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Abstract

Estimating failure probabilities is a critical challenge in practice, due to high-dimensional param-1

eter spaces and small failure probability levels. Existing sample-based methods are dimensionally2

robust but face efficiency challenges when estimating small failure probabilities. Approximate meth-3

ods provide a balance between accuracy and computational efficiency; however, their performance is4

often sensitive to the dimensionality of the parameter spaces. Among existing approximate methods,5

Method of Moments (MoM) estimates failure probabilities by utilizing the higher-order moments6

of the performance function. While it provides analytical efficiency, it faces challenges in high-7

dimensional problems due to the difficulties in efficient moment estimation. Control Variates (CV),8

a variance reduction technique based on sampling, enhances moment estimation with efficiency inde-9

pendent of dimensionality by leveraging numerical models of different fidelities. However, it is rarely10

applied to the estimation of higher-order moments. This paper introduces an approach for reliability11

analysis that combines MoM with CV, proposing estimators for the third and fourth raw moments12

of the performance function based on CV. The approach achieves significant computational savings13

in small failure probability problems and demonstrates strong potential for high-dimensional appli-14

cations. The effectiveness of the proposed approach is validated through three numerical examples,15

including non-Gaussian problems, computationally intensive finite element models, and nonlinear16

dynamic systems. The results highlight its accuracy and efficiency.17

Keywords: Failure probability, Method of Moments, Control variates, High dimension, Small
failure probability

1. Introduction18

Failure probability is a key metric for assessing system reliability and risk. It is mathematically19

defined as a multi-dimensional integral of the joint probability density function (JPDF) of random20

parameters over the failure domain. In practical scenarios, failure events are typically rare, making21

the failure probability small and the failure domain difficult to evaluate. Furthermore, the parameter22

space is often high-dimensional, which increases the computational complexity of integral estimation.23

Achieving both efficiency and precision in estimating failure probability remains a challenging task.24

There exists a diverse range of methods for estimating failure probabilities, each tailored to address25

specific computational and modeling challenges. One such approach is sample-based methods, which26

offer advantages in handling high-dimensional problems. The most straightforward method is Monte27

Carlo Simulation (MCS). While MCS delivers unbiased results, it is computationally demanding,28

requiring a large number of samples to reduce the variance of the failure probability estimator,29

particularly for small failure probabilities. To address this, Control Variates (CV), an effective30
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variance reduction technique, has been employed for estimating small failure probabilities. However,31

the effectiveness of CV diminishes significantly for rare events, making it unsuitable for efficiently32

estimating very small failure probabilities [1, 2]. To improve the efficiency, some improved sample-33

based methods have been proposed such as importance sampling [3], importance sampling combined34

with CV [4], directional importance sampling [5, 6], and subset simulation [7, 8]. Although the35

efficiency has been significantly improved compared with crude MCS, efficiency issues persist in36

these sample-based methods when dealing with very small failure probabilities.37

To overcome the difficulties associated with the calculation of small failure probabilties, approx-38

imate methods such as the First-Order Reliability Method (FORM) and Second-Order Reliability39

Method (SORM) have been developed [9, 10]. These methods define the failure domain using ap-40

proximated LSFs, and estimate the failure probability based on the most probable points identified41

through optimization techniques [11]. Although approximate methods significantly improve effi-42

ciency, the approximation of LSFs can lead to inaccuracies in highly nonlinear problems or high43

dimensional problems [12]. As an alternative to approximate methods, surrogate models have been44

introduced to approximate the computationally expensive evaluations of LSFs. Examples includes45

Kriging models [13, 14, 15], polynomial chaos expansion [16, 17], response surface methods [18, 19],46

and Bayesian active learning methods [20, 21]. With efficient surrogate models applied, the compu-47

tational efficiency for reliability analysis can be significantly improved. However, the construction of48

surrogate models introduces additional challenges, particularly in high-dimensional problems [22].49

Another class of approaches assesses failure probability by computing a multi-dimensional integral50

of the JPDF of random parameters across the entire domain. This evaluation not only determines the51

failure probability but also reveals the probability distribution of the performance function. Building52

on the evolution mechanism of probability density in stochastic systems, the Probability Density Evo-53

lution Method (PDEM) [23] is introduced to construct the distribution function of the performance54

function. Based on the probability density integral equation, Direct Probability Integral Method [24]55

is proposed to construct the distribution function of stochastic responses of dynamic systems. Al-56

though these methods have proven effective in assessing the reliability of large structures [25], their57

current application is limited to problems with a small number of random variables [26]. To overcome58

the challenge of constructing the full distribution of the performance function, Method of Moments59

(MoM) is proposed to estimate the failure probability using first the three or four moments of the60

performance function [27, 28]. Once moments are obtained, MoM can estimate the failure probability61

through analytical formulas. A key task in MoM is estimating moments of the performance function,62

which are typically computed using dimension reduction techniques combined with point estimation63

method [29, 30]. However, the application of point estimation methods faces efficiency challenges in64

high-dimensional problems. Additionally, dimension reduction techniques may introduce inaccura-65

cies, particularly in strongly nonlinear problems, where errors cannot be measured.66

Challenges in moment estimation can be tackled using sample-based methods combined with67

multifidelity models. Sample-based methods are independent of problem dimensionality and provide68

variance estimators to assess accuracy, while multifidelity models enhance efficiency. Most multifi-69

delity models are applied only for estimating the mean values of the performance functions, such as70

Multilevel Monte Carlo (MLMC) methods [31], Multifidelity Monte Carlo (MFMC) methods [32] and71

Control Variates (CV) [33]. Recently, an unbiased estimator of standard deviation of performance72

function has been proposed using CV [34, 35] with splitting techniques. These studies demonstrate73

the potential of CV for improving the estimation of statistical moments, with reduced variance and74

computational costs. However, to the best of authors’ best knowledge, there are no estimators75

provided for higher-order moments of the performance function based on CV.76

This paper introduces a novel reliability analysis approach that synergistically combines MoM77
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with CV. To enable this integration, the estimators for the third and fourth moments are proposed,78

marking the first application of such estimators within the CV framework (to the best knowledge of79

the authors). By leveraging the explicit failure probability model based on moments of the perfor-80

mance function provided by MoM, and the efficient moment estimation enabled by CV, the proposed81

approach addresses the inherent limitations of each method. Specifically, it overcomes the infeasibil-82

ity of high-dimensional moment estimation in MoM and the challenges in directly evaluating failure83

probability using CV. The result is an approach that not only achieves significant computational84

savings for estimating small failure probability but also demonstrates strong potential for effectively85

handling high-dimensional problems. The structure of the paper is as follows: Section 2 reviews86

the fundamentals of MoM. Section 3 details the CV and its application for variance reduction, with87

the estimators for third and fourth order moments proposed. Procedures of the proposed method88

are discussed in Section 4. The Section 5 demonstrates the efficiency and accuracy of the proposed89

method through three numerical examples. Finally, Section 6 concludes the paper.90

2. Failure probability based on Method of Moments91

2.1. Problem statement92

A fundamental problem in reliability analysis is computing the failure probability, denoted as PF ,93

which is the likelihood of a failure event of interest and can be formulated as follows:94

PF = Prob[G(X) ≤ 0], (1)

where Prob[·] is the probability operator; G(X) is the performance function associated with the95

failure event of interest, where G(X) ≤ 0 indicates the occurrence of failure, and G(X) > 0 implies96

safety; and X = (X1, · · · , Xn)
T is a n dimensional vector of input random variables, with the ith97

random variable denoted by Xi. Denote the JPDF of X as fX(x), PF can be computed by a multifold98

probability integral over the failure domain as follows:99

PF =

∫
G(X)≤0

fX(x)dx. (2)

In certain specific cases, such as when G(X) is a weighted summation of independent random100

variables, the values of X that correspond to the failure domain can be explicitly determined. How-101

ever, in practical engineering applications, G(X) is often complex and may even involve finite element102

models (FEMs), making the estimation of the failure probability challenging or even infeasible.103

2.2. Method of Moments104

To address the difficulty of computing the integral over the failure domain, MoM [28] has been105

developed. As illustrated in Fig. 1, the core concept of MoM is to treat G(X) as a random variable106

Z = G(X), which enables the reformulation of the failure probability PF as follows:107

PF = FZ(0), (3)

where FZ(·) is the CDF of Z. The distribution of Z is generally unknown, and FZ(0) is alternatively108

approximated based on moments of Z alternatively. Since the first four standard central moments,109

i.e., the mean µZ1 , standard deviation µZ2 , skewness µZ3 and kurtosis µZ4 , contain the majority110

statistical information about the distribution, they are applied to approximate the distribution of Z.111
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Figure 1: Schematic representation of the method of moments

To derive an explicit expression while ensuring a high level of accuracy, the cubic normal distri-112

bution [36] is applied in this study, and then FZ(0) is then computed as follows:113

FZ(0) ∼= Φ(β4M), (4)

where β4M is the fourth moment reliability index, which is obtained by equivalently transforming114

Z=0 into Gaussian space based on the first four moments of Z and is formulated as follows [37]:115

β4M = 3
√

∆+ q − 3
√

∆− q +
a3
3a4

, (5)

∆ =
√
q2 + p3, (6)

p =
3a2a4 − a23

9a24
, q =

a33
27a34

− a2a3
6a24

− a3 − β2M/a1
2a4

, β2M =
µZ1

µZ2

, (7)

where β2M is the second moment reliability index; and a2, a3, and a4 are the parameters calculated116

based on µZ3 and µZ4 as follows [38]:117

a2 = 1− 3a4, a3 =
5 + (35− µ2

Z3
)a24

9a0 + 30− 0.8µ2
Z3

µZ3 , a4 =
2a0

2a0 + 46(1− 1/µ2
Z4
)− µ2

Z3

, (8)

a0 =

√
3µZ4 − 4µ2

Z3
− 5− 2

1− (3µ2
Z3

+ 1)/µ2
Z4

, a1 =
1√

1 + 2a23 + 6a24
. (9)

Please note that Eqs. (5)-(7) are valid within a specific range of applicability. If the combination118

of µZ3 and µZ4 falls outside this range, a complete expression for β4M is required [37] (for details,119

see Appendix A). The mean µZ1 , standard deviation µZ2 , skewness µZ3 and kurtosis µZ4 of the120

performance function are theoretically defined as follows:121

µZ1 = EZ1 , (10)

µZ2 =
√

EZ2 − E2
Z1
, (11)

µZ3 =
1

µ3
Z2

(
EZ3 − 3EZ1EZ2 + 2E3

Z1

)
, (12)
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µZ4 =
1

µ4
Z2

(
EZ4 − 4EZ1EZ3 + 6E2

Z1
EZ2 − 3E4

Z1

)
, (13)

where EZi
is the ith raw moment, which is defined as follows:123

EZi
= E

{
[G(X)]i

}
=

∫
ΩX

[G(x)]ifX(x)dx, (14)

where E {·} denotes the expectation of the argument; Ωx is the domain of all possible values of X.124

Based on Eqs. (3)-(14), MoM computes the failure probability by integrating over the entire domain125

rather than the failure domain. This method overcomes the difficulty of defining the values of X126

corresponding to the failure domain and thus makes the problem tractable.127

2.3. Challenge in Method of Moments128

One of the key tasks in MoM is estimating raw moments of the performance function as given129

in Eq. (14). Since G(X) is generally complicated, directly computing these moments from Eq. (14)130

is typically not feasible, and numerical methods are employed as an alternative. A basic approach131

is to convert the integral into a summation. However, as X is often high-dimensional, this compu-132

tation can be time-consuming. To improve efficiency, various dimensional reduction methods have133

been proposed [29, 30, 39]. Despite these efforts, the number of evaluations still increases with the134

dimension of X, making it impractical for high-dimensional problems. Furthermore, since moments135

are estimated approximately, the accuracy level of these estimates should be provided. However,136

there is no error estimator provided for dimensional reduction methods, leaving the accuracy of the137

computed failure probability uncertain.138

Alternatively, MCS can be applied for moment estimation, with the estimator and corresponding139

variance obtained as follows:140

ÊMCS
Zi

(x̂n) = H(Gi, x̂n) =
1

n

n∑
j=1

[
G
(
x̂(j)
n

)]i
, (15)

V
[
ÊMCS

Zi
(x̂n)

]
= V

[
H(Gi, x̂n)

]
=

1

n(n− 1)

{
n∑

j=1

[
G
(
x̂(j)
n

)]2i − 1

n

[
H(Gi, x̂n)

]2}
, (16)

where ÊMCS
Zi

(x̂n) is the estimator of ith raw moment in crude MCS based on samples x̂n; H(Gi, x̂n)141

denotes the estimator of the ith raw moment of G(X), based on n samples grouped in x̂n; the142

matrices x̂n =
[
x̂
(1)
n x̂

(2)
n · · · x̂

(n)
n

]
represents the sets of input samples used for the estimation;143

x̂
(j)
n is the j th sample in x̂n; n is the sample size; and V[·] is a variance estimator. The Coefficient of144

Variation (CoV) of the MCS-based estimator ÊMCS
Zi

(x̂n) can then be estimated as follows:145

CoV
[
ÊMCS

Zi
(x̂n)

]
=

√
V
[
ÊMCS

Zi
(x̂n)

]
E
[
ÊMCS

Zi
(x̂n)

] . (17)

It can be seen from Eqs. (15)-(17) that, narrowing down the variances of MCS estimator requires146

a large number of samples, which is generally time-consuming. Nevertheless, keeping the coefficient147

of variation in Eq. (17) sufficiently low is highly desirable, as this in turn leads to a sufficiently148
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accurate estimation of failure probabilities with MoM.149

3. Moment estimation using the Control Variates technique150

3.1. Basic theory of the Control Variates technique151

To reduce the variance of the estimated moments, CV is introduced. Without loss of accuracy,152

[G(X)]i can be equivalently expressed as follows [40]:153

[G(X)]i =
{
[G(X)]i − ρ[L(X)]i

}
+ ρ[L(X)]i, (18)

where L(X) denotes the low-fidelity (LF) model, which produces approximate responses at a faster154

rate by sacrificing some accuracy; and ρ is a control parameter. Note that, in existing studies, only155

the cases with i = 1 or 2 are considered, while the higher-order raw moments are investigated for156

the first time here (to the authors’ best knowledge). For clarity, G(X) referenced below is referred157

to as the high-fidelity (HF) model.158

By substituting Eq. (18) into (14), the ith raw moment of G(X) can be reformulated as follows:159

EZi
=

∫
ΩX

{
[G(x)]i − ρ[L(x)]i

}
fX(x)dx+ ρ

∫
ΩX

[L(x)]ifX(x)dx. (19)

Based on Eq. (19), EZi
can be estimated based on two sets of samples as follows:160

ÊZi
(x̂n, x̂m) = H(Gi, x̂n)− ρ

[
H(Li, x̂n)−H(Li, x̂m)

]
, (20)

where H(Li, x̂n) and H(Li, x̂m) denote the estimators of the ith raw moment of the LF model based161

on n samples grouped in x̂n and m samples grouped in x̂m, respectively. The variance of ÊZi
(x̂n, x̂m)162

is then computed as follows:163

V
[
ÊZi

(x̂n, x̂m)
]
=V[H(Gi, x̂n)] + ρ2

{
V[H(Li, x̂n)] + V

[
H(Li, x̂m)

]}
− 2ρC

[
H(Gi, x̂n), H(Li, x̂n)]

] , (21)

where C [H(Gi, x̂n), H(Li, x̂n)] is the covariance between ith order power of the outputs from the HF164

and LF models, evaluated using n shared samples x̂n, which can be computed as follows:165

C
[
H(Gi, x̂n), H(Li, x̂n)]

]
=

1

n(n− 1)

{
n∑

j=1

[
G
(
x̂(j)
n

)
L
(
x̂(j)
n

)]i − 1

n
H(Gi, x̂n)H(Li, x̂n)

}
, (22)

The purpose of CV is to minimize the variance given in Eq. (21), and thus an optimal control166

parameter ρopt(i, x̂n, x̂m) can be determined, which is computed as follows [40, 32]:167

ρopt(i, x̂n, x̂m) =
C [H(Gi, x̂n), H(Li, x̂n)]

V[H(Li, x̂n)] + V [H(Li, x̂m)]
. (23)

Substitution of Eq. (23) into Eqs. (20) and (21) yields the construction of the estimator for ith raw168

moment of G(X) in CV, denoted as ÊCV
Zi

(x̂n, x̂m). ÊCV
Zi

(x̂n, x̂m) and corresponding variance can be169

reformulated as follows [40, 32]:170

ÊCV
Zi

(x̂n, x̂m) = H(Gi, x̂n)− ρopt(i, x̂n, x̂m)
[
H(Li, x̂n)−H(Li, x̂m)

]
, (24)
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V
[
ÊCV

Zi
(x̂n, x̂m)

]
= V

[
H(Gi, x̂n)

]
− {C [H(Gi, x̂n), H(Li, x̂n)]}

2

V[H(Li, x̂n)] + V [H(Li, x̂m)]
. (25)

A comparison between Eqs. (16) and (25) shows that the variance of ÊCV
Zi

(x̂n, x̂m) is smaller than171

that of ÊMCS
Zi

(x̂n), demonstrating the potential of using CV to achieve variance reduction. Further-172

more, V
[
ÊCV

Zi
(x̂n, x̂m)

]
decreases as the variances of H(Gi, x̂n), H(Li, x̂n) and H(Li, x̂m) decrease,173

while it decreases with a higher C [H(Gi, x̂n), H(Li, x̂n)]. To achieve variance reduction with fewer HF174

model evaluations, it is essential to minimize V[H(Li, x̂m)] while maximizing C [H(Gi, x̂n), H(Li, x̂n)].175

Minimizing V[H(Li, x̂m)] requires a sufficiently large size of x̂m, which underscores the importance176

of ensuring that the computational cost of evaluating the LF model remains as low as possible.177

Note that C [H(Gi, x̂n), H(Li, x̂m)] quantifies the linear relationship between the HF and LF mod-178

els. Therefore, a strong linear correlation between these two models is a key condition for achieving179

substantial variance reduction.180

3.2. Unbiased estimation of raw moments using the splitting technique181

To ensure there is no difference between the expectation of the estimator and the true value,182

the bias in the estimator of ÊCV
Zi

(x̂n, x̂m) should be examined. Based on Eq. (24), the bias of the183

estimator is quantified as follows [41]:184

Bias
[
ÊCV

Zi
(x̂n, x̂m)

]
=E

{
ÊCV

Zi
(x̂n, x̂m)− H̃(Gi)

}
=C

[
ρopt(i, x̂n, x̂m), H(Li, x̂m)−H(Li, x̂n)

]
,

(26)

where H̃(Gi) is the true value of the ith raw moment of the HF model. Based on Eq. (26), the bias185

in the estimator is given by the covariance between ρopt(i, x̂n, x̂m) and H(Li, x̂m)−H(Li, x̂n), which186

arises from the correlation between these two estimators when derived from the same set of samples.187

To eliminate the bias while maintaining efficiency, a splitting technique has been proposed [35, 41].188

This method divides the available samples into independent groups and uses separate groups to189

estimate the optimum control parameter and the statistics associated with the HF and LF models.190

This ensures the estimated values remain uncorrelated, resulting in zero bias. Generally, the available191

samples can be evenly divided into three groups, and the estimator of the raw moments using the192

splitting technique is given by [35]:193

ÊCV-S
Zi

(x̂n, x̂m) =
1

3

3∑
j=1

Êj
Zi
(x̂j,n∗ , x̂j,m∗ , x̂τ(j),n∗ , x̂τ(j),m∗), (27)

Êj
Zi
(x̂j,n∗ , x̂j,m∗ , x̂τ(j),n∗ , x̂τ(j),m∗) = H(Gi, x̂j,n∗)

− ρopt(i, x̂τ(j),n∗ , x̂τ(j),m∗)
[
H(Li, x̂j,n∗)−H(Li, x̂j,m∗)

]
,

(28)

where ÊCV-S
Zi

(x̂n, x̂m) is the splitting-based estimator of the ith raw moment of the HF model; x̂j,n∗194

and x̂j,m∗ denote the samples for the j th group; n∗ = n/3 and m∗ = m/3 are the numbers of samples195

per group; x̂τ(j),n∗ and x̂τ(j),m∗ denote the samples for the τ(j)th group; and τ(j) = (jmod 3) + 1 is196

an index cycles through the values 1, 2, 3.197

Based on Eq. (27), the variance of ÊCV-S
Zi

(x̂n, x̂m) is given by:198

V
[
ÊCV-S

Zi
(x̂n, x̂m)

]
=

1

32

3∑
j=1

V
[
Êj

Zi
(x̂j,n∗ , x̂j,m∗ , x̂τ(j),n∗ , x̂τ(j),m∗)

]
. (29)
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The CoV of the splitting-based estimator ÊCV-S
Zi

can be expressed as follows:199

CoV
[
ÊCV-S

Zi

]
=

√
V
[
ÊCV-S

Zi
(x̂n, x̂m)

]
E
[
ÊCV-S

Zi
(x̂n, x̂m)

] . (30)

3.3. Challenges in applying Control Variates for failure probability estimation200

While CV is an effective variance reduction technique for moment estimation, its application to201

estimating small failure probabilities encounters significant challenges, primarily due to the charac-202

teristics of rare event scenarios.203

One major challenge is the low correlation in extreme events. As discussed earlier, the effective-204

ness of the CV method depends heavily on the correlation between HF and LF models. However,205

in extreme event scenarios, this correlation often diminishes significantly [1], greatly reducing the206

efficiency of CV. Another limitation arises from the limited contribution of samples in rare event207

scenarios. Small failure probabilities are typically concentrated in narrow regions of the parame-208

ter space, meaning that most samples drawn from the input distribution contribute little to the209

estimation process, leading to significant sampling inefficiency.210

To address these challenges, combining methods has emerged as a promising strategy. By lever-211

aging the focused sampling properties of Importance Sampling (IS), CV has been integrated with212

IS to achieve more efficient estimation of small failure probabilities [4]. While this combination en-213

hances efficiency, it introduces the curse of dimensionality. Specifically, identifying suitable sampling214

densities for IS becomes increasingly difficult as dimensionality grows [42], making the combination215

of IS and CV inherently challenging for high-dimensional problems.216

4. Reliability analysis using Method of Moments combining Control Variates217

In the proposed method, the failure probability is computed directly based on the moments218

of performance function, while moment estimation is performed using CV combing with splitting219

technique. Detailed procedure is discussed as follows:220

(1) Moment estimation of performance function221

• Construct low-fidelity model. To enhance variance reduction, LF model should posses222

strong linear correlation with the HF model, i.e., the original model. The LF model can be223

constructed using simpler numerical techniques, such as finite difference methods instead224

of finite element methods, larger time steps, or coarser meshes.225

• Samples generation. Generate x̂n and x̂m. Compute the outputs of HF and LF models226

based on x̂n and x̂m.227

• Raw moment estimation. Divide the samples evenly into three groups. Compute228

ÊCV-S
Zi

(x̂n, x̂m) using Eqs. (23) and (27)-(28). Then, evaluate the CoV of ÊCV-S
Zi

(x̂n, x̂m)229

with the aid of Eqs. (25), and (29)-(30). If the obtained CoV meets the target re-230

quirement, proceed to the next step. Otherwise, adjust the sample size or modify the231

LF model as needed. Modifications can be guided by the values of V[H(Li, x̂j,m∗)] and232

C [H(Gi, x̂j,n∗), H(Li, x̂j,n∗)].233

– If V[H(Li, x̂j,m∗)] is relatively large, m should be increased.234

– If C [H(Gi, x̂j,n∗), H(Li, x̂j,n∗)] is small, modify the LF model to improve the linear235

correlation between the LF and HF models.236
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• Standard central moment estimation. With the raw moment of performance function237

estimated, the mean, standard deviation, skewness and kurtosis can be directly computed238

based on Eqs. (10)-(13).239

(2) Failure probability estimation. The failure probability can be computed based on the240

standard central moments of the performance function, using explicit formulas given in Eqs. (3)-241

(9).242

The application of CV ensures the unbiased moment estimation of the performance function using243

a reduced number of samples, while MoM provides efficient formula for computing failure probability244

based on the estimated moments. With the CoV in estimated moments provided, the reliable level245

of estimated failure probability can be anticipated, which is important for practical engineering.246

5. Examples247

To evaluate the application of the proposed method, three examples are presented in this section.248

The first example involves a univariate polynomial with an analytical solution for moments of the249

performance function and the failure probability. This example demonstrates the detailed procedure250

of the proposed method and explores the effects of non-Gaussianity, nonlinearity, and the failure251

probability level on its performance. The second example considers a seepage problem beneath a252

dam, incorporating a refined FEM. This example illustrates the application of the proposed method253

to a complex practical problem and explores the impact of LF model quality on its performance. The254

third example focuses on a Duffing oscillator, which is nonlinear, non-Gaussian, and high-dimensional.255

This example assesses the capability of the proposed method to handle computationally intensive,256

high-dimensional reliability problems.257

5.1. Example 1: A univariate polynomial258

The first example investigates an analytical problem with the performance function defined as259

follows:260

G(X) = k1X
3 + k2X

2 + k3X + k4, (31)

where ki (i =1,..,4) are polynomial coefficients and X is a random variable.261

5.1.1. Detailed procedure of the proposed method262

To illustrate the detailed procedure of the proposed method, the case when k1 = 1.0, k2 =263

−6.0, k3 = 18, k4 = −8.0 is considered, with X following a Gamma distribution with mean value264

µX1 = 1.0 and CoV set to be 0.2. As an univariate polynomial, there are analytical solutions to the265

mean, standard deviation, skewness and kurtosis of the performance function, denoted by a vector266

µZ = (µZ1 , µZ2 , µZ3 , µZ4), and failure probability, which are µZ = (4.8832, 1.7852, 0.0188, 2.9354),267

and PF = 2.5271× 10−3, respectively (details can be found in Appendix B).268

To apply the proposed method, the first step is to construct a LF model corresponding to the269

original performance function (HF model). In this example, a second-order Taylor expansion around270

µX1 is used as the LF model, defined as follows:271

L(X) = G(µX1) + d1(µX1)(X − µX1) + d2(µX1)(X − µX1)
2/2, (32)

where di(µX1) (i=1, 2) is the ith order derivative of G(X) around µX1 . The second step is to272

generate samples of X, i.e., x̂n and x̂m, and the corresponding responses computed from the HF273

and LF models. To obtain a reliable evaluation of the raw moments of the performance function,274
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n=12,000 and m = 3 × 106 are used in this example. The corresponding raw moments obtained275

are (4.8825, 27.0248, 163.15219, 1055.4837), with CoVs of (0.0215%, 0.0414%, 0.0665%, 0.1020%).276

Based on Eqs. (10)-(13), µZ can be obtained as (4.8825, 1.7848, 0.0166, 2.9240). Substitution of µZ277

into Eqs. (3)-(9) leads to the result of the failure probability as 2.5632× 10−3. Comparison between278

the failure probability obtained from the proposed method with the exact value shows that, the279

relative error is around 1.4273%. This demonstrates the accuracy of the proposed method for this280

case.281

5.1.2. Influence of the inputs282

To investigate the impact of the input statistical model on the performance of the proposed283

method, various statistical models for X are considered, including Normal, Lognormal, Gamma,284

Weibull and Gumbel distributions, with CoV set to be 0.1, 0.2, 0.3, 0.4, and 0.5. The variations285

in failure probabilities obtained through both the analytical solution and the proposed method are286

compared in Figs. 2a-2e.287
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Figure 2: Change of failure probability with mean value of X

It can be observed that when X follows Normal, Gamma, or Weibull distributions, the proposed288

method accurately estimates failure probabilities, which are consistent with the exact values across289

all considered CoVs. This demonstrates the flexibility and adaptability of the proposed method290

across different statistical models of the input. When X follows Lognormal or Gumbel distributions,291

the proposed method yields failure probabilities that closely match the exact values for smaller292

CoVs (less than 0.4). However, for larger CoVs, slight discrepancies arise between the results of the293

proposed method and the exact values. This is attributed to the increased error in MoM for strongly294

non-Gaussian problems.295
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5.1.3. Influence of the performance function296

In practical engineering, the performance function defines the failure events and the relationship297

between the inputs and outputs. Thus, its shape will influence the performance of the proposed298

method. To examine the influence of the performance function, different values of k2, k3, and k4 are299

considered with k1 = 1.0, and the variations of failure probabilities obtained analytically and from300

the proposed method are compared in Figs. 3a-3e.301
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Figure 3: Change of failure probability with k4

It can be found that:302

(1) When k2 = −7, the failure probability computed using the proposed method closely aligns303

with the reference results across all considered failure probability levels, with a minimum of304

approximately 10−8. This is because, in this case, the performance function exhibits weak305

non-Gaussianity, allowing MoM to provide precise evaluations of the failure probability.306

(2) When the value of k2 deviates from -7, the difference between the failure probabilities obtained307

from the analytical and the proposed method becomes significant for smaller failure probabili-308

ties. For k2 = −8 and k2 = −6, this difference becomes notable around 10−6. Larger deviations309

of k2 from -7 result in significant differences occurring at even higher failure probability levels.310

This behavior arises because changes in k2 alter moments of the performance function, increas-311

ing the non-Gaussianity of the problem. MoM faces challenges to accurately evaluate small312

failure probabilities in cases of strong non-Gaussianity.313

To sum up, the performance of the proposed method is largely influenced by the non-Gaussianility314

of the performance function, while both the statistical model and shape of the performance function315

will affect such non-Gaussianility. For weakly non-Gaussian problem, the proposed method can316

provide reliable failure probability estimation up to the level of 10−10, while the accuracy of the317

proposed method will decrease for strongly non-Gaussian problem.318
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5.2. Example 2: Seepage problem below a dam modeled using finite element method319

The second example involves the study of a steady state confined seepage below a dam as shown320

in Fig. 4, which is adopted from Ref. [43]. The failure event considered occurs when the seepage

                                                                                        Silty sand

                    Silty gravel

50 m 50 m20 m

15 m

hD

5 m

WaterA B C D

1 m

1 m

          Impermeable layer

Cutoff wall

Dam

Figure 4: Schematic graph of the dam

321

discharge exceeds a prescribed threshold, and the corresponding performance function is constructed322

as follows:323

G(X) = b−Q(X), (33)

where b is the threshold, expressed in units of L/h/m; and Q(X) is the seepage discharge, which is324

computed as follows:325

Q(X) = −
∫
CD

kyy,2
∂hW

∂y
dx, (34)

where CD represents the downstream side of the dam as shown in Fig 4; kyy,2 is the vertical per-326

meability of the second soil layer; and hW is the hydraulic head, which is solved by the following327

differential equation:328

kxx,i
∂2hW

∂x2
+ kyy,i

∂2hW

∂y2
= 0, i = 1, 2, (35)

where kxx,i and kyy,i represent the horizontal and vertical permeabilities of the ith soil layer, respec-329

tively; and x and y denote horizontal and vertical coordinates, respectively. These permeabilities330

are considered as random variables, with the statistical information summarized in Table 1. The

Table 1: Statistical information of random variables in example 2

Silty sand Silty gravel
Horizontal kxx,1 Vertical kyy,1 Horizontal kxx,2 Vertical kyy,2

(m/s) (m/s) (m/s) (m/s)

Distribution Lognormal Lognormal Lognormal Lognormal
Mean 5 ×10−7 2 ×10−7 5 ×10−6 2 ×10−6

Standard deviation 0.8 ×10−7 0.4 ×10−7 0.8 ×10−6 0.4 ×10−6

331

boundary conditions for Eq. (35) are as follows: (1) hW over segments AB and CD are 20+hD m332

and 20 m, respectively, where hD=8.5 m is the height of water; (2) there is null flow across the333

other boundaries. To obtain sufficient accuracy, Eq. (35) is solved numerically applying a refined334

FEM as shown in Fig. 5a, where the associated model comprises 3413 nodes and 1628 quadratic335

triangular elements (details can be found in Ref [44]). This refined FEM is applied as the HF model.336

Using scripts implemented in MATLAB R2023b and executed on a computer with a 13th Gen In-337

tel® Core™ i7-1360P processor running at 2.20 GHz, the computational time for the refined FEM338

is approximately 0.8301s.339
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(a) High fidelity model (b) Low fidelity model

Figure 5: FEMs of the dam

5.2.1. Moment estimation using different LF models340

Based on Eq. (33), moments of the performance function can be easily obtained based on those341

of Q(X) as follows:342

µZ1 = b− µQ1 , µZ2 = µQ2 , µZ3 = −µQ3 , µZ4 = µQ4 , (36)

where µQ1 , µQ2 , µQ3 and µQ4 are the mean, standard deviation, skewness and kurtosis of Q(X),343

respectively. Eq. (36) shows that, the key task for moment estimation of the performance function344

is to determine the moments of Q(X). To compute these moments, an appropriate LF model needs345

to be constructed.346

Since this is a linear problem, an efficient reduced-order model (ROM) can be constructed as the347

LF model (details can be found in Ref. [34]). This ROM consists of five basis terms and requires348

only 0.0017s per evaluation. However, as this ROM is applicable only to linear problems, a more349

general LF model is also developed by refining the finite element mesh, as illustrated in Fig. 5b.350

This coarse FEM consists of 268 elements and requires approximately 0.0189s per evaluation. The351

computational time ratios between these two LF models and the HF model are 488.3 and 43.9,352

respectively. The quality of the constructed LF models is evaluated by generating 3× 104 samples of353

the seepage discharge, and the results are shown in Fig. 6. It is evident that the samples produced354

by the ROM exhibit a strong linear relationship with those from the refined FEM, whereas the355

relationship between the coarse and refined FEMs is weakly nonlinear.356
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(a) Reduced order model (ROM)
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(b) Coarse finite element model (FEM)

Figure 6: Samples of seepage discharge using different models

The moments of Q(X) are estimated using the CV method based on these two LF models, with357

different sets of generated samples. For comparison, the moments are also computed using crude MCS358

13



with different sample sizes. Specifically, the MCS results based on 108 samples serve as the reference359

benchmark, while the results based on 6615 and 66150 samples are used for comparison with CV,360

combining ROM and coarse FEM, requiring the same computational time. The computed standard361

central moments of Q(X), obtained from different methods, are compared in Table 2, alongside the362

CoVs of the raw moments, the number of model evaluations, and the corresponding computational363

time.364

Table 2: Moments of the seepage discharge in example 2

MCS
CV

ROM Coarse FEM

NH 108 6615 66150 6000 54000
NL 0 0 0 3×105 3×105

Tt (s) 8.301×106 549.069 5050.14 549.06 5050.14
µQ1(×10−6) 2.904 2.908 2.905 2.904 2.904
µQ2(×10−7) 2.865 2.885 2.8701 2.863 2.860

µQ3
0.281 0.2868 0.2901 0.281 0.280

µQ4
3.141 3.2366 3.1613 3.139 3.155

CoV[EQ1
](%) 0.001 0.122 0.038 0.018 0.017

CoV[EQ2
](%) 0.015 1.839 0.5712 0.036 0.034

CoV[EQ3 ](%) 0.101 12.80 3.884 0.054 0.052
CoV[EQ4 ](%) 0.039 4.875 1.518 0.074 0.071

µQ1
and µQ2

have unit of L/h/m.
NH denotes the number of HF model evaluations required.
NL denotes the number of LF model evaluations required.
Tt denotes the total computational time required.

As shown in Table 2, the moments of Q(X) estimated using CV achieve CoVs comparable to365

those obtained from MCS with 108 samples, but with significantly reduced computational time. This366

efficiency is due to the fact that CV leverages LF models to reduce the variance of the estimators,367

requiring far fewer HF model evaluations compared to MCS. Furthermore, for the same computational368

time, the CoVs of the moments obtained using CV are less than 1/20 of those from MCS. When369

comparing CV with coarse FEM to CV with ROM, the latter achieves acceptable CoVs for moments370

with even fewer HF model evaluations. This is due to the strong linear relationship between the371

ROM and the HF model, which facilitates further reduction in the variance of moments. Such a372

difference highlights the critical role of enhancing the linear relationship between HF and LF models373

to improve the performance of the proposed method.374

5.2.2. Failure probability and convergence rate375

With the moments of Q(X) obtained, moments of G(X) with different values of b can be readily376

obtained based on Eq. (36). Then, MoM can be applied to compute the corresponding failure377

probabilities, which are depicted in Fig. 7. For comparison, the failure probability is also computed378

using MoM based on different samples from HF models and crude MCS with 108 samples, and the379

results are also depicted in Fig. 7.380

It can be found from Fig. 7 that, for all the thresholds considered, the proposed method can381

obtain nearly the same results as those from crude MCS when considering NH = 108 samples, which382

demonstrates the accuracy of the proposed method for this example. The results obtained from MoM383

with NH = 6615 and NH = 66150 have relatively significant difference from those of the MCS when384

NH = 108, which is attributed to the error in the estimated moments.385
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Figure 7: Failure probability for example 2

102 103 104 105 106 107 108

Number of samples from high -delity model

0.0

0.5

1.0

1.5

2.0

P
F
(#
10
!
4
)

MCS
MoM
Proposed-ROM
Proposed-FEM

Figure 8: Failure probability with different number
of samples in example 2

To assess the convergence speed of the proposed method, the failure probabilities obtained from386

both MCS, MoM with moments estimated from MCS and the proposed method are compared in387

Fig. 8 for the case where b=4.2 ×10−6 L/h/m. The total sample size applied for the proposed388

method is 105, with auxiliary lines included in the figure for better clarity. It is important to note389

that although the proposed method requires additional samples from the LF model compared to390

crude MCS, the computational time for these extra samples is relatively small. As shown in Fig. 8,391

the results obtained by the proposed method based on ROM converge after 1,000 samples, while392

those based on coarse FEM converge after around 7 × 104 samples. Both methods based on the393

proposed approach converge much earlier than crude MCS. Meanwhile, the results obtained from394

MoM based on moments estimated from MCS converge after around 106, which is almost the same395

as crude MCS. This demonstrates the efficiency of the proposed method for this example.396

5.3. Example 3: Nonlinear Duffing oscillator with high dimensional inputs397

In this example, a nonlinear Duffing oscillator with a single degree of freedom is considered. This398

type of oscillator is commonly used to model systems exhibiting cubic stiffness nonlinearity. The399

objective is to estimate the system’s first excursion probability. The corresponding performance400

function is defined as follows:401

G(X) = b−max {t ∈ [0, T ] : |y(X, t)|} , (37)

where b is the threshold expressed in m; t is time instants in s; T = 15s is the time duration402

considered; and y(X, t) is the displacement of the system, which is computed by the governing403

equation of motion as follows:404

mÿ(X, t) + cẏ(X, t) + ky(X, t) + k3y
3(X, t) = p(X, t), (38)

where m = 6 × 104kg is the mass; c = 2ζ
√
kmNs/m is the damping coefficient; ζ = 0.05 is the405

damping ratio; k = 5 × 106N/m is the linear stiffness; k3 = 1 × 106 N/m3 is the cubic stiffness;406

p(X, t) represents an external excitation in the unit of N; ẏ(X, t) is the velocity; and ÿ(X, t) is the407

acceleration. The system starts from rest, with y(X, 0) = 0m and ẏ(X, 0) = 0m/s.408
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The external force p(X, t) is defined as:409

p(X, t) = −m
n∑

i=1

√
4S∆ω cos(ωit+Xi), (39)

where n = 150 is the dimension of X; S = 0.03m2/s3 is the intensity of the white noise power spectral410

density; ∆ω = ωmax/n is the frequency increment; ωmax = 30 rad/s is the maximum frequency;411

ωi = ωmin + (i− 1)∆ω, with ωmin = ∆ω; and Xi is the ith component of X, which follows a uniform412

distribution in [0, 2π]. To ensure the accuracy of the simulation, a time step of ∆tHF = 0.015 s is413

used, resulting in nt,HF = 1001 time instants, with the corresponding time vector tHF
j = (j − 1)∆tHF414

for j = 1, 2, . . . , nt,HF.415

To conduct the proposed method for reliability analysis, a LF model is constructed with a coarser416

time step of ∆tLF = 0.12 s, producing nt,LF = 126 time instants, with the corresponding time417

vector tLFj = (j − 1)∆tLF for j = 1, 2, . . . , nt,LF. The ratio of computational time between the418

HF and LF model evaluations is around 44.06. For CV, the sample sizes n and m are set to419

be 2400 and 9 × 104, respectively. The first four raw moments of extreme response within the420

total simulation time T and corresponding CoVs can be obtained as (0.0917m, 8.6471×10−3m2,421

8.3919×10−4m3 8.3726×10−5m4) and (0.1074%, 0.2213%, 0.3494%, 0.4994%), respectively. Based422

on the raw moments, the mean, standard variation, skewness and kurtosis of the extreme response423

are obtained as 0.0917m, 0.0157m, 0.3832, and 3.1894, respectively. For comparison, the crude MCS424

based on HF model is also conducted. To obtain raw moments with similar level of CoVs as CV, the425

samples required by crude MCS is around 2.2× 104. The ratio of computational time between crude426

MCS and CV for moment estimation is approximately 4.95. Furthermore, MoM based on moments427

estimated using MCS with samples from HF model is also conducted. To obtain same computational428

time between MoM and the proposed method, the sample size of HF model applied in MoM is 4445.429

The mean, standard variation, skewness and kurtosis of the extreme response from crude MCS are430

obtained as 0.0919m, 0.0155m, 0.3441, and 3.0883, respectively. The CoVs of first raw moments are431

(0.25%, 0.51%, 0.78%, 1.07%). Comparison between the moment estimations conducted from crude432

MCS and CV shows that the application of CV can significantly reduce the variance of moments.433

Based on moments of extreme value of response, moments of G(X) can be easily computed and434

the corresponding failure probability can be readily obtained. For comparison, failure probability435

is also estimated using crude MCS with 108 samples evaluated using the HF model, MoM with436

4445 samples evaluated usign the HF model, and the variations of the failure probability with the437

threshold b is shown in Fig. 9.438

It can be observed that the failure probability estimated by the proposed method aligns well439

with that obtained from MCS for PF ≥ 10−4, demonstrating the accuracy of the proposed method440

for nonlinear and high-dimensional problems. In contrast, the failure probability estimated using441

MoM shows a relatively significant deviation from the MCS results, primarily due to inaccuracies442

in moment estimation. For failure probabilities smaller than 10−4, a noticeable discrepancy arises443

between the results of the proposed method and those from MCS. This is because the first four444

standard central moments of G(X) are insufficient to accurately characterize the tail behavior of the445

probability density function (PDF).446

Furthermore, to assess the convergence speed of the proposed method, Fig. 10 illustrates the447

variations in failure probability as a function of the number of HF samples used by the proposed448

method, MoM, and MCS. It can be seen that the proposed method converges significantly faster than449

MoM, and its convergence rate is influenced by the failure probability. When the failure probability450

is relatively large (around 10−4 for b = 0.16 m), the proposed method yields reliable results with451
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Figure 9: Failure probability for different thresholds
in example 3
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Figure 10: Failure probability with different number
of samples in example 3

approximately 1000 HF samples.452

6. Discussion and Conclusions453

A novel reliability analysis method is proposed, combining Method of Moments (MoM) and454

Control Variates (CV). Unbiased estimators for the third and fourth raw moments of the performance455

function have been developed using CV, along with their variances. Three examples are investigated,456

including non-Gaussian polynomial, complex FEMs, and nonlinear dynamic systems.457

The key feature of the proposed method lies in the integration of MoM and CV, with accuracy and458

efficiency determined by MoM and CV, respectively. Specifically, accuracy is influenced by the non-459

Gaussianity of the performance function. For weakly non-Gaussian problems, where the skewness460

and kurtosis of the performance function are close to 0 and 3, respectively, the proposed method can461

achieve accurate estimations of small failure probabilities (down to 10−10). The computational effi-462

ciency is independent of the dimensionality of the input random variables and is primarily influenced463

by the quality of the low-fidelity model used in CV.464

While the proposed method offers significant advantages in terms of accuracy and computational465

efficiency, certain considerations should be noted to ensure its optimal application. The method466

leverages a moment-based reliability index, which performs effectively when the first four moments467

adequately characterize the distribution of the performance function. However, in scenarios involving468

multi-modal behaviors or strongly non-Gaussian distributions, the accuracy may be affected. In terms469

of efficiency, the proposed method benefits from the use of low-fidelity models, which must maintain470

a strong linear correlation with the high-fidelity counterparts. This correlation is best achieved471

when both models share the same underlying physical mechanisms. Practical approaches, such as472

modifying element size in finite element models or adjusting time steps in dynamic load simulations,473

have proven to be effective. Nonetheless, for highly complex systems, maintaining both efficiency474

and correlation can be challenging. These cases provide a valuable direction for further investigation475

into more flexible model reduction strategies to enhance the scalability of the approach.476
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Appendix A. Complete expressions of fourth moment reliability index482

Complete monotonic expressions of fourth moment reliability index β4M[37, 38] are shown in Table483

A.1. The parameters required are computed as follows:484

J1 = 2a1a4(|p|3/2 − q) + β2M, J2 = 2a1a4(−|p|3/2 − q) + β2M, (A.1)

J0 = a22/4a3 + a3, ϕ = arccos

(
− q

|p|3/2

)
, (A.2)

β0 =
a2 −

√
a22 + 4a3(a3 − β2M/a1)

2a3
, (A.3)

β1 =
3
√

∆+ q − 3
√

∆− q +
a3
3a4

, (A.4)

β2 = 2cos

(
ϕ+ π

3

)√
−p+

a3
3a4

, β3 = −2cos

(
ϕ

3

)√
−p+

a3
3a4

, (A.5)

β4 = 2cos

(
ϕ− π

3

)√
−p+

a3
3a4

. (A.6)

Table A.1: Complete monotonic expressions of fourth moment reliability index β4M

µZ4 p µZ3 β2M β4M

[5/3 + 4µ2
Z3
/3, 3 + 4µ2

Z3
/3] (−∞, 0] (−∞,+∞) [J1, J2] β2

3 + 4µ2
Z3
/3 NA

(−∞, 0] [J0,+∞) β0
[0,+∞) (−∞, J0] β0

(3 + 4µ2
Z3
/3, 48)

[0,+∞) (−∞,+∞) (−∞,+∞) β1

(−∞, 0)
[0,+∞) (−∞, J1] β3
(−∞, 0) [J2,+∞) β4

NA denotes not available.

Appendix B. Raw moments of an univariate polynomial and the failure probability485

Consider a polynomial of a single random variable X defined in Eq. (31). The ith raw moment,486

i.e., EZi
, can be computed as follows:487

EZi
= E[(G(X))i] = E[(k1X3 + k2X

2 + k3X + k4)
i], (B.1)

Expanding Eq. (B.1), the first four raw moments of Z = G(X) are given as follows:488

EZi
=

∑
q+j+l+m=i

(
i

q, j, l,m

)
kq
1k

j
2k

l
3k

m
4 EX3q+2j+l

, (B.2)

where EX3q+2j+l
is the (3q + 2j + l)th raw moment of X.489
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The failure probability is defined as the probability of G(X) ≤ 0. As G(X) is a univariate490

polynomial, the roots of G(X) = 0 can be analytically obtained using the Cardano formula. The491

corresponding failure probability is then computed as:492

k1 > 0 : PF = FX(x1) + FX(x3)− FX(x2), (B.3)

k1 < 0 : PF = 1− [FX(x1) + FX(x3)− FX(x2)], (B.4)

where FX(·) is the CDF of X ; and x1 ≤ x2 ≤ x3 are the roots of G(X) = 0.493
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