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A B S T R A C T

Characterization of the response of systems with governing parameters that exhibit both uncertainties and
spatial dependencies can become quite challenging. In these cases, the accuracy of conventional probabilistic
methods to quantify the uncertainty may be strongly affected by the availability of data. In such a scenario,
fuzzy fields become an efficient tool for solving problems that exhibit uncertainty with a spatial component.
Nevertheless, the propagation of the uncertainty associated with input parameters characterized as fuzzy fields
towards the output response of a model can be quite demanding from a numerical point of view. Therefore, this
paper proposes an efficient numerical strategy for forward uncertainty quantification under fuzzy fields. This
strategy is geared towards the analysis of steady-state, linear systems. To reduce the numerical cost associated
with uncertainty propagation, full system analyses are replaced by a reduced-order model. This reduced-order
model projects the equilibrium equations into a small-dimensional space constructed from a single analysis of
the system plus sensitivity analysis. The associated basis is enriched to ensure the quality of the approximate
response and numerical cost reduction. Case studies of heat transfer and seepage analysis show that with the
presented strategy, it is possible to accurately estimate the fuzzy responses with reduced numerical effort.
1. Introduction

The presence of spatial uncertainty is ubiquitous to almost all
practical engineering problems and is a major challenge for the design
of robust systems [1,2]. Spatial uncertainty arises from measurement
errors, limitations in data collection methods, and inaccuracies in
spatial representations, and thus refers to the lack of knowledge or
precision about the exact values of a property or phenomenon of
a system in space [3]. These uncertainties are traditionally incorpo-
rated into numerical models using probability theory, such as the
well-known random field method [4]. Nonetheless, when dealing with
spatial uncertainties, challenges such as data sparseness are even more
pronounced than for properties that are not affected by the spatial com-
ponent. Typically, there is limited and incomplete spatial data about
the system under study. As a result, such information is sometimes
insufficient to construct a robust probabilistic model of the uncertain
parameters [5–7]. To address these problems, set-based methods have
been developed in recent years [8,9]. Within this group, one can find,
fuzzy analysis [10,11], imprecise probabilities [7,12], and interval
methods [13–17].

Among these techniques, interval fields [18] have proven to be
particularly practical when dealing with limited information. In this
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approach, uncertainty is quantified by establishing intervals (defined
by lower and upper bounds) at specific locations, called control points,
where the goal is to quantify extreme values of the properties of the
system [19]. Here, spatial dependencies are modeled by an expansion
of basis functions weighted by the interval-valued scalars at these
locations. Thus, the uncertainty present in the system is encapsulated to
that present at the locations where the control points are defined [20].
Nevertheless, the definition of intervals to encapsulate the uncertainty
around control points can sometimes be overly strict (and conserva-
tive). In addition, users typically have an interest in assessing the
sensitivity of the response. For these reasons, the concept of fuzzy
fields [21,22] emerges, moving from the use of intervals at control
points to the characterization of uncertainty by membership functions.
This integration of fuzziness serves to provide the users with a greater
degree of flexibility in the analysis. As a result, it allows the study of
different scenarios, giving them more information to produce robust
designs [23].

The main challenge addressed in this work is to propagate un-
certainty associated with fuzzy fields in an efficient way. The class
of problems considered corresponds to the analysis of linear systems
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Nomenclature

Symbol Description
𝛼 Membership level
𝛼𝑙 𝑙th membership level
𝜷 Vector whose components depend on the uncertain parameters
𝜉 Uncertain parameter
𝜉𝑗 Uncertain parameter at control point 𝑗
𝜉𝐼𝛼 Interval associated with the membership level 𝛼
𝜉𝐼𝛼 (𝒙) Interval field associated with the membership level 𝛼
𝜉𝐼𝑗,𝛼 Interval associated with the membership level 𝛼 at the 𝑗th control point
𝜉
𝛼

Lower bound of interval 𝜉𝐼𝛼
𝜉𝛼 Upper bound of interval 𝜉𝐼𝛼
𝝃 Vector of uncertain parameters
𝝃0 Expansion point to construct the reduced basis
𝝃∗ Realization of the uncertain parameters
𝜉 Fuzzy variable
𝜉𝑗 Fuzzy variable at the 𝑗th control point
𝜉(𝒙) Fuzzy field
𝛯 Fundamental set
𝜸 Vector of constant coefficients to compute the response of interest
𝜱 Reduced basis
𝜱0 Initial reduced basis
𝜱1 First updated reduced basis
𝝓𝑖 𝑖th component vector of the reduced basis
𝜓(⋅, ⋅) Basis function
Symbol Description
𝑑(⋅, ⋅) Distance measure
𝑒(⋅) Error associated with the reduced-order model
𝒇 External loads vector
𝒇𝑅 External loads vector of the reduced system
𝑲 System’s matrix
𝑲𝑘 System’s matrices not affected by the uncertainty
𝑲𝑅 System’s matrix of the reduced system
𝑛𝜉 Number of uncertain parameters
𝑛𝑏 Number of control points
𝑛𝑐 Number of discrete levels to approximate the membership function
𝑛𝑑 Number of degrees-of-freedom
𝑛𝑒 Number of finite elements
𝑛𝑟 Number of vectors of the reduced basis
𝑝 Power of the distance measure
𝑟 Response of the system
𝑟𝐴 Approximate response of the system
𝑟𝐼𝛼𝑙 Interval response for membership level 𝛼𝑙
𝑟𝛼𝑙 Lower bound of response for membership level 𝛼𝑙
�̄�𝛼𝑙 Upper bound of response for membership level 𝛼𝑙
𝑟𝐴𝛼𝑙 Lower bound of approximate response for membership level 𝛼𝑙
�̄�𝐴𝛼𝑙 Upper bound of approximate response for membership level 𝛼𝑙
𝒖 Response vector of the system
𝒖𝐴 Approximate response vector of the system
𝒗(⋅) Projection of the response over the reduced basis
𝑤(⋅, ⋅) Weight function
𝒙 Spatial coordinate
𝒙𝑗 Coordinates of the 𝑗th control point
𝒙𝐶,𝑞 Coordinates of the centroid of the 𝑞th element
𝑿 Matrix of coordinates of the control points
under static external action. Uncertainty propagation from the input
parameters to the response is not a straightforward task when us-
ing fuzzy fields to capture spatial uncertainty. Repeated deterministic
analysis of the system must be performed for different realizations of
2

the input parameters to obtain the fuzzy response [24]. Therefore,
the objective is to reduced the numerical cost associated with the
estimation of the fuzzy response. In order to effectively deal with this
difficulty, a surrogate model [25] corresponding to a reduced-order



Structural Safety 111 (2024) 102498N.A. Manque et al.

e

𝑲

w
a
t
d
a
T
t
n
u
n
a
e

p

𝑲

w
u

t
b

𝑟

w
d
t
p
i
b
𝒖

2

s
c
b
i
t
a
u
s
e
c

p
i
s
m
o
N
t
w
n
F
a
i
a

𝜉

w
m
N
𝜉
m
b
s
B
a
i
a
f
i
v
F
c

model is considered to replace the original finite element model [26].
The advantage of this surrogate model lies in its ability to map the
system equations onto a lower dimensional basis, which significantly
reduces the time required to compute the response. This reduced ba-
sis is particularly suitable because its construction requires only one
exact analysis, which includes the effect of each uncertain parameter
through a sensitivity analysis [27]. For this sensitivity analysis, the
first derivatives of the system response with respect to the uncertain
parameters are calculated. In this work, the ortho-normalization of
the reduced basis is performed via Gram–Schmidt process [28]. An
updating strategy of the reduced basis is proposed to guarantee the
accuracy of the approximation. For this purpose, the error associated
with the reduced basis is monitored as the uncertainty propagates, and
the basis is enriched if necessary to keep the error below a certain
threshold.

Consequently, the novelty of this work primarily resides in the cre-
ation of a surrogate model, which utilizes a reduced basis for perform-
ing analysis with fuzzy fields that is updated on-the-fly. Initially, the
construction of the reduced basis necessitates only an exact analysis. By
integrating sensitivity analysis into the process of basis construction, a
balance between computational efficiency and precision is achieved.
Subsequently, the reduced basis is updated efficiently based on the
error encountered while determining the response bounds. Specifi-
cally, the proposal is to monitor solely the error associated with the
optimal response bounds. This approach enhances the quality of the
approximation without sacrificing numerical efficiency.

This paper is organized as follows. Section 2 presents the class
of systems considered in this work and the fuzzy field formulation
for characterizing uncertain parameters with spatial dependencies of a
system. It also explains the process of forward uncertainty propagation
for quantifying the uncertainty associated with the system response.
Section 3 presents the approach used to reduce the computational effort
required to compute the fuzzy response. It discusses the construction
of the reduced basis, the error monitoring strategy, and the technique
for updating the reduced basis. The implementation of the proposed
technique is illustrated and discussed in Section 4 using an example of
heat transfer on a concrete block made with by-products and seepage
under an impervious dam. Conclusions are drawn in Section 5.

2. Formulation of the problem

2.1. Governing equations

Consider a steady-state, linear system whose behavior is modeled
with the finite element method. It is assumed that the values of the
parameters involved in the model (e.g. material properties) cannot be
precisely determined due to problems such as lack of knowledge, impre-
cision, vagueness and scarcity of data. Therefore, the input parameters
are affected by epistemic uncertainty. These parameters are collected
in a vector 𝝃 of dimension 𝑛𝜉 . Under the action of static actions, the
quilibrium equation of the system is,

(𝝃) 𝒖 (𝝃) = 𝒇 (𝝃) (1)

here 𝑲(𝝃) is the system’s matrix of dimension 𝑛𝑑×𝑛𝑑 , 𝒇 (𝝃) is the vector
ssociated with the external loads, whose dimension is 𝑛𝑑 , and 𝒖(𝝃) is
he response vector of dimension 𝑛𝑑 . It is assumed that 𝑲(𝝃) is positive-
efinite and 𝒇 (𝝃) ≠ 0. It is observed that the system’s matrix 𝑲(𝝃)
nd the external loads 𝒇 (𝝃) depend on the uncertain input variables 𝝃.
herefore, the response of the system 𝒖(𝝃) also depends on these uncer-
ain input parameters. Note that the number of degrees-of-freedom 𝑛𝑑
eeded to represent the system using the finite element (FE) method is
sually large. Therefore, the solution of Eq. (1) requires a considerable
umerical effort. Furthermore, it should be noted that Eq. (1) allows the
nalysis of various steady-state physical phenomena [29], including for
xample heat transfer [30,31] and seepage analysis [13,32].
3

f

It is considered that the system’s matrix 𝑲(𝝃) admits the following
arametric representation:

(𝝃) = 𝑲0 +
𝑛𝜉
∑

𝑘=1
𝑲𝑘𝜉𝑘 (2)

here, 𝑲𝑘, 𝑘 = 1,… , 𝑛𝜉 are matrices of dimension 𝑛𝑑 × 𝑛𝑑 that are
naffected by the uncertainty; and 𝜉𝑘 is the 𝑘th component of vector 𝝃.

In practice, designers are usually interested in finding out a par-
icular response of the system 𝑟(𝝃), which is assumed to be given
y:

(𝝃) = 𝜸𝑇 𝒖(𝝃) (3)

here 𝜸 is a vector of constant coefficients of dimension 𝑛𝑑 and (⋅)𝑇

enotes the transpose of the argument. In this paper, it is assumed
hat the response of interest is a scalar. Nevertheless, the definition
resented in Eq. (3) can be extended to consider several responses of
nterest. Furthermore, for more complex responses, the parameter 𝜸 can
e considered as an operator that allows post-processing of the solution
(𝝃).

.2. Fuzzy variables

Following a set-based approach, the definition of intervals is a
traightforward way to describe the uncertainty of the input parameters
ollected in the vector 𝝃 [6]. For this purpose, a lower and an upper
ound are used to define each uncertain parameter. Nevertheless,
n cases where it is necessary to relax the precise identification of
hese bounds, fuzzy set theory [33] provides a useful framework for
chieving this goal [34]. Fuzzy set theory allows the incorporation of
ncertainty through linguistic descriptions [35]. It is therefore well-
uited to situations where the available data is limited or stems from
xpert elicitations. In this context, the uncertain parameters can be
haracterized as fuzzy variables by means of membership functions.

For the sake of simplicity, consider that there is a single uncertain
arameter 𝜉 in the linear system of Eq. (1). This uncertain parameter 𝜉
s characterized as a fuzzy variable 𝜉, which comprises the fundamental
et 𝛯, which corresponds to all physical values that 𝜉 can take, and the
embership function 𝜇𝜉 , which describes the degree of belongingness

f these values. This membership function is such that 𝜇𝜉 (𝜉) ∈ [0, 1].
ote that in classical set theory, the membership function 𝜇𝜉 (𝜉) is equal

o zero or one. In contrast, in fuzzy set theory, it holds that 0 ≤ 𝜇𝜉 (𝜉) ≤ 1
hich indicates a degree of membership. Hence 𝜇𝜉 (𝜉) = 0 indicates
o membership, while 𝜇𝜉 (𝜉) = 1 means that 𝜉 is fully included in 𝜉.
urthermore, for each membership level 𝛼 considered in the analysis
nd under the assumption of a convex membership function, there
s an interval associated with the uncertain variable 𝜉. This interval
ssociated with an 𝛼-level is represented by:
𝐼
𝛼 =

{

𝜉 ∈ 𝛯 ∶ 𝜇𝜉 (𝜉) ≥ 𝛼
}

, 𝛼 ∈ (0, 1] (4)

here 𝜉𝐼𝛼 represents the possible set of values for an 𝛼-level of the
embership function that 𝜉 can adopt, and (⋅)𝐼 denotes an interval.
ote that this level corresponds to an interval defined by both its lower

𝛼
and upper 𝜉𝛼 bounds. From this definition it can be seen that a

embership function corresponds to a collection of intervals indexed
y a membership level. Membership functions can take different forms,
uch as trapezoidal functions and Gaussian curves, among others [36].
ecause of their simplicity in construction, triangular-shaped functions
re commonly used because of their wide applicability and advantages
n the modeling process. Therefore, triangular membership functions
re used in the present work. Fig. 1 illustrates a triangular membership
unction defined to characterize 𝜉. Note that the interval represented
n Eq. (4) is shown in red in the figure. Additionally, note that only
ertex information is required to construct the membership function of
ig. 1. It is noteworthy that, in practice, any number of fuzzy variables
an be considered by simply repeating the definition of membership
unctions shown above.
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Fig. 1. Schematic representation of a fuzzy variable.

.3. Fuzzy fields

If the input parameters are spatially dependent, i.e. they are a
unction of the spatial coordinates in addition to being affected by
ncertainty, fuzzy variable characterization cannot account for this
ependence. One way to overcome this challenge is to use fuzzy
ields [22]. Consider that only one input property 𝜉 of the linear system

of Eq. (1) exhibits spatial dependence. Therefore, the uncertainty in 𝜉
depends on the spatial coordinate 𝒙. This is denoted by 𝜉(𝒙), where 𝒙
is contained in the domain 𝛺, which depends on the numerical model
nder consideration. To characterize this uncertainty, 𝜉(𝒙) can be de-
cribed by means of a fuzzy field 𝜉(𝒙). This fuzzy field is constructed

using the information available at 𝑛𝑏 control points, whose location
within the domain 𝛺 is denoted as 𝒙𝑗 , where 𝑗 = 1,… , 𝑛𝑏. Therefore,
defining the membership functions associated with the control points
is a crucial step. To illustrate this, observe Fig. 2 which shows the case
where 𝜉 depends on a single spatial coordinate. It should be noted,
though, that fuzzy fields can also be applied to multi-dimensional
spatial dependencies. In the figure, it is possible to characterize the
uncertain property 𝜉 at two locations within the domain, 𝑥1 and 𝑥2,
hence 𝑛𝑏 = 2. At each of these locations, 𝜉 can be characterized by
a fuzzy variable 𝜉𝑗 , described by a membership function 𝜇𝜉𝑗 (𝜉𝑗 ), as
presented in Section 2.2. Note also that for a given 𝛼-level of the
membership functions, the interval 𝜉𝐼1,𝛼 associated with the position 𝑥1,
and the interval 𝜉𝐼2,𝛼 associated with the position 𝑥2 are obtained. By
using basis functions, the intervals associated with any position within
the domain can be retrieved from the data available at the control
points. The above implies that from the data contained in the intervals
𝜉𝐼1,𝛼 and 𝜉𝐼2,𝛼 , the bounds of the uncertain parameter can be achieved
at any position on the domain. Moreover, note that for this particular
𝛼-level, the fuzzy field is reduced to an interval field. This is represented
by the interval field highlighted in Fig. 2.

The interval field associated with a given 𝛼-level 𝜉𝐼𝛼 (𝒙) corresponds
to [37]:

𝜉𝐼𝛼 (𝒙) =
𝑛𝑏
∑

𝑗=1
𝜓𝑗 (𝒙,𝑿)𝜉𝐼𝑗,𝛼 (5)

where 𝑿 is a matrix containing the coordinates of the control points,
i.e. 𝑿 = [𝒙1,… ,𝒙𝑛𝑏 ], and 𝜉𝐼𝑗,𝛼 denotes the interval associated at the
𝑗th control point for the membership level 𝛼. 𝜓𝑗 (⋅, ⋅) denotes the basis
functions. It is noteworthy to point out that the basis functions are
responsible for mapping the spatial uncertainty from the input domain
to a reduced input space of 𝑛𝑏 dimensions. Consequently, for a given
𝛼-level, the uncertainty in a space-dependent property 𝜉(𝒙) is reduced
to that contained in the 𝜉𝐼𝑗,𝛼 intervals located at 𝑛𝑏 control points, as
shown in Eq. (5).

These basis functions are defined according to the following equa-
tion:

𝜓𝑗 (𝒙,𝑿) =
𝑤𝑗 (𝒙,𝒙𝑗 )

∑𝑛𝑏
, 𝑗 = 1,… , 𝑛𝑏 (6)
4

𝑗1=1
𝑤𝑗1 (𝒙,𝒙𝑗1 )
Fig. 2. Schematic diagram of fuzzy field.

where 𝑤𝑗 (⋅, ⋅) is the weight function defined by:

𝑤𝑗 (𝒙,𝒙𝑗 ) =
1

(

𝑑(𝒙,𝒙𝑗 )
)𝑝 (7)

where 𝑑(𝒙,𝒙𝑗 ) is the considered distance measure between 𝒙 and 𝒙𝑗 and
𝑝 is a positive real number. This parameter represents the influence that
the information contained in the control point 𝒙𝑗 is allowed to have
on a given location 𝒙 within the domain. In this paper, the value of 𝑝
is considered equal to 2 [37]. Therefore, the weighting function used
in this study corresponds to the Inverse Distance Weighting function
introduced in [38].

From Eq. (5), it follows that the interval associated with any loca-
tion 𝒙 is expressed by the weighted sum of the intervals 𝜉𝐼𝑗,𝛼 at locations
𝒙𝑗 , where 𝑗 = 1,… , 𝑛𝑏. Note that the weights assigned to each of the
intervals described above are determined by their corresponding basis
functions 𝜓𝑗 (𝒙,𝑿), with 𝑗 = 1,… , 𝑛𝑏, defined according to Eq. (6). Once
an uncertain property is represented by a fuzzy field, the discrete repre-
sentation of this property at each finite element must be determined to
apply the finite element method. To project the uncertain property onto
the model, this study considers the midpoint method [39]. Thus, the
value of the uncertain property for a finite element can be completely
described by the value at its centroid. The coordinate of a centroid is
denoted by 𝒙𝐶,𝑞 , with 𝑞 = 1,… , 𝑛𝑒, where 𝑛𝑒 is the number of elements
in the model.

Therefore, the equation that represents the projection from the
information held in the control points to the position of a given centroid
𝑥𝐶,𝑞 is:

𝜉𝐶,𝑞 =
𝑛𝑏
∑

𝑗=1
𝜓𝑗 (𝒙𝐶,𝑞 ,𝑿)𝜉𝑗 , 𝜉𝑗 ∈ 𝜉𝐼𝑗,𝛼 (8)

where 𝜉𝐶,𝑞 is the value of the uncertain parameter at the centroid of
the element 𝑞. Note that for this purpose the basis functions 𝜓𝑗 are
evaluated at the centroid coordinates of the 𝑞th finite element.

2.4. Uncertainty propagation

When a system is modeled in the context of fuzzy analysis, the
response 𝑟 becomes a fuzzy variable �̂� with an associated membership
function, that is 𝜇�̂�(𝑟). One way to determine 𝜇�̂�(𝑟) is to resort the
interpretation of a fuzzy variable as a collection of intervals indexed
by a membership level, leading to the traditional 𝛼-level optimization
strategy [23]. For this purpose, the membership function representing
each uncertain parameter 𝜉 is analyzed for discrete values of member-
ship 𝛼𝑙, with 𝑙 = 1,… , 𝑛𝑐 , where 𝑛𝑐 denotes the total number of discrete
levels used. Note that in the case of the characterization by means
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w

f fuzzy fields, the above also applies to the membership functions
t each control point 𝜇𝜉𝑗 (𝜉𝑗 ). This is shown in Fig. 3, where the 𝛼-

level optimization strategy is illustrated. Consider that the uncertain
property 𝜉 is characterized at two control points on the domain by the
membership functions 𝜇𝜉1 (𝜉1) and 𝜇𝜉2 (𝜉2). Once the intervals for the
level 𝛼𝑙 are defined (𝜉𝐼1,𝛼𝑙 , 𝜉

𝐼
2,𝛼𝑙

in the figure), an interval analysis is
performed to estimate the bounds of the response. The interval obtained
for the response at level 𝛼𝑙 corresponds to 𝑟𝐼𝛼𝑙 , whose lower 𝑟𝛼𝑙 and
pper �̄�𝛼𝑙 bounds are obtained by solving the following optimization
roblems:

𝛼𝑙
= min

𝝃∈𝝃𝐼𝛼𝑙

𝑟(𝝃) = 𝜸𝑇 𝒖(𝝃), 𝑙 = 1,… , 𝑛𝑐 (9)

̄𝛼𝑙 = max
𝝃∈𝝃𝐼𝛼𝑙

𝑟(𝝃) = 𝜸𝑇 𝒖(𝝃), 𝑙 = 1,… , 𝑛𝑐 (10)

The intervals obtained for different membership levels 𝛼𝑙 provide
a discrete approximation to the membership function of the response.
Nevertheless, solving the optimization problems for Eqs. (9) and (10)
is not straightforward from a numerical viewpoint when the input
parameters are characterized by fuzzy fields. Indeed, repeated deter-
ministic analyses are required to find both bounds of the membership
function of the response at a given 𝛼-level. This is because the optimiza-
tion process evaluates different configurations of the input parameters
within the intervals associated with the analyzed membership level
until an extreme response is found. To settle these search intervals, the
information of the fuzzy field must also be repeatedly mapped from
the control points to the centroids of the finite elements. In addition,
the result of the optimization scheme may be affected by local minima
effects and be susceptible to numerical noise. Therefore, to achieve
the characterization of the response of interest when considering fuzzy
fields for modeling input properties, an efficient uncertainty propaga-
tion strategy must be employed. The approach used in this study is
5

discussed in the following section.
3. Reduced-order model

3.1. General remarks

The previous subsection discussed the fuzzy field technique for
incorporating uncertainty in input parameters into a finite element
model. Once the uncertainty has been described by means of fuzzy
fields, it is necessary to propagate it through the response, taking into
account the spatial dependencies. The use of the 𝛼-level optimization
scheme [23] mentioned above is one way to propagate the fuzzy un-
certainty through a numerical model. Nevertheless, the implementation
of this technique can be quite costly from a numerical point of view,
as was discussed in Section 2.4. One way to overcome this obstacle
is to use a surrogate model [25], such as a reduced-order model.
This approximate model allows the equilibrium equations of the whole
system to be projected onto a lower dimensional basis. This section
details the formulation of the reduced-order model, taking into account
the characterization of the input parameters by means of fuzzy fields.

3.2. Reduced-order model

Consider the linear system discussed in Section 2.1, which is repre-
sented by Eq. (1). This model depends on the uncertain parameters 𝝃,
which can be characterized using fuzzy variables and/or fuzzy fields.
The response 𝒖(𝝃) of this system is calculated approximately by project-
ing it into a reduced basis of dimension 𝑛𝑟. That is, the approximate
response 𝒖A(𝝃) is:

𝒖(𝝃) ≈ 𝒖A(𝝃) = 𝜱𝜷(𝝃) (11)

where 𝜱, is a basis, which is actually a matrix of dimension 𝑛𝑑 × 𝑛𝑟
hose columns are composed of the vectors 𝝓𝑖, 𝑖 = 1,… , 𝑛𝑟; and 𝜷(𝝃)

is a vector of 𝑛𝑟×1 whose components depend on the uncertain param-
eters. The practical implementation of the approximation in Eq. (11)
demands choosing an appropriate basis 𝜱 and calculating the vector

𝜷(𝝃). Assuming that 𝜱 is already known, the vector 𝜷(𝝃) is calculated by



Structural Safety 111 (2024) 102498N.A. Manque et al.

𝑲

a

𝒇

𝑲
h
o
s
e
b
i
a

𝑟

O
a
s
p

3

s
t
l
b
u
s
p
o
p
t
i
i
b
w
u
b

𝜱

w
o
t
1

a

t
r
i
r
p
e
t
t
e

o
c
i
s
n
r
b
t
a
c
d

3

o
c
i
a
t

𝑒

t
n
r
b
a

𝜀

w
s
o
l
e

3

m
t
T
a
a
N
t
s

𝑟

m
I
c

T
S
f
c
a

means of a Galerkin method [40], which has been widely used in finite
element analysis [41]. The formulation of the equilibrium equation (1)
by the reduced basis 𝜱 using Galerkin’s method (see [42] for more
details) is equal to,

𝑲𝑅(𝝃)𝜷(𝝃) = 𝒇𝑅(𝝃) (12)

where 𝑲𝑅(𝝃) is the system’s matrix of the reduced system, given by:

𝑅(𝝃) = 𝜱𝑇𝑲(𝝃)𝜱 (13)

nd 𝒇𝑅(𝝃) is the reduced load vector,

𝑅(𝝃) = 𝜱𝑇 𝒇 (𝝃) (14)

In these equations it is observed that the reduced system’s matrix
𝑅(𝝃) has dimension 𝑛𝑟 × 𝑛𝑟, while the reduced load vector 𝒇𝑅(𝝃)

as dimension 𝑛𝑟. Once the information of the system is projected
nto the reduced basis, the problem narrows down to finding 𝜷(𝝃) by
olving Eq. (12). Note that this involves solving a linear system of 𝑛𝑟
quations, which is quite favorable from a numerical point of view. This
enefit is achieved because the dimension of the reduced-order model
s smaller than that of the original system, i.e. 𝑛𝑟 ≪ 𝑛𝑑 . Therefore, the
pproximate response 𝑟A is:

(𝝃) ≈ 𝑟A(𝝃) = 𝜸𝑇𝜱𝜷(𝝃) (15)

nce the expression for the response has been obtained from Eq. (15),
n optimization algorithm can be applied, as discussed in the previous
ections, to determine the membership function of the response. This
rocedure is described in detail in Section 3.5.

.3. Construction of the reduced basis

As outlined earlier, it is of interest to characterize the model re-
ponse using a reduced basis 𝜱. This basis enables the original system
o be approximated with a reduced numerical cost. According to the
iterature, there are several techniques for constructing the reduced
asis. One possibility is applying the snapshot method [26], which
ses the information of complete simulations for a specific group of
amples called key points. For this method, the choice of these key
oints is of utmost importance as it has a strong impact on the accuracy
f the response. For example, selecting a very small number of these
oints can lead to inaccurate estimates of the response. Conversely, if
he number of key points is too high, the basis will be large, reduc-
ng numerical efficiency. A more cost-effective numerical alternative
s presented in [43], based on the optimization strategies discussed
y [44]. More specifically, it is proposed to construct the reduced basis
ith information on the sensitivity of the response with respect to the
ncertain parameters 𝜉𝑗 , 𝑗 = 1,… , 𝑛𝜉 [43,44]. Therefore, the reduced
asis 𝜱 is defined by:

= orth
([

𝒖
(

𝝃0
)

,
𝜕𝒖

(

𝝃0
)

𝜕𝜉1
,… ,

𝜕𝒖
(

𝝃0
)

𝜕𝜉𝑛𝜉

])

(16)

here orth (𝑿) denotes the ortho-normalization over the column space
f 𝑿, and the expansion point 𝝃0 is considered as a vector consisting of
he uncertain parameter values associated with a membership equal to
. 𝒖

(

𝝃0
)

corresponds to the system’s response at the expansion point,

nd
𝜕𝒖

(

𝝃0
)

𝜕𝜉𝑗
represents the 𝑗th derivative of the system’s response at

he expansion point with respect to the uncertain parameter 𝜉𝑗 . The
educed basis allows one to perform a first-order Taylor expansion
n the vicinity of 𝝃0. Therefore, the reduced basis can capture the
esponse of the system for small or moderate variations of the uncertain
arameters. Since for the construction of the reduced basis only one
xact analysis is required, the integration of sensitivity analysis into
he basis construction process achieves a balance between compu-
ational efficiency and accuracy. The Appendix provides a detailed
6

xplanation of how the derivatives are calculated. In this work, the
rtho-normalization process is performed using the Gram–Schmidt pro-
ess. This method allows the ortho-normalization of a set of vectors
n an inner Euclidean product space, which benefits the numerical
tability of the reduced-order model [45]. The details of the ortho-
ormalization procedure are available in [43,46]. Numerical results
eported there show that the procedure for calculating the reduced
asis, as presented in Eq. (16), leads to accurate approximations of
he system response. In cases where the reduced basis is not able to
ccurately approximate the response of the system, high-order terms
an be included in the reduced basis formulation (see [46] for more
etails).

.4. Error monitoring

The aforementioned formulation enables an approximate prediction
f the response of the system which requires a lower numerical cost
ompared to the resolution of the original system. Nonetheless, the
mplementation of the reduced-order model only yields the response in
n approximate way. Therefore, to obtain an accurate approximation of
he response, it is necessary to monitor the error associated with 𝑟𝐴(𝝃).

The error produced by the reduced-order model 𝑒(𝝃) corresponds to:

(𝝃) = 𝑟(𝝃) − 𝑟𝐴(𝝃) (17)

To determine 𝑒(𝝃), it would be necessary to know the value of
he exact response 𝑟(𝝃), which, as discussed in Section 3, has a high
umerical cost. To overcome this limitation, the calculation of the
esidual Euclidean norm associated with the equilibrium equation has
een proposed in [46] as an alternative for measuring the error. This
lternative error measure 𝜀(𝝃) corresponds to,

(𝝃) =
‖𝑲(𝝃)𝒖𝐴(𝝃) − 𝒇 (𝝃)‖

‖𝒇 (𝝃)‖
(18)

here ‖ ⋅ ‖ denotes the Euclidean norm. The calculation of 𝜀(𝝃) repre-
ents an approximation of the real error associated with the application
f the reduced-order model. Nonetheless, the results reported in the
iterature show that it provides a simple alternative to control that the
rror 𝑒(𝝃) does not overgrow [46,47].

.5. Estimation of fuzzy response and basis enrichment

As discussed throughout this paper, it is of interest to estimate the
embership function of the response 𝜇�̂�(𝑟) of a linear system under

he influence of uncertain parameters characterized as fuzzy fields.
he estimation of 𝜇�̂�(𝑟) can be performed by applying an optimization
lgorithm, as shown in Section 2.4, by giving solutions to Eqs. (9)
nd (10) for the discrete membership levels 𝑛𝑐 under consideration.
ote that if the objective function in these equations is modified by

he expression derived to determine the approximate response of the
ystem (see Eq. (15)), the problem reduces to,
𝐴
𝛼𝑙

= min
𝝃∈𝝃𝐼𝛼𝑙

𝑟𝐴 (𝝃) = 𝜸𝑇𝜱𝜷 (𝝃) , 𝑙 = 1,… , 𝑛𝑐 (19)

�̄�𝐴𝛼𝑙 = max
𝝃∈𝝃𝐼𝛼𝑙

𝑟𝐴 (𝝃) = 𝜸𝑇𝜱𝜷 (𝝃) , 𝑙 = 1,… , 𝑛𝑐 (20)

where 𝑟𝐴𝛼𝑙 and �̄�𝐴𝛼𝑙 are the approximate lower and upper bounds of the
embership function of the response for a given 𝛼𝑙 level, respectively.

n this work, the Particle Swarm Optimization scheme [48] is used to
ompute the membership levels considered. Consequently, to find 𝑟𝐴𝛼𝑙

and �̄�𝐴𝛼𝑙 , it is necessary to evaluate the objective function repeatedly.
his is because optimization algorithms, and in particular the Particle
warm scheme, evaluate different candidates until the optimum is
ound. This process is illustrated in Fig. 4a for the first two 𝛼-cuts
onsidered to discretely estimate the fuzzy response when 𝑛𝑏 = 2. To
pproximate 𝜇�̂�(𝑟), the first task corresponds to the initial step. This
corresponds to an exact analysis of the system at the expansion point
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Fig. 4. Schematic representation of the error behavior. (𝑎) Construction of the membership function of the response. (𝑏) Error behavior. (𝑐) Optimization procedure.
𝝃0. This analysis allows the construction of the reduced basis 𝜱, as
discussed in Section 3.3 and the Appendix. Once this step is completed,
the optimization process is carried out for the membership levels 𝛼1 and
2, in the step 1 and step 2, respectively. It should be noted that since the
evel 𝛼1 is close to 1, the approximate response is expected to be quite
lose to the exact one. This is because all the possible values explored
uring the optimization phase will be relatively close to the expansion
oint. This is illustrated in Fig. 4c where the search space for the level
1 is shown in light blue. Note that the expansion point, shown in
ellow, is close to all the evaluations performed by the algorithm (blue
ircles in the figure) and close to the optimum (red circle). Conversely,
or step 2, whose search space is larger than that for level 𝛼1, the quality
f the approximation is expected to decrease, since such a search space
ay contain values far from 𝝃0. Therefore, the evaluations performed

y the search algorithm (indicated by purple circles) and the optimum
green circle) may be far from the expansion point.

The above behavior results in a significant increase in error when
rying to find the optimum for membership levels close to 0. This is
epicted schematically in Fig. 4b, which illustrates the maximum error
s a function of the membership level 𝑙, 𝑙 = 1,… , 𝑛𝑐 . In this context,
he maximum error is understood as the maximum between the values
f 𝜀 (see Eq. (18)) evaluated at the bounds for the current membership
evel 𝑙 (that is, minimum and maximum of the response of interest for
he current membership under analysis). It is expected that the error
ill continue to grow for the rest of the 𝛼-cuts. This behavior does
ot provide any control over the increase of the error 𝜀. In fact, the
educed-order model, as formulated, does not provide any feedback on
he error that it introduces. In other words, the basis of the reduced
odel is static with respect to 𝜀. This approach is not ideal as it can lead

o significant errors indicating an inaccurate approximation. Therefore,
here is a problem with the accumulation of errors as different levels of
𝑙 are examined. In order to avoid a significant decrease in the accuracy
f the approximation when analyzing membership levels closer to 0,
strategy proposed in [46] is implemented. The proposed strategy is

llustrated in Fig. 5 for the case of 𝑛𝑐 = 2. First, a threshold error 𝜀𝑡 is de-
ined, which corresponds to the maximum error 𝜀(𝝃) accepted between
he exact and approximate models. This threshold is represented by the
range segmented line in Fig. 5b. Then, for the extrema of the response
7

found at each membership level, the error 𝜀 is calculated according
to Eq. (18). Note that, in Fig. 5b, for the 𝛼1 level, the maximum error
obtained between the two bounds, 𝑟𝐴𝛼1 and �̄�𝐴𝛼1 , is less than the defined
threshold. Nonetheless, in the case of 𝛼2, one of the optimal parameter
sets (for the lower or upper bound) produces an error that exceeds the
considered threshold. This means that the realization of the uncertain
parameters that produces an error greater than the tolerance 𝝃∗, can
be associated with either the lower or the upper bound. When this
happens, the following three actions are taken:

1. An exact analysis is carried out. This means that Eq. (1) is solved
to obtain 𝒖

(

𝝃∗
)

. This allows one to obtain 𝑟
(

𝝃∗
)

exactly .
2. The reduced basis 𝜱 is updated, enriching it with the informa-

tion given by 𝒖
(

𝝃∗
)

.
3. Both bounds are recalculated with the new reduced basis.

The second point described above is illustrated in Fig. 5c, where 𝜱0
represents the reduced basis obtained in the initial step. 𝜱0 was used
to determine the bounds of the membership function of the response
for the levels 𝛼1 and 𝛼2, before updating the basis. In the figure, the
column of the reduced basis representing the response is plotted in
light blue, while the components associated with the partial derivatives
with respect to the information of the uncertain parameters are plotted
in orange. After detecting that one of the bounds associated with the
level 𝛼2 exceeds the threshold, an additional analysis is performed.
This yields a new, updated reduced basis 𝜱1 containing an additional
column shown in pink in Fig. 5c. The response associated with the exact
analysis 𝒖

(

𝝃∗
)

is included in the reduced basis 𝜱1 as a column vector by
means of the Gram–Schmidt process. From a mathematical viewpoint,
the reduced basis 𝜱1 is given by:

𝜱1 =

[

𝜱0,
𝒗
(

𝝃∗
)

‖𝒗
(

𝝃∗
)

‖

]

(21)

where 𝒗
(

𝝃∗
)

corresponds to:

𝒗
(

𝝃∗
)

= 𝒖
(

𝝃∗
)

−𝜱0
(

𝜱𝑇
0 𝒖

(

𝝃∗
))

(22)

Therefore, when determining the new optimums for the 𝛼2 level,
it will be possible to keep the error below 𝜀 . It is noteworthy that
𝑡
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n

Fig. 5. Schematic of the basis updating procedure. (𝑎) Construction of the membership function of the response. (𝑏) Error monitoring. (𝑐) Basis updating procedure.
the previous discussion assumes that, for a given level, only one of
the bounds exceeds the threshold. Nevertheless, it is possible that both
bounds exceed the considered threshold. In this case, the update step
can be repeated, enriching the basis with the information of the other
limit. Thus, there are two possible cases when determining the extrema
of the response of the membership function at this level: (1) it is not
necessary to re-enrich the basis, or (2) an additional basis update is
required. In the first case, the optimum search continues until it is
successful, i.e., 𝑟𝐴𝛼2 and �̄�𝐴𝛼2 are found. Then, it proceeds to analyze the
ext level (e.g., level 𝛼3, as shown in Fig. 5b). In the second case, the

basis is enriched, and both extrema of the response are determined
again, that is, Eqs. (19) and (20) are solved again. Moreover, note
that for this 𝛼3 level, both situations described above could happen.
Fig. 5b shows the first scenario. Consequently, the proposed strategy
ensures that the error produced by the reduced-order model remains
below the threshold at the identified extrema of the response for a given
𝛼-level membership value. The maximum admissible error considered
in this study is 𝜀𝑡 = 10−4, according to the recommendations in [47].
Therefore, the convergence of the procedure is guaranteed with the
proposed strategy. At worst, the reduced basis is expanded until it
includes 𝑛𝑑 vectors (𝑛𝑑 being the total number of degrees of freedom of
the problem). At this stage, any response of the system can be exactly
captured by the reduced basis, which no longer needs to be expanded.

3.6. Summary of the proposed strategy

The proposed methodology for performing a fuzzy field analysis
considering a reduced-order model for uncertainty propagation can be
summarized in the following steps, which are also illustrated in Fig. 6.

1. Define the numerical model and the response of interest 𝑟
(Eq. (3)).

2. Identify the parameters of the model that are uncertain.
3. Define the uncertainty in the parameters by means of a fuzzy

field 𝜉(𝒙).

(a) Set the number 𝑛𝑏 and the position 𝒙𝑗 , with 𝑗 = 1,… , 𝑛𝑏,
of the control points according to the information avail-
8

able.
(b) At each control point, characterize the uncertain param-
eters using membership functions 𝜇𝜉𝑗 (𝜉𝑗 ).

4. Set up the finite element mesh associated with the model. For
each element, retrieve its centroid 𝑥𝐶,𝑞 .

5. Select a number of 𝑛𝑐 𝛼-cuts and define the membership values
𝛼𝑙, with 𝑙 = 1,… , 𝑛𝑐 .

6. Select an error threshold 𝜀𝑡.
7. Identify the expansion point 𝝃0. Solve Eq. (1) for 𝝃0 to calculate

𝒖
(

𝝃0
)

.
8. Perform a sensitivity analysis for 𝒖

(

𝝃0
)

(see Appendix) to con-
struct the reduced basis 𝜱 applying Eq. (16).

9. Set 𝑙 = 1. Solve both optimization problems in Eqs. (19) and (20).

(a) Calculate the approximate response 𝑟𝐴 solving Eqs. (12)
and (15).

(b) Compute the error measure 𝜀 with Eq. (18) for the iden-
tified minimum and maximum values of the response at
the corresponding membership level.

(c) Check the error behavior for the minimum value of the
response identified in step 9.b. If 𝜀 < 𝜀𝑡, go to step
9.e. Otherwise, calculate the exact response by solving
Eqs. (1) and (3). For this purpose, use the information
of the realization 𝝃∗ (associated to the minimum) that
produces an error greater than the tolerance.

(d) Enrich the reduced basis 𝜱 using the Gram–Schmidt
method outlined in Eqs. (21) and (22), with the informa-
tion of 𝒖(𝝃∗). Return to step 9.a.

(e) Check the error behavior for the maximum value of the
response identified in 9.b. If 𝜀 < 𝜀𝑡, go to step 10. Oth-
erwise, calculate the exact response by solving Eqs. (1)
and (3). For this purpose, use the information of the
realization 𝝃∗ (associated to the maximum) that produces
an error greater than the tolerance.

(f) Enrich the reduced basis 𝜱 using the Gram–Schmidt
method outlined in Eqs. (21) and (22), with the informa-

∗
tion of 𝒖(𝝃 ). Return to step 9.a.
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10. Set 𝑙 = 𝑙+1. If 𝑙 = 𝑛𝑐 , stop the process. Otherwise, return to step
9 with 𝑙 = 𝑙 + 1.

. Illustrative examples

.1. Heat transfer on by-product concrete block

Fig. 7 shows the first problem studied which corresponds to the heat
low in a concrete block made with recycled (by-products) materials.

ith the ongoing need to minimize energy consumption in the design
f sustainable buildings, proper evaluation of the thermal performance
f building envelope components is a strict requirement. Therefore,
here is a need for proper characterization of the thermal properties
f, for example, by-product concrete blocks [49]. However, when by-
roducts are used, the thermal conductivity in the material may behave
n-homogeneously as the medium becomes more porous under the
ddition of sawdust, lime sludge, and other recycled materials [50].
ne way to capture the spatial uncertainty of this property is to use

uzzy fields. Therefore, the objective of this study is to determine
he variation in the total heat flow through the block. The thermal
onductivity is assumed to be isotropic and with the available (scarce)
nformation, it is possible to construct membership functions at three
ontrol points. At each of these positions, the thermal conductivity
9

f

alue was characterized by a membership function, which allowed the
ncertainty of this property to be represented by a fuzzy field. The
embership functions associated with the control points are shown in

ig. 8. For the construction of these membership functions, it should be
oted that samples, expert knowledge, and information from previous
tudies, among others, can be used. The thermal conductivity values
efined in this study were based on literature reports [50]. Regarding
he edge temperatures, the temperature of the inner side of the concrete
lock was considered deterministic and equal to 25 [◦C] (298.15 [K]).
n contrast, the temperature of the outside of the block was consid-
red uncertain and was characterized by a fuzzy variable with the
embership function of Fig. 9.

For the finite elements of the numerical model, triangular quadratic
lements were considered, with each element represented by its cen-
roid. A total of 10854 nodes and 5428 elements were considered
o represent the concrete block. The matrix of thermal conductivity
f each element was calculated by numerical integration, considering
hree integration points. After determining the internal temperature of
he block, the heat flow rate was calculated with respect to the unit
idth of the block. To obtain the total heat flow, the sum of the flow
ver all boundary nodes at the bottom side of the concrete block was
alculated. For more details on the calculation of the total flow, see
.g. [13,27]. 10 𝛼-levels were considered to obtain the membership

unction representing the flow response in discrete form. The values
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Fig. 7. Finite element mesh and control point locations for heat problem.
Fig. 8. Membership function of thermal conductivity at control points. From left to right the control points are located at: (a) 𝑥 = 0.025 [m], 𝑦 = 0.100 [m]. (b) 𝑥 = 0.200 [m],
= 0.100 [m]. (c) 𝑥 = 0.375 [m], 𝑦 = 0.100 [m].
Fig. 9. Membership function of top side boundary temperature of the concrete block.

associated with the lower and upper bounds of the fuzzy heat flow
response for the 10 levels studied were determined using the Particle
Swarm Optimization scheme. The concrete block was studied consid-
ering two models: the exact system and the approximate model. The
results were evaluated considering that (a) there is no basis updating
process (𝜀𝑡 → ∞) and (b) there is a basis updating process with a
hreshold of 𝜀𝑡 = 10−6.

.1.1. Solution without basis updating
The fuzzy response obtained for the total heat flow on the inner side
10

f the concrete block is shown in Fig. 10, where this flow is denoted as
𝑟. Initially, it was assumed that there is no basis updating procedure,
i.e., 𝜀𝑡 → ∞. From Fig. 10 it is observed that the membership function
associated with the resolution of the exact system (blue curve) and
the membership function associated with the reduced model (orange
curve) are identical. A non-linear relationship between the uncertain
input parameters and the response associated with the membership
level has been identified by the shape of the membership function
obtained. This behavior is more pronounced on the left side of the
membership function. Since the thermal conductivity is characterized
by a fuzzy field, the total flow response is also fuzzy, as explained
earlier in this paper. Therefore, it is necessary to analyze the heat flow
response according to the membership level considered. This gives an
indication of the degree of uncertainty associated with this response.
For example, if level 𝛼𝑙 = 0.5 is analyzed, the heat flow response can
take any value in the interval [7.67, 26.26] [W∕m2] per m. Nonetheless,
the value obtained for the deterministic analysis at 𝜇�̂�(𝑟) = 1 was
equal to 15.62 [W∕m2]. With such results, users can develop an overall
understanding of the effect of uncertainty in the input parameters, and
the relationship between the sensitivity of the response and the level
of membership under consideration. In terms of computational cost,
the solution of the reduced-order model was 268 times faster than that
of the original system, demonstrating the computational advantage of
using the reduced-order model without compromising accuracy.

In addition, for comparison with traditional methods, note that the
results are also computed taking into account the Vertex Method [51].
When the response of the deterministic system varies monotonically
with respect to the uncertain parameters, the Vertex Method ensures
an exact result for optimizing the interval problem defined in Eq. (9)
and (10). As shown in Fig. 10, the results for the Vertex Method
for this example are identical to the solution using the exact system

𝑛𝜉
and the reduced-order model. Nonetheless, it requires 2 = 16 exact



Structural Safety 111 (2024) 102498N.A. Manque et al.
Fig. 10. Membership function of the total heat flow response in the concrete block,
considering 𝜀𝑡 = ∞.

Fig. 11. Error behavior considering 𝜀𝑡 = ∞ for the total heat flow response in the
concrete block.

analysis (for each membership level) to obtain the membership function
of the response, which is much higher compared to the requirements
considering the reduced-order model (see Table 2).

Fig. 11 shows the error behavior when finding the optimum associ-
ated with different membership levels for approximate total heat flow
response. The increasing behavior of the error observed in the figure
shows that there is a loss of precision in the search for the optima
that are associated with membership levels close to 0. This is explained
by the fact that for levels closer to membership 0, these optima may
be far from the expansion point used to construct the reduced basis.
Nevertheless, the error associated with the reduced basis was below
10−5 for all the membership levels analyzed.

4.1.2. Solution with basis updating
In this case, the threshold level was chosen such that 𝜀𝑡 = 10−6.

Such value was chosen as it is more stringent than the suggested value
of 10−4 (see Section 3.4). The membership function obtained for the
response of the total heat flow 𝑟 is shown in Fig. 12. Note that in this
case the results are also compared to the Vertex Method (see Table 2).
In terms of error performance, Fig. 13 shows how the error is main-
tained below the established threshold for all estimated membership
levels. The comparison between the maximum error committed by the
reduced-order model for the case with and without the basis updating
procedure is shown in the Table 1. To better understand the error
behavior, note that Fig. 14 shows the number of additional analyses
performed to identify the bounds of the fuzzy response for each level
11
Fig. 12. Membership function of the total heat flow response in the concrete block,
considering 𝜀𝑡 = 10−6.

Fig. 13. Error behavior considering 𝜀𝑡 = 10−6 for the total heat flow response in the
concrete block.

Table 1
Maximum error associated with the reduced-order model for the total heat flow
response in the concrete block.

Without basis updating With basis updating

4.0208 × 10−6 9.4951 × 10−7

𝛼𝑙. Note that it was not necessary to enrich the reduced basis for the first
seven levels. This is because, although the error increased, it remained
below the set threshold. Nevertheless, in the case of level 𝛼8, it was
necessary to update the basis once. This results in a decrease of the
error obtained for this level in Fig. 13.

Regarding the computational time, a speed-up of 239 was obtained
comparing the resolution of the reduced-order model with the exact
system. This decrease in speed-up compared to the result obtained for
the case shown in the previous section is explained by the additional
exact analysis that had to be performed to enrich the reduced basis.

Since the errors made by the reduced-order model without updating
the basis and with its application are quite small for this simple example
(see Table 1), the heat flow response was computed considering fewer
columns of the reduced basis to demonstrate the effect of introducing
the updating strategy. Note how in Fig. 15, the membership function
(in purple) obtained considering the alternative reduced basis overes-
timates the bounds of the heat flow response for the different mem-
bership levels analyzed. Moreover, observe that this overestimation is
more pronounced for the levels approaching zero. The aforementioned
behavior produces that the error associated with the alternative basis
(see Fig. 16) is higher than the one obtained by the reduced-order
model considering the full reduced basis (see Fig. 11) for the different

membership levels computed. As a result, two additional analyses are
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Table 2
Number of exact analyses performed to compute the total heat flow response.
Method Number of exact analysis

𝛼-level optimization exact model 422
𝛼-level optimization ROM model, without basis updating 1
𝛼-level optimization ROM model, with basis updating 2
Vertex Method 160
Fig. 14. Number of additional analyses considering 𝜀𝑡 = 10−6 for the total heat flow
response in the concrete block.

Fig. 15. Membership function of the total heat flow response in the concrete block,
considering 𝜀𝑡 = ∞ for the alternative reduced basis.

required to keep the error below the threshold (see Figs. 18 and 19)
when using the basis updating approach to compute the heat flow
response shown in Fig. 17. Note that the maximum error of the ap-
proximate model has now decreased by about two orders of magnitude
when the basis updating strategy is taken into account (see Table 3).
In contrast, the results shown in Table 1, which do not include the
alternative reduced basis, show a lower benefit in terms of error, due to
the quality of the reduced-order model. These results not only highlight
the accuracy advantage of the method at a minimal numerical cost
(requiring only two additional exact analyses) but also demonstrate
that for a simple model such as this one, it is possible to obtain
satisfactory results with a reduced basis that includes only a subset of
the columns containing the sensitivity information. This, in conjunction
with the basis updating procedure, yields results comparable to those
obtained when considering the full basis with updating (see Tables 1
and 3). In terms of speed-up, the resolution of the approximate model
with the alternative reduced basis was 191 and 255 times faster than
12

the exact model, with and without basis updating, respectively.
Fig. 16. Error behavior considering 𝜀𝑡 = ∞ (alternative reduced basis) for the total
heat flow response in the concrete block.

Fig. 17. Membership function of the total heat flow response in the concrete block,
considering 𝜀𝑡 = 10−6 for the alternative reduced basis.

Fig. 18. Error behavior considering 𝜀𝑡 = 10−6 (alternative reduced basis) for the total
heat flow response in the concrete block.

4.2. Seepage under impervious dam

The proposed methodology is also applied to the analysis of sat-

urated steady-state seepage flow through a porous medium under an
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Fig. 19. Number of additional analyses considering 𝜀𝑡 = 10−6 (alternative reduced
basis) for the total heat flow response in the concrete block.

Table 3
Maximum error associated with the reduced-order model (alternative
reduced basis) for the total heat flow response in the concrete block.
Without basis updating With basis updating

7.1073 × 10−5 8.3887 × 10−7

impervious dam. The dam is founded on a permeable soil layer 20 [m]
deep, bounded by an impermeable rock layer. The dam has an extent
of 20 [m], as shown in Fig. 20. A water column of deterministic height
ℎ = 10 [m] is retained upstream of the dam. The flow rate at the dam
outlet is a crucial result of the seepage analysis for design purposes. The
seepage flow rate was calculated in terms of the unit width of the dam
after determining the piezometric head associated with the model [27].
The sum of the flow over all the boundary nodes on the left side of the
dam was calculated to obtain the total flow [13].

It is considered that the horizontal 𝑘𝐻 and vertical 𝑘𝑉 hydraulic
conductivities of the soil layer are uncertain due to effects such as the
spatial variation of the soil [52], as well as the inaccuracy and sparse-
ness of the field measurements [53]. Therefore, the horizontal 𝑘𝐻 and
ertical 𝑘𝑉 conductivities were characterized using fuzzy fields. Four
ontrol points are considered where the dependence between the two
onductivities is included considering 0.1𝑘𝐻 ≤ 𝑘𝑉 ≤ 𝑘𝐻 [54,55]. The

membership functions associated with each control point are shown in
Fig. 21. For the construction of these membership functions, typical
values reported in the literature are considered (see [56]).

A finite element model with 3183 nodes and 1498 quadratic tri-
angular elements was considered to study the seepage problem. Each
element has 6 degrees of freedom. Ten 𝛼-levels were used to esti-
mate the response membership function, i.e., 𝑛𝑐 = 10. The hydraulic
conductivity matrix of each element was calculated using numerical
integration, considering three integration points. It should be noted that
the flow rate is also uncertain due to the characterization of the param-
eters described above. Therefore, the main objective of this study was to
determine the membership function representing the flow uncertainty �̂�
downstream of the dam. To estimate the above membership levels, the
Particle Swarm Optimization scheme [48] was used to determine the
exact and approximate response. The dam was studied by considering
an exact system and an approximate model. The results were evaluated
considering that (a) there is no basis updating process (𝜀𝑡 → ∞) and (b)
there is a basis updating process with a threshold of 𝜀𝑡 = 10−4.

4.2.1. Solution without basis updating
The membership function obtained for the response of the total

flow downstream of the dam is shown in Fig. 22, where this flow is
13

denoted as 𝑟. The error threshold was considered as 𝜀𝑡 → ∞, i.e., the
system was studied without considering the enrichment of the reduced
basis 𝜱. The membership function of the approximate response and the
exact model are very similar. Some minimal discrepancies are observed
on the left-hand side of the membership function for low membership
values. Similar to the concrete block analysis, the fuzzy response of
the total flow must be analyzed in terms of the associated membership
level. For example, if level 𝛼𝑙 = 0.5 is investigated, the total flow at
the dam exit can take any value in the interval [8.12×10−6, 2.47×10−5]
[m3/s] per [m]. Whereas, for the deterministic case (i.e., 𝜇�̂�(𝑟) = 1), the
total flow was equal to 1.60×10−5 [m3/s] per [m]. In this example, the
system response was also calculated using the Vertex Method. Despite
the precision of the Vertex Method in providing an accurate response,
it is important to recognize the significant number of exact analyses
that are required. This is due to the number of uncertain parameters
involved in this example, which are related to the number of control
points considered and the anisotropy of the soil properties. As a result,
the computational cost of obtaining the system’s response using the
Vertex Method is significantly higher than the cost of implementing
the proposed strategy (see Table 5), which highlights the benefit of
the proposed strategy. Comparing this result with the one achieved
for the concrete block problem in terms of the range of the interval
obtained, the range is rather large, which is due to the large uncertainty
associated with the hydraulic conductivity of the soil. In terms of
computation time, a speed-up of 58 was obtained for the approximate
model compared to the solution of the exact model. The reason for
the smaller numerical gain compared to the heat problem is that the
hydraulic conductivity of the soil is assumed to be anisotropic, while
the thermal conductivity of the recycled concrete block is assumed to be
isotropic, which implies that a larger number of terms 𝑛𝑘 is involved in
the representation of the system’s matrix (see Eq. (2)). In addition, the
number of uncertain parameters is higher in this case due to the larger
number of control points considered in the definition of the fuzzy field.
As a result, the reduced basis is larger, which slows down the speed-up.

On the other hand, Fig. 23 shows the evolution of the maximum
error 𝜀 in each 𝛼-cut of the membership function associated with
the flow at the dam downstream. An increasing error behavior was
observed as a function of the membership level analyzed, being higher
in the case of levels closer to zero. This behavior had indeed been
anticipated. When examining membership levels that approach zero,
this leads to a notably expanded search space within the optimization
process. As a result, the optimal solution might end up being more
distant from the expansion point, as was discussed in Section 3.4.

4.2.2. Solution with basis updating
The membership function obtained for the flow response down-

stream of the dam, considering 𝜀𝑡 = 10−4, is shown in Fig. 24. In
this case, the implementation of the proposed methodology has been
studied considering the updating of reduced basis 𝜱. The membership
function of the approximate response and the exact model are practi-
cally identical. The differences on the left-hand side for low values of
the membership function obtained in the previous case are not observed
when the basis updating strategy is carried out.

Concerning the error behavior, Fig. 25 shows how the error remains
below the established threshold for all estimated membership levels.
A comparison of the maximum error produced by the reduced-order
model for the case with and without the basis updating procedure is
shown in Table 4. To understand the error behavior, note that Fig. 26
shows the number of additional analyses performed to determine the
bounds of the fuzzy response for each level 𝛼𝑙. Note that for the first
three levels, 𝛼1, 𝛼2, and 𝛼3, it was not necessary to enrich the reduced
basis. The reason for this is that even though there was an increase in
the error, it was below the threshold value. Nonetheless, in the case
of level 𝛼4, it was necessary to update the basis once. This leads to a
decrease in the error obtained for this level in Fig. 25. Note that the

observed behavior of the error is expected. After updating the reduced
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Fig. 20. Finite element mesh and control point locations for seepage problem.
Fig. 21. Membership function of hydraulic conductivities at control points. Each control point is located at (1) 𝑥 = 30 [m], 𝑦 = 15 [m]. (2) 𝑥 = 30 [m], 𝑦 = 4.5 [m]. (3) 𝑥 = 75
[m], 𝑦 = 9 [m]. (4) 𝑥 = 75 [m], 𝑦 = 2 [m].
basis, as shown in Fig. 5b, one should notice a decrease in the error
measure for the newly computed bounds of the level that exceeds the
threshold. Subsequently, this measure is expected to increase again
when the bounds of the subsequent 𝛼-level are determined. Thus, the
ncreasing trend of the error from levels 𝛼1 to 𝛼3 should have been
aintained for level 𝛼4, but since the error measure for this level

xceeded the defined tolerance, the basis was enriched. Consequently,
t is due to this enrichment that the error reported in Fig. 25 for level 𝛼4
s lower compared to the previous level. Due to the continued increase
n error from level 𝛼4 to 𝛼7, a new additional analysis was required to
etermine the limits of level 𝛼 .
14

8

Finally, another additional analysis was required for the member-
ship level 𝛼10, resulting in a total of 3 additional analyses during the
entire optimization process, which are highlighted in Fig. 25. Regarding
the computation times, a speed-up of 43 was obtained. The decrease in
terms of speed-up is due to the three additional exact analyses required
to enrich the reduced basis, compared with the analysis considering
𝜀𝑡 → ∞.

5. Summary and conclusions

This paper presents an efficient technique to estimate the fuzzy re-
sponse of linear systems considering the spatial uncertainty in the input
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Fig. 22. Membership function of the flow response downstream of the dam, considering
𝑡 = ∞.

Fig. 23. Error behavior considering 𝜀𝑡 = ∞ for the flow response downstream of the
am.

Fig. 24. Membership function of the flow response downstream of the dam, considering
𝑡 = 10−4.

Table 4
Maximum error associated with the reduced-order model for the flow
response downstream of the dam.
Without basis updating With basis updating

3.4120 × 10−3 9.7523 × 10−5

properties by applying a reduced-order model. The approach is for-
15

mulated to propagate the uncertain properties characterized by fuzzy
Fig. 25. Error behavior considering 𝜀𝑡 = 10−4 for the flow response downstream of the
dam.

Fig. 26. Number of additional analyses performed to obtain the flow response
downstream of the dam, considering 𝜀𝑡 = 10−4.

fields through an optimization scheme. In particular, two challenges
have been addressed, as discussed in detail below.

First, the spatial dependencies in uncertain parameters with scarce
available data have been taken into account following a
non-probabilistic approach. By requiring only the membership func-
tions at control points, fuzzy fields facilitate the characterization of
uncertain input parameters under problems such as lack, scarcity, and
incompleteness of data. This is because these membership functions
require a minimum amount of information for their definition (vertex
information) and allow the incorporation of expert knowledge. Addi-
tionally, users can define the location and number of control points
according to the available data to account for spatial dependencies. This
enables design analysis to be performed even with limited uncertain in-
formation is available. An additional benefit of extending interval field
analysis to the fuzzy framework is the inclusion of sensitivity analysis.
Beyond the best- and worst-case scenario analysis that can be obtained
from interval analysis, the fuzzy component allows users to evaluate
different cases and get feedback on the characterization of their uncer-
tain parameters. Therefore, fuzzy analysis is a suitable alternative to
traditional probabilistic methods under severe uncertainty.

The second challenge addressed in this proposal is related to the nu-
merical cost of characterizing uncertain parameters using fuzzy fields.
To avoid the numerical cost of projecting the fuzzy field into the FEM
associated with each search of the fuzzy response optima, a reduced-
order model has been applied. The reduced-order model is formulated
to require only a single exact analysis of the system and its respective
sensitivities. To overcome accuracy problems, the reduced basis is
enriched adaptively to ensure the quality of the approximation. For
this purpose, the error associated with the reduced-order model was
examined.
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Table 5
Number of exact analyses performed to compute the flow response downstream of the dam.
Method Number of exact analysis

𝛼-level optimization exact model 486
𝛼-level optimization ROM model, without basis updating 1
𝛼-level optimization ROM model, with basis updating 4
Vertex Method 2560
𝑲

F
m
(

s

𝑲

R

The reduced-order model was tested in the study of steady-state
eat flow in a concrete block made of recycled materials and in
teady-state saturated seepage under a dam. The results show that
n accurate estimation of the fuzzy responses can be obtained with
educed numerical effort while controlling the quality of the results.
he above was evidenced by the high performance observed in the
educed-order model and, in particular, its coupling with the applica-
ion of fuzzy fields to propagate uncertainty to the response. In the case
f the by-product concrete block study, only one additional analysis
as required, while in the case of the dam problem, three additional
nalyses were performed.

It is noteworthy that the application of fuzzy field analysis coupled
ith a reduced-order model introduces certain limitations in the inter-
retability of results when compared to probability-based approaches.
nlike probability-based methods that provide a full probabilistic de-

cription of the response of interest and assess the failure probability
f the system, fuzzy field analysis provides interval estimates of the
esponse at a particular membership value. These estimates provide
nsight into the degree of uncertainty and help identify, for example,
orst-case scenarios. Therefore, while fuzzy fields are valuable in the
resence of limited data, researchers should carefully consider the
urpose of the study when choosing this approach.

Future research efforts will be directed towards exploring more
omplex systems. This includes the exploration of dynamic systems,
urther types of responses, and the expansion into larger physical
imensions. Similarly, the use of fuzzy fields to characterize other types
f uncertain parameters, such as those related to geometry, will be
xplored. Finally, in the case of anisotropic properties such as soil
ydraulic conductivity, it is suggested to explore alternative strategies
or incorporating dependency structures at and between control points.
or example, one approach could be to incorporate the decomposition
f bi-variate admissible sets as presented in [57,58].
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Appendix. Derivatives for reduced basis

Replacing the parametric expression of the system’s matrix (see
Eq. (2)) in the equilibrium equation (1), it follows that:
(

𝑲0 +
𝑛𝜉
∑

𝑘=1
𝑲𝑘𝜉𝑘

)

𝒖(𝝃) = 𝒇 (𝝃) (A.1)

0𝒖(𝝃) +
𝑛𝜉
∑

𝑘=1
𝑲𝑘𝜉𝑘𝒖(𝝃) = 𝒇 (𝝃) (A.2)

rom where, the 𝑗th derivative with respect to 𝜉𝑗 , applying the direct
ethod described in [59], corresponds to:

𝑲0 +
𝑛𝜉
∑

𝑗=1
𝑲𝑗𝜉𝑗

)

𝜕𝒖(𝝃)
𝜕𝜉𝑗

+
𝑛𝜉
∑

𝑗=1
𝑲𝑗𝒖(𝝃) =

𝜕𝒇 (𝝃)
𝜕𝜉𝑗

(A.3)

Replacing the left-hand term with the relationship of Eq. (2) for the
ystem’s matrix:

(𝝃)
𝜕𝒖(𝝃)
𝜕𝜉𝑗

=
𝜕𝒇 (𝝃)
𝜕𝜉𝑗

−
𝑛𝜉
∑

𝑗=1
𝑲𝑗𝒖(𝝃) (A.4)

Finally, taking apart the partial derivative of the displacement it is
obtained that:

𝜕𝒖(𝝃)
𝜕𝜉𝑗

= 𝑲−1(𝝃)

(

𝜕𝒇 (𝝃)
𝜕𝜉𝑗

−
𝑛𝜉
∑

𝑗=1
𝑲𝑗𝒖(𝝃)

)

(A.5)
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