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Abstract. Collecting large experimental datasets that accurately depict the behavior of complex sys-
tems under uncertainty poses a significant challenge. In such scenarios, surrogate models such as
Polynomial Chaos Expansion (PCE) benefit from incorporating problem-specific physical informa-
tion. This integration facilitates the reduction of the necessary training data, thereby enabling efficient
estimation of the system’s response. Nevertheless, when uncertainties arise from geometric variations,
traditional Finite Element Analysis (FEA) methods are limited in generating training datasets for PCE
coefficient estimation due to mesh dependency and potential inaccuracies in geometry approximation.
To address these limitations, this study explores a novel methodology that uses Isogeometric Analysis
(IGA) to generate physical insights for systems with geometric uncertainties. These insights are then
employed to construct a Physics-informed PCE (PC2), which directly integrates IGA sensitivities to
embed constraints, such as boundary conditions and system behavior, into the surrogate model. The
corresponding sensitivities are computed as a by-product of the analysis using a variational approach.
A case study demonstrates the efficacy of the method in predicting complex responses, such as stress
triaxiality, while maintaining a balance between computational cost and accuracy. Furthermore, the
results demonstrate a 40% reduction in mean squared error (MSE) when employing the proposed
IGA-sensitivity-based PC2 in contrast to sparse Least Angle Regression (LAR) PCE. This suggests
that the proposed strategy can provide more accurate estimates than traditional PCE approaches ap-
plied to geometric uncertainties, highlighting its potential for broader uncertainty quantification and
surrogate modeling applications.
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1 INTRODUCTION

Geometric uncertainties are prevalent in diverse fields, from aerospace to biomedical engineer-
ing, where precision and robustness are of the utmost importance. The increasing complexity of
modern systems in these domains demands more accurate modeling of such uncertainties. Appropri-
ate treatment of this uncertainty is critical to determining key factors, from boundary conditions to
displacement and stress fields. Slight variations in thickness, length, curvature, or shape can signifi-
cantly affect performance, leading to stress concentrations or changes in natural frequencies [1]. Yet
geometry is typically approximated when using numerical models such as Finite Element Analysis
(FEA) [2]. Moreover, complex shapes and non-smooth geometries typically require a large number of
degrees-of-freedom for their construction. Consequently, direct propagation of geometric uncertainty
through a high-dimensional parameter space becomes impractical.

Isogeometric Analysis (IGA) [3] addresses these challenges by unifying design and analysis. IGA
employs exact Computer-Aided Design (CAD) geometries, described by Non-Uniform Rational B-
Splines (NURBS), directly in the solver, avoiding geometric approximation. The primary advantage
of IGA for uncertainty quantification (UQ) lies in controlling geometry via NURBS control points,
whose variation bypasses the cost of FEA re-meshing when exploring geometric variations.

Surrogate modeling techniques like Polynomial Chaos Expansion (PCE) [4] further reduce cost
by expressing the stochastic response as an orthogonal polynomial series with coefficients computed
via regression. Sparse techniques such as least-angle regression (LAR) [5] make PCE robust even
with limited or noisy data. Recently, Physics-informed PCE (PC2) [6] extended this framework by
embedding physical constraints directly into the coefficient estimation. A Lagrange-multiplier formu-
lation yields a Karush–Kuhn–Tucker system that enforces both data fidelity and governing equations,
yielding accurate surrogates from few model evaluations.

Early PCE treatments of geometric uncertainty relied on mesh-node parametrization with FEA
re-meshing [7]. Subsequent stochastic-domain approaches improved efficiency through fictitious do-
mains [8] and mapping techniques [9], while Stochastic Isogeometric Analysis (SIGA) [10] lever-
aged NURBS basis functions for shape uncertainty. Recent Poincaré chaos expansions [11] advanced
derivative-based sensitivity analysis through orthonormal eigenfunctions, yet focused on Sobol’ in-
dex estimation rather than physics-constrained function approximation. Crucially, none integrate
IGA’s exact geometry and variational sensitivities with physics-informed PCE. To the best of authors
knowledge, this study is the first to integrate IGA-derived variational sensitivities directly into the
PC2 framework for geometric UQ.

Accordingly, this paper use IGA to compute variational sensitivities for linear-elastic systems with
independent random geometric parameters. These insights form the KKT constraints in a physics-
informed PCE trained via Latin Hypercube Sampling (LHS). The proposed IGA-sensitivity-based
PC2 strategy is tested for estimating the stress triaxiality response of a 3D linear system with four
uncertain geometric parameters. The results demonstrate that the IGA-sensitivity-based PC2 surrogate
outperforms standard sparse PCE applied to geometric uncertainties in both accuracy and efficiency.

2 PHYSICS-INFORMED POLYNOMIAL CHAOS EXPANSIONS

2.1 Formulation of the problem

Consider a linear system subjected to static loads, where the parameters defining the system’s
geometry (such as lengths, thicknesses, and curvatures) are uncertain. These uncertainties may
arise from the variability in manufacturing processes, fluctuations in environmental conditions, or
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long-term service effects. Therefore, it is assumed that the uncertainty affecting the system ex-
hibits an aleatory nature. These uncertain geometric parameters are modeled by a set of indepen-
dent random variables X = (X1,X2, . . . ,XM), with M the number of uncertain parameters, with
known probability density functions (PDFs) fXi

(xi), i = 1, . . .M . A realization of X is denoted by
x = (x1, x2, . . . , xM). To evaluate the structural behavior of this system, a set of partial differen-
tial equations (PDEs) governing the physics must be solved. To obtain an approximate solution to
these PDEs through a numerical model M(x), the Finite Element Method (FEM) [2], Isogeometric
Analysis (IGA) [3], or any of its variations can be applied. Note that the model M(x) depends on
the realizations of the geometric uncertain parameters x. The output of the model, denoted by y,
represents the system’s response (such as displacements, stresses, or strains) and is defined as the
mapping,

M(x) : y = m(x) (1)

where m is a response function operator that maps realizations of the geometric uncertain input pa-
rameters x to the output response y. It is important to note that the behavior of the system is influenced
by the randomness of the input vector X during the mapping with m. Consequently, the response of
the system is subject to uncertainties as well. Therefore, for the case of scalar outputs, the uncertainty
of the system’s output y is represented by a random variable Y .

Solving the numerical model M(x) of Eq. (1) for different realizations of the uncertain geometric
parameters x can be computationally expensive, particularly when using high-fidelity simulations
such as FEM or IGA. Surrogate modeling techniques like Polynomial Chaos Expansion (PCE) [4]
provide an effective alternative to efficiently quantify this uncertainty. In the next subsection, the
approximate representation of the model M(x) response is studied using PCE.

2.2 Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) [4] provides a well-established framework for approximating
the response of complex systems by representing the output as a series of orthogonal polynomial
basis functions. This approach significantly reduces the computational cost compared to Monte Carlo
simulations, under certain circumstances. In the case that the stochastic response of the system is
scalar, that is Y , under the assumption that it has a finite variance, and if the Doob-Dynkin lemma is
satisfied (ensuring measurability of the response with respect to X ), Y(X ) is expressed as,

Y(X ) =
∑

α∈NM

yαΨα(X ), (2)

where α is a multi-index that defines the polynomial degree in each variable, yα ∈ R represents
the expansion coefficient (which needs to be determined) of the polynomial basis function associated
with the multi-index α, and Ψα(X ) are multivariate orthogonal polynomials.

Since it is assumed that X contains independent random variables, the multivariate polynomial
functions are constructed as tensor products of univariate polynomials orthonormal with respect to
the marginal PDFs of each Xi. In mathematical terms, the multivariate basis functions are defined as,

Ψα(X ) =
M∏
i=1

ϕ(i)
αi
(Xi), (3)
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where ϕ(i)
αi
(Xi) are orthonormal polynomials in the i−th parameter of degree αi satisfying,

⟨ϕ(i)
αi
, ϕ

(i)
βi
⟩ =

∫
DXi

ϕ(i)
αi
(xi)ϕ

(i)
βi
(xi)fXi

(xi)dxi = δαiβi . (4)

Here DXi
is the domain of the random variable Xi, and fXi

(xi) represents the probability density
function (PDF) of the random variable Xi, where xi denotes a realization of Xi. δαiβi is the Kronecker
delta, which equals 1 if αi = βi and 0 otherwise, ensuring orthogonality of the basis functions.

To make the expansion computationally feasible, it is truncated to a finite number of terms P as,

YPCE(X ) =
∑
α∈A

yαΨα(X ). (5)

where the truncation set A follows,

AM,pp = {α ∈ NM : ∥α∥1 ≤ pp}. (6)

Here YPCE(X ) is the truncated PCE approximation of the system’s response, and AM,pp is the trun-
cation set that defines which polynomial terms are included in the expansion. Moreover, pp is the
maximum polynomial degree in the expansion, and ∥ · ∥1 denotes the L1 norm. Note that due to this
truncation, only terms whose total degree ∥α∥1 is less than or equal to a predefined pp are retained;
however, in practice, one can choose any truncation rule.

The number of terms in the truncated expansion P is given by,

P =
(M + pp)!

M !pp!
. (7)

Notably, the truncated expansion introduces an error ϵ, that is,

Y = YPCE + ϵ =
∑
α∈A

yαΨα(X ) + ϵ. (8)

From Eq. (8), the coefficients yα are determined by minimizing the discrepancy between the PCE
surrogate YPCE(X ) and true model evaluations from an experimental design (ED) {x(i), y(i)}nsim

i=1 ,
where y(i) = M(x(i)) are realizations of Y . This is because, from a statistical perspective, the
truncated PCE in Eq. (5) can be considered a linear regression model with an intercept. Then the
coefficients yα can be determined using ordinary least squares (OLS), that is,

yα = (ΨTΨ)−1ΨTyD (9)

where Ψ is the data (or regression) matrix, i.e. the PCE basis evaluations at the training points from
the ED {x(i), y(i)}nsim

i=1 , and yD = [y(1), . . . , y(nsim)]T is the model evaluations vector. Once the coef-
ficients yα are found, it is possible to estimate statistical moments of the output from the expansion
directly. This makes uncertainty quantification (UQ) tasks straightforward [12]. As can be observed
in Eq. (7), since the number of terms P grows with the input dimension M and the maximum poly-
nomial degree in the expansion pp, OLS typically requires samples on the order of O(P ln (P )) for
a well-posed fit, which can be prohibitive for large M and pp, especially for complex systems. To
alleviate this, one can apply sparse regression methods, such as Least Angle Regression (LAR) [5],
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to identify a smaller, optimally informative subset of basis functions, thereby reducing both com-
putational and sampling effort. While powerful, this conventional PCE framework often requires
a large ED to achieve accuracy in high-dimensional problems. To address this issue, the Physics-
informed Polynomial Chaos Expansion (PC2) has recently been introduced [6], which incorporates
known physical laws (e.g., governing PDEs, boundary conditions) as constraints during the surrogate
construction [13]. This approach reduces the need for costly model evaluation while ensuring the
surrogate adheres to the underlying physics. The details for its implementation are described in the
next subsection.

2.3 Physics-informed Polynomial Chaos Expansions

Building on the PCE framework from Section 2.2, Physics-Informed Polynomial Chaos Expansion
(PC2) [6] incorporates physical constraints derived from the governing PDEs of Eq. (1) and associated
boundary conditions. Consider that the system’s response satisfies,

L(x,YPCE(x)) = f(x), x ∈ D, (10)

with boundary conditions B(x,YPCE(x)) = g(x) for x ∈ ∂D, where L and B are differential opera-
tors, and f , g are source terms.

The PC2 coefficients yα are found by solving a constrained extension of the OLS problem in
Eq. (9), that is,

min
yα

∥yD −Ψyα∥2 subject to Ayα = c, (11)

where A encompasses the PDE and BC constrains, and c contains boundary values. Note that con-
structing the A matrix requires derivatives of the PCE model. This is because the matrix A enforces
physics by evaluating the boundary operator B and PDE operator L on the PCE basis functions Ψ.
The corresponding derivatives are computed analytically using the polynomial properties. For details,
the reader is referred to [6].

The solution of Eq. (11) is obtained via the Karush-Kuhn-Tucker (KKT) conditions,[
ΨTΨ AT

A 0

] [
yα

λ

]
=

[
ΨTyD

c

]
, (12)

where λ are Lagrange multipliers. This ensures that the experimental data and the laws of physics
are both satisfied while minimizing the square error of the PCE expansion. To solve Eq. (12) the PC2

framework employs three discrete sets of samples, namely: experimental design, boundary points and
virtual points. Each of these set of samples is described in the following. The experimental design
(ED) {x(i), y(i)}nsim

i=1 is obtained from the direct evaluation of the PDE from Eq. (1) within the domain
D. These evaluations populate the regression matrix Ψ of Eq. (9) and link the surrogate to the re-
sponses of the underlying true model. Boundary points, {x(b)}nBC

b=1 prescribed locations on ∂D, where
Dirichlet/Neumann boundary conditions B(YPCE) = g(x(b)) are enforced. These ensure geometric
compliance with the constraints of the problem. Finally, virtual points {x(v)}nV

v=1 correspond to artifi-
cial collocation points in D, where the PDE residual L(YPCE) = f(x(v)) is minimized. These inject
physical consistency without requiring model evaluations. The last two groups of points, nBC and nV,
populate the constraint matrix A in the KKT system of Eq. (12).

These sets are mutually independent, and their sizes (nsim, nBC, nV) can be assigned arbitrarily,
provided that it is ensured that,

P ≤ nsim + nBC + nV, (13)
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where P is the number of PCE terms from Eq. (7). In this paper, the calculations related to the PC2

model were done using UQPy [14]. The strategy used to construct the discrete dataset required to
build the PC2 model is defined in Section 4.

3 ISOGEOMETRIC ANALYSIS

As mentioned in the previous section, this paper investigates applying sensitivities derived from the
Isogeometric Analysis (IGA) model to integrate physical insights into Polynomial Chaos Expansion
(PCE). This section aims to succinctly explain the fundamentals of IGA and illustrate why this method
is suitable for exploring geometric variations and, consequently, generating the necessary dataset to
train the Physics-informed Polynomial Chaos Expansions (PC2) using IGA sensitivities.

3.1 NURBS basis functions

Isogeometric Analysis (IGA) can be regarded as a classic Finite Element Analysis (FEA) general-
ization. The most important feature of this method is the underlying basis functions, which originate
from the Computer-Aided Design (CAD) field [15]. In FEA, geometry is approximated using poly-
nomial shape functions, whereas IGA employs B-Splines-based shape functions for a smoother ge-
ometric representation and solution approximation. In most cases, Non-Uniform Rational B-Splines
(NURBS) are utilized as basis functions. These smooth geometric descriptions are defined in the
parametric space Ω̃ using control points and knot vectors Ξ, given by

Ξ = {ξ1, ξ2, . . . , ξn+p+1} , (14)

where ξi define the knots, p corresponds to the NURBS order, Cp−1−k is the continuity conditions at
the knots, k denotes the number of repetitions of a specific knot in the knot vector Ξ, and n is the total
number of basis functions. Note that the knot vectors must have n+ p+ 1 increasing entries.

For one-dimensional descriptions, NURBS basis functions correspond to

Ri,p(ξ) =
wiNi,p(ξ)

W (ξ)
, 1 ≤ i ≤ p+ 1, with W (ξ) =

ncp∑
i=1

wiNi,p(ξ), (15)

where ncp is the total number of NURBS control points, wi > 0 are weight factors, and Ni,p are
B-spline basis functions of order p [16]. By definition, NURBS are only interpolatory at the ends
of the parameter interval spanned by their corresponding knot vectors, but, in general, not at interior
knots. These continuity properties make NURBS excellent candidates for basis functions for FEA
formulations. NURBS curves C(ξ,x), surfaces S(ξ, η,x) and volumes V(ξ, η, ζ,x) are respectively
described by,

C(ξ,x) =
n∑

i=1

Ri,p(ξ)Pi(x), S(ξ, η,x) =
n∑

i=1

m∑
j=1

Ri,p(ξ)Rj,q(η)Pi,j(x),

V(ξ, η, ζ,x) =
n∑

i=1

m∑
j=1

l∑
k=1

Ri,p(ξ)Rj,q(η)Rk,r(ζ)Pi,j,k(x),

(16)

where x represents uncertain geometric parameters (e.g., lengths, thicknesses, radii), P(x) contains
control point coordinates, and Ri,p(ξ), Rj,q(η), Rk,r(ζ) are NURBS basis functions of degrees p, q,
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r in the ξ-, η-, and ζ-directions. Here, n, m, and l denote the number of basis functions in each
parametric direction, while ξ, η, and ζ correspond to parametric coordinates defined by knot vectors
Ξ, H, and Z (see Eq. (14)). This description of the geometry renders the integration of uncertainty
practical. Specifically, changes in the control point positions will result in the generation of new
geometries.

Following the finite element formulation, the key point to define the IGA formulation is to resort to
the weak equilibrium equation. The discretized matrix form of the weak equilibrium equation differs
from the FEA formulation only in the choice of shape functions, which correspond to the NURBS
defined in Eq. (15). For a detailed explanation of the procedure, the reader is referred to (Hughes et
al., 2005) [3]. It is noteworthy that, unlike FEA, in IGA the response in terms of displacements is
given at the positions of the control points. With the solution of the IGA model for the displacement,
any response function of interest can be computed within a post-processing step similar to FEA. Once
the solution of the IGA model is obtained, its sensitivities with respect to the uncertain geometric
parameters can be determined using Variational Sensitivity Analysis [17]. The information in this
sensitivity can be considered to train the PC2 model. The described isogeometric model has been
implemented in MatLab utilizing the NURBS toolbox, cf. [18]. The next subsection defines this
sensitivity analysis for a general response of interest (e.g., displacements, stresses, or strain fields).

3.2 Variational sensitivity analysis

The generation of data for the training of the PC2 is achieved by leveraging sensitivities from the
IGA model to impose the physics. Given the advantage of IGA to explore geometry modifications,
one can perform Variational Sensitivity Analysis [17]. The sensitivity analysis facilitates the eval-
uation of how variations in uncertain geometric parameters (such as lengths, thicknesses and radii),
represented by x, affect the response functions, denoted by f(y(x),x). As outlined in [17], this
approach leads to the expression

δf = δyf + δxf =

[
∂f

∂y

]
δy +

[
∂f

∂x

]
δx, (17)

where δyf represents the contribution to the sensitivity from changes in the system’s response, and
δxf represents the contribution from variations in the geometry. The derivation of these sensitivities
employs the direct differentiation method (DDM), wherein the equilibrium condition is maintained
for any variation in the design geometry, δx.

In certain applications, it is beneficial to parameterize the design geometry using specific geomet-
ric variables x, such as thickness, lengths, or radii. In other words, the IGA control point matrix
P is represented parametrically. This parametrization introduces the design-velocity matrix D(x),
allowing the control points to be expressed as

δP(x) = D(x) δx. (18)

This projection ensures that the sensitivity analysis explicitly accounts for changes in the uncertain
parameters, enabling a deeper understanding of their impact on system responses while reducing
computational cost. Once the sensitivities from the IGA model have been computed, they can be used
to incorporate the physical constraints derived from the governing PDEs when developing the PC2

model.
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4 PROPOSED STRATEGY

4.1 IGA-sensitivity-based Physics-informed Polynomial Chaos Expansions

To integrate the IGA-derived sensitivity information the goal is to solve the constrained least
squares problem of Eq. (11), but enforce agreement between PCE derivatives and IGA-derived sensi-
tivities at nS specified sensitivity points. In mathematical terms,

min
yα

∥yD −Ψyα∥2 subject to Jyα = s, (19)

where J is the Jacobian matrix of PCE basis derivatives at sensitivity points nS, and s are the IGA-
derived sensitivity values obtained from the variational sensitivity analysis.

The integrated framework is illustrated in Figure 1, for an arbitrary response surface and consid-
ering, for simplicity, the sensitivity information with respect to one uncertain parameter. The IGA
solver discretizes the physical domain Ω using NURBS basis functions (see Eq. (15)) defined on the
parametric domain Ω̃, where control points P(x) form the control mesh. Key transitions of an element
Ωe from physical, to parametric Ω̃, and further parent domain (highlighted by red arrows) exemplify
the exact geometric representation and numerical efficiency of using IGA. The PDE solution, com-
puted at knot positions, is mapped back to the physical space, where the system’s response can be
obtained through FEA postprocessing.

Physical domain

z

y

Parametric domain

Parent domain
η̄

ξ̄

η

ξ

-1
-1

1
1

ξi ξi+1

ηj

ηj+1

Ω̃e

Control mesh

Control points

x

Ωe

Experimental design

y

x2

x1

∂y
∂x1

x2

x1

IGA-sensitivities

IGA solver

KKT solver

Constrains
Cost function

Figure 1: Scheme of the proposed IGA-sensitivity-based Physics-informed PCE.
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Latin Hypercube Sampling (LHS) generates the experimental design ED (in black) over the re-
sponse surface by evaluating the IGA model, while variational sensitivity analysis simultaneously
computes geometric derivatives at nS (in red) collocation points using the design-velocity matrix
D(x) (Eq. (18)). Leveraging both the ED (nsim samples) and IGA-derived sensitivities (nS con-
straints), the KKT solver is applied (Eq. (19)), thereby enforcing physical consistency between the
PCE surrogate and IGA model through explicit derivative matching. Furthermore, just as PC2 benefits
from using sparse solvers, the proposed approach can be coupled with least-angle regression (LAR).

5 EXAMPLE

5.1 Solid horseshoe

The proposed method is used to calculate the maximum stress triaxiality of a three-dimensional
horseshoe-shaped solid, adapted from Hughes (2005) [3]. The horseshoe is subjected to equal and
opposite in-plane flat-edge unit-magnitude displacements (see Figure 2). The base ends of the horse-
shoe are fixed in the y−direction, while only the outer corners are fixed in the z−direction. In the
x−direction, a deterministic prescribed unit-magnitude displacement of −u0 is applied to the left
side, while a deterministic prescribed unit-magnitude displacement of u0 is applied to the right side.
Further, the displacements in the x−direction are restricted at the center of the top of the horseshoe.

H

R

L
rL

u0

u0

R

Figure 2: Uncertain geometric parameters of solid horseshoe 3D model for stress triaxiality analysis and prescribed
displacements (left). Isogeometric model and boundary conditions (right).

The material properties of the horseshoe system are assumed to be deterministic and equal to
E = 3×107 N/cm2 for Young’s modulus and ν = 0.3 for Poisson’s ratio. The horseshoe geometry is
constructed by performing a U-sweep on a square cross-section of dimensions L × L, from which a
quarter disk of radius R is subtracted to define the inner edge. The outer edge has a slightly rounded
end which is defined by the value of L. Moreover, the horseshoe definition includes a straight portion
of height H , and the distance between the origin and the center of the quarter disk is defined by
r (see Figure 2). The NURBS volume used to represent the horseshoe-shaped geometry is based on
ncp = 108 control points, which comprises 324 degree-of-freedom. A parametric representation of the
coordinates of each control point in terms of L, R, r, and H is proposed to translate the uncertainty in
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the geometric input parameters into the NURBS control point matrix. A full definition of the NURBS
model can be found in [19].

The geometric parameters are modeled as independent uniform random variables: L ∼ U(3.5, 5.5),
R ∼ U(0.5, 1.5), r ∼ U(0.9142, 1.9142), and H ∼ U(7.5, 8.5), with all values in cm. These bounds
reflect manufacturing tolerances and service-induced variability described in Section 2.1. The ex-
perimental design (ED) is generated by Latin Hypercube Sampling (LHS). Here, a total of 1000
realizations of the complete random input vector were computed using the IGA model. For each real-
ization, the sensitivities of maximum stress triaxiality with respect to the geometric parameters were
evaluated. Then, the sensitivity data were used to estimate the PCE coefficients in order to incorporate
the governing physics into the surrogate construction. The results were calculated for multiple runs
of nsim.

The performance of PC2 (in red), PC2 LAR (in green), and standard LAR PCE (in blue) is com-
pared in Fig. 3 using three error metrics: standard mean squared error (MSE), cumulative absolute
error, and derivative MSE, plotted against the number of high-fidelity training runs nsim. In the fig-
ure, the PC2 and PC2 LAR results are computed here using the proposed IGA sensitivity-based PC2

method. The results are presented with convergence plots showing the mean ±σ intervals, for all er-
ror metrics. At the smallest experimental design (nsim = 200), the sparse physics-informed surrogate
PC2 LAR already matches the MSE of standard LAR PCE, demonstrating that enforcing physics does
not compromise accuracy when data are scarce. As nsim grows to 1000, full PC2 achieves roughly a
40% reduction in MSE compared to LAR PCE, accompanied by substantial reductions in cumulative
absolute error and improvements in gradient fidelity. Beyond nsim ≈ 600, the error curves for PC2

plateau, indicating that the surrogate has fully assimilated the equilibrium and boundary constraints
and requires minimal additional simulations to reach its optimal accuracy. In terms of cumulative
absolute error, PC2 and PC2 LAR again outperformed standard LAR PCE, with the smallest cumula-
tive error over all samples. Furthermore, PC2 and PC2 LAR accuracy in derivative errors reflect their
ability to preserve equilibrium laws (via IGA sensitivities), ensuring gradients align with physical
behavior. Overall, both PC2 variants consistently outperform standard sparse PCE, highlighting their
robustness to extreme geometric variations due to the integration of IGA-derived sensitivities.

200 400 600 800 1000
nsim

3.5

3.0

2.5

2.0

lo
g 1

0(
)

Data Mean Squared Error
PCE
PC2

PC2 LAR

200 400 600 800 1000
nsim

10

20

30

40

50
Cumulative Absolute Error

200 400 600 800 1000
nsim

2.5

2.0

1.5

1.0

0.5

0.0
Derivative Mean Squared Error

Figure 3: Numerical results for the 3D horseshoe for increasing number of samples in the domain for three different error
measures.

Although the underlying IGA model is linear elastic, the mapping from geometric parameters to
stress triaxiality can be highly nonlinear. Consequently, even a linear partial differential equation
yields a complex nonlinear response surface in the input space. Therefore, a physics-informed surro-
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gate, such as IGA-sensitivity-based PC2, has great potential for UQ when it comes to accurately and
efficiently quantifying geometric uncertainty.

6 CONCLUSIONS

The present paper introduces a novel strategy for geometric uncertainty quantification, whereby
variational sensitivities from Isogeometric Analysis (IGA) are integrated into a Physics-informed
Polynomial Chaos Expansion (PC2). The proposed IGA-sensitivity-based PC2 surrogate was applied
to estimate stress triaxiality in a 3D horseshoe geometry with four independent geometric uncertain
parameters. The IGA-sensitivity-based PC2 surrogate demonstrated superior performance in terms
of mean squared error, cumulative absolute error, and derivative fidelity metrics when compared to
the standard sparse PCE. The integration of IGA-derived constraints through a Karush-Kuhn-Tucker
(KKT) formulation has been demonstrated to result in a substantial reduction in the number of re-
quired training runs. Furthermore, this approach has been demonstrated to enhance predictive accu-
racy and accurately capture gradient behavior.

The principal strengths of this approach are twofold. Firstly, IGA’s exact geometric representation
and efficient variational sensitivity calculation generate high-value training information at negligible
extra cost. Secondly, the KKT-based enforcement of physics guarantees that both data and governing
equations are satisfied in the surrogate. Consequently, the combination of these characteristics ren-
ders IGA-sensitivity-based PC2 particularly well-suited for the execution of computationally intensive
IGA-based UQ in complex systems.

Nevertheless, there are several potential areas for further refinement. The present implementation
is based on the assumption of linear elasticity and static systems. Extensions to nonlinear material
behaviour, coupled dynamics, or correlated input parameters will require careful adaptation of both
sensitivity extraction and constraint enforcement. Furthermore, while the horseshoe example is repre-
sentative of many engineering components, real-world applications may involve higher-dimensional
design spaces or localized geometric discontinuities, which could pose a challenge to the condition-
ing of the KKT system. Future work will explore applying this method to more complex systems,
robust strategies for handling nonlinear and coupled PDEs within the IGA-sensitivity-based PC2 and
investigating its potential for other types of uncertainty.
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[11] Lüthen, N., Roustant, O., Gamboa, F., Iooss, B., Marelli, S., Sudret, B. Global sensitivity anal-
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