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 A B S T R A C T

This contribution introduces a novel framework for the first excursion probability sensitivity 
estimation, applicable to linear dynamic systems subject to Gaussian excitation. The sensitivity 
estimator considered here is a local one and is calculated as the partial derivative of the first 
excursion probability with respect to a design parameter, such as the geometrical dimensions 
of the system. In the context of stochastic dynamical systems with low failure probability, 
obtaining both reliability and sensitivity estimates can be computationally expensive. In that 
sense, the linearity of the system plays a key role in order to build an efficient estimator. 
Domain Decomposition Method exploits this feature by exploring the failure domain in a 
very convenient way due to its special structure, characterized by the union of a large 
number of elementary linear failure domains. The proposed approach is based on the Domain 
Decomposition Method, enabling the derivation of the sensitivity estimator as a byproduct of the 
first excursion probability estimator. The effectiveness of the presented technique is illustrated 
through numerical examples involving both small- and large-scale models.

. Introduction

The dynamic analysis of mechanical and structural systems is commonly carried out with numerical models. Due to the 
navoidable effects of uncertainty, it is highly challenging to perform the system analysis under the traditional approach, which is 
ased on deterministic concepts. Nowadays, the theory of random vibrations offers tools to incorporate the uncertainty in several 
ngineering problems [1]. For example, the effects of uncertainty associated with earthquakes and wind loads on structures, or 
he effect of atmospheric turbulence on airplanes, can be assessed with a reliability analysis. Indeed, the so-called first excursion 
robability allows quantifying the system’s reliability under one or more performance criteria, for instance, if a response of interest 
xceeds a predefined threshold during the stochastic loading. In cases where the system’s behavior remains linear, the first excursion 
robability can provide a measure with respect to a serviceability criterion [2–4]. Consequently, various advanced simulation 
ethods have been developed to calculate the first excursion probability by leveraging the linearity of the system. These methods 
nclude, for example, a very Efficient Importance Sampling (EIS) [5], Domain Decomposition Method (DDM) [6], Directional 
mportance Sampling (DIS) [7], and lastly, multidomain Line Sampling (mLS) [8].
The first excursion probability can be affected considerably due to changes in structural properties, such as alterations in mass, 

tiffness, or geometrical dimensions of structural members. In particular, considering nonproportional damping in the system is of 
tmost importance, as it provides a more realistic representation of dynamic behavior compared to proportional damping [9]. This 
eneralized approach of the system differs from the cases considered in, e.g. [10,11]. Therefore, studying the sensitivity of the first 
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excursion probability is fundamental to achieve a more exhaustive reliability assessment [12–16]. This information can be used, in 
the context of risk evaluation [17], decision making [18], as well as reliability-based design optimization problems [19].

The sensitivity of the first excursion probability can be calculated in terms of its gradient, which corresponds to a local 
measure (that is, how the probability changes due to small perturbations in structural properties). Nevertheless, the aforementioned 
calculation usually demands solving a high dimensional integral that does not possess a closed-form solution. This problem has 
been explored in the literature in the past [20–24], where two different classes of cases can be distinguished [25]. The first one 
is the calculation of the gradient with respect to distribution parameters of random variables, which are considered to represent 
the uncertainty associated with some structural properties [26,27]. The second class includes those problems where the gradient 
of the probability is calculated with respect to deterministic parameters affecting the structural behavior. This group includes 
approaches that combines the use of Bayes’ theorem with stochastic simulation for the sensitivity estimates calculation [28,29], 
approaches which consider second-order moments approximations [30], and approaches that combine stochastic simulation with 
local approximations of the responses of interest [10,31,32].

An approach that is particularly useful to estimate first-excursion probabilities is the so-called Domain Decomposition Method. 
This contribution proposes a novel framework to extend the application of this method towards estimating the sensitivity of the 
first excursion probability applied to small- and large-scale finite element models. The work is focused on linear structural systems 
with either nonproportional or proportional damping, subjected to a Gaussian loading. The analysis focuses on local sensitivity, 
which is derived by computing the partial derivatives of the first excursion probability with respect to each deterministic design 
parameter. Moreover, the sensitivity estimator is achieved as a byproduct of the reliability analysis [33] together with a sensitivity 
analysis of the spectral properties of the system [34]. The use of Domain Decomposition Method plays a key role in the failure 
domain exploration. This is due to its particular structure, which is a union of a large number of linear elementary failure domains. 
Additionally, the incorporation of an Importance Sampling density function [11] allows the estimation of the sensitivity of the first 
excursion probability with a reduced number of samples.

The next sections of this contribution are organized as follows. Section 2 presents the problem, the first excursion probability 
and its gradient definition. Section 3 presents the aforementioned gradient calculation by means of Domain Decomposition Method. 
Then, two examples of the proposed framework are illustrated in Section 4. Finally, Section 5 draws the discussion to a close and 
presents thoughts on future developments.

2. Problem statement

This section defines the theoretical framework of the problem addressed in this work. The stochastic loading is presented in 
Section 2.1, while the system definition and the responses of interest are detailed in Section 2.2. Section 2.3 introduces the first 
excursion probability problem, and Section 2.4 presents its sensitivity analysis. Finally, Section 2.5 describes the special geometric 
structure of the failure domain.

2.1. Gaussian loading

The dynamic load 𝑝 acting on the system is described as a discrete Gaussian process of duration 𝑇 , discretized in 𝑛𝑇  times instants 
of duration 𝛥𝑡. Accordingly, the 𝑘-time instant is defined as 𝑡𝑘 = (𝑘−1)𝛥𝑡, 𝑘 = 1,… , 𝑛𝑇 . The expected value of this process at time 𝑡𝑘
is defined as 𝜇𝑘, which is the 𝑘th element of the expected value vector 𝝁 of dimension 𝑛𝑇 ×1. The covariance matrix associated with 
the Gaussian loading is 𝜮. It is symmetric, bounded and positive definite, where the covariance between times 𝑡𝑘1  and 𝑡𝑘2  is given 
by 𝛴𝑘1 ,𝑘2 , corresponding to the (𝑘1, 𝑘2)th element of 𝜮. The dynamic load is represented in terms of the Karhunen–Loève expansion 
as [35,36] 

𝑝
(

𝑡𝑘, 𝒛
)

= 𝜇𝑘 + 𝝍T
𝑘𝒛, 𝑘 = 1,… , 𝑛𝑇 , (1)

where 𝑝 (𝑡𝑘, 𝒛
) is the loading at time 𝑡𝑘 and 𝒛 is a realization of a standard Gaussian random variable vector 𝒁 of dimensions 𝑛𝐾𝐿×1, 

being 𝑛𝐾𝐿 the order of truncation of the expansion (𝑛𝐾𝐿 ⩽ 𝑛𝑇 ). By solving the eigenproblem 𝜮Ξ = Ξ𝜦 associated with the largest 
𝑛𝐾𝐿 eigenvalues of 𝜮, the set of vectors 𝜳 =

[

𝝍1,𝝍2,… ,𝝍𝑛𝑇

]

 can be calculated as 𝜳 = 𝜦1∕2Ξ𝑇 , being 𝝍𝑘, 𝑘 = 1,… , 𝑛𝑇  a vector of 
dimensions 𝑛𝐾𝐿 ×1 related to the time instant 𝑡𝑘. In this work, it is assumed the specific case where 𝝁 = 𝟎 without loss of generality.

2.2. Structural system

The system is considered linear elastic and damped, and is subject to a Gaussian loading 𝑝(𝑡, 𝒛). Moreover, the system is composed 
by 𝑛𝐷 degrees-of-freedom and is governed by the following equation of motion [37]: 

𝑴(𝒚)�̈�(𝑡, 𝒚, 𝒛) + 𝑪(𝒚)�̇�(𝑡, 𝒚, 𝒛) +𝑲(𝒚)𝒙(𝑡, 𝒚, 𝒛) = 𝒈(𝒚)𝑝(𝑡, 𝒛), 𝑡 ∈ [0, 𝑇 ], (2)

where the displacement, velocity and acceleration are represented by 𝒙, �̇� and �̈�, respectively, all vectors of dimension 𝑛𝐷 × 1; the 
matrices of mass 𝑴 , damping 𝑪 and stiffness 𝑲 are of dimensions 𝑛𝐷 × 𝑛𝐷; the coupling vector of the loading with the degrees 
of freedom of the system is 𝒈, which has dimensions 𝑛 × 1; and the deterministic vector that contains the parameters which 
𝐷
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represent the structural properties of the system is 𝒚, of dimension 𝑛𝑌 ×1. To address the general case of structural systems exhibiting 
nonproportional damping, Eq. (2) may be reformulated into the following augmented system [38]: 

[

0nD×nD
M(y)

M(y) C(y)

]{

ẍ(t, y.z)

ẋ(t, y.z)

}

+

[

−M(y) 0nD×nD

0nD×nD
K(y)

]

{

ẋ(t, y.z)

x(t, y.z)

}

=

{

0nD×1

g(y)

}

p(t, z), (3)

or in its compact form: 
[

𝑴𝑎(𝒚)
]

{�̇�(𝑡, 𝒚.𝒛)} +
[

𝑲𝑎(𝒚)
]

{𝒒(𝑡, 𝒚.𝒛)} =
{

𝑔𝑎(𝒚)
}

𝑝(𝑡, 𝒛), (4)

where 𝒒 is a vector grouping velocities and displacements of the system, with dimensions 2𝑛𝐷 × 1, 𝑴𝑎 and 𝑲𝑎 are the augmented 
mass and stiffness matrices of dimensions 2𝑛𝐷 × 2𝑛𝐷, respectively, and 𝒈𝑎 is the augmented load coupling vector of dimensions 
2𝑛𝐷 × 1, with the augmented matrices and vectors defined explicitly as:

[

M
a
(y)

]

=

[

0
nD×nD

M(y)

M(y) C(y)

]

;
[

K
a
(y)

]

=

[

−M(y) 0
nD×nD

0
nD×nD

K(y)

]

;

{

ga(y)
}

=

{

0nD×1

g(y)

}

; {q(t, y, z)} =

{

ẋ(t, y, z)

x(t, y, z)

}

.
(5)

It is paramount to control some dynamical responses, such as displacements, accelerations, internal stresses, as well their linear 
combinations. These responses are defined as 𝜂𝑖(𝑡, 𝒚, 𝒛), 𝑖 = 1,… , 𝜂𝜂 , and is calculated using the convolution integral [37]: 

𝜂𝑖(𝑡, 𝒚, 𝒛) = ∫

𝑡

0
ℎ𝑖(𝑡 − 𝜏, 𝒚)𝑝(𝜏, 𝒛)𝑑𝜏, 𝑖 = 1,… , 𝑛𝜂 , (6)

where ℎ𝑖(𝑡, 𝒚), 𝑖 = 1,… , 𝜂𝜂 is the unit impulse function of the 𝑖th response of interest, and 𝑝(𝑡, 𝒛) corresponds to the Gaussian loading. 
Eq. (6) is deduced assuming null initial conditions, that is 𝒙(0, 𝒚, 𝒛) = �̇�(0, 𝒚, 𝒛) = 𝟎𝑛𝐷×1. Therefore, when the response of interest is a 
combination of the vector 𝒒(𝑡, 𝒚, 𝒛), it can be expressed as 𝜂𝑖(𝑡, 𝒚, 𝒛) = 𝜸𝑇𝑖 𝒒(𝑡, 𝒚, 𝒛), where 𝜸𝑖 is a constant vector of dimension 2𝑛𝐷 ×1. 
Then, the unit impulse response function associated to the 𝑖th response of interest is written as [39]: 

ℎ𝑖(𝑡, 𝒚) =
2𝑛𝐷
∑

𝑟=1

𝜸𝑇𝑖 𝝓𝑟(𝒚)𝝓𝑟(𝒚)𝑇 𝒈𝑎(𝒚)
𝝓𝑟(𝒚)𝑇𝑴𝑎(𝒚)𝝓𝑟(𝒚)

𝑒𝜆𝑟(𝒚)𝑡, 𝑖 = 1.… , 𝑛𝜂 , (7)

where 𝝓𝑟(𝒚) and 𝜆𝑟(𝒚) are the eigenvectors and eigenvalues associated with the eigenproblem of Eq.  (4). It is worth noting that, 
in cases where the system involves a large number of degrees of freedom, it is convenient to apply modal truncation [37] to Eq. 
(7) by selecting a number of modes smaller than 2𝑛𝐷. Given the discretized definition of the Gaussian loading in time as discussed 
in Section 2.1, it is possible to approximate the integral associated with the response of interest integral mentioned in Eq.  (6) at 
specific time instant 𝑡𝑘 as: 

𝜂𝑖
(

𝑡𝑘, 𝒚, 𝒛
)

= 𝒂𝑖,𝑘(𝒚)𝑇 𝒛, 𝑖 = 1,… , 𝑛𝜂 , 𝑘 = 1,… , 𝑛𝑇 , (8)

where the vector 𝒂𝑖,𝑘(𝒚) of dimension 𝑛𝐾𝐿 × 1 is defined as: 

𝒂𝑖,𝑘(𝒚) =
𝑘
∑

𝑚=1
𝛥𝑡𝜖𝑚ℎ𝑖

(

𝑡𝑘 − 𝑡𝑚, 𝒚
)

𝝍𝑚, (9)

where 𝜖𝑚 depends on the preferred integration scheme, for example, with a trapezoidal scheme 𝜖𝑚 = 1∕2 for 𝑚 = 1, 𝑘 and otherwise 
𝜖𝑚 = 1 [40]. It is worth mentioning that in Eq.  (8) the dependence of the design vector 𝒚 is only related to 𝒂𝑖,𝑘, and in the same 
way, the dependence of the vector 𝒛 is only related to the Gaussian load 𝑝.

2.3. First excursion probability

The design requirements are defined by the vector 𝒃 of dimension 𝑛𝜂 × 1, where 𝑏𝑖 is its 𝑖th element, and correspond to the 
prescribed threshold for the response of interest 𝜂𝑖. The performance function 𝑔(𝒚, 𝒛) indicates if the response of interest 𝜂𝑖 exceeds 
or not a prescribed threshold 𝑏𝑖 along the duration of the excitation, and is given by: 

𝑔(𝒚, 𝒛) = 1 − max
𝑖=1,…,𝑛𝜂

⎛

⎜

⎜

⎝

max
𝑘=1,…,𝑛𝑇

⎛

⎜

⎜

⎝

|

|

|

𝜂𝑖
(

𝑡𝑘, 𝒚, 𝒛
)

|

|

|

𝑏𝑖

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

, (10)

where |⋅| is the absolute value. Furthermore, the failure domain can be formally defined as 𝐹 = {𝒛 ∈ R𝑛𝐾𝐿 ∶ 𝑔(𝒚, 𝒛) ⩽ 0}.
The probability associated with the failure domain can be quantified by means of the so-called first excursion probability [1]: 

𝑝𝐹 (𝒚) = ∫𝑔(𝒚,𝒛)≤0
𝑓𝒁 (𝒛)𝑑𝒛, (11)

where 𝑓𝒁 (𝒛) is the standard Gaussian probability density function in 𝑛𝐾𝐿 dimensions.
For practical engineering applications 𝑛𝐾𝐿 can be relatively large, in the order of hundreds or thousands. As a consequence, 

the first excursion probability shown in Eq.  (11) becomes a high dimensional integral which does not have a closed-form solution 
and must be evaluated with advanced simulation methods [41]. This challenge has led to the development of advanced simulation 
methods that leverage the system’s linearity to estimate the first excursion probability [5–8].
3 
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Fig. 1. Elementary failure domains representation for the case where 𝑛𝜂 = 1 and 𝑛𝑇 = 𝑛𝐾𝐿 = 2.

2.4. Gradient of first excursion probability

The dependence of the first excursion probability on the design parameters vector 𝒚, highlights the importance of studying the 
sensitivity of Eq.  (11). One potential approach to measure that sensitivity is calculating the gradient of the first excursion probability, 
as follows (see Appendix  A): 

𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

= −∫𝑔(𝒚,𝒛)=0
𝜕𝑔(𝒚, 𝒛)
𝜕𝑦𝑞

1
‖

‖

∇𝒛𝑔(𝒚, 𝒛)‖‖
𝑓𝒁 (𝒛)𝑑𝑆, 𝑞 = 1,… , 𝑛𝑦, (12)

where ‖ ⋅ ‖ denotes Euclidean norm; ∇𝒛 is the nabla operator ∇𝒛 =
[

𝜕∕𝜕𝑧1,… , 𝜕∕𝜕𝑧𝑛𝐾𝐿

]𝑇
; and 𝑑𝑆 denotes a differential element 

of the limit state hypersurface 𝑆 = {𝒛 ∈ R𝑛𝐾𝐿 ∶ 𝑔(𝒚, 𝒛) = 0}. Evaluation of the expression in Eq.  (12) poses a significant challenge, 
as it comprises solving a (𝑛𝐾𝐿 − 1

)

-dimensional integral over a hypersurface and the calculation of derivatives of the performance 
function.

2.5. Geometry of the failure domain

The failure domain for a linear dynamical system that is subject to Gaussian loading has a very special geometry, which can 
be defined analytically in the standard Gaussian space [5,42]. To understand how the failure domain mentioned in Section 2.3 is 
constructed, from Eq.  (10), it is straightforward noting that the failure domain can be decomposed in 𝑛𝜂 × 𝑛𝑇  elementary failure 
domains. Each of them, denoted as 𝐹𝑖,𝑘, describes the event where the response 𝜂𝑖 exceeds the prescribed threshold 𝑏𝑖 at the 
time instant 𝑡𝑘, which can be also decomposed in its positive and negative sides, which means that 𝐹𝑖,𝑘 = 𝐹+

𝑖,𝑘 ∪ 𝐹−
𝑖,𝑘. Then, the 

elementary failure domain that represents if the response of interest 𝜂𝑖 exceeding its threshold 𝑏𝑖 at the time instant 𝑡𝑘 is defined 
as 𝐹+

𝑖,𝑘 =
{

𝒛 ∈ R𝑛𝐾𝐿 ∶ 𝒂𝑇𝑖,𝑘(𝒚)𝒛 ⩾ 𝑏𝑖
}

. In a similar manner, the elementary failure domain that represents if the response of interest 
−𝜂𝑖 exceeding its threshold 𝑏𝑖 at the time instant 𝑡𝑘 is defined as 𝐹−

𝑖,𝑘 =
{

𝒛 ∈ R𝑛𝐾𝐿 ∶ 𝒂𝑇𝑖,𝑘(𝒚)𝒛 ⩽ −𝑏𝑖
}

. Now, the failure domain is 
defined as the union of all the elementary failure domains, that is 𝐹 = ∪

𝑛𝜂
𝑖=1 ∪

𝑛𝑇
𝑘=1 𝐹𝑖,𝑘. Following the same logic, it is also possible 

to define the performance function associated to the 𝑖th response of interest at the 𝑘th time instant as 𝑔𝑖,𝑘(𝒚, 𝒛), being its positive 
part denoted as 𝑔+𝑖,𝑘(𝒚, 𝒛) and its negative part denoted as 𝑔−𝑖,𝑘(𝒚, 𝒛). A schematic representation of the elementary failure domains 
is shown in Fig.  1, for the case where 𝑛𝜂 = 1 and 𝑛𝑇 = 𝑛𝐾𝐿 = 2. It is possible to observe that the positive and negative parts of 
the elementary failure domains 𝐹1,1 and 𝐹1,2 are illustrated, as well as the interaction between them. In this context, interaction is 
understood as the event where both of the elementary failure domains 𝐹1,1 and 𝐹1,2 occur, meaning that the response of interest 
exceeds its prescribed threshold at both time instants. This two-dimensional representation of the problem gives an idea of the 
degree of overlapping existing between the elementary failure domains when the problem involves a large number of dimensions.

Focusing on one elementary failure domain, the realization of 𝒛 that has the highest likelihood is the one with the smallest 
Euclidean norm from the origin [5,42], which is the so-called design point. It allows to define analytically the elementary failure 
domain, and is given by: 

𝒛∗𝑖,𝑘(𝒚) = 𝑏𝑖
𝒂𝑖𝑘(𝒚)

2
, 𝑖 = 1,… , 𝑛𝜂 , 𝑘 = 1,… , 𝑛𝑇 , (13)
‖

‖

𝒂𝑖,𝑘(𝒚)‖‖

4 
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where 𝒛∗𝑖,𝑘(𝒚) is the design point associated to the 𝐹+
𝑖,𝑘 elementary failure domain. The Euclidean norm of the design point, known 

as the reliability index, is equal to: 

𝛽𝑖,𝑘(𝒚) =
𝑏𝑖

‖

‖

𝒂𝑖,𝑘(𝒚)‖‖
, 𝑖 = 1,… , 𝑛𝜂 , 𝑘 = 1,… , 𝑛𝑇 , (14)

being the reliability index 𝛽𝑖,𝑘(𝒚) associated to the elementary failure domain 𝐹𝑖,𝑘. Therefore, from the definition of the elementary 
failure domain, it is evident that the probability of occurrence 𝑃 [𝐹+

𝑖,𝑘] = 𝑃 [𝐹−
𝑖,𝑘] = 𝛷[−𝛽𝑖,𝑘], where 𝑃 [⋅] denotes probability and 𝛷[⋅]

corresponds to the one-dimensional Gaussian cumulative density function. Then, the summation of the probability of occurrence of 
all the elementary failure domains independently is given by: 

𝑝𝐹 =
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1
𝑃
[

𝐹𝑖,𝑘
]

= 2
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1
𝛷
(

−𝛽𝑖,𝑘
)

, (15)

where 𝑝𝐹  represents an upper bound for the first excursion probability 𝑝𝐹  [5].

3. Sensitivity estimation of first excursion probability

This section presents the methodology for estimating the first excursion probability and its sensitivity using the Domain 
Decomposition Method. Section 3.1 contextualizes the proposed method within the scope of the formulated problem. In Section 3.2, 
the Domain Decomposition Method is formulated for estimating the first excursion probability. Section 3.3 develops the sensitivity 
estimation procedure. Section 3.4 addresses practical implementation aspects, including the differentiation of key terms. Finally, 
Section 3.5 summarizes the procedure for computing both reliability and sensitivity estimators.

3.1. General remarks

For several simulation-based methods, gradient estimation tipically becomes a post-process of the reliability analysis [21,24,27]. 
Given their applicability to a wide range of engineering problems [12,17–19], it makes sense to obtain both estimators, despite the 
additional computational cost.

The first excursion probability sensitivity integral evaluation, as shown in Eq.  (12), requires performing integration over the 
limit state hypersurface. This quantity can be estimated using various simulation schemes. For instance, literature suggests that this 
task can be accomplished through Directional Sampling [43] and Line Sampling [33]. When the failure domain has a particular 
structure, as shown in Eq.  (10), it is possible to perform this task in a more sophisticated manner, with the novelty of this work 
relying on the latter.

A framework based on Domain Decomposition Method [6] is chosen to estimate both the failure probability and its sensitivity. 
For this purpose, the failure probability integral is expressed in terms of the effective contribution of each elementary failure domain, 
followed by a mathematical development involving Directional Sampling [43] and Importance Sampling [44], yielding the same 
first excursion probability estimators as shown in [6]. Note that the deduction for the Domain Contribution Method presented here 
(see Section 3.2) differs from the one originally presented in [6]. Such alternative deduction is chosen on purpose, as it facilitates 
the calculation of the probability sensitivity, as discussed in Section 3.3.

3.2. Domain decomposition method

3.2.1. Effective contribution of the elementary failure domains
The particular geometry of the failure domain defined in Section 2.5 gives substantial information of the analytical definition of 

the elementary failure domains. Moreover, it is evident from Fig.  1 that there may be overlapping between the elementary failure 
domains. In the context of high-dimensional problems, the degree of overlap may be significant, which consequently complicates the 
estimation of the first excursion probability. To address this issue, leveraging the elementary failure domain definition, the failure 
probability integral defined in Eq.  (11) can be written in terms of the contribution of each of the individual elementary failure 
domains [5,8], which is given by: 

𝑝𝐹 (𝒚) =
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1
𝑝𝑖,𝑘(𝒚), (16)

where 𝑝𝑖,𝑘(𝒚) is termed as effective contribution associated with the elementary failure domain 𝐹𝑖,𝑘, which is defined as follows: 

𝑝𝑖,𝑘(𝒚) = ∫𝒛∈𝐹𝑖,𝑘

1
∑𝑛𝜂

ℎ=1
∑𝑛𝑇

𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝒛)
𝑓𝒁 (𝒛)𝑑𝒛, (17)

where 𝐼𝐹ℎ,𝑗 (𝒚, 𝒛) is an indicator function which is equal to 1 in case that 𝒛 ∈ 𝐹𝑖,𝑘. The discounting factor 1∕
∑𝑛𝜂

ℎ=1
∑𝑛𝑇

𝑗=1 𝐼𝐹𝑖,𝑘 (𝒚, 𝒛)
accounts for discounting the effective contribution resulting from the interaction between elementary failure domains. To understand 
the effective contribution definition, consider the calculation of the effective contribution 𝑝1,2 from the example presented in Fig.  1. 
The elementary failure domain associated with 𝐹1,2 can be separated into two regions: the domain 𝐹2∖(𝐹1 ∩ 𝐹2), which is a region 
without overlap, and the domain 𝐹 ∩ 𝐹 , which is a region with overlap. Then, considering a possible realization 𝒛 of 𝒁, the 
1,2 1,1
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Table 1
Inner integral decomposition of Eq.  (18) and effective contribution discounting factor in example 
shown in Fig.  2.
 Segment 1∕

∑𝑛𝜂
ℎ=1

∑𝑛𝑇
𝑗=1 𝐼𝐹ℎ,𝑗

(𝒚, 𝑟𝒖) 
 [𝑐1,3(𝒚, 𝒖), 𝑐1,2(𝒚, 𝒖)[ –  
 [𝑐1,2(𝒚, 𝒖), 𝑐1,1(𝒚, 𝒖)[ 2  
 [𝑐1,1(𝒚, 𝒖),∞[

3  

discounting factor 1∕∑𝑛𝜂
ℎ=1

∑𝑛𝑇
𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝒛) becomes 1 if 𝒛 ∈ 𝐹2∖(𝐹1 ∩ 𝐹2), and 1∕2 if 𝒛 ∈ 𝐹1,2 ∩ 𝐹1,1. Repeating the process for the 

calculation of 𝑝1,1, and the calculation of 𝑝𝐹  by using Eq.  (16), it is straightforward to note that the contribution to the failure 
probability of the region with overlap is considered, with one half accounted for in the calculation of 𝑝1,1 and the other half in the 
calculation of 𝑝1,2. This implies that the effective contribution 𝑝𝑖,𝑘 corresponds to the probability of occurrence of the event 𝐹𝑖,𝑘, 
reduced by the discounting factor due to the overlap between elementary failure domains.

3.2.2. Reliability
The estimation of the failure probability shown in Eq.  (11) is done by estimating the effective contribution of the elementary 

failure domains. In order to achieve this,  Eq.  (17) is written using the Directional Sampling scheme [43,45,46]. This technique 
allows writing the realization vector 𝒛 in terms of its Euclidean norm 𝑟 and its unitary direction 𝒖, that means 𝒛 = 𝑟𝒖. The unit 
vector is defined in the standard Gaussian space and is calculated as 𝒖 = 𝒛∕‖𝒛‖ and the Euclidean norm is defined as 𝑟 = ‖𝒛‖, 
where 𝑟2 follows a Chi-squared distribution of 𝑛𝐾𝐿 degrees-of-freedom [47]. Therefore, the resulting effective contribution integral 
is reformulated as: 

𝑝𝑖,𝑘(𝒚) = ∫𝒖∈𝛺𝑼 ∫𝑟𝒖∈𝐹𝑖,𝑘

2𝑟𝑓𝑅2
(

𝑟2
)

𝑓𝑼 (𝒖)
∑𝑛𝜂

ℎ=1
∑𝑛𝑇

𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝑟𝒖)
𝑑𝑟𝑑𝒖, (18)

where 𝛺𝑼 =
{

𝒖 ∈ R𝑛𝐾𝐿 ∶ 𝒖𝑇 𝒖 = 1
} denotes the sample space for 𝒖; 𝑓𝑼 (𝒖) corresponds to the uniform probability density function 

over the (𝑛𝐾𝐿−1)-dimensional hypersphere; and 𝑓𝑅2 (⋅) is the Chi-squared probability density function with 𝑛𝐾𝐿 degrees of freedom. 
It is possible to demonstrate [47] that the term 2𝑟𝑓𝑅2 (𝑟2) arises from transforming the probability distribution associated with 𝑟 to 
the Chi-squared probability distribution, which depends on 𝑟2.

For a better understanding of the discounting factor in the context of Directional Sampling, Fig.  2 illustrates the case with 𝑛𝜂 = 1, 
𝑛𝑇 = 3, and 𝑛𝐾𝐿 = 2 when estimating 𝑝1,2. For simplicity, only the positive side of the elementary failure domains are labeled. It 
is worth noting that, from Eq.  (18), the inner integral (highlighted with the green arrow in Fig.  2) given a realization of the unit 
direction vector 𝒖, has an analytical solution due to the system’s linearity. Indeed, it can be solved by decomposing its integration 
interval into segments, where in each of these segments, exhibits a different degree of overlap between elementary failure domains. 
In other words, the integration interval is subdivided into parts where the discounting factor 1∕∑𝑛𝜂

ℎ=1
∑𝑛𝑇

𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝑟𝒖) from Eq.  (18) 
remains constant. Therefore, in order to define the intervals for the integral, the following definition is considered: 

𝑐𝑖,𝑘(𝒚, 𝒖) =
𝑏𝑖

|

|

|

𝜂𝑖
(

𝑡𝑘, 𝒚, 𝑟𝒖
)

|

|

|

, (19)

where 𝑐𝑖,𝑘(𝒚, 𝒖) corresponds to the Euclidean distance from the origin pointing in 𝒖 direction to the intersection with the elementary 
failure domain 𝐹𝑖,𝑘. For instance, in Fig.  2, given a direction 𝒖, the ray extending from the origin intersects three elementary failure 
domains as it extends to infinity along the coordinate 𝑟. The corresponding distances are 𝑐1,3, 𝑐1,2, and 𝑐1,1, respectively. Then, by 
decomposing the integral interval, the resulting values, along with the discounting factor for each segment, are presented in Table 
1. Note that even though the failure domain includes the event 𝐹1,3, the integration is performed within the domain of 𝐹1,2 when 
calculating the effective contribution 𝑝1,2. 

In order to improve the readability of the solution to inner integral of Eq.  (18), a sorted notation using the index 𝑙 is introduced. 
The objective is that given a unit direction 𝒖, the elementary failure domains that intersect the ray extending from the origin to 
infinity (along the coordinate 𝑟) can be sorted in increasing order of their Euclidean distances. Therefore, the vector that contains 
the sorted elementary failure domains 𝑭 (𝒖) can be written in terms of the index 𝑙 as: 

𝑭 (𝒖) =
[

𝐹𝑙 , 𝐹𝑙+1, 𝐹𝑙+2,… , 𝐹𝑛𝑙(𝒖)

]𝑇
, (20)

where 𝑙 ∈ [1,… , 𝑛𝑙(𝒖)], being 𝑛𝑙(𝒖) the maximum number of intersections with elementary failure domains in the unit direction 𝒖, 
which is lower or equal than 𝑛𝜂×𝑛𝑇 . Nevertheless, the calculation of the effective contribution 𝑝𝑖,𝑘 requires performing the integration 
over the failure domain 𝐹𝑖,𝑘, as is shown in Eq.  (24). In turn, the inner integral must be evaluated over the coordinate 𝑟, which is 
defined from the boundary of the 𝐹𝑖,𝑘 elementary failure domain to infinity. As a consequence, for each effective contribution 𝑝𝑖,𝑘, 
it is necessary to find the value of the index 𝑙, which is associated with the failure domain 𝐹𝑖,𝑘. For simplicity and without loss of 
generality, this value is defined as 𝐿 for a given direction 𝒖, which represents the 𝐿th position of the elementary failure domain 
𝐹𝑖,𝑘 in the sorted vector 𝑭 (𝒖) defined in Eq.  (20). In order to understand the notation introduced, Fig.  3 and Table  2 represents the 
situation, while calculating 𝑝1,2. It is possible to note that the intersection between the elementary failure domains and the ray that 
starts from the origin and extends to infinity in the direction of 𝒖 occurs in the following order: 𝐹 , 𝐹 , and 𝐹 . Thus, with the 
1,3 1,2 1,1
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Fig. 2. Inner integral of Eq.  (18) in the context of 𝑝1,2 estimation for the case where 𝑛𝜂 = 1, 𝑛𝑇 = 3 and 𝑛𝐾𝐿 = 2.

Fig. 3. Inner integral of Eq.  (18) in the context of 𝑝1,2 estimation, using the sorted notation for the case where 𝑛𝜂 = 1, 𝑛𝑇 = 3 and 𝑛𝐾𝐿 = 2.

sorted notation, these elementary failure domains become 𝐹1, 𝐹2, and 𝐹3 respectively. The same idea applies to the 𝑐-distances. The 
inner integral in Eq.  (24) is represented by the green arrow, indicating that the lower bound corresponds to 𝑐𝐿, where 𝐿 = 2 in this 
case. Therefore, implementing the sorted notation and by solving the inner integral of Eq.  (24), the expression becomes: 

∫

∞

𝑐𝐿

2𝑟𝑓𝑅2
(

𝑟2
)

𝑓𝑼 (𝒖)
∑𝑛𝜂

ℎ=1
∑𝑛𝑇

𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝑟𝒖)
𝑑𝑟 =

∞
∑

𝑙=𝐿

1
𝑙
(

𝐹𝑅2
(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 𝐹𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
))

, (21)

being the term 1∕𝑙 equivalent to the discounting factor 1∕∑𝑛𝜂
ℎ=1

∑𝑛𝑇
𝑗=1 𝐼𝐹ℎ,𝑗 (𝒚, 𝑟𝒖) from the integral in Eq.  (18), and 𝐹𝑅2 (⋅) is the 

Chi-squared cumulative density function with 𝑛𝐾𝐿 degrees of freedom.
The calculation of a single effective contribution also involves solving the outer integral of Eq.  (18). This integration can be 

estimated through simulation methods, such as Monte Carlo simulation, by generating random samples of 𝒖. However, this method 
may not be efficient within the context of high-dimensional problems and small failure probabilities estimation, due to the number 
7 
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Table 2
𝑐-distances associated to Fig.  3 given a direction 𝒖.
 𝑟 value Intersected domain Sorted notation
 Index 𝑙 𝑟 value using index 𝑙 Intersected domain using index 𝑙 
 𝑐1,3 𝐹1,3 1 𝑐1 𝐹1  
 𝑐1,2 𝐹1,2 2 𝑐2 = 𝑐𝐿 𝐹2  
 𝑐1,1 𝐹1,1 3 𝑐3 𝐹3  

of dynamic analyses required to get a robust estimator. To address this issue, a more efficient approach based on Importance 
Sampling [44] is used, by introducing an importance sampling probability density function 𝑓 IS𝑼 (𝒖). Therefore, Eq. (18) can be written 
as: 

𝑝𝑖,𝑘(𝒚) = ∫𝒖∈𝛺𝑈

∞
∑

𝑙=𝐿

1
𝑙
(

𝐹𝑅2
(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 𝐹𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
)) 𝑓𝑼 (𝒖)

𝑓 IS𝑼 (𝒖)
𝑓 IS𝑼 (𝒖)𝑑𝒖. (22)

The importance sampling density function 𝑓 IS𝑼 (𝒖) is based on [5,7], with the difference that each effective contribution 𝑝𝑖,𝑘 has 
its own importance sampling density function. It is defined as the probability density associated with the direction 𝒖 conditioned 
on the occurrence of an elementary failure event 𝐹𝑖,𝑘 (see Appendix  B for further details). Then, the importance sampling density 
function, associated to the (𝑖, 𝑘)th effective contribution, is written as: 

𝑓 IS,(𝑖,𝑘)𝑼 (𝒖) = 𝑓𝑼
(

𝒖|𝐹𝑖,𝑘
)

. (23)

Then, by using the definitions from Eqs. (22) and (23), the effective contribution 𝑝𝑖,𝑘 becomes: 

𝑝𝑖,𝑘(𝒚) = 𝑃 [𝐹𝑖,𝑘]∫𝒖∈𝛺𝑈

𝜆𝑖,𝑘(𝒚, 𝒖)𝑓
IS,(𝑖,𝑘)
𝑼 (𝒖)𝑑𝒖, (24)

with 

𝜆𝑖,𝑘(𝒚, 𝒖) =
∞
∑

𝑙=𝐿

1
𝑙
𝐹𝑅2

(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 𝐹𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
)

1 − 𝐹𝑅2
(

𝑐𝐿(𝒚, 𝒖)2
) . (25)

Theoretically, solving the integral of Eq.  (24) by integrating over all the directions 𝒖, the effective contribution 𝑝𝑖,𝑘 can be expressed 
as: 

𝑝𝑖,𝑘(𝒚) = 𝑃 [𝐹𝑖,𝑘]𝜆𝑖,𝑘(𝒚), (26)

where 𝜆𝑖,𝑘(𝒚) is given by: 

𝜆𝑖,𝑘(𝒚) = ∫𝒖∈𝛺𝑈

𝜆𝑖,𝑘(𝒚, 𝒖)𝑓
IS,(i,k)
𝑼 (𝒖)𝑑𝒖. (27)

The term 𝜆𝑖,𝑘(𝒚) can be interpreted as a compensation for the overlapping existing between the elementary failure domain 𝐹𝑖,𝑘
and others, which is pondered over all the directions where {𝑟𝒖 ∈ 𝐹𝑖,𝑘

}

. It is straightforward to note that the definition presented 
in Eq.  (26) is equivalent to the one presented in Eq.  (17), with a more convenient construction of the discounting factor. Therefore, 
Eq. (26) provides an expression for calculating the effective contribution 𝑝𝑖,𝑘 within the framework of Domain Decomposition Method.

However, the calculation of the failure probability using Eq. (16) requires determining each effective contribution 𝑝𝑖,𝑘, where 
𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇 . This can be extremely demanding due to the product 𝑛𝜂 ×𝑛𝑇 , which could be on the order of hundreds 
or thousands. To address this challenge, the summation in Eq.  (16) can be estimated using simulation, as in [6]. Then, considering 
an alternative to Eq.  (16) as: 

𝑝𝐹 (𝒚) =
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1

(

1
𝑤𝑖,𝑘

𝑝𝑖,𝑘(𝒚)
)

𝑤𝑖,𝑘, (28)

where 𝑤𝑖,𝑘 is the weight considered in the importance sampling density of Eq.  (23) and is defined in Appendix  B, which serves as 
a probability mass function. Therefore, the expression in Eq.  (28) involves a summation over a discrete random variable 𝑤𝑖,𝑘 and 
an integration over a continuous random variable 𝒖. This can be solved through simulation by generating samples of both random 
variables, as follows: 

𝑝𝐹 (𝒚) ≈ �̃�𝐹 (𝒚) =
1
𝑁

𝑁
∑

𝑗=1

(

1
𝑤(𝑖,𝑘)(𝑗)

�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

)

, (29)

where �̃�𝐹  corresponds to an estimate of 𝑝𝐹 ; 𝑁 is the total number of samples; (𝑖, 𝑘)(𝑗), 𝑗 = 1,… , 𝑁 , are independent and identically 
distributed samples chosen from the set 𝐼 = {1,… , 𝑛𝜂 ×𝑛𝑇 } with probability mass function 𝑤𝑖,𝑘, where 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇 ; 
the vector 𝒖  is distributed according to 𝑓 IS,(𝑖,𝑘)(𝒖); and �̃� (

𝒖
) is the estimate of the effective contribution 𝑝 𝒖
(𝑖,𝑘)(𝑗) 𝑼 (𝑖,𝑘)(𝑗) (𝑖,𝑘)(𝑗) 𝑖,𝑘 ( )

8 
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Fig. 4. Schematic representation for the sensitivity of the effective contributions for the case where 𝑛𝜂 = 1, 𝑛𝑇 = 𝑛𝐾𝐿 = 2 and 𝑛𝑌 = 1.

evaluated at the sample 𝒖(𝑖,𝑘)(𝑗) . To estimate the effective contribution, it is necessary to estimate the term 𝜆𝑖,𝑘(𝒚) by evaluating 
the sampled direction 𝒖(𝑖,𝑘)(𝑗)  in Eq.  (25), which means: 

�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

≈

𝑃 [𝐹𝑖,𝑘]𝜆𝑖,𝑘(𝒚,𝒖(𝑖,𝑘)(𝑗) ) = 𝑃 [𝐹𝑖,𝑘]
∞
∑

𝑙=𝐿

1
𝑙

𝐹𝑅2

(

𝑐𝑙+1
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
)

− 𝐹𝑅2

(

𝑐𝑙
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
)

1 − 𝐹𝑅2

(

𝑐𝐿
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
) .

(30)

Eq. (29) yields the first excursion probability estimator using the Domain Decomposition Method. It is worth noting that the result 
is the same as that presented in [6] with an alternative deduction.

Finally, it can be easily proven that the coefficient of variation 𝛿𝑝𝐹  of the first excursion probability estimator in Eq.  (29) is equal 
to: 

𝛿𝑝𝐹 = 1
�̃�𝐹 (𝒚)

√

√

√

√

√

1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

((

1
𝑤(𝑖,𝑘)(𝑗)

�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

)

− �̃�𝐹 (𝒚)
)2

. (31)

3.3. Sensitivity

The estimation of the sensitivity of the first excursion probability shown in Eq.  (12) can be performed by estimating the derivative 
of the effective contributions, from Eq.  (17), with respect to a design parameter 𝑦𝑞 , resulting as follows: 

𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

=
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

, (32)

where 𝜕𝑝𝑖,𝑘(𝒚)∕𝜕𝑦𝑞 denotes the partial derivative of the effective contribution 𝑝𝑖,𝑘(𝒚) with respect the design parameter 𝑦𝑞 . To 
exemplify the changes in the effective contribution due to a change in the design parameter, consider the schematic two-dimensional 
representation shown in Fig.  4, for the case where 𝑛𝜂 = 1, 𝑛𝑇 = 𝑛𝐾𝐿 = 2 and 𝑛𝑌 = 1, in the context of calculating 𝑝1,1. For simplicity, 
only the positive elementary failure domains are presented. The limit state function associated with the elementary failure domain 
𝐹+
1,1 (with the orange line) is given by 𝑔+1,1(𝑦𝑞 , 𝒛), and the one associated with the elementary failure domain 𝐹+

1,2 (with the green line) 
is given by 𝑔+1,2(𝑦𝑞 , 𝒛). After introducing a change 𝛥𝑦𝑞 to the design parameter 𝑦𝑞 , the limit state functions become 𝑔+1,1(𝑦𝑞 + 𝛥𝑦𝑞 , 𝒛)
and 𝑔+1,2(𝑦𝑞 + 𝛥𝑦𝑞 , 𝒛), respectively. The sensitivity of the effective contributions represents the quantification of the potential change 
between the overlapping between the elementary failure domains due to a change in the design parameter. It is worth noting that 
in the context of estimating the effective contribution 𝑝1,2 through direction 𝒖, the distance 𝑐1,2 changes by (𝜕𝑐1,2(𝑦𝑞 , 𝒖)∕𝜕𝑦𝑞)𝛥𝑦𝑞 , and 
the distance 𝑐1,1 changes by (𝜕𝑐1,1(𝑦𝑞 , 𝒖)∕𝜕𝑦𝑞)𝛥𝑦𝑞 while using Eq. (30).

The partial derivative of the effective contribution in Eq.  (32) can be calculated using Leibniz’ rule [48]. Therefore, from Eqs. (18) 
and (21), and using the sorted notation introduced in Section 3.2.2, this derivative can be expressed as: 

𝜕𝑝𝑖,𝑘(𝒚) =
∞
∑ 1 𝜕 (

𝐹𝑅2
(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 𝐹𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
))

𝑓𝑼 (𝒖)𝑑𝒖. (33)

𝜕𝑦𝑞 ∫𝒖∈𝛺𝑈 𝑙=𝐿 𝑙 𝜕𝑦𝑞

9 
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Note from Eq.  (33) that only the 𝑐-distances depend on the design parameter. Therefore, the derivative of the effective contribution 
is given by: 

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

= ∫𝒖∈𝛺𝑈

∞
∑

𝑙=𝐿

1
𝑙

(

2𝑐𝑙+1(𝒚, 𝒖)
𝜕𝑐𝑙+1(𝒚, 𝒖)

𝜕𝑦𝑞
𝑓𝑅2

(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 2𝑐𝑙(𝒚, 𝒖)
𝜕𝑐𝑙(𝒚, 𝒖)
𝜕𝑦𝑞

𝑓𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
)

)

𝑓𝑼 (𝒖)𝑑𝒖, (34)

where 𝑓𝑅2 (⋅) is the Chi-squared probability density function with 𝑛𝐾𝐿 degrees of freedom, and 𝜕𝑐𝑙(𝒚, 𝒖)∕𝜕𝑦𝑞 is the partial derivative 
of 𝑐𝑙(𝒚, 𝒖) with respect to the design parameter 𝑦𝑞 (its calculation is discussed in Section 3.4).

Following the same idea as in Section 3.2.2, calculating all the derivatives of the effective contribution from Eq.  (32) requires a 
significant computational effort. To address this issue, an importance sampling density function can be introduced, resulting in: 

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

= ∫𝒖∈𝛺𝑈

∞
∑

𝑙=𝐿

1
𝑙

(

2𝑐𝑙+1(𝒚, 𝒖)
𝜕𝑐𝑙+1(𝒚, 𝒖)

𝜕𝑦𝑞
𝑓𝑅2

(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 2𝑐𝑙(𝒚, 𝒖)
𝜕𝑐𝑙(𝒚, 𝒖)
𝜕𝑦𝑞

𝑓𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
)

)

𝑓𝑼 (𝒖)
𝑓 IS𝑼 (𝒖)

𝑓 IS𝑼 (𝒖)𝑑𝒖. (35)

The importance sampling density function is chosen similarly for both reliability and sensitivity analyses, using Eq. (23). Although 
this function is primarily designed to improve the efficiency of the reliability estimator calculation, it also serves as a convenient 
choice for calculating sensitivity estimates as a byproduct of the reliability analysis. Using the definition in Eqs. (23) and (35), the 
sensitivity of the effective contribution can be written as: 

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

= 𝑃 [𝐹𝑖,𝑘]∫𝒖∈𝛺𝑈

𝜇𝑖,𝑘(𝒚, 𝒖)𝑓
IS,(i,k)
𝑼 (𝒖)𝑑𝒖, (36)

where 

𝜇𝑖,𝑘(𝒚, 𝒖) =
∞
∑

𝑙=𝐿

1
𝑙
(

1 − 𝐹𝑅2
(

𝑐2𝐿
))

(

2𝑐𝑙+1(𝒚, 𝒖)
𝜕𝑐𝑙+1(𝒚, 𝒖)

𝜕𝑦𝑞
𝑓𝑅2

(

𝑐𝑙+1(𝒚, 𝒖)2
)

− 2𝑐𝑙(𝒚, 𝒖)
𝜕𝑐𝑙(𝒚, 𝒖)
𝜕𝑦𝑞

𝑓𝑅2
(

𝑐𝑙(𝒚, 𝒖)2
)

)

. (37)

Assuming that the derivative is defined over all possible directions 𝒖 ∈ 𝛺𝑼 , if theoretically the integral of Eq.  (36) is solved, the 
derivative of the effective contribution can be expressed as: 

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

= 𝑃 [𝐹𝑖,𝑘]𝜇𝑖,𝑘(𝒚), (38)

where 𝜇𝑖,𝑘(𝒚) is given by: 

𝜇𝑖,𝑘(𝒚) = ∫𝒖∈𝛺𝑈

𝜇𝑖,𝑘(𝒚, 𝒖)𝑓
IS,(i,k)
𝑼 (𝒖)𝑑𝒖. (39)

Therefore, Eq. (38) provides an expression for calculating the derivative of the effective contribution 𝑝𝑖,𝑘 with respect to a design 
parameter 𝑦𝑞 within the framework of Domain Decomposition Method.

However, the calculation of the failure probability using Eq. (32) requires determining each of the derivatives of the effective 
contribution 𝜕𝑝𝑖,𝑘(𝒚)∕𝜕𝑦𝑞 , where 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇 . This can be extremely demanding due to the product 𝑛𝜂 × 𝑛𝑇 , 
which could be on the order of hundreds or thousands. To address this issue, the summation in Eq.  (32) can be estimated through 
simulation, in the same manner as the reliability analysis shown in Section 3.2.2. Then, considering an alternative to Eq.  (32) as: 

𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

=
𝑛𝜂
∑

𝑖=1

𝑛𝑇
∑

𝑘=1

(

1
𝑤𝑖,𝑘

𝜕𝑝𝑖,𝑘(𝒚)
𝜕𝑦𝑞

)

𝑤𝑖,𝑘. (40)

The expression in Eq.  (40) involves a summation over a discrete random variable 𝑤𝑖,𝑘 and an integration over a continuous random 
variable 𝒖. This can be solved through simulation by generating samples of both random variables, as follows: 

𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

≈
𝜕�̃�𝐹 (𝒚)
𝜕𝑦𝑞

= 1
𝑁

𝑁
∑

𝑗=1

(

1
𝑤(𝑖,𝑘)(𝑗)

𝜕�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

𝜕𝑦𝑞

)

, (41)

where 𝜕�̃�𝐹 (𝒚)∕𝜕𝑦𝑞 corresponds to an estimate of 𝜕𝑝𝐹 (𝒚)∕𝜕𝑦𝑞 ; 𝑁 is the total number of samples; (𝑖, 𝑘)(𝑗), 𝑗 = 1,… , 𝑁 , are independent 
and identically distributed samples chosen from the set 𝐼 = {1,… , 𝑛𝜂×𝑛𝑇 } with probability mass function 𝑤𝑖,𝑘, where 𝑖 = 1,… , 𝑛𝜂 and 
𝑘 = 1,… , 𝑛𝑇 ; the vector 𝒖(𝑖,𝑘)(𝑗)  is distributed according to 𝑓 IS,(𝑖,𝑘)𝑼 (𝒖); and 𝜕�̃�(𝑖,𝑘)(𝑗)

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

∕𝜕𝑦𝑞 is the estimate of the derivative of the 
effective contribution 𝜕𝑝(𝑖,𝑘)(𝑗)

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

∕𝜕𝑦𝑞 evaluated at the sample 𝒖(𝑖,𝑘)(𝑗) . To estimate the derivative of the effective contribution, 
it is necessary to estimate the term 𝜇𝑖,𝑘(𝒚) by evaluating the sampled direction 𝒖(𝑖,𝑘)(𝑗)  in Eq.  (37), which means: 

𝜕�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

𝜕𝑦𝑞
≈𝑃 [𝐹𝑖,𝑘]𝜇𝑖,𝑘

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

=

𝑃 [𝐹𝑖,𝑘]
∞
∑

𝑙=𝐿

1

𝑙
(

1 − 𝐹𝑅2

(

𝑐𝐿
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
))

(

2𝑐𝑙+1
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)
𝜕𝑐𝑙+1

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

𝜕𝑦𝑞
𝑓𝑅2

(

𝑐𝑙+1
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
)

− 2𝑐𝑙
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)
𝜕𝑐𝑙

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

𝜕𝑦𝑞
𝑓𝑅2

(

𝑐𝑙
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)2
)

)

.

(42)

Eq. (41) yields the sensitivity of the first excursion probability estimator using the Domain Decomposition Method.
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Finally, it can be easily proven that the coefficient of variation 𝛿𝜕𝑝𝐹 ∕𝜕𝑦𝑞  of the sensitivity estimator in Eq.  (41) is equal to: 

𝛿𝜕𝑝𝐹 ∕𝜕𝑦𝑞 = 1
𝜕�̃�𝐹 (𝒚)∕𝜕𝑦𝑞

√

√

√

√

√

1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

((

1
𝑤(𝑖,𝑘)(𝑗)

𝜕�̃�(𝑖,𝑘)(𝑗)
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

𝜕𝑦𝑞

)

−
𝜕�̃�𝐹 (𝒚)
𝜕𝑦𝑞

)2

. (43)

3.4. Practical implementation

The calculation of gradient estimates using Eq. (41) involves the partial derivatives 𝜕𝑐𝑖,𝑘(𝒚, 𝒖)∕𝜕𝑦𝑞 , with 𝑞 = 1,… , 𝑛𝑌 , for all the 
possible sampled directions. This can be done by directly differentiating Eq. (19) with respect to a design parameter 𝑦𝑞 , resulting 
in: 

𝜕𝑐𝑖,𝑘(𝒚, 𝒖)
𝜕𝑦𝑞

= −
𝑏𝑖

(

𝒂𝑖,𝑘(𝒚)𝑇 𝒖
)

|

|

𝒂𝑖,𝑘(𝒚)𝑇 𝒖||

(

( 𝜕𝒂𝑖,𝑘(𝒚)
𝜕𝑦𝑞

)𝑇

𝒖

)

, (44)

where 𝜕𝒂𝑖,𝑘(𝒚)∕𝜕𝑦𝑞 denotes the derivative of vector 𝒂𝑖,𝑘 with respect to the design parameter 𝑦𝑞 . As shown in Section 2.2, vector 
𝒂𝑖,𝑘(𝒚) depends on the 𝑖th unit impulse response function ℎ𝑖(𝑡, 𝒚), and its derivative can be calculated directly by differentiating 
Eq. (9) as follows: 

𝜕𝒂𝑖,𝑘(𝒚)
𝜕𝑦𝑞

=
𝑘
∑

𝑚=1
𝛥𝑡𝜖𝑚

𝜕ℎ𝑖
(

𝑡𝑘 − 𝑡𝑚, 𝒚
)

𝜕𝑦𝑞
𝝍𝑚, (45)

where 𝜕ℎ𝑖(𝑡, 𝒚)∕𝜕𝑦𝑞 is the partial derivative of the 𝑖th unit impulse response function with respect to the design parameter 𝑦𝑞 . From Eq. 
(7) it is clear that the unit impulse response function depends on the mass matrix, damping matrix, coupling vector and spectral 
properties (that is, eigenvectors and eigenvalues). Therefore, the calculation of the partial derivative of the unit impulse response 
function with respect to a design parameter, can be achieved by applying the chain rule for differentiation, as detailed in Appendix 
C. It is worth noting that the partial derivative of the eigenvectors and eigenvalues can be obtained using the method proposed 
in [34].

The numerical implementation for calculating the reliability and sensitivity estimates can be achieved using Eqs. (29) and (40), 
which require one dynamic analysis and one sensitivity analysis, respectively. Both equations can be evaluated with the same 
samples, as the weights 𝑤𝑖,𝑘 and 𝑓 IS,(𝑖,𝑘) use identical indices in both cases. Consequently, the sensitivity analysis becomes a byproduct 
of the reliability analysis.

3.5. Summary

The application of the Domain Decomposition Method for calculating the gradient of the first excursion probability with respect 
to a design parameter, in the context of a linear system subjected to Gaussian loading, can be achieved by following these steps:

1. Define the basic information of the structural model. This includes the matrices 𝑴 , 𝑪, and 𝑲, the vector representing the 
structural properties of the system, 𝒚, and the threshold vector 𝒃.

2. Define the Gaussian load using the Karhunen–Loève expansion following Eq. (1).
3. Calculate the vector that characterizes the responses 𝒂𝑖,𝑘 with 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇  using Eq. (9), and calculate the 
vector 𝜕𝒂𝑖,𝑘(𝒚)∕𝜕𝑦𝑞 with 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇  using Eq. (45) and Appendix  C.

4. Calculate the design points 𝒛∗𝑖,𝑘(𝒚), reliability indices 𝛽𝑖,𝑘(𝒚) and weights 𝑤𝑖,𝑘 using Eqs. (13), (14) and (B.7), respectively.
5. Sample (with replacement) a total of 𝑁 pair of indices (𝑖, 𝑘)(𝑗), 𝑗 = 1,… , 𝑁 , from the set 𝐼 = {1,… , 𝑛𝜂 × 𝑛𝑇 } with probability 

𝑤𝑖,𝑘. Then, generate samples 𝒖(𝑖,𝑘)(𝑗)  following the procedure described in Appendix  B.
6. For each sample, calculate and sort the distances 𝑐𝑖,𝑘

(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
) with 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇  in ascending order of 

magnitude using Eqs. (19) and (20). Then, implement the sorted notation detailed in Section 3.2.2 and identify the index 𝐿
associated to each sample.

7. For each sample, calculate the derivative of the distances 𝜕𝑐𝑖,𝑘
(

𝒚, 𝒖(𝑖,𝑘)(𝑗)
)

∕𝜕𝑦𝑞 with 𝑖 = 1,… , 𝑛𝜂 and 𝑘 = 1,… , 𝑛𝑇  using Eq. (44), 
and the sort the values in the same order as in the previous step.

8. Calculate the first excursion probability using Eq. (29) and its coefficient of variation using Eq. (31).
9. Calculate the sensitivity estimate using Eq. (41) and its coefficient of variation using Eq. (43).

4. Examples

This section presents two examples that demonstrate the application of the proposed framework. The first example comprises a 
two-degree-of-freedom representation of a quarter-car model that considers nonproportional damping. The second example involves 
a large-scale finite element model of a curved bridge, demonstrating that the method is also applicable in cases with proportional 
damping. The results are compared with a reference method to assess the efficiency of this approach.
11 
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Fig. 5. Example 1: Quarter-car model. (a) 2-degree-of-freedom representation. (b) Physical representation.

4.1. Example 1: Quarter-car model

The first example is a quarter-car model, which consist in a two-degree-of-freedom idealization of the suspension of a car, as 
shown in Fig.  5. This model is based on an example presented in [49]. The dynamics of the problem is governed by the following 
two ordinary differential equations: 

[

𝑚1 0
0 𝑚2

]{

�̈�1(𝑡, 𝒚, 𝒛)
�̈�2(𝑡, 𝒚, 𝒛)

}

+
[

𝑐1 + 𝑐2 −𝑐2
−𝑐2 𝑐2

]{

�̇�1(𝑡, 𝒚, 𝒛)
�̇�2(𝑡, 𝒚, 𝒛)

}

+
[

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

]{

𝑥1(𝑡, 𝒚, 𝒛)
𝑥2(𝑡, 𝒚, 𝒛)

}

=
{

𝑘1𝑤(𝑡, 𝒛) + 𝑐1�̇�(𝑡, 𝒛)
0

}

,
(46)

where 𝑚1 = 15 kg and 𝑚2 = 290 kg represent the unsprung and sprung masses of a quarter of the car, respectively. The tire stiffness 
is 𝑘1 = 191 000 N∕m, while the suspension stiffness is 𝑘2 = 16 200 N∕m. Additionally, the damping coefficients for the tire and 
suspension are 𝑐1 = 100 Ns/m and 𝑐2 = 2500 Ns/m, respectively.

The load acting on the quarter-car model is the road profile 𝑤(𝑡, 𝒛), which is modeled as a zero-mean Gaussian random field 
with a squared exponential covariance kernel, with a correlation length 𝐿 = 3 m and a standard deviation of 0.01 m. The car speed 
considered is 25 m/s over a distance of 125 m. The dimension along the road is discretized into 1001 equidistant points, considering 
a total of 𝑛𝐾𝐿 = 1001 terms. The time is discretized in intervals of 𝛥𝑡 = 0.005 s, which means that the problem dynamics have a 
total duration of 5 s. It is also assumed that the car starts from a rest position in the 𝑥1 and 𝑥2 coordinates.

In order to assess the comfort of a car while driving over a road profile, it is common to control two responses of interest: the 
acceleration of the sprung mass and the suspension stroke (the relative displacement between the car body and the unsprung mass), 
with the latter being considered in this example. Specifically, the response of interest is the displacement of mass 𝑚2 with respect 
to mass 𝑚1, expressed as 𝜂(𝑡, 𝒚, 𝒛) = |𝑥2(𝑡, 𝒚, 𝒛) − 𝑥1(𝑡, 𝒚, 𝒛)|, which involves a total of 𝑛𝜂 = 1001 elementary failure domains. The 
threshold level is set at 𝑏 = 3.5 × 10−2 m, and the first excursion probability is estimated using the Domain Decomposition Method, 
resulting in �̃�𝐹 = 5.1 × 10−3.

The objective is to estimate the sensitivity of the first excursion probability with respect to the mass 𝑚2 and the stiffness 𝑘2 of 
the model, that is with respect to the design vector 𝒚 = [𝑚2, 𝑘2]𝑇 , using both the Domain Decomposition Method and Directional 
Sampling. In the latter approach, the estimation focuses on the effective contributions by directly sampling unit directions according 
to Eq.  (22), without introducing the importance sampling density.

The evolution of the sensitivity estimates and their coefficient of variation with respect to the number of samples is shown in Figs. 
6 and 7. In this example, a total of 106 samples are considered. The sensitivity estimates converge to similar values for both methods. 
The Domain Decomposition Method provides a more stable estimator compared to Directional Sampling, with a significantly lower 
coefficient of variation in all the estimates. Considering an acceptable stabilization point for the estimates when they reach a 20% 
coefficient of variation, it can be observed that the Domain Decomposition Method requires approximately 400 samples, while 
Directional Sampling requires around 106 samples. In addition, the results have been validated using finite differences, where the 
sensitivity estimator has been estimated with 2 × 106 samples (1 × 106 samples in each of the forward and backward steps). The 
comparison with finite differences, in which the proposed technique achieves a 5% coefficient of variation, is presented in Table  3. 
There is an excellent match between the sensitivity estimates calculated with DDM and finite differences.

The sensitivity analysis with respect to the design parameters 𝑚2 and 𝑘2 is particularly relevant for assessing the comfort of the 
car. As shown in Fig.  6, for the chosen parameters, an increase in the vehicle’s body mass results in a higher failure probability. 
This is due to a potential decrease in the system’s natural frequency, which makes the system more sensitive to low-frequency 
perturbations in the road profile, ultimately leading to an increased response of interest. Furthermore, as shown in Fig.  7, an increase 
in the stiffness 𝑘2 also leads to a higher failure probability. The reason for this is that a stiffer suspension makes the vehicle more 
reactive to road irregularities, thereby increasing the system’s failure probability.
12 
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Fig. 6. Example 1: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower figure) associated with 𝑚2 with respect to the 
number of samples, using both the Domain Decomposition Method (DDM) and Directional Sampling (DS).

Fig. 7. Example 1: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower figure) associated with 𝑘2 with respect to the 
number of samples, using both the Domain Decomposition Method (DDM) and Directional Sampling (DS).

Table 3
Comparison of sensitivity estimates obtained using the Domain Decomposition method (DDM) 
achieving a 5% coefficient of variation, against reference results from finite differences (FD).
 DDM FD  
 𝜕�̃�𝐹
𝜕𝑚2

8.90 × 10−5 8.96 × 10−5  

 𝜕�̃�𝐹
𝜕𝑘2

6.33 × 10−7 6.25 × 10−7  

4.2. Example 2: Curved bridge subject to Gaussian ground excitation

The second example corresponds to a three-dimensional finite element model of a curved bridge, which comprises 10068 degrees 
of freedom, illustrated in Figs.  8 and 9. This model is based on an example presented in [7]. The superstructure of the bridge is 
modeled as a monolithic box girder composed of shell and beam elements. It is curved in the plane 𝑥-𝑦 with a total length of 119 m 
constituted of five spans with length of 24 m, 20 m, 23 m, 25 m, and 27 m, respectively. The substructure is modeled with four 
13 
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Fig. 8. Example 2: Perspective view of the finite element model of the curved bridge.

columns, each supported by four piles, using beam and shell elements. The columns, labeled as 𝐶𝑘, for 𝑘 = 1, 2, 3, 4, have circular 
cross section with a diameter of 1.6 m and a height of 8 m, while the piles have a diameter of 0.6 m and a height of 35 m. The 
interaction between the piles and the soil is modeled using linear springs with translational stiffness in the 𝑥 and 𝑦 directions, varying 
linearly from 112 MN/m at the deepest point of the pile to 0 MN/m at the ground level. All elements of the model have the same 
material properties, which correspond to reinforced concrete, with a Young’s modulus of 𝐸 = 2.09 × 1010 N/m2, a Poisson’s ratio 
𝜈 = 0.2, and a density 𝜌 = 2500 kg∕m3. The classical damping considered is equal to 3% for all mode shapes.

The stochastic ground acceleration acting on the bridge is modeled as a discrete white noise process with a spectral density of 
𝑆 = 5 × 104 m2/s3, over a total duration of 𝑇 = 10 s, discretized into 1001 time instants of duration 𝛥𝑡 = 0.01 s. It is applied at 
an angle of 45 degrees with respect to the 𝑥 axis. Additionally, the discrete white noise process passes through a Clough–Penzien 
filter [50] and is modulated by the following function 𝑚(𝑡): 

𝑚(𝑡) =

⎧

⎪

⎨

⎪

⎩

(𝑡∕5)2 0 ⩽ 𝑡 ⩽ 5[ s]
1 5 < 𝑡 ⩽ 6[ s]

𝑒−(𝑡−6)2 𝑡 > 6[ s]
. (47)

The Karhunen–Loève representation for the ground acceleration considers a total of 𝑛𝐾𝐿 = 1001 terms. It is also assumed that the 
structure starts from a rest position.

The responses of interest are defined as the drift of the columns in either 𝑥 or 𝑦 direction. The failure event corresponds to each 
of the responses of interest exceeding a threshold of 𝑏 = 0.02 m. That means, eight responses of interest that can be evaluated at 
every time instant, resulting in a total of 8008 elementary failure domains. The response has been calculated with a truncation of 
100 mode shapes for the dynamic analysis. The first excursion probability is calculated using the Domain Decomposition Method 
resulting in �̃�𝐹 ≈ 3.0 × 10−3.

The objective is to estimate the sensitivity of the first excursion probability within the framework of the Domain Decomposition 
Method. The sensitivity is estimated with respect to the design vector 𝒚 = [𝑦1, 𝑦2, 𝑦3, 𝑦4]𝑇 , where 𝑦𝑗 denotes the diameter of the 𝑗th 
column 𝐶𝑗 , as illustrated in Fig.  9.

The sensitivity of the first excursion probability is estimated using both the Domain Decomposition Method and Directional 
Sampling with respect to the design parameter 𝑦1. In the latter approach, the same considerations discussed in Section 4.1 are 
followed. The evolution of the sensitivity estimator and its coefficient of variation is shown in Fig.  10, where a total of 106 samples 
is considered. The sensitivity estimates converge to a similar value for both methods. The Domain Decomposition Method provides 
a more stable estimator compared to Directional Sampling. This can be confirmed by observing the lower plot in Fig.  10, where 
the Domain Decomposition Method has a coefficient of variation that is considerably lower than that of Directional Sampling. 
Considering an acceptable stabilization point for the estimator when it reaches a 20% coefficient of variation, it can be observed 
that the Domain Decomposition Method requires approximately 2000 samples, while Directional Sampling cannot reach this value 
with the samples used.

The evolution of the sensitivity estimates with respect to the design parameters 𝑦𝑞 , where 𝑞 = 1, 2, 3, 4, and the evolution of 
their coefficient of variation, are shown in Fig.  11. The results indicate that increasing the diameter of columns 1 and 2 leads to an 
increase in the failure probability of the system, with both columns having almost the same influence, as seen in the superimposed 
14 
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Fig. 9. Example 2: Top view of the finite element model of the curved bridge.

Fig. 10. Example 2: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower figure) associated with 𝑦1 with respect to the 
number of samples, using both the Domain Decomposition Method (DDM) and Directional Sampling (DS).

results of the curves associated with 𝑦1 and 𝑦2. In contrast, increasing the diameter of columns 3 and 4 (primarily) results in a 
decrease in the failure probability of the system. Considering the same criterion as before, the sensitivity estimates with respect 
to 𝑦1 and 𝑦2 stabilize with approximate 2000 samples. In the case of the sensitivity estimator with respect to 𝑦3, stabilizes with 
approximately 4500 samples, while the sensitivity estimator with respect to 𝑦4, stabilizes with approximately 1000 samples.

To understand the physical meaning of the presented results, Fig.  12 illustrates a schematic associated with the most predominant 
failure response: the displacement of column 𝐶4 exceeding the prescribed threshold in the 𝑥 direction. According to the results of 
the sensitivity estimates presented in Fig.  11, an increase in the diameter of columns 𝐶1 and 𝐶2 causes the bridge (viewed in plan) 
to tend to rotate around a point between these columns. This results in increased displacements in columns 𝐶3 and 𝐶4, consequently 
increasing the system’s failure probability. Conversely, an increase in the diameter of columns 𝐶3 and 𝐶4 helps to control the total 
translation of the bridge, which leads to a reduction in the failure probability of the system.

5. Conclusions and outlook

This contribution has explored the application of the Domain Decomposition Method for estimating the sensitivity of the first 
excursion probability of a linear system with nonproportional damping subject to a Gaussian loading. The sensitivity is calculated 
as the partial derivative of the first excursion probability with respect to design parameters that influence the structural response. 
These derivatives involve the sensitivity analysis of the unit impulse response functions, as well as the spectral properties of the 
system, including the eigenvectors and eigenvalues.

The proposed framework collects valuable information of the failure domain by exploring it in a directional way. For each line 
explored, the information of the effective contribution of the failure probability and its gradient for each elementary failure domain 
15 
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Fig. 11. Example 2: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower figure) associated with 𝑦𝑞 (𝑞 = 1, 2, 3, 4) with 
respect to the number of samples, using the Domain Decomposition Method (DDM).

Fig. 12. Example 2: Schematic representation of a predominant failure response.

is incorporated into both estimators. For this reason, the calculation of the sought sensitivities is achieved with a reduced number 
of samples, demonstrating high efficiency and stability. Furthermore, the sensitivities are estimated as a byproduct of the reliability 
analysis.

Future extensions of the presented research could explore the following:

• The design of a modified importance sampling density function, which could improve the efficiency of the sensitivity estimates.
• The effect of the weights on the estimation of effective contributions.
• The calculation of sensitivity estimates with respect to excitation parameters, such as the frequencies of the Clough–Penzien 
model filters.

• The application of the proposed method in the context of reliability-based design optimization (RBO) problems.
The above-mentioned issues are currently being investigated by the authors.
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Appendix A. Gradient of the failure probability

The deduction of the expression presented in Eq.  (12) can be done by writing the first excursion probability presented in Eq. 
(11) as: 

𝑝𝐹 (𝒚) = ∫𝒛∈R𝐾𝐿
𝐻(−𝑔(𝒚, 𝒛))𝑓𝒁 (𝒛)𝑑𝒛, (A.1)

where 𝐻(⋅) denotes the step function. Then, the differentiation of Eq.  (A.1) with respect to a design parameter 𝑦𝑞 , leads to: 
𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

= −∫𝒛∈R𝐾𝐿
𝛿(−𝑔(𝒚, 𝒛))

𝜕𝑔(𝒚.𝒛)
𝜕𝑦𝑞

𝑓𝒁 (𝒛)𝑑𝒛, 𝑞 = 1,… , 𝑛𝑦, (A.2)

where 𝛿(⋅) corresponds to Dirac delta. Furthermore, using the following identity [51]: 

∫R𝑛
𝑓1(𝒙)𝛿

(

𝑓2(𝒙)
)

𝑑𝒙 = ∫𝑓2(𝒙)=0
𝑓1(𝒙)

‖

‖

∇𝑓2(𝒙)‖‖
𝑑𝜎, (A.3)

being 𝜎 a differential surface element, 𝑓1(𝒙) a function, and 𝑓2(𝒙) a differentiable function, with a non-zero gradient at the points 
where 𝑓2(𝒙) = 0. Then, using the identity of Eq.  (A.3) in Eq.  (A.1), the expression for the gradient of the failure probability 
becomes [52]: 

𝜕𝑝𝐹 (𝒚)
𝜕𝑦𝑞

= −∫𝑔(𝒚,𝒛)=0
𝜕𝑔(𝒚, 𝒛)
𝜕𝑦𝑞

1
‖

‖

∇𝒛𝑔(𝒚, 𝒛)‖‖
𝑓𝒁 (𝒛)𝑑𝑆, 𝑞 = 1,… , 𝑛𝑦. (A.4)

Appendix B. Importance sampling density 𝒇 IS,(𝒊,𝒌)𝑼 (𝒖) and samples generation

The importance sampling density function 𝑓 IS,(𝑖,𝑘)𝑼 (𝒖) is constructed based on the ideas proposed in [5,7,45], with the difference 
that each effective contribution 𝑝𝑖,𝑘 has its own importance sampling density function, defined as: 

𝑓 IS,(𝑖,𝑘)𝑼 (𝒖) = 𝑓𝑼
(

𝒖|𝐹𝑖,𝑘
)

, (B.1)

where 𝑓𝑼 (𝒖|𝐹𝑖,𝑘) is the probability density associated with the direction 𝒖 on the occurrence of an elementary failure event 𝐹𝑖,𝑘, 
which can be analyzed by applying Bayes’ theorem, as follows:

𝑓𝑼
(

𝒖|𝐹𝑖,𝑘
)

=
𝑃
[

𝒖
⋂

𝐹𝑖,𝑘
]

𝑃
[

𝐹𝑖,𝑘
] (B.2)

=
𝑓𝑼 (𝒖)𝑃

[

𝒖|𝐹𝑖,𝑘
]

𝑃
[

𝐹𝑖,𝑘
] (B.3)

=
𝑓𝑼 (𝒖)𝑃

[

𝒖|𝐹𝑖,𝑘
]

2𝛷𝒁
(

−𝛽𝑖,𝑘
) , (B.4)

where 𝑃 [

𝒖|𝐹𝑖,𝑘
] is the probability of occurrence of the elementary failure event 𝐹𝑖,𝑘 given a particular direction 𝒖 in the standard 

Gaussian space. This term can be expressed as: 
𝑃
[

𝒖|𝐹𝑖,𝑘
]

= 1 − 𝐹𝑅2
(

𝑐𝑖,𝑘(𝒚, 𝒖)2
)

, (B.5)

and the proposed importance sampling density function becomes: 

𝑓 IS,(𝑖,𝑘)𝑼 (𝒖) =
𝑓𝑼 (𝒖)

(

1 − 𝐹𝑅2
(

𝑐𝑖,𝑘(𝒚, 𝒖)2
))

2𝛷𝒁
(

−𝛽𝑖,𝑘
) . (B.6)

The process of generating samples 𝒖(𝑗), 𝑗 = 1,… , 𝑁 following 𝑓 IS,(𝑖,𝑘)𝑼 (𝒖) is done by the following procedure [5–7]:

1. Set 𝑗 = 1.
2. Draw a pair of indices (𝐼,𝐾) from the set 𝛺 =

{

(𝑖, 𝑘) ∶ 𝑖 ∈
{

1,… , 𝑛𝜂
}

, 𝑘 ∈
{

1,… , 𝑛𝑇
}} with probability proportional to the 

weights 𝑤𝑖,𝑘, 𝑖 = 1,… , 𝑛𝜂 , 𝑘 = 1,… , 𝑛𝑇 , defined as follows: 

𝑤𝑖,𝑘 =
𝑃 [𝐹𝑖,𝑘]

∑𝑛𝜂
ℎ=1

∑𝑛𝑇
𝑗=1 𝑃 [𝐹ℎ,𝑗 ]

. (B.7)

3. Generate a sample 𝒛 of the random vector 𝒁, together with the realizations of 𝑢1 and 𝑢2, which follow a uniform distribution 
between 0 and 1.
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4. Calculate 𝛼 = −𝛷−1 ((1 − 𝑢1)𝛷(−𝛽𝑖,𝑘)
)

, where 𝛷−1(⋅) denotes the inverse cumulative standard Gaussian distribution.
5. Calculate 𝒂∗𝐼,𝐾 (𝒚) = 𝒂𝐼,𝐾 (𝒚)∕ ‖‖𝒂𝐼,𝐾 (𝒚)‖‖, where 𝒂𝐼,𝐾 (𝒚) is defined in Eq.  (9).
6. Define 𝑧∗ as: 

𝒛∗ =

⎧

⎪

⎨

⎪

⎩

𝒛 +
(

𝛼 − 𝒛𝑇 𝒂∗𝐼,𝐾 (𝒚)
)

𝒂∗𝐼,𝐾 (𝒚)  if 𝑢2 ⩽ 1∕2

−𝒛 −
(

𝛼 − 𝒛𝑇 𝒂∗𝐼,𝐾 (𝒚)
)

𝒂∗𝐼,𝐾 (𝒚)  otherwise ,
(B.8)

and calculate the desired sample as 𝒖(𝑗) = 𝒛∗∕ ‖𝒛∗‖.
7. If 𝑗 = 𝑁 , stop the procedure; otherwise, increment 𝑗 by 1 and return to step 2.

Appendix C. Derivative of unit impulse response function

Eq. (7) can be recast as: 

ℎ𝑖(𝑡, 𝒚) =
2𝑛𝐷
∑

𝑟=1
𝐴𝑟,𝑖(𝒚)𝐵𝑟(𝑡, 𝒚), (C.1)

where 𝑖 = 1,… , 𝑛𝜂 . Then, the terms 𝐴𝑟,𝑖(𝒚) and 𝐵𝑟(𝑡, 𝒚) are defined as:

𝐴𝑟,𝑖(𝒚) =
𝜸𝑇𝑖 𝝓𝑟(𝒚)𝝓𝑟(𝒚)𝑇 𝒈𝑎(𝒚)
𝝓𝑟(𝒚)𝑇𝑴𝑎(𝒚)𝝓𝑟(𝒚)

, (C.2)

𝐵𝑟(𝑡, 𝒚) = 𝑒𝜆𝑟(𝒚)𝑡, (C.3)

where 𝑟 = 1,… , 2𝑛𝐷 and 𝑖 = 1,… , 𝑛𝜂 . Therefore, the partial derivative of the unit impulse response function in Eq.  (C.1) with respect 
to the design parameter 𝑦𝑞 , where 𝑞 = 1,… , 𝑛𝑌 , is given by: 

𝜕ℎ𝑖(𝑡, 𝒚)
𝜕𝑦𝑞

=
𝑛𝐷
∑

𝑟=1

( 𝜕𝐴𝑟,𝑖(𝒚)
𝜕𝑦𝑞

𝐵𝑟(𝑡, 𝒚) + 𝐴𝑟,𝑖(𝒚)
𝜕𝐵𝑟(𝑡, 𝒚)

𝜕𝑦𝑞

)

. (C.4)

Then, considering 𝐴{1}
𝑟,𝑖 (𝒚) = 𝜸𝑇𝑖 𝝓𝑟(𝒚)𝝓𝑟(𝒚)𝑇 𝒈𝑎(𝒚) and 𝐴{2}

𝑟 (𝒚) = 𝝓𝑟(𝒚)𝑇𝑴𝑎(𝒚)𝝓𝑟(𝒚), it is possible to calculate the derivative of Eq. 
(C.4) as:

𝜕𝐴𝑟,𝑖(𝒚)
𝜕𝑦𝑞

=
⎛

⎜

⎜

⎝

𝜕𝐴{1}
𝑟,𝑖 (𝒚)
𝜕𝑦𝑞

𝐴{2}
𝑟 (𝒚) − 𝐴{1}

𝑟,𝑖 (𝒚)
𝜕𝐴{2}

𝑟 (𝒚)
𝜕𝑦𝑞

⎞

⎟

⎟

⎠

1
(

𝐴{2}
𝑟

)2
(C.5)

𝜕𝐵𝑟(𝑡, 𝒚)
𝜕𝑦𝑞

= 𝑡𝑒𝜆𝑟𝑡
𝜕𝜆𝑟
𝜕𝑦𝑞

. (C.6)

where

𝜕𝐴{1}
𝑟,𝑖 (𝒚)
𝜕𝑦𝑞

= 𝜸𝑇𝑖

(

𝜕𝝓𝑟(𝒚)
𝜕𝑦𝑞

𝝓𝑟(𝒚)𝑇 𝒈𝑎(𝒚) + 𝝓𝑟(𝒚)
(

𝜕𝝓𝑟(𝒚)𝑇

𝜕𝑦𝑞
𝒈𝑎(𝒚) + 𝝓𝑟(𝒚)𝑇

𝜕𝒈𝑎(𝒚)
𝜕𝑦𝑞

))

(C.7)

𝜕𝐴{2}
𝑟 (𝒚)
𝜕𝑦𝑞

=
𝜕𝝓𝑟(𝒚)𝑇

𝜕𝑦𝑞
𝑴𝑎(𝒚)𝝓𝑟(𝒚) + 𝝓𝑟(𝒚)𝑇

(

𝜕𝑴𝑎(𝒚)
𝜕𝑦𝑞

𝝓𝑟(𝒚) +𝑴𝑎(𝒚)
𝜕𝝓𝑟(𝒚)
𝜕𝑦𝑞

)

. (C.8)

It is worth noting that, to implement Eq. (C.4), it is necessary to calculate the partial derivatives of the eigenvalue 𝜕𝜆𝑟(𝒚)∕𝜕𝑦𝑞 and 
the eigenvector 𝜕𝝓𝑟(𝒚)∕𝜕𝑦𝑞 . This can be done by following the approach proposed in [34]. The advantage of this framework is that 
the calculation of derivatives for the 𝑟th eigenvalue and eigenvector does not depend on other eigenvalues and eigenvectors [53]. 
This is particularly important when simplifying the analysis by neglecting the total number of mode shapes needed to calculate the 
responses of interest. Therefore, the sought derivatives can be calculated solving the following system of equations: 

(

𝑲𝑎(𝒚) − 𝜆𝑟(𝒚)𝑴𝑎(𝒚) −𝑴𝑎(𝒚)𝝓𝑟(𝒚)
−𝝓𝑟(𝒚)𝑇𝑴𝑎(𝒚) 0

)

⎛

⎜

⎜

⎜

⎝

𝜕𝝓𝑟(𝒚)
𝜕𝑦𝑞

𝜕𝜆𝑟(𝒚)
𝜕𝑦𝑞

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

−
(

𝜕𝑲𝑎(𝒚)
𝜕𝑦𝑞

− 𝜆𝑟(𝒚)
𝜕𝑴𝑎(𝒚)
𝜕𝑦𝑞

)

𝝓𝑟(𝒚)

1
2
𝝓𝑟(𝒚)𝑇

𝜕𝑴𝑎(𝒚)
𝜕𝑦𝑞

𝝓𝑟(𝒚)

⎞

⎟

⎟

⎟

⎠

.

(C.9)

It is important noting that Eq.  (C.9) is calculated under the assumption that the mode shapes are normalized, such as
𝝓 (𝒚)𝑇 (−𝑴 (𝒚))𝝓 (𝒚) = 1, and applies for the case without repeated eigenvalues.
𝑟 𝑎 𝑟
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Data availability

Data will be made available on request.
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