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Abstract11

Geometric uncertainty poses a significant challenge in many engineering sub-disciplines ranging12

from structural design to manufacturing processes, often attributed to the underlying manufac-13

turing technology and operating conditions. When combined with geometric complexity, this14

phenomenon can result in substantial disparities between numerical predictions and the actual15

behavior of mechanical systems. One of the underlying causes lies in the initial design phase,16

where insufficient information impedes the development of robust numerical models due to epis-17

temic uncertainty in system dimensions. In such cases, set-based methods, like intervals, prove18

useful for characterizing these uncertainties by employing lower and upper bounds to define un-19

certain input parameters. Nevertheless, employing interval methods for treating geometric uncer-20

tainties can become computationally demanding, especially when traditional methods like finite21

element analysis (FEA) are utilized to represent the system. This is due to the necessity of per-22

forming iterative analyses for different realizations of geometry within the bounds of uncertain23

parameters, requiring the repeated execution of the meshing process and thereby escalating the24

numerical effort. Moreover, the process of remeshing introduces a second challenge by disrupting25

the continuity of the underlying optimization problem inherent in interval analysis, further com-26

plicating the computational procedure. In this work, the potential of Isogeometric Analysis (IGA)27

for quantifying geometric uncertainties characterized by intervals is explored. IGA utilizes the28

same basis functions, Non-Uniform Rational B-Splines (NURBS), employed in Computer-Aided29

Design (CAD) to approximate solution fields in numerical analysis. This integration enhances30
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the accurate description of complex shapes and interfaces while maintaining geometric fidelity31

throughout the simulation process. The primary advantage of employing IGA for uncertainty32

quantification lies in its ability to control the system’s geometry through the position of control33

points, which define the shape of NURBS. Consequently, alterations in the model’s geometry can34

be achieved by varying the position of these control points, thereby bypassing the numerical costs35

associated with remeshing when performing uncertainty quantification considering intervals. To36

propagate geometric uncertainties, a gradient-based optimization (GBO) algorithm is applied to37

determine the lower and upper bounds of the system response. The corresponding sensitivities38

are computed from the IGA model with a variational approach. Two case studies involving linear39

systems with uncertain geometric parameters demonstrate that the proposed strategy accurately40

estimates uncertain stress triaxiality.41

Keywords: Isogeometric analysis (IGA), Geometric uncertainty, Interval analysis, Variational42

Sensitivity Analysis, Stress Triaxiality.43

Highlights:44

• Proposes Isogeometric Analysis (IGA) to handle geometric uncertainties.45

• Geometric uncertainties are propagated without the need for remeshing procedures.46

• Incorporates variational sensitivity analysis for efficient propagation of interval uncertainties.47

• Validates efficiency through stress triaxiality analysis in both 2D and 3D mechanical systems.48

1. Introduction49

Geometric uncertainties are prevalent in fields as diverse as aerospace, automotive, robotics,50

and civil, mechanical, and biomedical engineering, where precision and robustness are paramount [1].51

These uncertainties can pose significant challenges to ensuring the performance and safety of crit-52

ical systems. In industrial manufacturing, for example, geometric uncertainties play a critical role53

in the design and production process. For such reason, manufacturing geometric uncertainty will54

be the focus of this work. Manufacturing geometric uncertainty involves discrepancies between55

nominal models and the actual behavior of a component, potentially resulting in inaccuracies in56
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dimensions, shape, and tolerances of the manufactured part [2, 3]. This phenomenon can con-57

tribute to diminished working efficiency, variations in the performance of mechanical systems, as58

well as decreased service life and operational reliability [4, 5]. Various sources can contribute to59

geometric uncertainties in manufacturing processes. For instance, wear and deflection of cutting60

tools may lead to deviations from the intended geometry during machining processes [6]. In-61

accuracies and imperfections in the machine tool itself, such as backlash, thermal expansion, or62

misalignment, can also introduce geometric uncertainties [7, 8, 9]. Additionally, elastic and plastic63

deformation of materials during machining or forming processes may induce deviations from the64

desired geometry [10]. Moreover, inconsistent or imprecise fixtures and clamping mechanisms can65

introduce variations in part positioning, impacting the final geometry [11]. Since all these causes66

can affect the final operating conditions of the system, such geometric uncertainties must be taken67

into account to accurately study the behavior of mechanical components.68

The geometry information available during the initial design phase is typically limited and69

inaccurate due to the aforementioned manufacturing sources of geometric uncertainty. This lack70

of knowledge impedes the development of robust numerical models due to epistemic uncertainty71

in system dimensions. In recent years, set-based methods have been developed to address un-72

certainty arising from information scarcity [12, 13]. These methods have been widely applied to73

estimate system responses resulting from epistemic uncertainty, including fuzzy analysis [14, 15],74

imprecise probabilities [16, 17], and interval analysis [18, 19, 20, 21]. Among these techniques,75

interval analysis has proven particularly practical when dealing with limited information [22, 23].76

In interval analysis, a parameter affected by epistemic uncertainty is defined by lower and upper77

bounds [24]. This approach is especially suitable at an earlier stage of design when only the range78

of variation of the uncertain parameters is known, and the available information is insufficient to79

determine the nature of the distribution within the interval [25]. Once uncertainty is described by80

intervals, it is necessary to propagate this uncertainty to the response of interest (e.g., displace-81

ments, strains, and stresses). Traditionally, interval uncertain parameters are propagated through82

a finite element model (FE) to obtain information about the extremes of the system response using83

a global optimization approach [26]. Nevertheless, performing interval analysis can be computa-84

tionally expensive, especially for complex models with numerous uncertain parameters [27]. The85

need to repeatedly evaluate the numerical model over different interval realizations increases the86

computational cost. This cost is even higher when geometric parameters are uncertain, as in the87
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case of manufacturing uncertainties. This is because each of these evaluations requires rebuilding88

the finite element geometry (i.e., the mesh), which is costly, time-consuming, and increases the in-89

accuracy of the geometry representation. Moreover, a second problem with remeshing procedures90

is that it destroys the continuity of the optimization problem underlying interval analysis.91

The motivation for this paper is to explore the potential of Isogeometric Analysis (IGA) [28]92

for quantifying geometric uncertainties characterized by intervals. In this technique, geometries93

described by Non-Uniform Rational B-Splines (NURBS) based on Computer-Aided Design (CAD)94

are used directly in the analysis framework, without performing any geometric approximation95

as in the Finite Element Analysis (FEA) [29]. Therefore, the main principle of IGA is to use96

NURBS basis functions to construct and manipulate the exact shape of CAD geometries and97

as a means for their numerical analysis [30]. Notably, NURBS exhibit meaningful properties,98

including non-negativity, unit partitioning, local support, and smoothness, ensuring high-order99

continuity between elements [31]. As a result, one of the main advantages of IGA is its geometric100

accuracy [32], no matter how coarse the discretization may be [28]. Since IGA allows users to101

easily handle complex geometries, this technique seems suitable for uncertainty quantification102

(UQ) [31]. To the best of our knowledge, a few applications of IGA for UQ have been developed.103

The work of [33] uses the Stochastic Isogeometric Analysis (SIGA) to study the free vibration of104

functionally graded plates with spatially varying random material properties. In their work, the105

elastic modulus and mass density were considered uncertain properties, which were modeled as106

homogeneous Gaussian random fields. Spectral stochastic isogeometric analysis (SSIGA) [34] for107

stochastic linear elasticity problems considering spatially dependent uncertain Young’s modulus108

has also been investigated. The contribution of [35] proposes an IGA-based framework for solving109

the uncertainty problem of composite shells. The work of [36] presents a framework for uncertainty110

quantification and robust shape optimization of acoustic structures. The approach is based on111

the Boundary Element Method (BEM) and the Polynomial Chaos Expansion (PCE), where an112

IGA BEM is used to calculate shape sensitivities. Another contribution of SIGA to the analysis113

of shape uncertainty has been proposed by [37], where the authors combine IGA and PCE to114

address uncertainty described by random fields. Nevertheless, the application of IGA to quantify115

geometric uncertainties under limited data has not been explored. Hence, it is the object of this116

work to examine its coupling with interval analysis. When using IGA to model a system, the117

geometry can be controlled by the position of the control points that define the shape of the118
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NURBS [38]. This is an advantage for quantifying geometric uncertainty. This is because the119

control points define the control mesh, which represents the physical structure of the system.120

As a result, it is possible to modify the model geometry and obtain the updated field solutions121

without going through the remeshing process [39, 40]. Therefore, by manipulating the geometry122

through changes in the position of the control points, it is possible to avoid the numerical cost of123

performing interval analysis using classical finite element analysis with remeshing.124

For the propagation of geometric uncertainties, applying a gradient-based optimization (GBO)125

algorithm [41] is proposed to determine both the lower and upper bounds of the system response.126

The gradient of the objective function is calculated concerning each geometric uncertain param-127

eter, from the sensitivities of the IGA model. Exploiting the key benefit of IGA to manipulate128

the geometry, a variational formulation that allows the simultaneous computation of structural129

response and sensitivities is applied [42]. A parameterization of the NURBS control point ma-130

trix is applied to guide FE users in the use of IGA for uncertainty quantification. The proposed131

strategy is tested for estimating uncertain stress triaxiality in a linear 2D hook system with un-132

certain radius and thickness, and in a linear 3D horseshoe shape with four uncertain geometric133

parameters.134

The rest of the paper is organized as follows. The governing equations for the class of systems135

considered in this work are presented in Section 2. The definition of the response of interest as136

well as the influence of geometric uncertainty on the associated stress triaxiality response is also137

explained. Section 3 presents the approach used to describe the uncertain parameters associated138

with the geometry using interval analysis. The disadvantages of interval analysis for uncertainty139

propagation in the context of FEA are discussed in detail. Section 4 provides the basics of IGA140

analysis and the formulation of the sensitivity analysis. The applied uncertainty propagation141

scheme is presented in Section 5, using the GBO algorithm. The implementation of the proposed142

technique is illustrated and discussed in Section 6. Conclusions are drawn in Section 7.143

2. Formulation of the problem144

2.1. Governing equations145

Consider a linear system under the influence of static loads. It is considered that the parameters146

that characterize the geometry of the system (e.g., lengths, thicknesses, curvatures) cannot be147

accurately determined due to problems such as lack of knowledge, vagueness, and imprecision of148
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data resulting from manufacturing processes. Consequently, the geometric input parameters are149

affected by epistemic uncertainty. These parameters are collected in a vector x of dimension nx.150

Typically, a set of partial differential equations (PDEs) must be solved to perform a structural151

design calculation for this system. The approximate solution of these PDEs is usually provided152

by a numerical model M(x). This numerical model M(x) can be constructed using the Finite153

Element Method (FEM) [43], Finite Difference Method (FDM) [44], Boundary Element Method154

(BEM) [45], or Isogeometric Analysis (IGA) [28], among others. Note that the model M(x)155

depends on the geometric uncertain parameters x. In addition, through the application of these156

methods, the model yields a response y, which is defined as,157

M(x) : y = m(x) (1)

where m is a response function operator that maps the geometric uncertain input parameters158

x to the output response y. This response can encompass various quantities of interest, such as159

displacements, stresses, or strain fields. Note that the behavior of the system, given by its response160

y, is influenced by uncertain geometric variables x during the mapping with m. As a result, the161

response of the system is subject to uncertainties as well. The response of interest considered in162

this paper is discussed in Section 2.2.163

Notably, the construction of the numerical model M(x) using the traditional finite element164

method can involve significant computational effort, especially when the uncertainty relates to ge-165

ometry. Firstly, a large number of degrees-of-freedom are typically required to discretely represent166

a system with traditional FEA, to accurately capture its real behavior. This becomes especially167

challenging when dealing with complex geometries. Secondly, the discretization step involves168

defining a finite element mesh that approximates the system’s real geometry. To capture uncer-169

tainties in the geometry, this mesh needs redefinition whenever the geometry changes. As a result,170

the numerical model M(x) must be constructed at a high level of detail to accurately capture the171

complex geometry of the system and is further dependent on the mesh definition. Consequently,172

obtaining a solution for Eq. (1) may not be straightforward in the presence of geometric uncer-173

tainty. Therefore, exploring alternative methods becomes essential to reduce computational costs174

and increase efficiency when analyzing systems with complex geometries and uncertain parame-175

ters. Hence, this paper investigates Isogeometric Analysis (IGA) as an alternative method due to176

its advantages in handling geometry. The basis of this technique will be discussed in Section 4.177
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2.2. Stress triaxiality178

As mentioned above, it is of interest to investigate a response related to the system defined179

in Eq. (1), e.g. for design purposes. In mechanical analysis and especially in manufacturing180

design, users are interested in studying damage states [46], as well as initiation of fracture pro-181

cesses [47]. For this purpose, analyzing the stresses resulting from the numerical simulation M(x)182

is crucial. In particular, stress triaxiality is one of the most important factors in controlling such183

problems [48]. The stress triaxiality index provides useful insight into material performance under184

complex loading conditions. This helps in the design and optimization of structural components185

to improve performance and service life. By definition, stress triaxiality σST(x) is the ratio of186

the hydrostatic stress σM(x) to a deformation-related deviatoric stress contribution σV(x). In187

mathematical terms,188

σST(x) =
σM(x)

σV(x)
(2)

where, for general plane stress conditions, the hydrostatic stress corresponds to,189

σM(x) =
σ11(x) + σ22(x)

2
(3)

where σ11 and σ22 are the principal stresses, and the deviatoric stress contribution can be consid-190

ered as the equivalent von Mises stress,191

σV(x) =
√

σ2
11(x) + σ2

22(x)− σ11(x)σ22(x) + 3σ2
12(x) (4)

where σ12(x) is the shear stress.192

If the analysis is performed in a 3D system, then the hydrostatic stress is equivalent to the193

following194

σM(x) =
1

3
tr (σ(x)) , (5)

where σ is the Cauchy stress tensor.195

In the same way, the equivalent von Mises stress corresponds to,196
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σV(x) =

(
1

2

(
(σ11(x)− σ22(x))

2 + (σ22(x)− σ33(x))
2 + (σ33(x)− σ11(x))

2

)

+ 3(σ2
12(x) + σ2

23(x) + σ2
31(x))

) 1
2

,

(6)

where σ33 is the principal stress, and σ23 and σ31 are the shear stresses.197

Note that since it is assumed that the geometric properties of the system are affected by198

epistemic uncertainty, the stress triaxiality σST(x) also depends on these geometric uncertainties,199

which are collected in the vector x. Moreover, this uncertainty is also reflected in the von Mises200

σV(x) and hydrostatic σM(x) stresses. For example, consider a plate whose thickness varies along201

its domain. This variation can cause differences in hydrostatic stress at different locations, re-202

sulting in different magnitudes of stress triaxiality along the plate domain. In addition, if the203

plate has holes, inaccuracies in the shape, curvature, and location of the holes can cause stress204

concentration effects that change the stress state in the vicinity of the holes, thus varying the205

stress triaxiality.206

Once the response of the system (σST(x) for this work) and the nx geometric uncertain param-207

eters are identified, the next step is to characterize the uncertainty in those parameters. There208

are several techniques to characterize the uncertainty that affects stress triaxiality. One way is to209

resort to interval analysis following a set-based method. The next section discusses the essential210

definitions for incorporating this uncertainty using interval analysis.211

3. Interval analysis212

3.1. Interval theory213

At an early design stage, the available data concerning the location of holes, thicknesses of214

elements, lengths, and shapes can be highly affected by epistemic uncertainty. In these cases,215

the source of uncertainty is due to a lack of knowledge produced by, for example, manufacturing216

processes, as was discussed in the previous sections. Typically, this data is not sufficient to build a217

robust numerical model to predict the behavior of mechanical components. One way to represent218

this type of uncertainty is to resort to interval analysis [24]. This technique has been extensively219

studied in finite element analysis to characterize the uncertainty in system input parameters (e.g.,220

material properties and loading conditions) [49]. An interval or interval scalar is a convex subset221
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of the domain of real numbers R. An interval-valued parameter xI is defined by,222

xI = [x, x̄] = {x ∈ R | x ≤ x ≤ x̄} (7)

where x represents the lower bound and x̄ corresponds to the upper bound of xI . Therefore, xI
223

contains all possible values that an uncertain input parameter can take, with no assumption made224

regarding the likelihood of those values [19]. For a better description of an interval quantity, the225

center or midpoint µxI and the interval radius ∆xI are usually defined. The center of the interval226

is defined as,227

µxI =
x+ x̄

2
(8)

and the interval radius corresponds to,228

∆xI =
x̄− x

2
(9)

In most cases, there is more than one uncertain parameter. In this situation, the definition of229

an interval vector is useful. An interval vector xI is a vector in which each element is an interval,230

xI =



xI
1

xI
2

...

xI
a


=
{
x ∈ Ra | xi ∈ xI

i

}
(10)

with xI ∈ IRa, the domain of closed real-valued interval vectors of size a. Similarly, interval231

matrices are defined in IRa×b following the expression,232

XI =



xI
11 xI

12 . . . xI
1b

xI
21 xI

22 . . . xI
2b

...
...

. . .
...

xI
a1 xI

a2 · · · xI
ab


=
{
X ∈ Ra×b | xij ∈ xI

ij

}
(11)

In Eq. (10) and (11), all indices in interval vectors and matrices are assumed to be independent.233

Consequently, an a-dimensional interval vector describes a hypercube in a-dimensional space. The234

lower and upper bounds of the interval scalar entries in the interval vector xI determine the vertices235
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of this hypercube [49, 26].236

3.2. Interval analysis237

The basic idea of interval analysis is to search, from a hypercube xI representing the uncer-238

tain input parameters, for those parameter realizations that yield the extreme response of the239

system [26]. If the nx uncertain geometric parameters x of Eq. (1) are characterized through240

intervals (that is, xI), then the response of the system y will be approximated by the smallest241

hypercube yI . Typically yI is calculated following a global optimization approach. In the case242

that the response of interest is scalar yI , e.g. stress triaxiality (see Eq. (2)), the optimization243

problem corresponds to,244

y = min
x∈xI

m(x) (12)

245

ȳ = max
x∈xI

m(x) (13)

where yI = [y, ȳ] is the interval response of the system which is defined by its lower y and upper246

ȳ bounds. In the context of the global optimization approach (see e.g., [50], [51]), repeated de-247

terministic analyses are required to find the lower and upper bounds of the response, exploring248

various realizations of the uncertain geometric input parameters. Undoubtedly, the numerical249

cost associated with finding both bounds of the response is directly influenced by the nature of250

m(x) and, hence, the response. If the response of the deterministic system varies monotonically251

concerning the uncertain parameters, the Vertex Method [52], ensures an exact result for opti-252

mizing the interval problem defined in Eq. (12) and (13). On the contrary, if the behavior of m253

is non-monotonic, the accuracy of this approach quickly breaks down due to the limited number254

of sample points considered to find yI [26]. For the cases where m is non-monotonic, the opti-255

mization procedure can be performed using black-box optimization routines [53, 54] or surrogate256

models [55, 56]. Note that the use of surrogate models helps to reduce the cost of finding y and257

ȳ. Nevertheless, the main challenge in this context is to build an accurate approximate response258

model, which can be quite difficult to achieve when the uncertainty is in the geometry.259

The method used to construct M(x) also has a strong influence on the numerical cost of260

finding the response of interest (solution of Eq. (12) and (13)). Especially when using the finite261

element method and considering that the uncertainty is in the geometry, it would be necessary262

to modify the discrete representation of the system (i.e. the mesh) for each of the realizations263

required to find the bounds of the response during the optimization stage. This disadvantage is264
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caused by decoupling the meshing procedure and the numerical calculation of the field responses.265

One way to deal with this difficulty is to use a method that allows one to handle both geometry266

and solution fields simultaneously. The following section presents Isogeometric Analysis as a viable267

alternative for propagating geometric uncertainty.268

4. Isogeometric analysis model269

4.1. Structural response270

The Isogeometric Analysis (IGA) was first proposed by Hughes et al., [28], as a means to271

parametrize the geometry associated with solid bodies analyzed using Finite Element Analysis272

(FEA). Both methods share basic ideas, however, in contrast to FEA, in IGA the geometry273

of the analyzed structure is not approximated by polynomial shape functions (e.g. Lagrangian274

basis functions) but described by a smooth geometry description used in Computer-Aided De-275

sign (CAD). Mostly, these descriptions are based on Non-Uniform Rational B-splines (NURBS).276

NURBS curves, surfaces, and volumes can be defined by knot vectors Ξ and control points. The277

knot vectors must have n+ p+ 1 increasing entries called knots ξi of the form278

Ξ = {ξ1, ξ2, . . . , ξn+p+1} , (14)

and define the parametric space as well as the NURBS order p. It also defines the Cp−1−k continuity279

conditions at the knots, where k denotes the number of repetitions of a specific knot in the knot280

vector Ξ. Further, n is the total number of NURBS basis functions that are defined by,281

Ri,p(ξ) =
wiNi,p(ξ)

W (ξ)
, 1 ≤ i ≤ p+ 1, with W (ξ) =

ncp∑
i=1

wiNi,p(ξ), (15)

where ncp is the total number of NURBS control points, wi > 0 are weight factors and Ni,p are282

B-spline basis functions of order p defined by the Cox-de Boor recursive formulas, cf. e.g. [30, 39].283

NURBS curves C(ξ) and surfaces S(ξ, η) are respectively described by,284

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi, S(ξ, η) =
n∑

i=1

m∑
j=1

Ri,p(ξ)Rj,q(η)Pi,j, (16)

where P stores the control point coordinates, and m and q correspond to the number of NURBS285

basis functions, and the NURBS order in the second space dimension, respectively. Note that286
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η represents a second parametric dimension (i.e. knots in the direction of the second space287

dimension), which is collected in the knot vector H. This knot vector H can be defined following288

Eq. (14). Note also that this description can be extended to define volumes, which requires the289

addition of a third parametric coordinate.290

In this work, problems of linear elasticity are tackled, as introduced in Section 2. Similar to291

standard FEA formulations, the starting point to define the field responses is the Weak Form of292

Equilibrium293

R(u,v) =

∫
Ω

ε(u) : C : ε(v) dV −
∫
Ω

b · v dV −
∫
∂Ω

t · v dA, (17)

where R(u,v) represents the residual form of the equilibrium equation, ε denotes the linear strain294

tensor, and C is the fourth order linear elasticity tensor. u and v are the displacement field and295

test function vectors (also known as virtual displacement field), and b and t are the body and296

traction force vectors, respectively. The physical space domain Ω is discretized using sub-domains297

called elements or knot-spans Ωe that are defined in the parametric space Ω̃ by the structure of298

the knot vectors (i.e., Ξ and H in two-dimensional cases).299

Element approximations of geometry Xh, displacements uh and test functions vh read,300

Xh =

necp∑
i=1

Ri(ξ, η)Pi = NPe, uh =

necp∑
i=1

Ri(ξ, η)ui = Nue, vh =

necp∑
i=1

Ri(ξ, η)vi = Nve, (18)

where Ri(ξ, η) ≡ Ri,p(ξ)Rj,q(η), N is the matrix of shape functions, and necp is the number of301

control points of an element Ωe. Pe, ue, and ve are the control point matrix, displacements, and302

test functions, per element, respectively.303

Using this matrix notation, the symmetric linear strains can be approximated by,304

ε(uh) =

necp∑
i=1

Biui = Bue and ε(vh) =

necp∑
i=1

Bivi = Bve, (19)

with the strain-displacement matrix B and the matrix of shape functions N given by,305

B =


R1,x 0 . . . Rnecp,x 0

0 R1,y . . . 0 Rnecp,y

R1,y R1,x . . . Rnecp,x Rnecp,x

 and N =

R1 0 . . . Rnecp 0

0 R1 . . . 0 Rnecp

 . (20)
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It is important to highlight that the discretized matrix form of the weak equilibrium equation (see306

Eq. (17)) only differs from the FEA formulation by the choice of the shape functions, viz.307

Re = vTeRe = vTe

[∫
Ωe

BTCB dV ue −
∫
Ωe

NTb dV −
∫
∂Ωe

NTt dA

]
= vTe [Keue − fe], (21)

where Re is the residual of the elemental equilibrium equation, Re represents the elemental internal308

force vector, and C is the constitutive matrix, which characterizes the material properties.309

Assembling all elements and identifying the first integral of Eq. (21) as the element stiffness310

matrix Ke, and the other two as element force vector fe, and excluding the trivial solution v = 0,311

the discrete system of equations for solving the solution of the displacements reads,312

nel⋃
e=1

[Keue − fe] = Ku− F = 0, (22)

where
⋃nel

e=1 represents a union operation over all nel elements in the discretized domain, K is the313

stiffness matrix of the system, F is the force vector, and u the displacement. It is noteworthy314

that, unlike FEA, in IGA the response in displacements is given in the positions of the control315

points. With the solution of Eq. (22) any response function of interest can be computed within a316

post-processing step similar to FEA [29]. In this study, the so-called stress triaxiality is focused,317

cf. Eq. (2). To provide a clearer understanding of how the system’s response is obtained at318

control points, Figure 1 illustrates the key domains involved in integration in the IGA process,319

emphasizing the transition from the physical domain to the parametric and parent domains (red320

arrows in the figure). Figure 1 first shows the physical domain in light blue, which represents321

the actual geometry of the system under study. For real-world problems, this domain is often322

complex and may include curved shapes, as shown in the figure. Within this domain, an element323

Ωe is highlighted in orange to indicate the current region where the analysis is being performed.324

Note that given the definition of the control points and knot vectors, four elements are used325

to represent the system. Also, note that the control points are not necessarily part of physical326

space. Moreover, observe that the control points are connected by the control mesh. The physical327

domain is then mapped onto the parametric domain (see element Ω̃e). Unlike traditional FEA328

where the physical space is directly discretized, IGA relies on this intermediate parametric space.329

The parametric domain is structured in a grid format defined by knot-related coordinates. The330

dimensions and continuity of this space are determined by the associated knot vectors and the331
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order p of the NURBS, as shown in Eqs. (14) and (15). This parametric domain plays a critical332

role in the IGA process because it allows for the accurate representation of elements within the333

physical domain using NURBS-based shape functions. Finally, the elements within the parametric334

domain are further mapped to the parent domain, a standardized space commonly used in FEA.335

The solution of the PDE is ultimately obtained at the knots within the parametric domain and336

then mapped back into physical space. For this mapping, it is necessary to construct a mesh in337

physical space for visualization purposes. Furthermore, using post-processing techniques, like in338

FEA, it is possible to obtain the desired response of interest [30]. A detailed explanation of the339

mappings used to integrate in Isogeometric Analysis can be found in [28]. It is important to note340

that while mesh refinement techniques exist within the IGA framework, they are beyond the scope341

of this study and are not explored in this work.342

Since the objective of this work is to apply a gradient-based optimization scheme to propagate343

efficiently the geometric uncertainties during the interval analysis, the next subsection discusses344

the procedure to obtain the sensitivities of the response.345

Physical domain

z

y
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Parent domain

η̄

ξ̄

η

ξ

-1
-1

1
1

ξi ξi+1

ηj

ηj+1

Ωe

Ω̃e

Control mesh

Control points

x

Figure 1: Domains used for integration in Isogeometric Analysis.

4.2. Geometric sensitivity analysis346

Design sensitivity analysis helps to quantify the change of any response function f(u(x),x),347

e.g. stress or strain measures, concerning alterations in chosen design (uncertain) parameters x.348

In the following, the sensitivity relations are derived for the depicted linear elastic model, with349
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respect to the model geometry X. By employing variational sensitivity analysis, as discussed in350

e.g. [57, 42], this change can be expressed as351

δf = δuf + δXf =

[
∂f

∂u

]
δu+

[
∂f

∂X

]
δX. (23)

Following the direct differentiation method (DDM), Eq. (22) has to hold for any design variation352

δX, i.e. forcing a design change to satisfy the weak equilibrium condition resulting in its vanishing353

total variation354

δR(u,v, δu, δX) = δuR(u,v, δu) + δXR(u,v, δX) = 0. (24)

Using the same discretization concepts as described above, both variations in Eq. (24) can be355

approximated by356

δuR(u,v, δu) ≈ δuR(uh, vh, δuh) = vTK δu (25)

and357

δXR(u,v, δX) ≈ δXR(uh, vh, δXh) = vTQ δP. (26)

Here, K denotes the global stiffness matrix, cf. Eq. (22), P is the control points matrix, and Q358

is the global pseudo-load matrix that can be derived to359

Q =

nel⋃
e=1

Qe =

nel⋃
e=1

∫
Ωe

∑
i

∑
j

[
σ(LiL

T
j − LjL

T
i )− BT

i CBjH
]
dV, (27)

where Qe corresponds to the element pseudo-load matrix and H represents the approximation of360

the element displacement gradient. Further, Li is the column matrix of shape function derivatives361

for the i-th control point, viz.362

H = ∇ue =

necp∑
i

uiL
T
i and Li =

[
Ri,x Ri,y

]T
. (28)

Here, necp denotes the number of control points of the element e. For a detailed derivation of363

Eqs. (23) − (28), the interested reader is referred to e.g. [58]. Again, excluding the trivial solution364

v = 0, the total response sensitivity matrix S can be identified by rearranging the discrete total365

variation of the weak equilibrium condition366

Kδu = −Q δP ⇒ δu = −K−1Q δP = S δP. (29)
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With the above-described variational method, the discrete sensitivity relation of the stress367

triaxiality can be expressed by368

δσST =

[
∂σST

∂σM

∂σM

∂σ
+

∂σST

∂σV

∂σV

∂σ

]
δσ. (30)

Here, the computation of the partial derivatives is straightforward. According to Eq. (23) together369

with Eq. (29), the total variation of the stress tensor reads370

δσ =

[
∂σ

∂u
S+

∂σ

∂P

]
δP. (31)

It should be noted that not all control point coordinates are necessarily selected as design371

variables. In specific cases, it may be advantageous to identify a parameterization that allows for372

the definition of sensitivity relations e.g. regarding some geometric parameters such as lengths373

and radii. In these cases, a projection of the above-derived sensitivity equations utilizing a design-374

velocity matrix D of the form375

δP = D δx (32)

is useful, where x denote the aforementioned uncertain geometric parameters of interest. With376

this definition in Eq. (32), the projection of Eq. (31) reads377

δσ =

[
∂σ

∂u
S+

∂σ

∂P

]
D δx. (33)

Observe how now the total variation of the stress tensor takes into account the derivatives with378

respect to the uncertain parameters. The described isogeometric model has been implemented in379

MatLab utilizing the NURBS toolbox, cf. [59] and the formulations mostly follow those described380

in [30].381

5. Proposed strategy for uncertainty propagation382

5.1. General remarks383

The previous section defined Isogeometric Analysis (IGA) as a powerful tool for determining384

field responses in a numerical model using the same basis functions that define the geometry. Addi-385

tionally, it described how to compute the sensitivities of these field responses concerning uncertain386

parameters through a variational formulation. To use IGA for propagating geometric uncertainties387

16



characterized as interval variables, it is crucial to strategically define the locations of control points388

based on geometric parameters such as radius, thickness, length, etc. This approach is effective389

because, in IGA with variational formulation, the system response and sensitivities are obtained390

simultaneously at the control points. Nevertheless, the control points are not necessarily located391

within the actual geometry of the system (as shown in Figure 1). Therefore, when calculating the392

response and sensitivities, it is necessary to map them from being functions of the control points393

(see Eq. (31)) to being functions of the uncertain geometric parameters (see Eq. (33)). Note that394

this assumes that the response and its sensitivities have already been calculated at the location of395

the control points, as explained in Section 4. For a comprehensive description of this procedure,396

the reader is referred to [29] and [30]. Once the sensitivities with respect to the control points397

are mapped to depend on the uncertain parameters, this information can be used to perform the398

optimization for the interval analysis, i.e., to find the lower (Eq. (12)) and upper (Eq. (13)) bounds399

of the response. This procedure is described in the next subsection.400

5.2. Gradient-based optimization401

Section 3.2 explained that interval analysis attempts to find the bounds of the response of402

interest, given the characterization of uncertain geometric parameters as intervals. One way to403

find these bounds is to use a gradient-based algorithm. Gradient-based optimization (GBO) is a404

widely used method for finding the minimum or maximum of a function by iteratively descending405

based on the direction of the gradient [41]. In this work, since information on the sensitivity of the406

response concerning uncertain parameters is available, this method seems appropriate for interval407

analysis. The GBO scheme used in this paper corresponds to the trust-region algorithm [60].408

The trust-region algorithm in MatLab approximates the objective function with a simpler model409

within a neighborhood called the trust region. It often uses Sequential Quadratic Programming410

(SQP) techniques to solve the trust-region subproblem, which involves minimizing a quadratic411

model subject to a constraint within the trust region. The gradient information is crucial in412

this process, as it helps in the construction of the quadratic model and guides the direction of the413

search. The algorithm ensures robust convergence, especially for nonlinear optimization problems,414

by iteratively updating the size of the confidence region based on the accuracy of the model [61].415

5.3. Summary of the proposed strategy416

The following steps, which are also shown in Figure 2, summarize the proposed methodol-417

ogy for performing an Isogeometric Analysis considering that the uncertainty in the geometry is418
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represented by intervals.419

1. Define the numerical model (Eq. (1) and (22)) and the response of interest (Eq. (2)).420

2. Identify the uncertain geometric parameters x of the model.421

3. Define the uncertainty in the geometric parameters using intervals xI (Eq. (7)).422

4. Set the control point matrix P according to the desired geometry, in terms of the uncertain423

geometric parameters x.424

5. Compute the sensitivities of the control points matrix concerning the uncertain geometric425

parameters, i.e. compute the design-velocity matrix D.426

6. Set up the NURBS associated with the model: curves, surfaces, and volumes (Eq. (16)).427

7. Apply gradient-based optimization to define the lower y and upper ȳ bounds of the response.428

(a) Perform Isogeometric Analysis (IGA) to calculate the response of interest (Eqs. (1429

and (22))) and its sensitivities (Eq. (33)) using a variational analysis, i.e., compute the430

response and sensitivities at the control points.431

(b) Post-process IGA response and obtain sensitivities depending on geometric uncertain432

parameters x using the sensitivities calculated in 5.433

Note that the sequence of steps 5 and 6 is not mandatory and can be performed in any order.434

The sensitivities calculated in Step 5 depend on the parametric definition of the control point435

matrix P and are unaffected by the subsequent NURBS model setup in Step 6. However, the436

existing order is maintained for logical clarity and to facilitate the gradient-based optimization437

process in Step 7.438

6. Illustrative examples439

6.1. 2D Linear Hook440

The proposed methodology is applied to estimate the maximum stress triaxiality of a linear441

two-dimensional steel hook system. The base end of the hook is fixed and a load of 20 kN is applied442

to the top end. The material properties of the hook system are assumed deterministic and equal443

to E = 2 × 105N/mm2 for Young’s modulus and ν = 0.3 for Poisson’s ratio. The plane stress444

conditions are assumed. Regarding the geometry of the system, it is assumed that the value of the445

radius and thickness are uncertain due to the lack of knowledge at the early design stage. These446

geometric quantities are characterized by the intervals rI = [10, 50] mm and tI = [15, 40] mm, for447
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Define numerical model and response of interest y.

Identify uncertain parameters x.

Set up interval model.

Set up control point matrix P
depending on the uncertain parameters.

Compute the sensitivities of the control points
matrix w.r.t. the uncertain parameters, D.

Set up the NURBS model.

Perform Gradient-based Optimization.

Perform Isogeometric Analysis (IGA)
and Variational Sensitivity Analysis.

Post-process IGA response and obtain
sensitivities depending on uncertain parameters.
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Interval response
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Figure 2: Flowchart of Isogeometric Analysis for quantifying geometric uncertainties characterized by intervals.
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the radius and thickness, respectively. Note that these wide ranges are defined to emphasize the448

high degree of uncertainty that can exist at this design stage. Figure 3 shows the IGA model for449

the stress triaxiality analysis. Note that in this figure, the geometry representation is schematized450

considering the midpoints of the intervals, that is, µrI = 30mm and µtI = 27.50mm.451
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Figure 3: Hook 2D model for stress triaxiality analysis. The geometry considered corresponds to that described
by the midpoints of the intervals associated with radius and thickness.

The NURBS surface used to represent the hook system is constructed based on ncp = 6 control452

points (see Figure 3). To translate the uncertainty in the geometric input parameters to NURBS453

control point’s matrix P, a parametric representation of the coordinates of each control point in454

terms of r and t is proposed455

P =



t 0

t r

t+ r r

0 0

0 t+ r

t+ r t+ r


. (34)

It is important to note that to compute sensitivities using the variational approach of sec-456

tion 4.2, the partial derivatives of the control point matrix P with respect to r and t must also457

be computed, as shown in Eq. (34) and explained in Section 4.2. This is necessary to map the458

sensitivities from the control points to the uncertain parameters. For this task, the corresponding459

design-velocity matrixDmust be computed. By collecting all elements of the matrix P in a column460

vector, where the coordinates of each control point are written sequentially, the design-velocity461
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matrix is equal to462

D =

0 0 0 1 1 1 0 0 0 1 1 1

1 0 1 0 1 0 0 0 0 1 1 1

T

. (35)

Note that each column of the design-velocity matrix D contains the derivatives of all coordi-463

nates of the control points with respect to each geometric uncertain parameter considered. For464

the definition of the NURBS surface, quadratic elements with overlapping (elements can share465

control points or knots) are considered. The polynomial degree p of the splines associated with466

the knot vector in the x−direction is two, while in the y−direction is one. On the other hand, the467

multiplicity of the knots k is one and zero for the x−direction and the y−direction, respectively.468

For both directions, the weights w = [1,
1√
2
, 1] are associated with the control points of the inner469

and outer curves that allow to represent the hook geometry.470

Since this study aims to determine the variation of the maximum stress triaxiality σST in the471

hook system, a gradient-based optimization approach is used to determine its lower and upper472

bounds. The initial point for the optimization scheme was considered as x0 = [µrI , µtI ]. The473

results were compared by considering the Vertex Method (VM) [52], Particle Swarm Optimization474

(PSO) [62], Surrogate Optimization (SO) using the Radial Basis Function (RBF) interpolation475

algorithm available in Matlab [63], and Pattern Search Optimization (PS) [64]. Table 1 shows the476

results for the lower bound of the maximum stress triaxiality of the hook system. Note that all477

evaluated methods identify the lower bound of the maximum response max(σST) = 0.4420 for a478

radius equal to r = 10mm and a thickness of t = 40mm. However, the Gradient-based Optimiza-479

tion (GBO) method appears to be the most efficient, after the Vertex Method (VM), requiring480

only five deterministic analyses of the hook system to identify this lower bound, highlighting the481

numerical advantage of the proposed strategy. It should be noted that although the VM leads482

to the exact results in this example (for the lower bound of the maximum stress triaxiality), this483

method is only accurate for cases where the response behaves monotonically over the search space.484

Therefore, it is recommended to use it as a reference, but one should be aware that it may under-485

estimate the bounds of the response. It is also important to note that the numerical cost of VM486

increases as a function of the number of uncertain parameters.487

In the hook example, only two uncertain parameters are considered. This allows the behavior488

of the maximum stress triaxiality within the search space to be visualized. As shown in Figure 4.a,489

the maximum stress triaxiality is plotted as a function of the geometric parameters under consid-490
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Method r in mm t in mm max(σST) No.
Analysis

Vertex Method (VM) 10 40 0.4420 4
Particle Swarm Optimization (PSO) 10 40 0.4420 2254
Surrogate Optimization (SO) 10 40 0.4420 200
Pattern Search Optimization (PS) 10 40 0.4420 62
Gradient-based Optimization (GBO) 10 40 0.4420 5

Table 1: Results of optimization - lower bound of maximum stress triaxiality - Hook 2D.

eration. Simultaneously, Figure 4.b shows the iterations performed for the GBO approach. The491

first observation to be made is that the response does not exhibit monotonic behavior concerning492

both radius and thickness. Consequently, it is expected that the VM may produce inaccurate493

results when finding the upper bound of the response, whereas the accurate result of VM for494

the lower bound can only be explained by the fact that the lower bound is located in a corner495

of the search space. The second observation concerns the availability of information about the496

sensitivity of the response. This information facilitates the rapid convergence of the algorithm to497

the optimal value. This is an indication of the efficiency and effectiveness of the GBO approach498

in this context.499
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(b) GBO iterations.

Figure 4: Distribution of the maximum stress triaxiality over the search space and iterations performed for the
GBO algorithm to find the lower bound. r and t in mm.

The resulting geometry for the hook system with the optimum values of radius and thickness500

for the lower bound of the response is shown in Figure 5.a. As expected, the lower limit of501

maximum stress triaxiality is associated with a thicker hook geometry. Figure 5.b shows the502
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deformed shape due to the force applied at the right end of the hook, while Figure 5.c and 5.d503

show the stress triaxiality distribution over the original and deformed hook shapes, respectively.504

Note that the maximum values of stress triaxiality are located in the outer curve of the hook.505

These areas of higher stress triaxiality (closer to 0.4) are likely to be more susceptible to failure506

under load because they indicate a high concentration of stress.507
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(b) Hook deformed shape.
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Figure 5: Resultant geometry and stress triaxiality for the lower bound results. Dimensions in mm.

Table 2 shows the results of the optimization procedure for the upper bound of the maximum508

stress triaxiality. For this bound, it is clear that the Vertex Method underestimates the optimum,509

which can be observed in Figure 6 due to the non-monotonicity of the maximum stress triaxiality510

response. Note that all optimization methods used to find the upper bound of max(σST), obtain the511

same optimal value of maximum stress triaxiality by different radius and thickness combinations.512

This is due to the flat behavior of stress triaxiality over the search space observed in Figure 6. In513
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the same way, as for the lower bound of the response, the GBO method appears to be the most514

efficient, requiring only eight deterministic analyses of the system.515

Method r in mm t in mm max(σST) No.
Analysis

Vertex Method (VM) 50 40 0.6380 4
Particle Swarm Optimization (PSO) 49.6141 26.7778 0.7170 3803
Surrogate Optimization (SO) 47.4384 25.6038 0.7170 200
Pattern Search Optimization (PS) 49.0995 26.5000 0.7170 149
Gradient-based Optimization (GBO) 36.0834 19.4750 0.7170 8

Table 2: Results of optimization - upper bound of maximum stress triaxiality - Hook 2D.
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Figure 6: Distribution of the maximum stress triaxiality over the search space and iterations performed for the
GBO algorithm to find the upper bound. r and t in mm.

Figure 7.a shows the resulting geometry for the hook system with the optimum values of radius516

and thickness for the upper bound of the response. A thinner hook geometry is associated with517

the upper bound of the maximum stress triaxiality. Figure 7.b shows the deformed geometry518

resulting from the force applied to the right end of the hook, while Figures 7.c and 7.d show the519

stress triaxiality distribution over the original and deformed hook geometry, respectively. Note520

that, as observed for the lower bound results, the maximum values of stress triaxiality are located521

in the outer curve of the hook. Again, these areas of higher stress triaxiality (closer to 0.7) are522

likely to be more susceptible to failure under load. Unlike the resulting geometry for the lower523

boundary, a wider range of stress triaxiality values is now observed in the hook shape.524
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(b) Hook deformed shape.

0 20 40 60

x

0

10

20

30

40

50

y

Stress Triaxiality

-0.4

-0.2

0

0.2

0.4

0.6

(c) Stress triaxiality.

0 20 40 60

x

0

10

20

30

40

50

y

Stress triaxiality (deformed)

-0.4

-0.2

0

0.2

0.4

0.6

(d) Stress triaxiality deformed shape.

Figure 7: Resultant geometry and stress triaxiality for the upper bound results. Dimensions in mm.

6.2. Solid horseshoe525

The second example illustrates a geometrically complex but single-patch three-dimensional526

horseshoe problem adapted from [28, 65]. The objective of the study is to estimate the maximum527

stress triaxiality in the horseshoe shape subjected to equal and opposite in-plane flat-edge unitary528

displacements (see Figure 8). The base ends of the horseshoe are fixed in the y−direction, while529

only the outer corners are fixed in the z−direction. In the x−direction, there is a deterministic530

prescribed unitary displacement −u0 for the left side (non-positive x−coordinates), while there531

is a deterministic prescribed unitary displacement u0 for the right side (positive x−coordinates).532

Furthermore, the displacements in the x−direction are also restricted at the center of the top of the533

horseshoe. The material properties of the horseshoe system are assumed to be deterministic and534

equal to E = 3×107N/cm2 for Young’s modulus and ν = 0.3 for Poisson’s ratio. The geometry of535
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the horseshoe is constructed by performing a U-sweep on the cross-section of a square of dimensions536

L×L, subtracted by a quarter disk of radius R, which defines the inner edge. The outer edge has a537

slightly rounded end defined by the value of L. The horseshoe definition includes a straight portion538

of height H, and the distance between the origin and the center of the quarter disk is defined by539

r (see Figure 8). It is assumed that the values of the parameters that define the geometry L,540

R, r, and H are uncertain due to lack of knowledge at the early design phase. These geometric541

quantities are defined by the intervals LI = [3.5, 5.5], RI = [0.5, 1.5], rI = [0.9142, 1.9142], and542

HI = [7.5, 8.5] in cm. Figure 9 shows the IGA model for stress triaxiality analysis in the horseshoe,543

where the geometry representation, as in the hook example, is defined by the midpoints of the544

interval variables.545
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Figure 8: Uncertain geometric parameters of solid horseshoe 3D model for stress triaxiality analysis.

The NURBS volume used to represent the horseshoe-shaped geometry is based on ncp = 108546

control points, which comprises 324 degree-of-freedom. A parametric representation of the coordi-547

nates of each control point in terms of L, R, r, and H is proposed to translate the uncertainty in548

the geometric input parameters into the NURBS control point matrix. As can be seen in Figure 9,549

the control points are strategically placed to achieve the desired curvature and smoothness. To550

create the NURBS of the horseshoe, the area of its cross-section was modeled using three curves:551

an inner curve (representing the edge created by extracting the quarter disk of radius R), an outer552

curve (the opposite side of the extracted quarter disk), and a curve located between the inner and553
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outer curves. Each curve is composed of four control points where, depending on the desired cur-554

vature, the weights w1 = 0.8536, w2 = 0.7071, w3 = 0.6036, and w4 = 1 were used. These sections555

were repeated at different heights: z = 0,
H

4
,
H

2
, for the straight section of the horseshoe, for both556

ends. Three cross-section areas were used to define the curved portion of the horseshoe. Two of557

them replicated the cross-section with an inclination of 45 degrees with respect to the plane z = H558

for the left and right side, while the third one was located in the center of the horseshoe geometry559

with an inclination of 90 degrees with respect to the plane z = H. The resulting NURBS volume560

is composed of displacement-based solid elements. The polynomial degree p of the splines that are561

associated with the knot vectors is three for the x, y, and z−dimension. The knot vectors used562

to define the parametric space are:563

Ξ = {0, 0, 0, 1
2
, 1, 1, 1}, H = {0, 0, 0, 1, 1, 1}, Z = {0, 0, 0, 1

6
,
2

6
,
1

2
,
1

2
,
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,
5

6
, 1, 1, 1}. (36)
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Figure 9: Solid horseshoe 3D model for stress triaxiality analysis. The geometry considered corresponds to that
described by the midpoints of the intervals associated with the uncertain parameters. Dimensions in cm.

The lower and upper bounds of the maximum stress triaxiality σST in the horseshoe system564

are determined using a gradient-based optimization approach, taking advantage of the sensitiv-565

ities computed along with the IGA model. The starting point for the optimization scheme was566

considered as x0 = [µLI , µRI , µrI , µHI ]. The results were compared by considering the Vertex567

Method (VM) [52], Particle Swarm Optimization (PSO) [62], Surrogate Optimization (SO) using568

the Radial Basis Function (RBF) interpolation algorithm available in Matlab [63], and Pattern569
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Search Optimization (PS) [64], similar to the first example. Table 3 shows the results for the lower570

bound of the maximum stress triaxiality of the solid horseshoe. The geometric parameters (R, r,571

L, H) are also listed for each method, along with the number of deterministic analyses performed.572

While VM requires the least number of analyses (16), it underestimates the lower bound of the573

stress triaxiality, reflecting a non-monotonic behavior of the response of interest with respect to574

the uncertain parameters. It is important to note that in this example, due to the number of575

uncertain parameters considered in the analysis, it is not possible to visualize the behavior of576

the stress triaxiality in the search space as it was possible in the first example. Regarding the577

results obtained by the applied optimization schemes, PSO, SO, and PS achieve the smaller value578

for the lower bound; however, PSO requires a significantly higher computational effort of 4797579

analyses, making it less efficient. Overall, GBO provides the best balance between accuracy and580

computational complexity, requiring only 26 analyses.581

Method R in cm r in cm L in cm H in cm max(σST) No.
Analysis

Vertex Method
(VM)

0.5000 0.9142 3.5000 8.5000 3.3271 16

Particle Swarm Op-
timization (PSO)

0.5000 0.9142 4.5328 8.5000 3.3186 4797

Surrogate Opti-
mization (SO)

0.5000 0.9142 4.5327 8.4996 3.3186 200

Pattern Search Op-
timization (PS)

0.5000 0.9142 4.5328 8.5000 3.3186 212

Gradient-based
Optimization
(GBO)

0.5017 0.9187 4.5220 8.4973 3.3203 26

Table 3: Results of optimization - lower bound of maximum stress triaxiality - horseshoe 3D.

The resulting geometry for the horseshoe system with the optimal values of the uncertain582

parameters for the lower bound of the response is shown in Figure 10.a. As expected, the lower583

limit of the maximum stress triaxiality is associated with a thicker section geometry, defined by584

a high value of L and H, and a smaller value of R and r. Figure 10.b shows the deformed shape585

due to the equal and opposite in-plane flat-edge unitary displacements. Note how the horseshoe586

tends to deflect its ends outward.587

Figure 11 illustrates the stress triaxiality distribution for the geometry corresponding to the588

lower bound of the response. Specifically, Figures 11.a and 11.b depict the stress triaxiality in the589

xy−plane, while Figures 11.c and 11.d show the stress triaxiality in the xz−plane. In particular,590
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Figure 10: Resultant geometry for the lower bound results for the 3D horseshoe. Dimensions in cm.

Figures 11.b and 11.d highlight the stress triaxiality distribution in the deformed configuration.591

To understand these triaxial stress results, Figure 12 shows the hydrostatic and von Mises stresses592

on the deformed horseshoe in the xy and xz planes. The highest concentration of hydrostatic593

stress is observed in the inner upper region of the horseshoe shape (see Figure 12), leading to594

an increased stress triaxiality (3.3) in this region (as shown in Figure 11). Zones of significant595

deformation coincide with regions of high stress, indicating potential brittle failure since increased596

stress triaxiality typically favors brittle fracture over ductile behavior. As shown in Figure 8,597

this stress distribution is expected due to the application of opposing in-plane flat-edge unitary598

displacements. The calculated stress values, including both hydrostatic and von Mises stresses599

(see Figure 12), are consistent with results reported in the literature [28, 65].600

The results for the upper bound of the maximum stress triaxiality of the solid horseshoe are601

shown in Table 4. The optimal value of the geometric parameters (R, r, L, H) is also shown for602

each optimization method used, along with the number of deterministic analyses performed. The603

Vertex Method requires the least number of iterations (16). However, it underestimates the upper604

bound of the stress triaxiality as well as the case for the lower bound. The same optimum value for605

the maximum stress triaxiality is achieved by all optimization algorithms considered. Nevertheless,606

PSO requires significantly more computations (4665), making it less efficient, than for example,607

SO and PS. The Gradient-based Optimization method, which requires only 20 analyses, offers the608
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(d) Stress triaxiality deformed shape.

Figure 11: Stress triaxiality for the lower bound results for the 3D horseshoe.

best trade-off between accuracy and computational complexity, showing the benefit of using the609

sensitivities from the variational approach.610

Similar to the lower bound, Figure 13.a shows the resulting geometry for the horseshoe system611

with the optimal values of the uncertain geometric parameters for the upper bound of the response.612
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Figure 12: Stresses for the lower bound results for the 3D horseshoe, in consistent units in Example 2.

As expected, the upper bound of the maximum stress triaxiality is associated with a thin section613

geometry defined by a low value of L and H, a higher value of R, and more separation between614

the two ends of the horseshoe, i.e., a high value of r. Figure 13.b shows the deformed shape due615

to the equal and opposite in-plane flat-edge unitary displacements.616

31



Method R in cm r in cm L in cm H in cm max(σST) No.
Analysis

Vertex Method
(VM)

1.5000 0.9142 3.5000 8.5000 4.9551 16

Particle Swarm Op-
timization (PSO)

1.5000 1.7979 3.6653 7.5000 5.0209 4665

Surrogate Opti-
mization (SO)

1.5000 1.7991 3.6662 7.5000 5.0209 200

Pattern Search Op-
timization (PS)

1.5000 1.7979 3.6652 7.5000 5.0209 651

Gradient-based
Optimization
(GBO)

1.5000 1.7978 3.6652 7.5000 5.0209 20

Table 4: Results of optimization - upper bound of maximum stress triaxiality - horseshoe 3D.

x

Analysis model

y

z

0-4
-20

2

0

5

10

15 Control Points

-5

5

(a) Resultant geometry.

x

Deformation

y

z

0
-4

-20
2

0

5

10

15 Control Points

-4 -2
2 4

6
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Figure 13: Resultant geometry for the upper bound results for the 3D horseshoe. Dimensions in cm.

On the other hand, Figure 14 shows the stress triaxiality distribution within the horseshoe617

shape resulting from the imposed unitary displacements for the geometry resulting from the up-618

per bound. Comparing these results with those from the lower bound geometry (see Figure 11)619

shows how geometric changes affect the stress distribution. Nevertheless, the regions of high-stress620

concentration remain consistent in the same areas of the horseshoe. For the upper bound geom-621

etry, the stress triaxiality has a more homogeneous pattern, but with a wider range of values.622

In addition, the regions of high-stress triaxiality (5) are more concentrated compared to those623

observed in the lower-bound scenario. The elevated stress triaxiality values shown in Figure 14624
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indicate critical areas that are susceptible to failure. As before, these critical areas are located625

where significant deformation occurs. To gain a comprehensive understanding of the stress tri-626

axiality distribution, Figure 15 illustrates the hydrostatic and von Mises stresses in the deformed627

shape. A significant concentration of both stress types is observed in the inner portion of the628

horseshoe, with the highest values occurring in the upper inner area.629

In optimization procedures involving geometric parameters, ensuring the regularity of the630

stiffness matrix is essential to guarantee numerical stability and physical validity. In the examples631

studied, the determinant of the local deformation gradient was consistently positive, indicating632

the presence of physically valid configurations without element inversion. As anticipated for linear633

elasticity with suitable boundary conditions, the stiffness matrix remained nonsingular in these634

cases. Nevertheless, a significant deviation of the control points from their nominal positions could635

result in a negative determinant, leading to unphysical behavior, as this implies a negative mass636

density. Consequently, additional measures could be incorporated into the optimization process637

to overcome this potential problem. For example, constraints could be applied to maintain a638

minimum distance between certain control points to avoid self-penetration of the mesh. While639

these precautions are not necessary in the examples studied, they could prove valuable for complex640

geometries or extreme deformations.641

7. Summary and conclusions642

This paper explores the application of isogeometric analysis (IGA) with interval analysis for643

efficient quantification of the effects of geometric uncertainties on the performance of mechanical644

systems. The study focused on estimating the bounds of maximum stress triaxiality in a 2D hook645

system with uncertain radius and thickness parameters, and a solid 3D horseshoe shape with four646

uncertain geometric parameters.647

According to the results, the implemented method, which utilizes the gradient-based optimiza-648

tion (GBO) approach to estimate the bounds of the response, significantly reduces the compu-649

tational cost associated with uncertainty quantification in an interval context. The efficiency of650

the method is due to the ability of the IGA model to directly manipulate geometry and compute651

sensitivities without the need for costly remeshing. This benefit is achieved due to the application652

of a variational sensitivity analysis that allows one to compute the change of the response function653

concerning alterations in the uncertain parameters along with the calculation of the response of654
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Figure 14: Stress triaxiality for the upper bound results for the 3D horseshoe.

interest. To enhance the potential of IGA for uncertainty quantification within finite element655

users, a parametric description of the control point matrix is proposed. This approach allows656

the direct translation of geometric uncertainties into the NURBS used for system representation.657

By incorporating uncertainty directly into the NURBS framework, this method facilitates the658

integration of IGA into traditional FEA workflows for geometric variation in mechanical systems.659
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Figure 15: Stresses for the lower bound results for the 3D horseshoe, in consistent units in Example 2.

Future work will explore the application of this method to more complex systems requiring660

multiple patches for their construction, and investigate its potential for other types of uncertainty661

description techniques, such as interval fields. In this case, the advantages of describing and662

propagating uncertainty using NURBS-based interval fields will be investigated. Moreover, while663

the present study is concerned with cases involving a limited number of uncertain parameters,664
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extending the framework to encompass high-dimensional uncertainties, such as surface geometric665

uncertainties would be a logical subsequent step. Since interval fields reduce the uncertainty to666

that contained at the control point positions, the key to dealing with high-dimensional geometric667

uncertainty will be to strategically determine which NURBS control points should be treated as668

uncertain and which should be used solely to manipulate the geometry. Therefore, the methodol-669

ogy will be further examined for coupling with mesh refinement in IGA for complex geometries.670
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