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A B S T R A C T

This investigation proposes a continuous contact model with different viscous damping factors by
employing the physical properties of the Kelvin-Voigt model. The viscous damping coefficient is
treated as a function of the loss factor and frequency. The loss factor in the elastoplastic or plastic
phase is obtained by solving the linear equation of motion, because the elastoplastic contact
stiffness can be assumed to be approximately linear. The loss factor in the elastic phase is derived
according to the energy conservation during impact. Two loss factors in the frequency-dependent
damping coefficients govern the energy dissipation in the entire contact behavior. More impor-
tantly, the proposed contact model inherits the deficiency of the Kelvin-Voigt model, which ex-
hibits a tensile force at the end of the recovery phase. The underlying reason for this phenomenon
is revealed. Simultaneously, it is also explained why the tensile force does not affect the solitary
wave propagation in the granular system. Performed simulations show that the proposed contact
model not only sidesteps the numerical issues corresponding to most contact force models with
hysteresis damping factors, but also compensates for the accuracy loss of the EDEM contact model
when evaluating the elastoplastic contact behavior in the granular system.

1. Introduction

One-dimensional granular chains serve as the most straightforward granular system [1]. However, they also possess a list of un-
predictable behavior types, including highly nonlinear, strongly localized solitary waves [2]. This feature leads to potential appli-
cations [3], such as shock absorbers [4], impulse protectors[5], impact mitigation [6], vibration filter [7], and so on. However, before
these systems can be successfully applied, the intrinsic dynamic properties between the particles should be understood [8,9]. Actually,
the propagation features of the solitary waves [10] in the granular chain are closely related to the contact force between the particles
[11]. Therefore, an accurate contact force model plays a crucial role in calculating the contact force between the particles. Currently,
there are two kinds of contact force models applied in granular system theory: (i) the static elastoplastic contact models [12]; (ii) the
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continuous contact force model extended based on Hertz’s contact law [13].
As for the static elastoplastic contact models [12], their constitutive relations are developed by a quasi-static pressure test ignoring

the strain rate variation or plastic flow [14]. The contact process is generally divided into three phases: elastic, elastoplastic, and full
plastic [15]. In the elastic phase, Hertz’s contact law provides a closed mechanics constitutive relation [16]. Once the contact
deformation exceeds the critical elastic deformation, the contact behavior is governed by the Mises yield theory, rather than Hertz’s
contact law [17]. The analytical solution of the constitutive relation can be derived based on the Mises yield theory when the contact
comes into the full plastic phase [18]. In this stage, some scholars have developed a series of constitutive relations in the full plastic
phase, such as Brinell [19], Tabor and Ishlinskii [20], Lee et al.[21], and Follansbee and Sinclair[22], and so on. However, in the real
static compression test, the contact process between the elastic phase and full plastic phase exists a transition phase that is the elas-
toplastic phase [23,24]. The discontinuity is subject to be generated if the elastoplastic phase is ignored. Thereby, a rational consti-
tutive relation of the elastoplastic phase can make the contact behavior transit from the elastic phase to the full plastic phase smoothly.
Nevertheless, it is hard to obtain an analytical solution for the elastoplastic phase by directly solving the mechanics equations [25],
such as the CEB model developed by Chang, Etsion and Bogy [26], and the ZMC model proposed by Zhao, Maletta and Chang. To
achieve the continuous constitutive equations of the static elastoplastic contact behavior, most scholars resorted to the Finite Element
Method (FEM) and fit the constitutive curve using a polynomial interpolation scheme. Such an approach was followed by, e.g.,
Johnson [27], Stronge [28], Jackson and Green [29], Kogut and Etsion [30], Shankar and Mayuram [31], Zhang and Vu-Quoc [32,33],
Du and Wang [34], Brake [12], Komvopoulos and Ye [35]. In particular, Burgoyne and Daraio proposed a quasi-static elastoplastic
contact model used to describe solitary wave propagation in the one-dimensional granular chain by FEM [36,37]. In addition to this,
Ma and Liu (ML model) utilized reasonable boundary conditions to improve the constitutive relation in the elastoplastic contact phase

Nomenclature

A Amplitude
cr Coefficient of restitution
D1 Frequency-dependent damping coefficient
D2 Nonlinear elastic damping coefficient
Ei Young’s modulus of contact body i
F Contact force
Fnp Contact force in the elastoplastic or plastic phase
Fe Contact force in the elastic phase
Fdem Contact force calculated based on the contact model used in EDEM software
g1 loss factor in the elastoplastic phase
g2 loss factor in the elastic phase
K Stiffness coefficient of spring
Kh Hertz contact stiffness coefficient
Kp Linearized contact stiffness coefficient
M Mass of the contact body
py Critical value of yielding
Ri Radius of contact body i
Re

ep Curvature Radius in the elastoplastic phase
Re

p Curvature Radius in the plastic phase
t Time
ΔE Dissipated energy
νi Poisson ratio of the contact material of the contact body i
δ Relative deformation between contact bodies
δp Critical plastic deformation
δy Critical elastic deformation
δmax Maximum contact deformation

δ̇(− ) Initial impact velocity
δ̇ Impact velocity
δ̇f Post-impact velocity
σy Yield stress
ε Dimensionless geometric parameter for uniform contact
ψ Ratio between Brinell hardness and yielding strength
ω Natural Frequency
ωd Frequency
ξ Damping
ϕ Phase angle
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to fix the discontinuous transition between the elastic and full plastic phases and developed a piecewise and continuous contact model
based on the Johnsons’ elastoplastic contact theory [38]. On this basis, Feng et al. employed this static contact model to reproduce the
solitary wave propagation obtained by Burgoyne and Daraio [39], which manifested the effectiveness of the Ma-Liu model. However,
since the static elastoplastic contact models adopted the different constitutive equations between the loading and unloading path, the
compression and recovery phase must be recognized in each impact [36,40,41]. Furthermore, the maximum and residual contact
deformations need to be calculated and saved, as well as prepared for the ensuing contact event in the granular chain [36,39,41–43].
The computational strategy related to predicting the elastoplastic contact behavior in the granular chain is very complicated, and even
fails to simulate this behavior when facing a huge number of particles [44]. That is why the static elastoplastic contact models are not
widely used in the EDEM software [45].

Continuous contact force models that consider the energy dissipation have a concise mathematical form [13,46]; more importantly,
unlike the static elastoplastic contact models, they employ a damping loop to represent the energy dissipation [47], rather than using
the discrepancy between the loading and unloading path. This is a benefit for the calculation of the contact behavior in the multibody
system [48]. As such, this topic recently attracted a lot of research attention [13,46,49–52]. Recently, there have been several review
papers discussing the development history [53]. Hertz serves as the pioneer in developing the contact mechanics between two
perfectly elastic bodies; however, it cannot describe the energy dissipation during contact. Kelvin and Voigt adopted the linear spring-
damper model to develop the contact model and used the damping term to represent energy dissipation [48]. Nevertheless, the
damping term with a constant damping coefficient leads to discontinuity at the beginning of the compression and the end of the
recovery phase [54,55]. Subsequently, Hunt and Crossley eliminated this deficiency by assuming that the damping coefficient is a
function of the contact deformation [56]. After that, to describe energy dissipation more accurately, a series of hysteresis damping
coefficients were developed by considering several approximative methods [57–64]. The derivation process of these hysteresis
damping factors [65] is essentially based on energy and momentum conservation during contact. Therefore, hysteresis damping is also
referred to as frequency-independent damping [65]. These continuous contact force models have been successfully applied to calculate
contact behavior in the multibody system [48,66]. However, it is worth noting that the contact models with frequency-independent
damping cannot be used to evaluate the impact event when the relative impact velocity is very small or equal to zero [67]. Because the
denominator of the hysteresis damping factor, including the initial impact velocity, leads to the numerical singular issues
[51,52,68–70]. That is why the EDEM software does not use the continuous contact force model with a hysteresis damping factor.

In order to bypass this problem, some scholars developed the viscous damping coefficient, which is also called “frequency-
dependent damping”. Hereto, they solve the single nonlinear degree of freedom vibration equation [70–72], such as, e.g., Kuwabara
and Kono [73], Tsuji et al.[45], Jankowski [74,75], Lee and Wang [58]. In addition to these developments, some scholars directly
employed the empirical value to represent the damping coefficient to sidestep the numerical singular issues caused by the denominator
of the damping factor [57,76], such as Schwager and Poschel [76], Lee and Herrmann [57], and Ristow [77]. At this point, Tsuji et al.
[45] derived a viscous damping factor based on the Hertz contact law by solving the nonlinear equation of motion using the numerical
method. This model has been applied to the EDEM software. However, it is only valid and accurate when a purely elastic contact event
happens in the granular system [78,79]. Once the contact phase comes into the elastoplastic phase, the Hertz contact stiffness
overestimates the contact stiffness [60,62]. This phenomenon leads to the fact that the contact force obtained using the EDEM contact
model is larger than the realistic contact force in the elastoplastic phase. This, in its turn, affects the propagation speed and peak values
of the solitary waves in the granular chain. Therefore, a complete contact process should embrace the elastic, elastoplastic, and full
plastic phases [37,38]. The viscous damping coefficients in the different contact phases should correspondingly solve the linear or
nonlinear equation of motion [50]. Namely, the entire contact process should not be governed purely by the nonlinear or linear vi-
bration system [61]. It should combine the nonlinear characteristic in the elastic phase and linear futures in the elastoplastic or plastic
phase [74,75]. Moreover, there are seldom investigations to focus on the tensile force area [80] in the viscous damping loop obtained
from the contact models with frequency-dependent damping [81]; even there are no references [82] to study the effect of the tensile
force area on the solitary wave propagation in the granular system. It is the primary motivation for the investigation.

1.1. Limitations and main contributions

At present, the contact force models applied to simulate the solitary wave propagation present certain limitations in the granular
chain as follows:

(1) As for the continuous contact force model with a hysteresis damping factor, there are at least two restrictions: (i) the de-
nominator of the hysteresis damping factor includes the initial impact velocity [13], which is prone to generate numerical
singular issues since most particles in the granular system are initially at rest; (ii) they are extended based on the Hertz contact
law, which cannot be used to precisely evaluate the elastoplastic contact behavior, as described above.

(2) As for the static elastoplastic contact model, these models can precisely calculate the elastoplastic contact event in the granular
chain under high impact velocity [38]. However, its calculation process is extremely sophisticated, and in some cases, it is even
impossible to handle the enormous amounts of particles because the compression and recovery phases need to be identified in
every single contact [83]. Simultaneously, the maximum and residual contact deformations are also estimated and saved in
preparation for the next contact [37]. These reasons explain why the static elastoplastic contact models are not widely used in
EDEM software.

(3) As for the contact model applied in EDEM software, although it avoids the numerical singular issues caused by the denominator
of the damping factor, the Hertz contact stiffness still overestimates the contact stiffness when the contact behavior comes into
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the elastoplastic phase[36,40]. Our group has proved this conclusion in recent work [50]. This phenomenon leads to the
approach losing accuracy in simulating the elastoplastic contact event in the granular system.

In light of the above limitations regarding the contact model applied to the granular system, this investigation aims to develop a
new contact force model to remove these restrictions from existing contact force models, which is inspired by the Kelvin-Voigt contact
model. The current work is completely different from our recent publications [84–86]. Its primary contributions can be summarized as
follows:

(1) Since the relationship between the contact force and displacement is approximately linear when the elastoplastic deformation is
activated [12], the original idea of the new contact force model is motivated by the Kelvin-Voigt contact model. A linear vi-
bration system with a frequency-dependent damping factor represents the contact process in the elastoplastic or plastic phase
[65]. In this system, the contact stiffness is derived from the ML model; the viscous damping factor consists of the loss factor and
the frequency of the system [74]. The loss factor in the elastoplastic phase can be obtained by solving this linear vibration
system [75]. However, at the beginning of the contact behavior, the elastic phase must be experienced prior to the elastoplastic
phase [87]. The assumption of the linear vibration system cannot be applied in the elastic phase. Based on the assumption of the
damping factor in the elastoplastic, the frequency-dependent damping factor [65] in the elastic phase is redefined by a new loss
factor referred to in literature [74,75]. Therefore, the new contact force model with the viscous damping factor follows the
nonlinear Hertz contact law in the elastic phase and complies with the constitutive relation when the contact comes into the
elastoplastic phase. It stays completely consistent with the actual elastoplastic contact process.

(2) Since the new contact force model combines the nonlinear properties in the elastic phase and linear features in the elastoplastic
phase in the entire contact process, it exhibits the advantages of high precision compared to the contact model applied in the
EDEM software [88–90], especially in the elastoplastic or plastic deformation regimes. In addition to this, the tensile force [91]
is prone to be activated when the contact process approaches the end of the recovery phase because the post-impact velocity
closes to the maximum contact velocity; this reason leads to that the damping force in this phase is larger than the first term in
the new contact force model. However, the new contact force model avoids the deficiency of the Kelvin-Voigt model [48]. It is
mainly because the new contact force model includes the elastic contact phase, and the viscous damping coefficient includes the
contact deformation. Therefore, the entire contact process starts from the zero point and ends at zero. More importantly, this
investigation is the first time to reveal why the tensile force has no effect on the contact process between the particles in the
granular system. The primary reason lies in the multiple compression and multiple impacts between the particles that prevent
the contact force from coming into the tensile force area when the contact behavior approaches the end of the recovery phase.

1.2. Structure of this investigation

The structure of this investigation includes as follows: In Section 2, the ML model is introduced simply. A new contact model with
tensile force is proposed in Section 3; moreover, the impact between two spheres is treated as the numerical example to analyze the
dynamic performances of the new contact model; simultaneously, the comparison analysis between the new contact model, the EDEM
contact model, and Hunt-Crossley is implemented. The vertical and horizontal granular chains and Hopkinson pressure bar are
simulated based on the new dashpot model in Section 4. The main conclusions are summarized in Section 5.

2. ML static contact force model

The loading phase of the elastoplastic contact model is described as

F(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4
3

ER
1
2δ

3
2 δ < δy

δ
(

c1 + c2ln
δ
δy

)

+ c3 δy ≤ δ < δp

Fp + k1
(
δ − δp

)
δ ≥ δp

(1)

where 1/E =
(
1 − ν2

1
)
/E1 +

(
1 − ν2

2
)
/E2, R = R1R2/(R1 ± R2) , δy = π2Rp2

y/4E2 is the critical elastic deformation, E1 and E2 are the
Young’s modulus of the contact bodies, ν1 and ν2 are the Possion ration of the contact bodies, py = 1.61σy is the critical value of
yielding, σy is the yield stress. The parameter δp = ε2δy/2 is the critical plastic deformation; the physical meaning ε can be spotted in
this reference [38]. The coefficient in this contact model is given by

⎧
⎪⎨

⎪⎩

k1 = 2πRψσy, Fp = δp
(
c1 + c2ln

(
ε2/2

) )
+ c3

c1 =
py(1 + ln(ε2/2) ) − 2ψσy

ln(ε2/2)
πR, c2 =

2ψσy − py

ln(ε2/2)
πR, c3 = Fy − c1δy, Fy = π3R2p3

y/6E2
(2)

where ψ is also can be found in this literature [38]. During the unloading phase, the constitutive relation between the contact force and
displacement is expressed as
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F(δ) =

⎧
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2 δy ≤ δmax < δp

4
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p
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2
(δ − δr)

3
2 δmax ≥ δp

(3)

where Re
ep is the radius of curvature after impact in the elastoplastic phase. Re

p is the radius of curvature after impact in the plastic
phase.

3. A new contact model applied to the granular system

The granular system often suffers from impact with high velocity, as well as from the situation where the material properties of the
particle possess a large Young’s modulus and small yield strength. The latter situation leads to the impact behavior being prone to
activate elastoplastic or plastic deformations. Therefore, once the contact behavior comes into the elastoplastic or plastic phase, the
relationship between the load and deformation can be treated as a linear, as shown in Fig. 1. Kelvin and Voigt are pioneers of the
contact force model considering energy dissipation, which adopted a linear spring-damper model to represent the contact behavior
between the contact bodies. This approach inspired us to propose a new contact force model based on a linear vibration system.
However, the contact behavior must undergo the elastic phase prior to coming into the elastoplastic or plastic contact phase, and the
elastic contact process governed by the Hertz contact law is a nonlinear behavior [67] in Fig. 1. It is difficult to derive the analytical
solution of the damping coefficient if a nonlinear vibration system needs to be solved. Therefore, to avoid solving the nonlinear
equation of motion, the assumption of the frequency-dependent damping in the elastic phase refers to the hypothesis regarding the
viscous damping in the elastoplastic phase by a new loss factor. After obtaining the loss factors in the elastic and elastoplastic phase, the
new contact force model with viscous damping factor, including the elastic, elastoplastic, and plastic phases, can be formulated based
on the cornerstone of the Kelvin-Voigt contact model. Finally, the new contact force model not only completes the transition from the
nonlinear elastic contact phase to the linear elastoplastic phase but also inherits the continuous properties from the ML model.

3.1. In the elastoplastic phase

The equation of motion can be written as

Mδ̈+D1δ̇+Kδ = 0 (4)

where M is the mass of the contact body, D1 is the frequency-dependent damping coefficient, K is the stiffness coefficient of spring. The

Fig. 1. Relationship between the force and deformation in the ML model.
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frequency-dependent damping coefficient is assumed as[65]

D1 =
g1K
ω = g1

̅̅̅̅̅̅̅̅
KM

√
(5)

where g1 is the loss factor, ω is the natural frequency, ω =
̅̅̅̅̅̅̅̅̅̅
K/M

√
. The solution to the underdamped system is expressed as

δ(t) = Ae− ξωtsin(ωdt + ϕ) (6)

where A is the amplitude, ϕ is the phase angle, ωd is the damped frequency, ωd = ω
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√
. ξ is the damping, ξ = D1/2Mω = g1/2.

The amplitude and phase angle can be determined from the initial condition
{ t = 0, δ = 0 ⇒ 0 = sin(ϕ)

t = 0, δ̇ = δ̇(− ) ⇒ δ̇(− )
= Aωdcos(ϕ)

⇒ ϕ = 0,A =
δ̇(− )

ωd
(7)

where δ̇(− ) is the initial impact velocity. Eq. (6) can be rewritten as

δ(t) =
δ̇
(− )

ωd
e− ξωtsin(ωdt)ωd = ω

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2
√

=
ω
2

̅̅̅̅̅̅̅̅̅̅̅̅̅

4 − g2
1

√

(8)

The duration time of the entire contact process is given by

t1 =
π

ωd
=

2π
ω
[
4 − g2

1
]− 1

2 (9)

When an entire contact process terminates, the deformation in Eq. (10) is equal to zero, and the relative impact velocity is expressed as
according to Eq. (8)

δ̇(t) =
δ̇
(− )

ωd
e− ξωt [ − ξωsin(ωdt) + ωdcos(ωdt) ] ⇒ δ̇(t1) = δ̇(− )e− ξωt1 (10)

According to the definition of Newton’s coefficient of restitution (CoR), and substituting Eq. (9) into Eq. (10), the following equations
can be written as

cr =
δ̇(t1)

δ̇(− )
=

δ̇(− )e− ξωt1

δ̇(− )
⇒ cr = e− ξωt1 ⇒ lncr = − ξωt1

⇒ g1 = 2|lncr|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

π2 + ln2
(cr)

√ (11)

Thereby, according to Eq. (4), the other new dynamic dashpot model in the elastoplastic or plastic phase can be written as:

Fnp = Kδ+D1δ̇ = Kpδ+ g1
̅̅̅̅̅̅̅̅̅̅
KpM

√
δ̇Kp =

F
(
δp
)
− F

(
δy
)

δp − δy
(12)

where Kp is the linearized contact stiffness based on the ML model in Fig. 1.

3.2. In the elastic contact phase

At the beginning of the contact phase, elastic deformation is activated prior to the elastoplastic deformation in Fig. 1, which is
governed by the Hertz contact law. According to Eq. (12), the contact force with frequency-dependent damping in the elastic phase is
expressed as based on Hertz contact law

Fe = Khδ
3
2 +D2δ̇ (13)

It should be pointed out that the linear viscous damping coefficient does not conform to the requirement of the frequency-dependent
damping in the elastic contact phase. Therefore, based on the assumption in Eq. (5), the nonlinear elastic damping coefficient is
assumed as

D2 =
g2Kh

ω δ
1
4 = g2

̅̅̅̅̅̅̅̅̅̅
KhM

√
δ

1
4 (14)

Accordingly, the energy dissipation can be obtained by integrating Eq. (14) in the elastic contact phase
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ΔE =

∫ δmax

0
D2δ̇dδ =

∫ δmax

0
g2

̅̅̅̅̅̅̅̅̅̅
KhM

√
δ

1
4δ̇dδ (15)

where δmax is the maximum contact deformation.
Based on the energy balance in the process of contact behavior, the dissipated energy can be written as [56,60]

ΔE =
1
2

M
(
1 − c2

r
)
[δ̇

(− )
]
2 (16)

The relative impact velocity is a crucial factor in obtaining the energy dissipation in Eq. (15); hence, to obtain the relative impact
velocity, the stored strain energy from the elastic force is equated to the kinetic energy at the time of separation at the beginning of the
recovery phase. It is expressed as

∫ δmax

0
Khδ

3
2dδ =

1
2

Mδ̇2
f (17)

where δ̇f is the post-impact velocity. By solving Eq. (17), the maximum contact deformation can be expressed as

δmax =

(
5
4

M
Kh

δ̇
2
f

)2
5

⇒ δ̇
2
f =

4Kh

5M
δ

5
2
max (18)

In the recovery phase, the elastic strain energy is transformed again into the kinetic energy; hence, which is described as:
∫ δ

0
Khδ

3
2dδ+

1
2

Mδ̇
2
=

1
2

Mδ̇
2
f (19)

By solving Eq. (19), the relative impact velocity in the recovery phase (δ̇ < 0) can be written as

δ̇ = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ̇2
f −

4
5

Kh

M
δ

5
2

√

(20)

However, the relative impact velocity (δ̇ > 0) in the compression phase cannot be directly obtained from Eq. (20). The loss of difference

of velocities δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒ is assumed to be uniform during the whole compression phase. Therefore, the relative impact velocity in the

compression phase can be written as [74]

δ̇ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ̇
2
f −

4Kh

5M
δ

5
2

√

+

(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

(δmax − δ)

δmax
(21)

Substituting Eq. (21) into Eq. (15), and combined with Eq. (16) gives the following expression

1
2

M
(
1 − c2

r

)
[δ̇

(− )
]
2
= g2

̅̅̅̅̅̅̅̅̅̅
KhM

√ ∫ δmax

0
δ

1
4

⎡

⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ̇2
f −

4Kh

5M
δ

5
2

√

+

(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

(δmax − δ)

δmax

⎤

⎥
⎥
⎦dδ (22)

The post-impact velocity can be obtained from Eq. (18). The first term in the right-hand side can be written as

g2
̅̅̅̅̅̅̅̅̅̅
KhM

√ ∫ δmax

0
δ

1
4
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4
5
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M
δ

5
2

√

dδ = g2
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KhM

√ ∫ δmax

0
δ

1
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4Kh

5M
δ

5
2
max −

4
5

Kh

M
δ

5
2

√

dδ

=
2

̅̅̅
5

√

5
g2Kh

∫ δmax

0
δ

1
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ
5
2
max − δ

5
2

√

dδ =
2

̅̅̅
5

√

25
πg2Khδ

5
2
max

(22a)

Substituting Eq. (22a) into Eq. (22)
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1
2

M
(
1 − c2

r
)
[δ̇(− )

]
2
=

2
̅̅̅
5

√

25
πg2Khδ

5
2
max + g2

̅̅̅̅̅̅̅̅̅̅
KhM

√

(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

δmax

∫ δmax

0
δ

1
4(δmax − δ)dδ

⇒
1
2

M
(
1 − c2

r
)
[δ̇

(− )
]
2
=

2
̅̅̅
5

√

25
πg2Khδ

5
2
max + g2

̅̅̅̅̅̅̅̅̅̅
KhM

√

(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

δmax

(

δmax

∫ δmax

0
δ

1
4dδ −

∫ δmax

0
δ

5
4dδ

)

⇒
1
2

M
(
1 − c2

r
)
[δ̇

(− )
]
2
=

2
̅̅̅
5

√

25
πg2Khδ

5
2
max +

16
45

g2
̅̅̅̅̅̅̅̅̅̅
KhM

√
(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

δ
5
4
max

(22b)

Substituting Eq. (18) into Eq. (22b), and
(

δ̇f = cr δ̇
(− )

)

1
2

M
(
1 − c2

r
)
[δ̇

(− )
]
2
=

2
̅̅̅
5

√

25
πg2Khδ

5
2
max +

16
45

g2
̅̅̅̅̅̅̅̅̅̅
KhM

√
(

δ̇
(− )

−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

)

δ
5
4
max

⇒
1
2

M
(
1 − c2

r
)
[δ̇

(− )
]
2
=

2
̅̅̅
5

√

25
πg2Kh

5
4

M
Kh

δ̇
2
f +

16
45

g2
̅̅̅̅̅̅̅̅̅̅
KhM

√
(

δ̇(− )
−

⃒
⃒
⃒
⃒δ̇f

⃒
⃒
⃒
⃒

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
5
4

M
Kh

δ̇
2
f

√

⇒
1
2

M
(
1 − c2

r

)
[δ̇

(− )
]
2
=

̅̅̅
5

√

10
πg2Mc2

r [δ̇
(− )

]
2
+

8
̅̅̅
5

√

45
g2M

(
cr[δ̇

(− )
]
2
− c2

r

[
δ(− )

]2
)

⇒
1
2
(
1 − c2

r
)
=

̅̅̅
5

√

10
πg2c2

r +
8

̅̅̅
5

√

45
g2
(
cr − c2

r
)

⇒ 9
̅̅̅
5

√ (
1 − c2

r
)
= g2

(
9πc2

r + 16cr − 16c2
r
)

⇒ g2 =
9

̅̅̅
5

√ (
1 − c2

r
)

cr[cr(9π − 16) + 16 ]

(23)

Therefore, in the elastic contact phase, the contact force model with frequency-dependent damping can be formulated as

Fe = Khδ
3
2 + g2

̅̅̅̅̅̅̅̅̅̅
KhM

√
δ

1
4δ̇ (24)

Finally, a complete contact force model with frequency-dependent damping can be expressed as

F =

⎧
⎨

⎩

Khδ
3
2 + g2

̅̅̅̅̅̅̅̅̅̅
KhM

√
δ

1
4δ̇

(
δ ≤ δy

)

Kpδ + g1
̅̅̅̅̅̅̅̅̅̅
KpM

√
δ̇

(
δ > δy

) (25)

The proposed dynamics contact model seems to just include the elastic and elastoplastic phases from its mathematical expression.
However, since the elastoplastic phase has the same contact stiffness in Eq. (12) as the plastic phase, the contact force in the plastic
phase can also be calculated using the second equation in Eq. (25). When the impact behavior comes into the plastic phase, the critical
plastic deformation δp can serve as the criterion to differ the elastoplastic phase from the plastic phase.

Fig. 2. Relationship between the loss factor and CoR.
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Moreover, it is noteworthy that the new dynamic dashpot model in the elastic phase is almost the same as the dashpot model used in
the EDEM software, which is expressed as [45]

Fdem = Khδ
3
2 +

̅̅̅
5

√

2
g1

̅̅̅̅̅̅̅̅̅̅
KhM

√
δ

1
4δ̇ (26)

This model is referred to as the EDEM contact model in this investigation.

3.3. Relationship between the loss factor and coefficient of restitution

The new contact force model hypothesizes that the damping coefficient in the different contact phases is a function of the frequency
of the system. The development is made by introducing different loss factors, which are convenient to represent the energy dissipation
during contact. The loss factors in Eq. (11) and Eq. (23) are determined by the CoR in Fig. 2. When the contact comes into the
elastoplastic or plastic phase, the relationship between the load and deformation is almost linear in Fig. 1; the loss factor increases with
the decrease of CoR. When the CoR is larger than 0.4, the relationship between the loss factor g1 and CoR behaves approximately linear
in the elastoplastic or plastic phase.

At the beginning of the impact behavior, the relationship between the contact force and deformation is nonlinear; therefore, the loss
factor g1 in Eq. (11) is no longer suited for nonlinear contact behavior. After this point, a nonlinear frequency-dependent damping
behavior is assumed, as introduced in Eq. (14) by means of the assumption from the linear contact behavior in Eq. (5). The loss factor g2
increases with the decrease of CoR as well. However, in the elastic phase, the energy dissipation caused by the seismic waves is very
small, which causes the CoR to take a comparatively larger value. When the CoR is larger than 0.8, the relationship between the loss
factor g2 and CoR approximates a linear relationship. In other words, a larger loss factor leads to more energy being dissipated. The
dissipated energy in the different contact phases is unified by means of the loss factors.

3.4. Dynamic performance of the new model

Considering that the new contact model is tailored to the granular system, the contact between two identical spheres is taken as the
numerical example displayed in Fig. 3. The simulation parameters can be seen in Table 1. The dimensionless parameters are assumed
according to values from the literature, i.e., ψ = 3.0ε = 13. The critical elastic deformation is equal to 5.2453E-6 m, and the critical
plastic deformation is equal to 4.4323E-4 m. In this section, the dynamic performance of the new contact force model is tested under
the different initial impact velocities in three different contact phases. To illustrate the tensile force area in the new contact force model
and its high accuracy, the Hunt-Crossley model and the EDEM contact model are selected as the reference solutions. It is worth noting
that the expression of the Hunt-Crossley contact model is written as

F = Khδ
3
2

[

1 +
3(1 − cr)

2
δ̇

δ̇(− )

]

(27)

The initial velocity of the first sphere is assumed to be 0.05 m/s; the second sphere is at rest initially. The relatively initial impact
velocity is equal to 0.05 m/s. Under low impact velocity, the maximum contact deformation is smaller than the critical elastic
deformation. The entire contact process is followed by the Hertz contact law. In the elastic phase, the energy dissipation during contact
is negligible. Accordingly, the CoR is assumed as 0.95 in the new contact model. The dynamic responses obtained from the new contact
model are entirely in agreement with the results calculated by the EDEM contact model in Fig. 4 when the CoR is equal to 0.9 in Eq.
(26). The new contact model can completely reproduce the EDEM model in the elastic phase. Although the new contact model is
inspired by the Kelvin-Voigt Model, it does not suffer from the deficiency of the Kelvin-Voigt Model. As for this deficiency, the
relatively non-zero initial impact velocity between the contact bodies would lead to the contact force being equal to zero at the
beginning of the contact phase.

Moreover, the post-impact velocity with inverse direction results in the contact force is equal to a negative value at the end of the
recovery phase. However, as for the new contact force model and EDEM contact model, the viscous damping loop still starts from zero
and goes back to zero in the entire contact process in Fig. 4 (a). This feature owes to the contribution of contact deformation in viscous
damping. That is mainly explained by the effect of the viscous damping in Eq. (24) and Eq. (26), which circumvents the situation where
the contact force has a positive value at the beginning of the contact event when the contact deformation is equal to zero. Moreover, at
the beginning of the compression and at the end of recovery, the relative impact velocity is very large, compared to the Hunt-Crossley

Fig. 3. One-dimension contact behavior between two particles.
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model; this situation creates a dramatic increase of the contact force at the beginning of compression, and an extreme decrease of this
force at the end of the recovery phase.

Therefore, at the end of the recovery phase, the relative post-impact velocity reaches the maximum value (− 0.04512 m/s) in Fig. 4
(c), which is almost the same with the post-impact velocity (− 0.045 m/s) obtained by the definition of Newtonian’s CoR. The post-
impact velocities evaluated from three discrepant contact force models keep consistent with each other. Further, in Fig. 4 (a), the
energy dissipation (5.1120E-5 J) calculated by three different contact models is very close to each other. This situation accounts for the
proposed contact force model is capable of accurately describing the dissipated energy during impacy in the elastic phase. Moreover,
the damping force in Fig. 4 (b) is larger than the elastic force; this leads to a situation where the viscous damping loop generates the

Table 1
Contact parameters.

Element Young’s modulus (Pa) Poisson ratio Radius (m) Yield strength (Pa) Density (kg/m3)

Body 1 2.07E11 0.30 2.0E-2 1.03E9 7800
Body 2 2.07E11 0.30 2.0E-2 1.03E9 7800

Fig. 4. Dynamic performances of the contact behavior under low impact velocity.
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tensile force area in Fig. 4 (a). It is worth noting that another part of the tensile force area is that the contact deformation term makes
the damping force larger than the Hunt-Crossley model at the beginning of compression and the end of the recovery phase Fig. 4 (b).

On the contrary, the Hunt-Crossley model employs a hysteresis damping factor to represent the energy dissipation, which effec-
tively is frequency-independent damping. The hysteresis loop starts from zero and ends at zero as well in Fig. 4 (a). The relative contact
deformation is smaller in the first half of the compression phase; the relative impact velocity is, on the other hand, comparatively large.
In Fig. 4 (b), the damping force obtained from the new contact force model is larger than the damping force calculated by the Hunt-
Crossley model because of the contact deformation term δ0.25 in the viscous damping coefficient.

In the second half of the recovery phase, a similar situation happens, which is the primary reason that the viscous damping loop
produces the tensile force area. Conversely, the hysteresis loop has no tensile force area. It should be noted, however, that the contact
force models with frequency-independent damping, like the Hunt-Crossley model, are not suited for simulating a granular system
because most particles in the granular system are at rest initially. However, the denominator of the hysteresis damping factor includes
the initial impact velocity. This could lead to serious numerical issues when the initial impact velocity approaches zero. Furthermore,
when the CoR is equal to 0.9, the energy dissipation from the Hunt-Crossley model is almost consistent with the new contact model and
EDEM contact model in Fig. 5 (a). Therefore, the maximum contact force in Fig. 5 (a) and post-impact velocity in Fig. 5 (c) from the
different contact models are consistent with each other.

When the relative contact velocity is equal to 8 m/s, the maximum contact deformation is larger than the critical elastic and smaller
than the critical plastic deformation. The elastoplastic contact behavior controls the entire contact process. In the elastic phase, the
CoR is treated as 0.86; when the contact behavior comes into the elastoplastic phase, the CoR is equal to 0.70. Moreover, the CoR in the
EDEM contact model and Hunt-Crossley model is also equal to 0.70. The tensile force area still exists in the viscous damping loop of the
new contact force model and EDEM contact model. The Hunt-Crossley model with frequency-independent damping has no tensile force
area. As for the new contact force model, it undergoes the elastic phase (red line) and elastoplastic phase (green line) in sequence in
Fig. 5. Obviously, compared to the EDEM contact model, the contact force obtained from the new contact force model decreases after
experiencing the elastic contact phase. That is mainly because the EDEM contact model employs the Hertz contact stiffness to represent
the contact stiffness in the elastoplastic phase, which overestimates the contact force in the elastoplastic phase [50], no matter what the
contact behavior is included in the compression or recovery phase in Fig. 5 (a). Likewise, the Hunt-Crossley model shows the same
behavior as the EDEM contact model. The new contact force model utilizes the relationship between the load and deformation in the
ML model to derive the contact stiffness in the elastoplastic phase.

In Fig. 5 (a), the damping loops generated by three different contact force models represent the energy dissipation during impact.
Since the ML model is almost consistent with the experimental data [38], it is treated as the reference solution of energy dissipation
during impact. The evaluation of energy loss from three different contact force models can be seen in Table 2. Consipciously, the
energy dissipation from three different contact force models has a deviation from the ML model, but overall, they are relatively close to
each other. Consequently, the new contact force model can precisely describe the energy dissipation during impact.

In the elastic phase, the EDEM contact model is almost identical to the new contact force model in Fig. 5 (b) because the Hertz
contact law governs their behavior. Once the contact event comes into the elastoplastic phase, the damping force obtained from the
new contact force model is smaller than the damping force from the EDEM contact model, which is also caused by the Hertz contact
stiffness in the EDEM contact model. In Fig. 5 (c), the post-impact velocities from three different contact force models are very similar

Fig. 4. (continued).
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despite the maximum contact forces between them being different from each other. Further, the post-impact velocity calculated by the
proposed contact force model is equal to − 5.75541 m/s, which is very close to the post-impact velocity (− 5.6 m/s) obtained by the
definition of Newtonian’s CoR. Accordingly, this phenomenon also proves that the proposed contact force model is able to precisely
depict the dissipated energy during impact in the elastoplastic contact phase.

When the initial velocity increases to 25 m/s, the contact behavior comes into the full plastic phase. Likewise, in the elastic phase,
the CoR equals 0.84; when the plastic deformation is activated, the CoR is equal to 0.65, which is also suited for the EDEM contact and
Hunt-Crossley models. In Fig. 6, when the plastic phase is activated, the contact behavior experiences the elastic phase (red line),
elastoplastic phase (green line), and full plastic phase (blue line).

More importantly, the deviation caused by the Hertz contact stiffness between the EDEM contact model and the new contact model
is more significant. However, the contact responses obtained from the new contact force model are still the same as the EDEM contact
model in the elastic contact phase in Fig. 6 (b). The tensile force area still exists at the end of the recovery phase for both contact models
in Fig. 6 (a). Moreover, when the elastoplastic or plastic phase is activated, the contact stiffness is smaller than the Hertz contact
stiffness. This explains why the contact deformation from the new contact force model is larger than the one predicted by the Hunt-
Crossley model and EDEM contact models. The post-impact velocity calculated by the Hunt-Crossley model has an apparent deviation
from the EDEM contact model and the new contact force model in Fig. 6 (c).

In Fig. 6 (a), when the plastic deformation is activated, the evaluation of energy loss from three different contact force models can

Fig. 5. Dynamic performances of the contact behavior when the elastoplastic deformation is activated.
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be seen in Table 3. Consipciously, the Hunt-Crossley model is incapable of precisely calaulating the energy dissipation during impact in
the plastic phase. Nevertheless, compared to the ML model, the error percentage of energy loss generated by the EDEM model is
slightly smaller than the one from the proposed contact force model. Thereby, the new contact force model is capable of describing the
energy dissipation during impact. However, it is important to note that the EDEM contact model cannot attain accurately the maximum
contact deformation and contact force because it adoptes the Hertz contact stiffness coefficient.

Based on the definition of Newton’s CoR, the post-impact velocity should be equal to the initial impact velocity multiple the CoR,
which is equal to 16.25 m/s. The post-impact velocity calculated by the new contact force model or the EDEM contact model equals
16.22 m/s. This conclusion also illustrates the proposed contact force model can evaluate the energy dissipation during impact in the
plastic phase. However, the post-impact velocity obtained from the Hunt-Crossley model is equal to 18.58 m/s. This conclusion ac-
counts for the fact that the Hunt-Crossley model lost control of energy dissipation when the contact is introduced into the plastic phase.
This means that the Hunt-Crossley model is only suited for the low-impact velocity scenario. On the other hand, frequency-dependent
damping is better at describing the energy dissipation during contact compared to frequency-independent damping.

3.5. Comparison between the ML model and the new contact model

As for the ML model, the loading path is the same as the unloading path in the elastic phase; there is no energy to be dissipated in the
elastic phase. When the contact reaches the elastoplastic or full plastic phase, the loading path differs significantly from the unloading
path. The closed area between the loading and unloading paths represents the energy dissipation during contact in Fig. 7. The static
elastoplastic contact model can effectively recognize the maximum and residual contact deformation. Therefore, when using the static
elastoplastic contact model to simulate the dynamic responses of the granular system, the maximum, and residual contact deformation
must be identified and saved in every single contact as preparation for the ensuing contact behavior. This complicated calculation
strategy is impossible when facing a massive number of particles. This is why the static elastoplastic contact models are not used in the
EDEM software; in spite of that, they can accurately calculate the dynamic performances between the particles in the granular system.
In light of this reason, the EDEM contact model in Eq. (26) is widely used in the EDEM software because it uses the viscous damping
loop to represent the energy dissipation rather than the difference between the loading path and unloading path. This feature simplifies
the calculation process of the static elastoplastic contact model in simulating the elastoplastic contact event. Namely, the EDEM
contact model does not distinguish that the contact behavior is in the compression or recovery phase and does not calculate the
maximum and residual contact deformations in every contact. This model just needs to check whether or not the contact behavior
happens or not. Although the EDEM contact model extremely simplifies the calculation strategy of the elastoplastic contact behavior in

Fig. 5. (continued).

Table 2
Energy dissipation in the elastoplastic phase.

Parameters Model ML model Hunt-Crossley model EDEM model New model

Loss energy ΔE(J) 1.9381 1.7109 2.0389 2.0710
Error percentage ΔE —— 11.72 % 5.21 % 6.86 %
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the granular system, the Hertz contact stiffness in the EDEM contact model amplifies the contact stiffness in the elastoplastic or plastic
phase [50]. That is why we need to develop a new contact model.

Actually, the CoR can be identified as 0.65 by the ML model when contact behavior comes into the plastic phase under the initial
impact velocity equal to 25 m/s. The new contact model has three different contact phases that correspond to the ML model. However,
in the elastic contact phase, the energy dissipation caused by the seismic waves is considered using the viscous damping loop (red line).
When the contact reaches the elastoplastic or plastic phase, the energy dissipation represented by the viscous damping loop corre-
sponds to the closed area between the loading path and the unloading path. In order to bypass the effect of the tensile force area, we
need to detect whether or not the contact force has a negative value in each time step. In Fig. 7, the contact force is forced to zero once it
is smaller than zero. That is required since the occurrence of tensile force violates the physical meaning of the contact event between
the particles in the granular system. It is worth noting that the new contact force model cannot be used to identify the residual contact
deformation in the elastoplastic contact behavior. Point A, corresponding to the contact deformation, is caused by the tensile force area
in the viscous damping loop. Point B from the ML model is the actual residual contact deformation in the elastoplastic contact behavior.
In additional to this, the proposal contact model can judge which phase should be considered using the critical elastic and plastic
deformation (the red line represents the elastic contact phase; the green line represents the elastoplastic contact phase; the blue line is
the full plastic contact phase).

Fig. 6. Dynamic performances of the contact behavior when the plastic deformation is activated.
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3.6. Bouncing ball example

A classical bouncing ball example [61] shows in Fig. 8. The radius of the ball is equal to 0.1 m; its mass is 1 kg. The initial height
with respect to the ground is assumed as 1 m. The initial impact velocity is equal to 5 m/s. In the simulation process, the absolute error
is set to be 2E-7. The integral strategy adopts the predictor–corrector method. The predictor is the Euler integrator. The corrector is the

Fig. 6. (continued).

Table 3
Energy dissipation in the plastic phase.

Parameters Model ML model Hunt-Crossley model EDEM model New model

Loss energy ΔE(J) 24.7119 18.4735 22.5590 26.9543
Error percentage ΔE —— 25.24 % 8.71 % 9.07 %

Fig. 7. Comparison analysis between the new contact model and ML model.
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trapezoidal integrator. When the contact behavior in the bouncing ball example is treated as an elastic collision only considering the
energy dissipation caused by the transmission of the seismic waves. Namely, the initial kinetic energy of the bouncing ball needs
around 7.5 s to be completely died out in Fig. 9 (blue dashed line is taken from reference [61]) because the seismic waves just dissipate
very little energy in each contact between the sphere and ground. In order to check that the proposed contact model is capable of
calculating the plastic collision event, Young’s modulus of the ball is equal to 6.7e10 Pa; its Poisson ratio is equal to 0.33; its yield
strength is equal to 2.4e7 Pa. The CoR is equal to 0.9 in the elastic phase; the CoR is assumed as 0.85 in the plastic phase.

In sharp contrast to the elastic contact, when the plastic deformation is activated in the bouncing ball example, the initial kinetic
energy is fully dissipated caused by the plastic deformation in 2.5 s. That is because the plastic contact behavior dissipates more energy
than the elastic contact behavior from the reference[61]. This application case adequately illustrates that the new dynamic dashpot
model can be used for plastic impact events.

4. Granular system

The granular system is an exciting state of matter, which generally consists of spherical particles. It often emerges in the repre-
sentation of complex linear and nonlinear solitary wave features. Although simple physical laws can describe the interaction between
the particles, it is not easy to accurately reproduce the solitary wave in a granular chain. One-dimensional granular systems provide an
abundant amount of information for contact mechanics. To validate the effectiveness and accuracy of the new contact force model,
vertical and horizontal granular chains are taken as numerical examples to show the merit of the new contact force model in the
granular chain.

4.1. Vertical granular chain

Fig. 10 depicts the experimental rig of the one-dimension vertical granular chain. The specific structure of this system can refer to
the literature [869293]. The radius of a magnetic steel ball is equal to 2.5 mm and its mass is equal to 0.5115 g. The radius of the grain
is equal to 2.38 mm. The material properties are displayed in Table 4. There are two different cases to exhibit the propagation of
solitary waves under the different contact conditions: (i) Case 1: the mass of the particle is equal to 0.47 g, the magnetic force is equal to
zero, and the dimensionless contact parameters ψ and ε are equal to 2.84 and 13. (ii) Case 2: the mass of the particle is equal to 1.23 g,
the magnetic force is equal to 2.38 N, the dimensionless contact parameters ψ and ε are equal to 2.6 and 21, respectively. The striker
velocity is equal to 0.44 m/s in both cases. The simulation time is 450 μs. The time step is 0.03 μs. The employed integrator is Matlab’s
builtin Ode45 solver.

Concerning Case 1, considering that this scenario happens under low impact velocity and without preload force, the energy
dissipation during the whole contact process is negligible. Accordingly, in the elastic phase, the CoR is equal to 0.99. When the
elastoplastic phase is activated, the CoR becomes equal to 0.93. The propagation of solitary waves can be seen in Fig. 11. To observe the
solitary waves in Fig. 11, the contact force values of the 13th particle and the base are moved 25 N and − 30 N along the Y axis,
respectively. Significantly, in the first curve, the contact force applied on the 13th particle is propagated as a solitary wave. The curve
of the 17th particle has a similar propagation to the first curve. However, the distance between the peak values is shorted because the
contact behavior becomes more frequent when the particle approaches the base in the vertical granular chain. When the solitary wave
arrives at the base, it is rebounded by the base to form the reflected wave in the third curve of Fig. 11. Moreover, its amplitude is the
largest because of the effect of the gravity of the particles.

The new contact model can unambiguously reveal the solitary wave propagation in the vertical granular chain. The solitary waves
obtained using the new contact model are consistent with the experimental data. Moreover, the model predictions stay consistent with
the results from the ML model and EDEM contact models. This conclusion fully illustrates the correctness and accuracy of the proposed

Fig. 8. Bouncing ball example [61].
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contact model.
Compared to the ML model, the new contact model simplifies the elastoplastic contact behavior calculation process because it does

not identify the compression or recovery phase and saves the maximum and residual contact deformation from preparing for the next
contact. Compared to the contact model applied in the EDEM software, although the solitary waves evaluated by the new contact
model are closer to the experimental data, the difference between them is slight. That is mainly because, under low impact velocity and
without preload force, the elastic contact dominates the entire impact between the particles despite the elastoplastic contact being
activated.

Therefore, the discrepancy between the new contact model and the EDEM contact model is very small. In the horizontal granular
chain, the distinction between them will be explained in detail. The error analysis between the numerical solutions and experimental
data can be seen in Fig. 12. Conspicuously, the solitary waves obtained from the ML model are close to the experimental data compared
to the other two contact models. Furthermore, the numerical solutions attained from the new contact force model are more accurate
than the contact model applied in EDEM software, apart from the third curve caused by impacting the base in the vertical granular
chain. The main reason is that the elastic behavior dominates this impact event despite the activation of the elastoplastic phase. That is
why the error between the contact model used in EDEM software is smaller than the solution from the new contact model. Still, this
error can be accepted compared to the magnitude of the peak value of the solitary waves.

As for Case 2, the impact experiment is implemented under the preload force generated by the magnet. The CoR in the elastic phase
is equal to 0.98. When the contact comes into the elastoplastic phase, the CoR is equal to 0.87. The precompression leads to the

Fig. 9. Bouncing ball numerical example.
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amplitude of solitary waves being larger when compared with those reported in Case 1, apart from the effect of the gravity of the
particle. Furthermore, the propagation speed of solitary waves has been accelerated conspicuously because the wave speed depends on
the peak value. Therefore, multiple impacts and multiple compression are observed in the vertical granular chain because of the
different propagation speeds from the different particles. The contact behavior Case 2 is, as such, more complex than Case 1. In Fig. 13,
the proposed contact force can reproduce the propagation of solitary waves, which basically coincides with the waves obtained from
the ML model and EDEM contact model. However, the difference between the numerical solutions and experimental data is more
significant than in Case 1. This is to be expected because reflection phenomena and multiple contact behavior are more frequent. In
addition, the deviation between the EDEM contact model and experimental data is more significant when compared to Case 1. That is

Fig. 10. The experimental setup of the vertical granular chain [39].

Table 4
Material parameters.

Material Young’s modulus Poisson’s ratio Yield stress

Stainless steel 316 193 GPa 0.300 940 MPa
Red brass 115 GPa 0.307 250 MPa
Al2O3 aluminum 416 GPa 0.231 500 Mpa

Fig. 11. The solitary wave in the vertical granular chain without magnetic force.
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mainly explained by the magnetic force making the elastoplastic contact behavior dominate the entire contact process. Further, the
EDEM contact model overestimates the contact stiffness in the elastoplastic contact event by the Hertz contact law [50].

This explains why the EDEM contact model has a significant error compared to the new contact model. More importantly, in Fig. 9
and Fig. 10, we found that the tensile force at the end of the recovery phase in the new contact model in Fig. 5 (a) does not affect the
propagation of solitary waves in the granular chain. To further study this phenomenon, the relationship between the contact force and
deformation regarding the 13th particle, 17th particle, and the base is reproduced in Fig. 14 (a)~(c). Obviously, the 13th and 17th
particles demonstrate the multiple impacts and multiple compression phenomena during the entire contact process. As for both contact
models, including the new contact model and EDEM contact model, at the end of the recovery phase, the magnitude of contact force is
too small to affect the solitary wave propagation, although the 13th particle in Fig. 14 (a) generates the tensile force.

In addition to these observations, the tensile force area regarding the 13th particle can be ignored compared to the entire contact
process because it just happens in a very short time at the end of the recovery phase. In Fig. 14 (b), as for the EDEM contact model, the
tensile force on the 17th particle does not happen at the end of the recovery phase. The contact force almost starts from zero and ends at

Fig. 12. The error analysis of the peak values in the solitary waves for the vertical granular chain.

Fig. 13. The solitary wave in the vertical granular chain with magnetic force.
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zero as well. However, in the new contact model, the production of the tensile force at the end of the recovery phase is prevented
significantly due to the multiple compression and multiple impact phenomena. That is because the multiple impacts and multiple
compression events in the recovery phase reduce the magnitude of the post-impact velocity or change the direction of the post-impact
velocity. This again leads to the damping force at the end of the recovery phase becoming very small. That is why the contact force
model with the viscous damping factor can describe the solitary wave propagation despite the tensile force area being included in the
entire contact process. The multiple impacts and multiple compression phenomena almost eliminate the tensile force area in the
granular system. When the solitary wave propagates to the base, the multiple impact and multiple compression are not significant
compared to the 13th and 17th particles in Fig. 14 (c) because the primary function of the base is to reflect the solitary waves in the
vertical granular chain. However, as for the new contact model, the micro-compression and micro-impact can be observed at the end of
the recovery phase, which has the same ability as the multiple compression and multiple impact behavior in Fig. 14 (b) to stop the
contact force from reaching into the tensile force area. Similarly, as for the EDEM contact model, the contact force, like the 13th
particle in Fig. 14 (b), almost starts from zero and ends at zero.

In other words, the reason that the contact force model with frequency-dependent damping can be successfully used to produce
solitary wave propagation lies in the notion that multiple impacts and multiple compression behaviors are prone to be generated in the
granular chain. These behaviors prevent the contact force between the particles from diverging into the tensile force area. This
investigation explains for the first time why the tensile force in the contact model with viscous damping has no effect on the dynamic

Fig. 14. The relationship between the contact force and deformation in the granular chain.
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simulation in the granular system.

4.2. Horizontal granular chain

In the vertical granular chain, since the initial impact velocity of the striker is small, the high accuracy of the proposed contact
model in allusion to the EDEM contact model is not highlighted significantly in Fig. 11 and Fig. 13. Therefore, in this section, a
horizontal granular chain, as illustrated in Fig. 15, is selected to show the accuracy and effectiveness of the new contact force model.
The initial impact velocity of the striker is set to 1.77 m/s. The experimental setup of a monodisperse granular chain of 70 stainless
steel particles in Fig. 13 is originally designed by Daraio and coworkers [39,94]. The particle size and material properties are identical
to each other, which is shown in Table 5. The contact forces are measured by a calibrated piezo-sensor. The dimensionless parameters
are the same as found in literature, namely ψ = 2.84 and ε = 13[39]. For information regarding the horizontal granular chain, one can
refer to the relevant literature [94]. Furthermore, since the larger initial impact velocity inevitably causes more energy to be dissi-
pated, the CoR in the elastic phase is equal to 0.89. When the elastoplastic contact is activated, the CoR is assumed as 0.70.

In the horizontal granular chain, the critical elastic deformation is equal to 5.4822E-7 m, and the maximum contact deformation
between the particles is equal to 7.6394E-6 m. The elastoplastic contact behavior dominates the entire contact process in this granular
chain. In Fig. 16, the solitary wave obtained using the new contact model is almost the same as the results using the model used in
EDEM software. More importantly, the propagation of solitary waves obtained from the numerical solution is consistent with the
experimental data.

Fig. 14. (continued).

Fig. 15. The experimental setup of the one-dimension granular chain [94].
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Table 5
Simulation parameters.

Parameters Value

Time step 0.01 μs
Simulation time 600 μs
Integrator Predictor-Corrector (Euler-Trapezoidal)
Radius 2.38 mm
Poisson ratio 0.3
Young’s modulus 193 GPa
Yield stress 940 MPa
Mass 0.45 g
Position of the sensor 9,16,24,31,40,50,56,63

Fig. 16. The solitary wave in the horizontal granular chain.

Fig. 17. The error analysis of the peak values in the solitary waves for the horizontal granular chain.
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When calculating the peak values in solitary waves, the red error bar between the new contact model and experimental data is
smaller than the blue error bar between the model used in EDEM software and experimental data, as shown in Fig. 17. This is mainly
because the EDEM contact model utilizes a Hertz contact stiffness to represent the contact stiffness in the elastoplastic phase, which
leads to its loss of accuracy compared to the new contact model. Therefore, when the initial impact velocity is small, and the elastic
contact behavior dominates the entire contact process, the discrepancy between the new and EDEM contact models can be ignored.

However, when the elastoplastic or plastic contact dominates the entire contact process, the proposed contact model is more ac-
curate than the EDEM contact model because it adopts the ML model to describe the contact stiffness in the elastoplastic or plastic
phase rather than the Hertz contact stiffness coefficient. This conclusion indicates that the new contact model possesses a higher
accuracy than the model used in the EDEM software when simulating solitary wave propagation in granular systems.

4.3. Hopkinson pressure bar

The Hopkinson pressure bar [36] in Fig. 18 is taken as the other application case to exhibit the properties of this model, which was
used to impact a granular chain consisting of 50 identical stainless-steel spheres with a diameter 6.35 mm. The specified structure of
this experimental setup can be referred to in this literature [3685]. The material properties of these beads and simulation parameters
are displayed in Table 6. The CoR in the elastic phase is equal to 0.81. When the elastoplastic contact is activated, the CoR is assumed as
0.23.

The striker bar velocity is assumed as 13 m/s. In this experimental rig, the elastoplastic phase must be activated under high impact
velocity [39]. The contact deformation of the particles can easily reach and beyond the critical elastic deformation 7.4292E-7 m, which
inspires the contact phase to come into the elastoplastic contact phase. In Fig. 19, the 40th particle’s post-impact velocity is attained by
the laser vibrometer, which is the black dash line [36]. It also can be obtained using the proposed contact model, which is almost
consistent with the experimental data.

5. Conclusions

The Kelvin-Voigt model inspires this investigation to propose a new contact force model using a frequency-dependent damping
factor. However, compared to the Kelvin-Voigt model, the new contact force model avoids the situation where the contact force has a
positive value at the beginning of the compression phase, and has a negative value at the end of the recovery phase. This feature is
achieved by means of the developed contact model in the elastic phase. Compared to the EDEM contact model, it adopts the ML model
to derive the contact stiffness to overcome the deficiency from Hertz contact stiffness in the elastoplastic phase. Compared to the Hunt-
Crossley model, it sidesteps the numerical singular issue caused by that the denominator of the damping factor includes the initial
impact velocity. Compared to the ML model, it simplifies the calculation strategy of the elastoplastic contact behavior by the viscous
damping loop. To summarize, the proposed contact force model can describe a complete contact process that includes elastic, elas-
toplastic, and plastic phases in sequence. Nevertheless, it still suffers from the occurrence of the tensile force area in the viscous
damping loop [54,55], which is mainly caused by the damping force. Further, the capacity of the proposed contact force model
describing the energy loss during impact is proved based on the post-impact velocity and Newtonian’s CoR definition.

Further, as illustrated, the tensile force area in the viscous damping loop of the new contact force model has no effect on the solitary
wave propagation in the granular system, which has been validated by the vertical and horizontal granular chains and Hopkinson
pressure bar. That is mainly caused by the multiple compression and multiple impact scenarios in the granular system, which prevents
that the contact force comes into the tensile force area in the recovery phase during contact. This study is the first to illustrate why the
tensile force does not affect the solitary wave propagation in the granular chain. Moreover, compared to the EDEM contact model, the
new contact force model exhibits a significantly higher accuracy when compared to the model applied in EDEM software in the case
where the impact event happens under a high impact velocity in the granular system. This is explained by the design of the contact
force model, namely that the new contact force model abandons using the Hertz contact stiffness to represent the contact stiffness when
the contact behavior comes into the elastoplastic or plastic phase.

While ignoring the plastic flow during impact, the application domain of the proposed contact force model can be summarized as
follows: (i) it is capable of implementing the common contact behavior between the contact bodies, like the existing contact force

Fig. 18. The experimental setup of the Hopkinson incident bar [36].
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models with hysteresis damping factors [13,46]; (ii) it can be used to calculate the elastoplastic impact behavior, and is capable of
describing the whole contact process including the elastic, elastoplastic and plastic phases; (iii) it is independent of the initial impact
velocity of the contact body, which is suited for the impact behavior of the particles in the granular system; (iv) since it employs a
damping loop to represent the energy dissipation during impact, which makes it suitable for cases involving multiple compression and
impacts between the contact bodies, as occurs in multibody systems (e.g., mechanisms with joint clearance).
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[91] T. Schwager, T. Pöschel, Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 78
(2008) 1–11, https://doi.org/10.1103/PhysRevE.78.051304.

[92] C. Daraio, V.F. Nesterenko, E.B. Herbold, S. Jin, Energy trapping and shock disintegration in a composite granular medium, PhysRevLett. 96 (2006) 1–4,
https://doi.org/10.1103/PhysRevLett.96.058002.

[93] C. Daraio, V.F. Nesterenko, E.B. Herbold, S. Jin, Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals, Phys. Rev. E -
Stat. Nonlinear, Soft Matter Phys. 73 (2006) 1–10, https://doi.org/10.1103/PhysRevE.73.026610.
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