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Reliability Analysis Combining Method of Moments with Control Variates
Cristobal H. Acevedo, Xuan-Yi Zhang, Marcos A. Valdebenito, Matthias G.R. Faes

e Reliability analysis approach combining Method of Moments and Control Variates (CV).

e Unbiased estimators for the third and fourth raw moments, along with their variances.

Efficiency of the proposed method is independent of dimensionality.

Accurate for estimating small failure probability of weakly non-Gaussian problems.

The method’s efficiency relies on the quality of the low-fidelity model.
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Abstract

Estimating failure probabilities is a critical challenge in practice, due to high-dimensional param-
eter spaces and small failure probability levels. Existing sample-based methods are dimensionally
robust but face efficiency challenges when estimating small failure probabilities. Approximate meth-
ods provide a balance between accuracy and computational efficiency; however, their performance is
often sensitive to the dimensionality of the parameter spaces. Among existing approximate methods,
Method of Moments (MoM) estimates failure probabilities by utilizing the higher-order moments
of the performance function. While it provides analytical efficiency, it faces challenges in high-
dimensional problems due to the difficulties in efficient moment estimation. Control Variates (CV),
a variance reduction technique based on sampling, enhances moment estimation with efficiency inde-
pendent of dimensionality by leveraging numerical models of different fidelities. However, it is rarely
applied to the estimation of higher-order moments. This paper introduces an approach for reliability
analysis that combines MoM with CV, proposing estimators for the third and fourth raw moments
of the performance function based on CV. The approach achieves significant computational savings
in small failure probability problems and demonstrates strong potential for high-dimensional appli-
cations. The effectiveness of the proposed approach is validated through three numerical examples,
including non-Gaussian problems, computationally intensive finite element models, and nonlinear

dynamic systems. The results highlight its accuracy and efficiency.

Keywords: Failure probability, Method of Moments, Control variates, High dimension, Small

failure probability

1. Introduction

Failure probability is a key metric for assessing system reliability and risk. It is mathematically
defined as a multi-dimensional integral of the joint probability density function (JPDF) of random
parameters over the failure domain. In practical scenarios, failure events are typically rare, making
the failure probability small and the failure domain difficult to evaluate. Furthermore, the parameter
space is often high-dimensional, which increases the computational complexity of integral estimation.
Achieving both efficiency and precision in estimating failure probability remains a challenging task.

There exists a diverse range of methods for estimating failure probabilities, each tailored to address
specific computational and modeling challenges. One such approach is sample-based methods, which
offer advantages in handling high-dimensional problems. The most straightforward method is Monte
Carlo Simulation (MCS). While MCS delivers unbiased results, it is computationally demanding,
requiring a large number of samples to reduce the variance of the failure probability estimator,
particularly for small failure probabilities. To address this, Control Variates (CV), an effective
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variance reduction technique, has been employed for estimating small failure probabilities. However,
the effectiveness of CV diminishes significantly for rare events, making it unsuitable for efficiently
estimating very small failure probabilities [1, 2]. To improve the efficiency, some improved sample-
based methods have been proposed such as importance sampling [3], importance sampling combined
with CV [4], directional importance sampling [5, 6], and subset simulation [7, 8]. Although the
efficiency has been significantly improved compared with crude MCS, efficiency issues persist in
these sample-based methods when dealing with very small failure probabilities.

To overcome the difficulties associated with the calculation of small failure probabilties, approx-
imate methods such as the First-Order Reliability Method (FORM) and Second-Order Reliability
Method (SORM) have been developed [9, 10]. These methods define the failure domain using ap-
proximated LSFs, and estimate the failure probability based on the most probable points identified
through optimization techniques [11]. Although approximate methods significantly improve effi-
ciency, the approximation of LSFs can lead to inaccuracies in highly nonlinear problems or high
dimensional problems [12]. As an alternative to approximate methods, surrogate models have been
introduced to approximate the computationally expensive evaluations of LSFs. Examples includes
Kriging models [13, 14, 15], polynomial chaos expansion [16, 17], response surface methods [18, 19],
and Bayesian active learning methods [20, 21]. With efficient surrogate models applied, the compu-
tational efficiency for reliability analysis can be significantly improved. However, the construction of
surrogate models introduces additional challenges, particularly in high-dimensional problems [22].

Another class of approaches assesses failure probability by computing a multi-dimensional integral
of the JPDF of random parameters across the entire domain. This evaluation not only determines the
failure probability but also reveals the probability distribution of the performance function. Building
on the evolution mechanism of probability density in stochastic systems, the Probability Density Evo-
lution Method (PDEM) [23] is introduced to construct the distribution function of the performance
function. Based on the probability density integral equation, Direct Probability Integral Method [24]
is proposed to construct the distribution function of stochastic responses of dynamic systems. Al-
though these methods have proven effective in assessing the reliability of large structures [25], their
current application is limited to problems with a small number of random variables [26]. To overcome
the challenge of constructing the full distribution of the performance function, Method of Moments
(MoM) is proposed to estimate the failure probability using first the three or four moments of the
performance function [27, 28]. Once moments are obtained, MoM can estimate the failure probability
through analytical formulas. A key task in MoM is estimating moments of the performance function,
which are typically computed using dimension reduction techniques combined with point estimation
method [29, 30]. However, the application of point estimation methods faces efficiency challenges in
high-dimensional problems. Additionally, dimension reduction techniques may introduce inaccura-
cies, particularly in strongly nonlinear problems, where errors cannot be measured.

Challenges in moment estimation can be tackled using sample-based methods combined with
multifidelity models. Sample-based methods are independent of problem dimensionality and provide
variance estimators to assess accuracy, while multifidelity models enhance efficiency. Most multifi-
delity models are applied only for estimating the mean values of the performance functions, such as
Multilevel Monte Carlo (MLMC) methods [31], Multifidelity Monte Carlo (MFMC) methods [32] and
Control Variates (CV) [33]. Recently, an unbiased estimator of standard deviation of performance
function has been proposed using CV [34, 35] with splitting techniques. These studies demonstrate
the potential of CV for improving the estimation of statistical moments, with reduced variance and
computational costs. However, to the best of authors’ best knowledge, there are no estimators
provided for higher-order moments of the performance function based on CV.

This paper introduces a novel reliability analysis approach that synergistically combines MoM
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with CV. To enable this integration, the estimators for the third and fourth moments are proposed,
marking the first application of such estimators within the CV framework (to the best knowledge of
the authors). By leveraging the explicit failure probability model based on moments of the perfor-
mance function provided by MoM, and the efficient moment estimation enabled by CV, the proposed
approach addresses the inherent limitations of each method. Specifically, it overcomes the infeasibil-
ity of high-dimensional moment estimation in MoM and the challenges in directly evaluating failure
probability using CV. The result is an approach that not only achieves significant computational
savings for estimating small failure probability but also demonstrates strong potential for effectively
handling high-dimensional problems. The structure of the paper is as follows: Section 2 reviews
the fundamentals of MoM. Section 3 details the CV and its application for variance reduction, with
the estimators for third and fourth order moments proposed. Procedures of the proposed method
are discussed in Section 4. The Section 5 demonstrates the efficiency and accuracy of the proposed
method through three numerical examples. Finally, Section 6 concludes the paper.

2. Failure probability based on Method of Moments

2.1. Problem statement

A fundamental problem in reliability analysis is computing the failure probability, denoted as Pr,
which is the likelihood of a failure event of interest and can be formulated as follows:

Pr = Prob[G(X) < 0], (1)

where Probl[-] is the probability operator; G(X) is the performance function associated with the
failure event of interest, where G(X) < 0 indicates the occurrence of failure, and G(X) > 0 implies
safety; and X = (Xy,---,X,)T is a n dimensional vector of input random variables, with the ith
random variable denoted by X;. Denote the JPDF of X as fx(x), Pr can be computed by a multifold
probability integral over the failure domain as follows:

m:éwmkwm. @)

In certain specific cases, such as when G(X) is a weighted summation of independent random
variables, the values of X that correspond to the failure domain can be explicitly determined. How-
ever, in practical engineering applications, G(X) is often complex and may even involve finite element
models (FEMs), making the estimation of the failure probability challenging or even infeasible.

2.2. Method of Moments

To address the difficulty of computing the integral over the failure domain, MoM [28] has been
developed. As illustrated in Fig. 1, the core concept of MoM is to treat G(X) as a random variable
Z = G(X), which enables the reformulation of the failure probability Pp as follows:

Pr = Fz(0), (3)

where F(-) is the CDF of Z. The distribution of Z is generally unknown, and F(0) is alternatively
approximated based on moments of Z alternatively. Since the first four standard central moments,
i.e., the mean puyz , standard deviation jiz,, skewness pz, and kurtosis pz,, contain the majority
statistical information about the distribution, they are applied to approximate the distribution of Z.
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Figure 1: Schematic representation of the method of moments

To derive an explicit expression while ensuring a high level of accuracy, the cubic normal distri-
bution [36] is applied in this study, and then Fz(0) is then computed as follows:

Fz(0) = ®(Banmr), (4)

where (4 is the fourth moment reliability index, which is obtained by equivalently transforming
Z=0 into Gaussian space based on the first four moments of Z and is formulated as follows [37]:

a
B4M:\3/A+q_\3/A_Q+3737 (5)
4
A =+/q*+ p?, (6)
3asay — a% a% agaz a3 — 52M/CL1 Mz,
= = - - — 7

where (2, is the second moment reliability index; and as, a3, and a4 are the parameters calculated
based on f1z, and pyz, as follows [38]:

1 34 4 — 5+(35_MZZ3)GZM L 20, )
? T 900 +30 - 0802, TN T 2a0 +46(1 — 1/p2,) — 13,
\/3uz4—4u223—5—2 1
ag = a)p = (9)

1= Buz, +1)/uz, 1+ 242 + 6a2

Please note that Eqs. (5)-(7) are valid within a specific range of applicability. If the combination
of uz, and uyz, falls outside this range, a complete expression for B4y, is required [37] (for details,
see Appendix A). The mean pyz,, standard deviation pyz,, skewness pz, and kurtosis uyz, of the
performance function are theoretically defined as follows:

Kz, EZl’ (1())
Mz, = \/ EZ2 - E%lv (11)
1
[z, a (Ez, —3Ez Ez, + 2E3, ), (12)
Za
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KHzy = —— (EZ4 —A4Ez Bz, + 6E%1EZ2 - SEél) ) (13)

Hz,

where E. is the ith raw moment, which is defined as follows:
Bz =E{[600)'} = [ (660 fx(x)ix. (1)
Qx

where E {-} denotes the expectation of the argument; {2y is the domain of all possible values of X.
Based on Egs. (3)-(14), MoM computes the failure probability by integrating over the entire domain
rather than the failure domain. This method overcomes the difficulty of defining the values of X
corresponding to the failure domain and thus makes the problem tractable.

2.3. Challenge in Method of Moments

One of the key tasks in MoM is estimating raw moments of the performance function as given
in Eq. (14). Since G(X) is generally complicated, directly computing these moments from Eq. (14)
is typically not feasible, and numerical methods are employed as an alternative. A basic approach
is to convert the integral into a summation. However, as X is often high-dimensional, this compu-
tation can be time-consuming. To improve efficiency, various dimensional reduction methods have
been proposed [29, 30, 39]. Despite these efforts, the number of evaluations still increases with the
dimension of X, making it impractical for high-dimensional problems. Furthermore, since moments
are estimated approximately, the accuracy level of these estimates should be provided. However,
there is no error estimator provided for dimensional reduction methods, leaving the accuracy of the
computed failure probability uncertain.

Alternatively, MCS can be applied for moment estimation, with the estimator and corresponding
variance obtained as follows:

B () = H(G' %) = =3 (6 (%)) (15)
v [EYS )] =V [H(E )] = —s {Z G} - - [H(G%ﬁn)f} .9

~

where Egﬂcs(&n) is the estimator of ith raw moment in crude MCS based on samples x,,; H(G', %,,)
denotes the estimator of the ith raw moment of G(X), based on n samples grouped in X,; the

matrices X,, = [)A(g) %2 ... )z;”)} represents the sets of input samples used for the estimation;

%) is the jth sample in x,; n is the sample size; and V-] is a variance estimator. The Coefficient of

Variation (CoV) of the MCS-based estimator E}/ICS(&,L) can then be estimated as follows:

\/V YOS (%)

E [Eg{CS(xnﬂ

CoV [Egcs(xn)} - (17)

It can be seen from Eqs. (15)-(17) that, narrowing down the variances of MCS estimator requires
a large number of samples, which is generally time-consuming. Nevertheless, keeping the coefficient
of variation in Eq. (17) sufficiently low is highly desirable, as this in turn leads to a sufficiently
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accurate estimation of failure probabilities with MoM.

3. Moment estimation using the Control Variates technique

3.1. Basic theory of the Control Variates technique

To reduce the variance of the estimated moments, CV is introduced. Without loss of accuracy,
[G(X)]* can be equivalently expressed as follows [40]:

(GX)) ={[GX)]" = plLX)]'} + p[LX)], (18)

where L(X) denotes the low-fidelity (LF) model, which produces approximate responses at a faster
rate by sacrificing some accuracy; and p is a control parameter. Note that, in existing studies, only
the cases with ¢ = 1 or 2 are considered, while the higher-order raw moments are investigated for
the first time here (to the authors’ best knowledge). For clarity, G(X) referenced below is referred
to as the high-fidelity (HF) model.

By substituting Eq. (18) into (14), the ith raw moment of G(X) can be reformulated as follows:

Pz = | {IGOO = plL6OV} fxx)dx+p | (L6 x(x)ix (19)
x
Based on Eq. (19), Ez, can be estimated based on two sets of samples as follows:
Ez, (%, %) = H(G' %) — p [H(L, %) — H(L', %,)] , (20)
where H(L',%,) and H(L',X,,) denote the estimators of the ith raw moment of the LF model based

on n samples grouped in x,, and m samples grouped in X,,, respectively. The variance of E 7. (Xn, Xim)
is then computed as follows:

V| B (S, )| =VIH(G' %)) + 0* {VIH (L' %)) + V [H(L' %]}

‘ | , 1)
—2pC [H(G', %), H(L', %,)]]

where C [H(G',%,,), H(L',x,)| is the covariance between ith order power of the outputs from the HF
and LF models, evaluated using n shared samples X,,, which can be computed as follows:

C[H(G" %) H(L' %,)]] = ——— {Z (G &)L (D)) - lH(G”}f<n>H(L%f<n>} o (22)

n(n —1) n

The purpose of CV is to minimize the variance given in Eq. (21), and thus an optimal control
parameter popt (i, Xp, X,) can be determined, which is computed as follows [40, 32]:

C[H(G', %), H(L', %,)]
V[H (L, %,)] + V [H(L, %,)]

(23)

popt(iy fcn; )A(m) =

Substitution of Eq. (23) into Eqs. (20) and (21) yields the construction of the estimator for ith raw

~

moment of G(X) in CV, denoted as ESV(&M X)) Egv(fcn, X,,) and corresponding variance can be
reformulated as follows [40, 32]:

ESY (%0, %m) = H(G, %) — popt (6 Xy X ) [H (L', %) — H(LY, %,)] (24)

6
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_ {C[H(G %), H(L %))}
VIH(L',%,)] + V[H(L, %m)]

% [Egﬂxmxm)} =V [H(G' %,)] (25)

A comparison between Eqgs. (16) and (25) shows that the variance of Egv(fcn, X, ) is smaller than
that of E}'“5(x,), demonstrating the potential of using CV to achieve variance reduction. Further-

more, V [Eg}’(fcn,fcm)] decreases as the variances of H(G',x,,), H(L',x,) and H(L" X,,) decrease,

while it decreases with a higher C [H(G",%,,), H(L',%,)]. To achieve variance reduction with fewer HF
model evaluations, it is essential to minimize V[H (L’, X,,,)] while maximizing C [H (G', x,,), H(L', %,,)].
Minimizing V[H (L, X,,)] requires a sufficiently large size of X,,, which underscores the importance
of ensuring that the computational cost of evaluating the LF model remains as low as possible.
Note that C[H(G", %x,), H(L',%X,,)] quantifies the linear relationship between the HF and LF mod-
els. Therefore, a strong linear correlation between these two models is a key condition for achieving
substantial variance reduction.

3.2. Unbiased estimation of raw moments using the splitting technique

To ensure there is no difference between the expectation of the estimator and the true value,
the bias in the estimator of ESY(X,,%X,) should be examined. Based on Eq. (24), the bias of the
estimator is quantified as follows [41]:

Bias | ESY (%0, %) | =B { BSY (%, %) — ﬁ(@i)} | )
=C [popt (Za )A(na }A(m)y H(Lzu )A(m) - H(Lla )A(n)] )

where H(G?) is the true value of the ith raw moment of the HF model. Based on Eq. (26), the bias
in the estimator is given by the covariance between pop (i, Xp, X,,) and H (L', X,,,) — H(L',%,,), which
arises from the correlation between these two estimators when derived from the same set of samples.

To eliminate the bias while maintaining efficiency, a splitting technique has been proposed [35, 41].
This method divides the available samples into independent groups and uses separate groups to
estimate the optimum control parameter and the statistics associated with the HF' and LF models.
This ensures the estimated values remain uncorrelated, resulting in zero bias. Generally, the available
samples can be evenly divided into three groups, and the estimator of the raw moments using the

splitting technique is given by [35]:

3
Z B (Xjne Xjme, Xr()n s Xr (G),m* ) (27)

. A ~ i A i A (28)
- popt(l7Xr(j),n*,xr(j),m*) [H(L 7Xj,n*) - H(L 7Xj,m*)} )

where EgVS (X, Xm) is the splitting-based estimator of the ith raw moment of the HF model; X; -
and X;,,~ denote the samples for the jth group; n* = n/3 and m* = m/3 are the numbers of samples
per group; X-(jyn+ and X, ()~ denote the samples for the 7(j)th group; and 7(j) = (jmod3) + 1 is
an index cycles through the values 1,2, 3.

Based on Eq. (27), the variance of ESY5(%,,X,,) is given by:

V| EGYS(%n %n)| = 37 D0V | B, Ry K ey R )| - (29)
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The CoV of the splitting-based estimator E%VS can be expressed as follows:

\/ v [Egy-S(fcn, fcm)}

E [Egy-S(fcn, fcm)}

CoV [E‘Z{,V-S] - (30)

3.3. Challenges in applying Control Variates for failure probability estimation

While CV is an effective variance reduction technique for moment estimation, its application to
estimating small failure probabilities encounters significant challenges, primarily due to the charac-
teristics of rare event scenarios.

One major challenge is the low correlation in extreme events. As discussed earlier, the effective-
ness of the CV method depends heavily on the correlation between HF and LF models. However,
in extreme event scenarios, this correlation often diminishes significantly [1], greatly reducing the
efficiency of CV. Another limitation arises from the limited contribution of samples in rare event
scenarios. Small failure probabilities are typically concentrated in narrow regions of the parame-
ter space, meaning that most samples drawn from the input distribution contribute little to the
estimation process, leading to significant sampling inefficiency.

To address these challenges, combining methods has emerged as a promising strategy. By lever-
aging the focused sampling properties of Importance Sampling (IS), CV has been integrated with
IS to achieve more efficient estimation of small failure probabilities [4]. While this combination en-
hances efficiency, it introduces the curse of dimensionality. Specifically, identifying suitable sampling
densities for IS becomes increasingly difficult as dimensionality grows [42], making the combination
of IS and CV inherently challenging for high-dimensional problems.

4. Reliability analysis using Method of Moments combining Control Variates

In the proposed method, the failure probability is computed directly based on the moments
of performance function, while moment estimation is performed using CV combing with splitting
technique. Detailed procedure is discussed as follows:

(1) Moment estimation of performance function

e Construct low-fidelity model. To enhance variance reduction, LF model should posses
strong linear correlation with the HF model, i.e., the original model. The LF model can be
constructed using simpler numerical techniques, such as finite difference methods instead
of finite element methods, larger time steps, or coarser meshes.

e Samples generation. Generate x,, and x,,. Compute the outputs of HF and LF models
based on X,, and X,,.

e Raw moment estimation. Divide the samples evenly into three groups. Compute
ESVS (%X, Xm) using Egs. (23) and (27)-(28). Then, evaluate the CoV of EZYS(%X,,Xm)
with the aid of Egs. (25), and (29)-(30). If the obtained CoV meets the target re-
quirement, proceed to the next step. Otherwise, adjust the sample size or modify the
LF model as needed. Modifications can be guided by the values of V[H (L', X; )] and
CH(G" Xjn+), H(L", Xjn+)].

— If V[H (L', X )] is relatively large, m should be increased.
— If C[H(G",%Xj+), H(L', X ,+)] is small, modify the LF model to improve the linear
correlation between the LF and HF models.
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e Standard central moment estimation. With the raw moment of performance function
estimated, the mean, standard deviation, skewness and kurtosis can be directly computed

based on Egs. (10)-(13).

(2) Failure probability estimation. The failure probability can be computed based on the
standard central moments of the performance function, using explicit formulas given in Egs. (3)-

(9)-

The application of CV ensures the unbiased moment estimation of the performance function using
a reduced number of samples, while MoM provides efficient formula for computing failure probability
based on the estimated moments. With the CoV in estimated moments provided, the reliable level
of estimated failure probability can be anticipated, which is important for practical engineering.

5. Examples

To evaluate the application of the proposed method, three examples are presented in this section.
The first example involves a univariate polynomial with an analytical solution for moments of the
performance function and the failure probability. This example demonstrates the detailed procedure
of the proposed method and explores the effects of non-Gaussianity, nonlinearity, and the failure
probability level on its performance. The second example considers a seepage problem beneath a
dam, incorporating a refined FEM. This example illustrates the application of the proposed method
to a complex practical problem and explores the impact of LF model quality on its performance. The
third example focuses on a Duffing oscillator, which is nonlinear, non-Gaussian, and high-dimensional.
This example assesses the capability of the proposed method to handle computationally intensive,
high-dimensional reliability problems.

5.1. Exzample 1: A univariate polynomial

The first example investigates an analytical problem with the performance function defined as
follows:
G(X) = k1 X3 + ko X%+ ks X + ky, (31)

where k; (i =1,..,4) are polynomial coefficients and X is a random variable.

5.1.1. Detailed procedure of the proposed method

To illustrate the detailed procedure of the proposed method, the case when k; = 1.0, ky =
—6.0, k3 = 18, ky = —8.0 is considered, with X following a Gamma distribution with mean value
ix, = 1.0 and CoV set to be 0.2. As an univariate polynomial, there are analytical solutions to the
mean, standard deviation, skewness and kurtosis of the performance function, denoted by a vector
wz = (fzy, 1z, W75, 1z, ), and failure probability, which are py; = (4.8832,1.7852,0.0188,2.9354),
and Pr = 2.5271 x 1073, respectively (details can be found in Appendix B).

To apply the proposed method, the first step is to construct a LF model corresponding to the
original performance function (HF model). In this example, a second-order Taylor expansion around
itx, is used as the LF model, defined as follows:

L(X) = G(px,) + di(px,)(X = px,) + do(px, (X — px,)?/2, (32)

where d;(px,) (i=1, 2) is the ith order derivative of G(X) around px,. The second step is to
generate samples of X, i.e., X, and X,,, and the corresponding responses computed from the HF
and LF models. To obtain a reliable evaluation of the raw moments of the performance function,

9
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n=12,000 and m = 3 x 10% are used in this example. The corresponding raw moments obtained
are (4.8825, 27.0248, 163.15219, 1055.4837), with CoVs of (0.0215%, 0.0414%, 0.0665%, 0.1020%).
Based on Egs. (10)-(13), pz can be obtained as (4.8825, 1.7848, 0.0166, 2.9240). Substitution of pz
into Egs. (3)-(9) leads to the result of the failure probability as 2.5632 x 1073, Comparison between
the failure probability obtained from the proposed method with the exact value shows that, the
relative error is around 1.4273%. This demonstrates the accuracy of the proposed method for this
case.

5.1.2. Influence of the inputs

To investigate the impact of the input statistical model on the performance of the proposed
method, various statistical models for X are considered, including Normal, Lognormal, Gamma,
Weibull and Gumbel distributions, with CoV set to be 0.1, 0.2, 0.3, 0.4, and 0.5. The variations
in failure probabilities obtained through both the analytical solution and the proposed method are
compared in Figs. 2a-2e.

10° - e — 100 e
M S S """’=:'ﬁ~~—\---_¥:_:_“
1072 10 102 R
107 0 L0
10°° 107¢ T
10°° 1078 108
10-10 S g 10710
05 07 09 11 13 15 05 06 07 08 09 1.0 05 06 07 08 09
KX, KX, Hxy
(a) Normal distribution (b) Lognormal distribution (¢) Gamma distribution
10° 10°
P N Exact (COV = 0.1)
e e N - Exact (COV = 0.2)
1071 . —_-2:??:% —Exact (COV = 03)
T —Exact (COV = 0.4)
1072 - Exact (COV = 0.5)
10-2 Proposed (COV = 0.1)
0 Proposed (COV = 0.2)
---Proposed (COV = 0.3)
104 10-3 ---Proposed (COV = 0.4)
05 06 07 08 09 10 05 06 07 08 09 10 roposed(COV=05)
KX, 122

(d) Weibull distribution (e) Gumbel distribution

Figure 2: Change of failure probability with mean value of X

It can be observed that when X follows Normal, Gamma, or Weibull distributions, the proposed
method accurately estimates failure probabilities, which are consistent with the exact values across
all considered CoVs. This demonstrates the flexibility and adaptability of the proposed method
across different statistical models of the input. When X follows Lognormal or Gumbel distributions,
the proposed method yields failure probabilities that closely match the exact values for smaller
CoVs (less than 0.4). However, for larger CoVs, slight discrepancies arise between the results of the
proposed method and the exact values. This is attributed to the increased error in MoM for strongly
non-Gaussian problems.
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5.1.8. Influence of the performance function

In practical engineering, the performance function defines the failure events and the relationship
between the inputs and outputs. Thus, its shape will influence the performance of the proposed
method. To examine the influence of the performance function, different values of ko, k3, and k, are
considered with &y = 1.0, and the variations of failure probabilities obtained analytically and from
the proposed method are compared in Figs. 3a-3e.

10() . S 10() 10(]
1072 1072 1072
Q107! 10t 107}
1076 A 10°° 1076}
1078 1078 1078
-10 -9 -8 -7 -6 -5 -10 -9 -8 -7 -6 -5 -10 -9 -8 -7 -6 -5
]{34 k4 k4
(a) kg = —8 (b) kg = -7 (c) ka = —6
10° 10°
(ks = 15) ---Proposed (k3 = 15)
(ks = 16) ---Proposed (k3 = 16)
(ks = 17) ---Proposed (k3 = 17)
(ks = 18) ---Proposed (k3 = 18)
(ks = 19) ---Proposed (k3 = 19)
(ks = 20) ---Proposed (ks = 20)
(e) ko = —4
Figure 3: Change of failure probability with k4
It can be found that:
1) When ky = —7, the failure probability computed using the proposed method closely aligns
) p Yy p g prop y allg

with the reference results across all considered failure probability levels, with a minimum of
approximately 1078. This is because, in this case, the performance function exhibits weak
non-Gaussianity, allowing MoM to provide precise evaluations of the failure probability.

When the value of ks deviates from -7, the difference between the failure probabilities obtained
from the analytical and the proposed method becomes significant for smaller failure probabili-
ties. For ky = —8 and ky = —6, this difference becomes notable around 107¢. Larger deviations
of ko from -7 result in significant differences occurring at even higher failure probability levels.
This behavior arises because changes in k5 alter moments of the performance function, increas-
ing the non-Gaussianity of the problem. MoM faces challenges to accurately evaluate small
failure probabilities in cases of strong non-Gaussianity.

To sum up, the performance of the proposed method is largely influenced by the non-Gaussianility
of the performance function, while both the statistical model and shape of the performance function
will affect such non-Gaussianility. For weakly non-Gaussian problem, the proposed method can
provide reliable failure probability estimation up to the level of 107!, while the accuracy of the
proposed method will decrease for strongly non-Gaussian problem.
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5.2. FExample 2: Seepage problem below a dam modeled using finite element method

The second example involves the study of a steady state confined seepage below a dam as shown
in Fig. 4, which is adopted from Ref. [43]. The failure event considered occurs when the seepage

¥
hp I_“ A Water B Dam C, Im D
5m I___ Cutoff wall — T Silty gravel
15m [ —li— i Silty sand
¢ Im E
Impermeable layer .
50m 20 m 50 m

Figure 4: Schematic graph of the dam

discharge exceeds a prescribed threshold, and the corresponding performance function is constructed

as follows:
G(X) =b—Q(X), (33)

where b is the threshold, expressed in units of L/h/m; and Q(X) is the seepage discharge, which is
computed as follows:

B Ohyy
Q(X) = /CD kyy728_ydx, (34)

where CD represents the downstream side of the dam as shown in Fig 4; k,, o is the vertical per-
meability of the second soil layer; and hy is the hydraulic head, which is solved by the following
differential equation:

O?hyy O?hy
xm,iw + yy,ia—yz
where k;,; and ky, ; represent the horizontal and vertical permeabilities of the ith soil layer, respec-
tively; and z and y denote horizontal and vertical coordinates, respectively. These permeabilities
are considered as random variables, with the statistical information summarized in Table 1. The

k =0, i=1,2, (35)

Table 1: Statistical information of random variables in example 2

Silty sand Silty gravel
Horizontal k. 1 Vertical kyy 1 Horizontal k4 2 Vertical ky, o
(m/s) (m/s) (m/s) (m/s)
Distribution Lognormal Lognormal Lognormal Lognormal
Mean 5 x1077 2 x1077 5 x1076 2 x1076
Standard deviation 0.8 x1077 0.4 x1077 0.8 x107° 0.4 x1076

boundary conditions for Eq. (35) are as follows: (1) hy over segments AB and CD are 20+hp m
and 20 m, respectively, where hp=8.5 m is the height of water; (2) there is null flow across the
other boundaries. To obtain sufficient accuracy, Eq. (35) is solved numerically applying a refined
FEM as shown in Fig. 5a, where the associated model comprises 3413 nodes and 1628 quadratic
triangular elements (details can be found in Ref [44]). This refined FEM is applied as the HF model.
Using scripts implemented in MATLAB R2023b and executed on a computer with a 13th Gen In-
tel® Core™ i7-1360P processor running at 2.20 GHz, the computational time for the refined FEM
is approximately 0.8301s.
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Figure 5: FEMs of the dam

5.2.1. Moment estimation using different LF models

Based on Eq. (33), moments of the performance function can be easily obtained based on those
of Q(X) as follows:

Kz, = b— HQi, MZy = HQyy HzZz = —HQsy  HZy = HQas (36)

where ., po,, po, and g, are the mean, standard deviation, skewness and kurtosis of Q(X),
respectively. Eq. (36) shows that, the key task for moment estimation of the performance function
is to determine the moments of (X). To compute these moments, an appropriate LF model needs
to be constructed.

Since this is a linear problem, an efficient reduced-order model (ROM) can be constructed as the
LF model (details can be found in Ref. [34]). This ROM consists of five basis terms and requires
only 0.0017s per evaluation. However, as this ROM is applicable only to linear problems, a more
general LF model is also developed by refining the finite element mesh, as illustrated in Fig. 5b.
This coarse FEM consists of 268 elements and requires approximately 0.0189s per evaluation. The
computational time ratios between these two LF models and the HF model are 488.3 and 43.9,
respectively. The quality of the constructed LF models is evaluated by generating 3 x 10* samples of
the seepage discharge, and the results are shown in Fig. 6. It is evident that the samples produced
by the ROM exhibit a strong linear relationship with those from the refined FEM, whereas the
relationship between the coarse and refined FEMs is weakly nonlinear.

4.5
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w
o
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ot
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ot

ROM (x10°% L/h/m)
w
o

o
=

Coarse FEM (x107% L/h/m)
2o w
o o

1.5 1.5
1.5 20 25 3.0 35 40 45 1.5 20 25 30 35 40 45
Refined FEM (x107% L/h/m) Refined FEM (x107% L/h/m)
(a) Reduced order model (ROM) (b) Coarse finite element model (FEM)

Figure 6: Samples of seepage discharge using different models

The moments of Q(X) are estimated using the CV method based on these two LF models, with
different sets of generated samples. For comparison, the moments are also computed using crude MCS
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with different sample sizes. Specifically, the MCS results based on 10® samples serve as the reference
benchmark, while the results based on 6615 and 66150 samples are used for comparison with CV,
combining ROM and coarse FEM, requiring the same computational time. The computed standard
central moments of Q(X), obtained from different methods, are compared in Table 2, alongside the
CoVs of the raw moments, the number of model evaluations, and the corresponding computational
time.

Table 2: Moments of the seepage discharge in example 2

(A%
MCS ROM Coarse FEM

Ng 108 6615 66150 6000 54000

Np, 0 0 0 3x10° 3x10°

T; (s) 8.301x 108 549.069 5050.14 549.06 5050.14
11, (x107) 2.904 2.908 2.905 2.904 2.904
pQ,(x1077) 2.865 2.885 2.8701 2.863 2.860
HQs 0.281 0.2868 0.2901 0.281 0.280

HQ4 3.141 3.2366 3.1613 3.139 3.155
CoV[Eq, (%) 0.001 0.122 0.038 0.018 0.017
CoV[Eq,](%) 0.015 1.839 0.5712 0.036 0.034
CoV[Eq, (%) 0.101 12.80 3.884 0.054 0.052
CoV[Eq, (%) 0.039 4.875 1.518 0.074 0.071

tq, and pg, have unit of L/h/m.

Npg denotes the number of HF model evaluations required.
Ny, denotes the number of LF model evaluations required.
T; denotes the total computational time required.

As shown in Table 2, the moments of Q(X) estimated using CV achieve CoVs comparable to
those obtained from MCS with 10® samples, but with significantly reduced computational time. This
efficiency is due to the fact that CV leverages LF models to reduce the variance of the estimators,
requiring far fewer HF model evaluations compared to MCS. Furthermore, for the same computational
time, the CoVs of the moments obtained using CV are less than 1/20 of those from MCS. When
comparing CV with coarse FEM to CV with ROM, the latter achieves acceptable CoVs for moments
with even fewer HF model evaluations. This is due to the strong linear relationship between the
ROM and the HF model, which facilitates further reduction in the variance of moments. Such a
difference highlights the critical role of enhancing the linear relationship between HF and LF models
to improve the performance of the proposed method.

5.2.2. Failure probability and convergence rate

With the moments of Q(X) obtained, moments of G(X) with different values of b can be readily
obtained based on Eq. (36). Then, MoM can be applied to compute the corresponding failure
probabilities, which are depicted in Fig. 7. For comparison, the failure probability is also computed
using MoM based on different samples from HF models and crude MCS with 10® samples, and the
results are also depicted in Fig. 7.

It can be found from Fig. 7 that, for all the thresholds considered, the proposed method can
obtain nearly the same results as those from crude MCS when considering Ny = 10® samples, which
demonstrates the accuracy of the proposed method for this example. The results obtained from MoM
with Ny = 6615 and Ny = 66150 have relatively significant difference from those of the MCS when
Ny = 108, which is attributed to the error in the estimated moments.
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Figure 7: Failure probability for example 2 Figure 8: Failure probability with different number

of samples in example 2

To assess the convergence speed of the proposed method, the failure probabilities obtained from
both MCS, MoM with moments estimated from MCS and the proposed method are compared in
Fig. 8 for the case where b=4.2 x107® L/h/m. The total sample size applied for the proposed
method is 10°, with auxiliary lines included in the figure for better clarity. It is important to note
that although the proposed method requires additional samples from the LF model compared to
crude MCS, the computational time for these extra samples is relatively small. As shown in Fig. 8,
the results obtained by the proposed method based on ROM converge after 1,000 samples, while
those based on coarse FEM converge after around 7 x 10? samples. Both methods based on the
proposed approach converge much earlier than crude MCS. Meanwhile, the results obtained from
MoM based on moments estimated from MCS converge after around 10°, which is almost the same
as crude MCS. This demonstrates the efficiency of the proposed method for this example.

5.8. Example 3: Nonlinear Duffing oscillator with high dimensional inputs

In this example, a nonlinear Duffing oscillator with a single degree of freedom is considered. This
type of oscillator is commonly used to model systems exhibiting cubic stiffness nonlinearity. The
objective is to estimate the system’s first excursion probability. The corresponding performance
function is defined as follows:

GX)=b—max{t €0, T]: |y(X,t)|}, (37)

where b is the threshold expressed in m; ¢ is time instants in s; T = 15s is the time duration
considered; and y(X,t) is the displacement of the system, which is computed by the governing
equation of motion as follows:

mj(X, 1) + (X, 1) + ky(X, 1) + ksy* (X, 1) = p(X. 1), (38)

where m = 6 x 10%*kg is the mass; ¢ = QC\/%NS/m is the damping coefficient; ( = 0.05 is the
damping ratio; k = 5 x 10°N/m is the linear stiffness; k3 = 1 x 10° N/m? is the cubic stiffness;
p(X, t) represents an external excitation in the unit of N; ¢(X,t) is the velocity; and (X, ¢) is the
acceleration. The system starts from rest, with y(X,0) = Om and (X, 0) = Om/s.
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The external force p(X,t) is defined as:
p(X,t) = —m Z V4SAw cos(wit + X;), (39)
i=1

where n = 150 is the dimension of X; S = 0.03m?/s? is the intensity of the white noise power spectral
density; Aw = wpax/n is the frequency increment; wyae = 30 rad/s is the maximum frequency;
Wi = Wmin + (1 — 1)Aw, with wyin = Aw; and X is the ith component of X, which follows a uniform
distribution in [0,27]. To ensure the accuracy of the simulation, a time step of Atgp = 0.015s is
used, resulting in ny g = 1001 time instants, with the corresponding time vector t}{F = (j — 1)Atyr
for 7 =1,2,...,nyur.

To conduct the proposed method for reliability analysis, a LF model is constructed with a coarser
time step of Atyp = 0.12s, producing nyrp = 126 time instants, with the corresponding time
vector ¢/ = (j — 1)Atyr for j = 1,2,...,nerr. The ratio of computational time between the
HF and LF model evaluations is around 44.06. For CV, the sample sizes n and m are set to
be 2400 and 9 x 10%, respectively. The first four raw moments of extreme response within the
total simulation time 7 and corresponding CoVs can be obtained as (0.0917m, 8.6471x103m?,
8.3919x 107 m? 8.3726x10~°m*) and (0.1074%, 0.2213%, 0.3494%, 0.4994%), respectively. Based
on the raw moments, the mean, standard variation, skewness and kurtosis of the extreme response
are obtained as 0.0917m, 0.0157m, 0.3832, and 3.1894, respectively. For comparison, the crude MCS
based on HF model is also conducted. To obtain raw moments with similar level of CoVs as CV, the
samples required by crude MCS is around 2.2 x 10*. The ratio of computational time between crude
MCS and CV for moment estimation is approximately 4.95. Furthermore, MoM based on moments
estimated using MCS with samples from HF model is also conducted. To obtain same computational
time between MoM and the proposed method, the sample size of HF model applied in MoM is 4445.
The mean, standard variation, skewness and kurtosis of the extreme response from crude MCS are
obtained as 0.0919m, 0.0155m, 0.3441, and 3.0883, respectively. The CoVs of first raw moments are
(0.25%, 0.51%, 0.78%, 1.07%). Comparison between the moment estimations conducted from crude
MCS and CV shows that the application of CV can significantly reduce the variance of moments.

Based on moments of extreme value of response, moments of G(X) can be easily computed and
the corresponding failure probability can be readily obtained. For comparison, failure probability
is also estimated using crude MCS with 10® samples evaluated using the HF model, MoM with
4445 samples evaluated usign the HF model, and the variations of the failure probability with the
threshold b is shown in Fig. 9.

It can be observed that the failure probability estimated by the proposed method aligns well
with that obtained from MCS for Pr > 107, demonstrating the accuracy of the proposed method
for nonlinear and high-dimensional problems. In contrast, the failure probability estimated using
MoM shows a relatively significant deviation from the MCS results, primarily due to inaccuracies
in moment estimation. For failure probabilities smaller than 10~*, a noticeable discrepancy arises
between the results of the proposed method and those from MCS. This is because the first four
standard central moments of G(X) are insufficient to accurately characterize the tail behavior of the
probability density function (PDF).

Furthermore, to assess the convergence speed of the proposed method, Fig. 10 illustrates the
variations in failure probability as a function of the number of HF samples used by the proposed
method, MoM, and MCS. It can be seen that the proposed method converges significantly faster than
MoM, and its convergence rate is influenced by the failure probability. When the failure probability
is relatively large (around 107* for b = 0.16 m), the proposed method yields reliable results with
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approximately 1000 HF samples.

6. Discussion and Conclusions

A novel reliability analysis method is proposed, combining Method of Moments (MoM) and
Control Variates (CV). Unbiased estimators for the third and fourth raw moments of the performance
function have been developed using CV, along with their variances. Three examples are investigated,
including non-Gaussian polynomial, complex FEMs, and nonlinear dynamic systems.

The key feature of the proposed method lies in the integration of MoM and CV, with accuracy and
efficiency determined by MoM and CV, respectively. Specifically, accuracy is influenced by the non-
Gaussianity of the performance function. For weakly non-Gaussian problems, where the skewness
and kurtosis of the performance function are close to 0 and 3, respectively, the proposed method can
achieve accurate estimations of small failure probabilities (down to 1071°). The computational effi-
ciency is independent of the dimensionality of the input random variables and is primarily influenced
by the quality of the low-fidelity model used in CV.

While the proposed method offers significant advantages in terms of accuracy and computational
efficiency, certain considerations should be noted to ensure its optimal application. The method
leverages a moment-based reliability index, which performs effectively when the first four moments
adequately characterize the distribution of the performance function. However, in scenarios involving
multi-modal behaviors or strongly non-Gaussian distributions, the accuracy may be affected. In terms
of efficiency, the proposed method benefits from the use of low-fidelity models, which must maintain
a strong linear correlation with the high-fidelity counterparts. This correlation is best achieved
when both models share the same underlying physical mechanisms. Practical approaches, such as
modifying element size in finite element models or adjusting time steps in dynamic load simulations,
have proven to be effective. Nonetheless, for highly complex systems, maintaining both efficiency
and correlation can be challenging. These cases provide a valuable direction for further investigation
into more flexible model reduction strategies to enhance the scalability of the approach.
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Appendix A. Complete expressions of fourth moment reliability index
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Complete monotonic expressions of fourth moment reliability index S4[37, 38] are shown in Table
A.1. The parameters required are computed as follows:

Ji = 2a1as(|p/*? — q) + Bont,  Jo = 2a1a4(—|p*’* — @) + Bow, (A1)
Jo = a3/4as +as, ¢ = arccos <_|ML3/2) , (A.2)
ﬁoz Qa9 — \/CL%+4G3(G3—B2M/CL1)’ (A,?))
2@3
b= Brq-YB=q+ - (A.4)
4
By = 2cos gt vV—-p+ &, B3 = —2cos ¢ vV—-p+ E, (A.5)
3 3ay 3 3ay
B4 = 2cos g-7 V—p+ =l (A.6)
3 3&4
Table A.1: Complete monotonic expressions of fourth moment reliability index Syas
[z, p 1z Bam Bam
[5/3 + 4M2Z3/37 3+ 4#2Z3/3] (—OO, 0] (—OO, +OO) [Jla JQ] B2
2 (=00, 0] [Jo, +00) Bo
S A 0.+0) (~00, ] B
[07 +OO) (_007 +OO) (_007 +OO> /81
(3 +4uz,/3,48) (—00,0) [0, +00) (—o0, J1] B3
’ (—00,0) [J2, +00) Bi

NA denotes not available.

Ey =E[(G(X))] = E[(k1 X3 + ko X? + ks X + ky)'],

Expanding Eq. (B.1), the first four raw moments of Z = G(X) are given as follows:

( 1.l 1.m
EZi = E (q G m) k(llkékiskél EX3q+2j+l’
qtjH4m=i 077

where Ex, .., is the (3¢ + 2j + [)th raw moment of X.
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Appendix B. Raw moments of an univariate polynomial and the failure probability

Consider a polynomial of a single random variable X defined in Eq. (31). The i¢th raw moment,
i.e., Bz, can be computed as follows:

(B.1)

(B.2)
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The failure probability is defined as the probability of G(X) < 0. As G(X) is a univariate

polynomial, the roots of G(X) = 0 can be analytically obtained using the Cardano formula. The
corresponding failure probability is then computed as:

]{?1 >0: PF:Fx($1)+FX($3)—Fx($2)7 (B3)
ki1 <0: PF:1—[Fx(lfl)—f—Fx([Eg)—Fx(Jfg)], <B4)

where Fx(-) is the CDF of X; and 27 < x5 < z3 are the roots of G(X) = 0.
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