this particular
case, also the global optimization algorithm required a huge
computational effort.

3.4.3. A two-bar truss structure. As a final illustration, we
include the analysis of a simple 2-bar truss structure. The struc-
ture consists of three nodes: Node 1 (location: 0,0m) and
Node 2 (location: 2,0m) are fully fixed (both translational
degrees of freedom restrained), and Node 3 (location: 0,2m)
is free. Two truss elements connect Node 3 to Nodes 1
and 2, respectively, forming a simple triangular arrangement.
At Node 3, a vertical load is applied. Interval uncertainty
is assumed on the load F, Young’s modulus of the material

E and the truss cross-sectional area A. These intervals are
considered as F I = [1,5] kN, EI = [200,220]GPa and AI =
[0.05,0.15]m2. The quantity of interest is the vertical displace-
ment of Node 3, u.

Since this is a small-displacement-based, linear finite ele-
ment model, the relation between the inputs and the displace-
ment of Node 3 is purely monotonic. By using engineering
judgment, the exact bounds can be calculated using as few as
2 finite element model simulations. Indeed, u is related to the
triplet

{
F,E,A

}
, andwas found to be u= 0,7mm.Conversely,

u is related to
{
F,E,A

}
, and was found to be u= 0,04mm. In

addition, sampling is used to approximate u and u as resp. us

and us. These results are used in the calculation of the error ϵ,
as illustrated in equation (44).

Figure 10 illustrates the convergence of ϵl and ϵu with
respect to the sample size N when u and u are approx-
imated by sampling as resp. us and us. As can be seen, a
sample size of roughly N= 1 · 1006 is required to achieve
a relative error of 1%. At first sight, one may be temp-
ted to say that this is acceptable. However, it should be
kept in mind that by using proper interval techniques,
an exact solution can be achieved in as little as two
simulations.
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4. Conclusions

The primary objective in uncertainty quantification, whether
using probabilistic or non-traditional approaches, is to
accurately capture and represent uncertainty. The ultimate
goal of such practice is to help analysts and engineers make
risk-informed decisions. Uncertainty quantification involves
several key steps, which include data collection, mathemat-
ical modeling, uncertainty propagation, identifying critical
outcomes, and making decisions under uncertainty. Each step
introduces potential challenges and possible sources of error
that should be minimized or eliminated.

In this study, we examine two common pitfalls in uncer-
tainty quantification. The first issue concerns the assump-
tion of normality for parameters that must be positive due
to physical constraints. This pitfall is often justified by argu-
ments such as the maximum entropy principle, the central
limit theorem, or the fact that the probability of observing
negative numbers is negligible. We illustrate that using a nor-
mal distribution can lead to outputs with undefined second-
order statistics and overly conservative estimates. In other
words, if a positive quantity is modeled with a normal dis-
tribution, the obtained results will be (at least) questionable
or (plainly) wrong, even if the probability content associ-
ated to negative values is extremely small. While the trun-
cated normal distribution can mitigate some of these issues, it
remains highly sensitive to the truncation parameter. Hence,
truncation of the negative values associated with a normal
distribution which is used to model positive-valued prop-
erties may not suffice to ensure correctness and in fact, it
may lead to gross errors. Consequently, modeling approaches
should respect the inherent characteristics of the parameters
involved to avoid misleading or invalid results. In a nutshell,
the recommendations for modeling the uncertainty associ-
ated with positive-valued properties of a model are: (1) avoid
the normal distribution and (2) use a truncated normal dis-
tribution only after investigating the effect of the truncation
parameter.

The second issue, analyzed in this paper, is the inappro-
priate use of sampling-based methods, such as MCS from a
uniform distribution, for propagating interval uncertainties.
While these methods are powerful for probabilistic analysis,
their direct application to interval analysis is problematic.
Due to their design, they impose unjustified uniform assump-
tions, leading to computationally expensive and inherently
non-conservative approximations of the true response bounds.
The key takeaway here is that rigorous interval analysis should
rely on methods specifically designed for bounding problems,
such as direct optimization, interval arithmetic, affine arith-
metic, or advanced surrogate-assisted techniques. Otherwise,
one risks conducting an expensive analysis only to obtain an
interior approximation of the uncertainty.

Taken together, the findings of both parts of this paper
highlight the need for a critical evaluation of standard prac-
tices in uncertainty quantification. To ensure reliable results,
it is essential to align modeling choices with the nature of
the input data and apply the correct mathematical framework
to represent uncertainty properly. By avoiding fundamental

errors at each stage of the process, we can develop practical
and robust decision-support tools for engineering applications.
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