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A B S T R A C T

Fractional statistical moments are utilized for various tasks of uncertainty quantification, including the
estimation of probability distributions. However, an estimation of fractional statistical moments of costly
mathematical models by statistical sampling is challenging since it is typically not possible to create a large
experimental design due to limitations in computing capacity. This paper presents a novel approach for the
analytical estimation of fractional moments, directly from polynomial chaos expansions. Specifically, the first
four statistical moments obtained from the deterministic coefficients of polynomial chaos expansion are used
for an estimation of arbitrary fractional moments via Hölder’s inequality. The proposed approach is utilized
for an estimation of statistical moments and probability distributions in four numerical examples of increasing
complexity. Obtained results show that the proposed approach achieves a superior performance in estimating
the distribution of the response, in comparison to a standard Latin hypercube sampling in the presented
examples.
1. Introduction

Mathematical models of the response 𝐘 of physical systems can
be generally represented by functions M of input vectors 𝐗, which
provide a mapping M ∶ R𝑛𝑥 ↦ R𝑛𝑦 , 𝐗 → 𝐘. Input variables 𝐗
representing physical quantities (e.g. material parameters, geometrical
properties, applied loads) may be affected by a certain level of uncer-
tainty. Therefore, it is necessary to propagate the uncertainty associated
with input variables described by specific probability distributions
through the mathematical model in order to obtain realistic results
predicting the model’s response 𝐘 and its uncertainty. The task of
the analyst is then in this case to perform uncertainty quantification
(UQ) of the model response 𝐘, also called quantity of interest (QoI).
In the simplest case, UQ can be based on pseudo-random sampling
of the input random vector and performing corresponding repetitive
evaluations of the deterministic model M(𝐗). Obtained set of results
can be further statistically processed to get statistical moments, and
ultimately probability distribution of the QoI. The estimation of prob-
ability distribution function (PDF) or cumulative distribution function
(CDF) from given set of statistical moments is not a trivial task and
thus, there are various specialized methods for this purpose. On the one
hand, it is possible to assume a known specific family of probability
distributions and fit a PDF to given data. Although this is a simple
approach requiring typically low number of statistical samples, an as-
sumption of a probability distribution may significantly affects obtained
results in further steps of UQ and/or reliability analysis. On top, it
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inherently introduces a measure of subjectivity into the analysis, which
might not be warranted for critical applications. On the other hand,
one can construct an arbitrary distribution function numerically, e.g. by
kernel density estimation [1]. Numerically constructed distributions
offer high versatility, though it is typically necessary to optimize hyper-
parameters associated with them. Usually, an optimal balance between
numerical efficiency and flexibility is offered by artificial distribution
models parameterized by statistical moments. Classic representatives
of parameterized distributions are Gram–Charlier expansion or Edge-
worth series expansion based on perturbation of a Gaussian probability
distribution. Unfortunately, it is well-known that both distributions
have severe limitations in their flexibility and their convergence is not
guaranteed for general distributions [2]. More recent developments
offer for example three-parameter lognormal distribution [3], Hermite
model [4], cubic normal distribution [5], generalized lambda distribu-
tion [6] or distribution functions that are parameterized by a higher
number of moments or even fractional moments [7]. In this paper, we
adopt the M-EIGD-LESND function, which is in essence a mixture of an
extended inverse Gaussian distribution and a log extended skew-normal
distribution (note that underlined letters explain the acronym M-EIGD-
LESND). It is fully characterized by a set of eight parameters, making
it highly flexible, and hence, powerful to fit any type of distribution
on 𝐘.

Despite the flexibility of the approaches described above, they
require a significant number of samples to allow them to represent
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the real distribution of 𝐘 accurately. Unfortunately, a combination of
sampling-based methods with costly mathematical models is highly
time-consuming or even not feasible in industrial applications and
surrogate models are often utilized as computationally efficient approx-
imations of the original mathematical model. There are various types
of surrogate models (e.g. artificial neural networks, Kriging, support
vector machines), with polynomial chaos expansion (PCE) being a
very popular method for UQ. PCE was originally proposed by Norbert
Wiener [8] and further investigated in the context of engineering
roblems by many researchers, e.g. [9,10], and it provides an effi-

cient tool for estimation of statistical moments and sensitivity indices.
Especially the PCE in its non-intrusive form (spectral projection and
regression) possesses significant potential for industrial applications,
since it offers a convenient way to perform advanced probabilistic
analysis of any black-box model without any modifications of existing
numerical solvers. In practice, it becomes often necessary to employ
sparse PCEs that yield efficient solutions for real-world physical sys-
tems. Regression-based non-intrusive PCE [11] offers large variety of
olvers [12], sampling schemes [13–16] and adaptive algorithms [17–

20] leading to a large variety of methods. Once a PCE is available for
 given mathematical model, the constructed explicit function can be
xploited to obtain additional information about that model. This infor-
ation includes integer statistical moments [9], probability distribution

f QoI or sensitivity indices [6,21], which can be calculated without
additional evaluations of the underlying numerical model M, which is
especially beneficial in industrial applications [22,23]. Therefore PCE
s especially suitable for its relative computational efficiency in training

and usefulness for UQ tasks including moment estimation and sensitiv-
ity index computation, which derive from its orthogonality properties
with respect to the probability measures of the input variables.

Despite many recent advances in the field of PCE, the challenge of
stimating the distribution of 𝐘, especially in its tails, is still open. A
articularly interesting route to estimate this distribution is through the

estimation of fractional moments of 𝐘, since it can be shown that they
carry information about an infinite number of integer moments [7].
This, in its turn, could potentially allow for a more accurate estimation
of the distribution of Y following a moment matching procedure, see
e.g. [24]. Although there are several methods for estimation of frac-
tional moments by direct sampling of the mathematical model [25,26],
they might be too costly in case of complex stochastic analysis including
sensitivity and moment analysis. In this case, it is often preferred to
create a surrogate model which can be efficiently analyzed in order
to obtain various characteristics of quantity of interest. This paper is
therefore focused on estimation of fractional moments directly from
PCE, and their further utilization for an approximation of probabil-
ity distribution of QoI by adopting a recently proposed distribution
parameterized by fractional moments. The proposed approach thus
further extends broad pallet of methods for post-processing of PCE
urrogate models allowing for extensive analysis of the approximated
uantity. Section 2 gives a brief introduction of the main mathematical
oncepts concerning PCE that are required to understand the develop-
ents later in the paper. Section 3 introduces the concept of fractional

moments, and how they can be estimated analytically from a trained
PCE. Section 4 illustrates the developments and their efficacy using
hree numerical examples, ranging from an analytical function, over
 finite element model of a plate in bending, to a dynamically loaded
ass–spring system and a confined seepage problem. Section 6 lists the

conclusions of the work.

2. Polynomial chaos expansion

Assume a probability space (𝛺 ,F ,P), where 𝛺 is an event space, F
s a 𝜎-algebra on 𝛺 and P is a probability measure on F . If the input
ariable of a mathematical model, M, is a random variable 𝑋(𝜔), 𝜔 ∈
, the model response 𝑌 (𝜔) is also a random variable. Assuming that 𝑌
2 
has a finite variance, PCE represents the output variable 𝑌 as a function
of an another random variable 𝜉 called the germ with given distribution

𝑌 = M(𝑋) = 𝑔𝑃 𝐶 𝐸 (𝜉), (1)

and representing the function M(𝑋) via polynomial expansion in
a manner similar to the Fourier series of a periodic signal. A set of
polynomials, orthogonal with respect to the distribution of the germ,
are used as a basis of the Hilbert space 𝐿2 (𝛺 ,F ,P) of all real-valued
random variables of finite variance, where P takes over the meaning of
the probability distribution. The orthogonality condition for all 𝑗 ≠ 𝑘 is
given by the inner product of 𝐿2 (𝛺 ,F ,P) defined for any two functions
𝜓𝑗 and 𝜓𝑘 with respect to the weight function 𝑝𝜉 (probability density
function of 𝜉) as:

⟨𝜓𝑗 , 𝜓𝑘⟩ = ∫ 𝜓𝑗 (𝜉)𝜓𝑘(𝜉)𝑝𝜉 (𝜉) d𝜉 = 0. (2)

This means that there are specific orthogonal polynomials associ-
ated with the corresponding distribution of the germ via its weighting
unction. For example, Hermite polynomials orthogonal to the Gaussian
easure are associated with normally distributed germs. Orthogonal
olynomials corresponding to other distributions can be chosen accord-
ng to Wiener-Askey scheme [27]. For further processing, it is beneficial

to use normalized polynomials (orthonormal), where the inner product
s equal to the Kronecker delta 𝛿𝑗 𝑘, i.e. 𝛿𝑗 𝑘 = 1 if and only if 𝑗 = 𝑘, and
𝑗 𝑘 = 0 otherwise:

⟨𝜓𝑗 , 𝜓𝑘⟩ = 𝛿𝑗 𝑘. (3)

In the case of 𝑿 and 𝝃 being vectors containing 𝑀 independent
random variables, the polynomial 𝛹 (𝝃) is multivariate and it is built
up as a tensor product of univariate orthogonal polynomials as

𝛹𝜶(𝝃) =
𝑀
∏

𝑖=1
𝜓𝛼𝑖 (𝜉𝑖), (4)

where 𝜶 ∈ N𝑀 is a set of integers called the multi-index. The quantity of
interest (QoI), i.e., the response of the mathematical model 𝑌 = 𝑔(𝑿),
can then be represented, according to Ghanem and Spanos [10], as

𝑌 = M(𝑿) =
∑

𝜶∈N𝑀
𝛽𝜶𝛹𝜶(𝝃), (5)

where 𝛽𝜶 are deterministic coefficients and 𝛹𝜶 are multivariate orthog-
onal polynomials.

The main step in the solution procedure of determining the relation
in Eq. (5) is to determine the deterministic coefficients 𝛽𝜶 to provide
n accurate estimator. In a practical context, an analyst usually only
as access to input–output pairs that are generated by M, rather than
he full internal solver machinery (such as, e.g., mass or stiffness ma-
rices). Therefore, without losing generality, the rest of the text focuses
n non-intrusive forms of PCE. Nonetheless, note that the ensuing
evelopments are equally applicable to the intrusive PCE formulations.

For practical computation, PCE expressed in Eq. (5) must be trun-
cated to a finite number of terms 𝑃 . Although it is generally possible
to create a basis set using a tensor product of 1D polynomials, it leads
to an extremely high number of basis functions. This in its turn leads
to a slow convergence of PCE construction. Therefore, the truncation is
ommonly achieved by retaining only terms whose total degree |𝜶| is
ess than, or equal to a given 𝑝.

Moreover, in engineering applications, it is beneficial to prefer only
basis functions with lower-order interaction terms. This reduction of
basis set is motivated by sparsity-of-effects principle, which states that
a physical system is mostly affected only by main effects and low-order
interactions. Therefore, it was proposed by Blatman and Sudret [11] to
create a PCE basis by a hyperbolic truncation scheme:

A𝑀 ,𝑝,𝑞 =
{

𝜶 ∈ N𝑀 ∶ ‖𝜶‖𝑞 ≡
(

𝑀
∑

𝑖=1
𝛼𝑞𝑖

)1∕𝑞
≤ 𝑝

}

. (6)
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Using this truncation scheme can be graphically represented by
selection of terms under the hyperbola parameterized by 𝑞 < 1. Such
an approach leads to a dramatic reduction in the cardinality of the
truncated set for high total polynomial orders 𝑝 and high dimensions

.
Note that the number of terms 𝑃 is highly dependent on the number

f input random variables 𝑀 and the maximum total degree of polyno-
ials 𝑝. Estimation of 𝜷 by regression then needs at least the number

f samples O(𝑃 ln(𝑃 )) for stable solution [16,28]. Therefore, in case
of a large stochastic model, the problem can become computationally
highly demanding. However, one can utilize advanced model selection
lgorithms such as Least Angle Regression (LAR) [29] to find an optimal

set of PCE terms and thus reduce the number of samples needed to
compute the unknown coefficients if the true coefficient vector is sparse
or compressible as proposed by Blatman and Sudret [11]. Note that
eside LAR, there are other best model selection algorithms such as
rthogonal matching pursuit [30] or Bayesian compressive sensing [31]
ith comparable numerical results.

2.1. Post-processing of PCE

The specific form of PCE together with the orthogonality of the
olynomials allows for a powerful and efficient post-processing. Once
 PCE approximation is created, it is possible to analytically obtain sta-
istical moments or sensitivity indices of the QoI. Generally, a statistical
oment of 𝑚th order is defined as:

⟨

𝑌 𝑚
⟩

= ∫
[

𝑔
(

𝐗
)]𝑚𝑝𝐗

(

𝐱
)

𝑑𝐱 = ∫
[
∑

𝛼∈N𝑀
𝛽𝛼𝛹𝛼(𝝃)

]𝑚𝑝𝜉
(

𝜉
)

𝑑 𝜉

= ∫
∑

𝛼1∈N𝑀
...

∑

𝛼𝑚∈N𝑀
𝛽𝛼1 ...𝛽𝛼𝑚𝛹𝛼1 (𝝃)...𝛹𝛼𝑚 (𝝃)𝑝𝜉

(

𝜉
)

𝑑 𝜉

=
∑

𝛼1∈N𝑀
...

∑

𝛼𝑚∈N𝑀
𝛽𝛼1 ...𝛽𝛼𝑚∫ 𝛹𝛼1 (𝝃)...𝛹𝛼𝑚 (𝝃)𝑝𝜉

(

𝜉
)

𝑑 𝜉 .

As can be seen from the final part of the formula, in case of
PCE, it is necessary to integrate over basis functions (orthonormal
polynomials), which leads to dramatic simplification in comparison to
the integration of the original mathematical function. Moreover, it is
well known that PCE allows for analytical solution of the associated
integral. Besides well known formulas for mean (𝜇𝑌 = 𝛽0) and variance
(𝜎2𝑌 =

∑

𝜶∈A 𝛽
2
𝜶 − 𝛽20 ), higher statistical central moments skewness 𝛾𝑌

(3rd moment) and kurtosis 𝜅𝑌 (4th moment) can be also obtained using
analytical formulas for Legendre and Hermite polynomials [21]. Note
that PCE is in the identical form as Hoeffding–Sobol decomposition
of a function and thus it is possible to easily derive also conditional
variances of any order and corresponding Sobol indices [9,32].

Finally, the PCE approximation can be also exploited for an estima-
ion of a probability distribution of QoI. A first possible approach to
uild the PDF of QoI consists in directly evaluating a PCE for a large
umber of samples of input random vector and processing of the corre-
ponding results by kernel density estimation (KDE) [33]. Although the

combination of PCE and KDE is often utilized for UQ [34,35], it might
e complicated to selected appropriate kernel function and band-width
yper-parameter leading to accurate identification of PDF.

A second general approach, further extended in this study, is based
n approximations of PDF/CDF by analytical functions parameterized
y statistical moments derived directly from PCE. Analytical forms of

distribution functions offer significant benefit for UQ, e.g. sensitivity
measures based on conditional distributions and thus it is often pre-
ferred over numerical solutions. A simple approximation can be in
form of Gram–Charlier (G–C) expansion or similar Edgeworth series
containing one more Hermite polynomial than G–C, both based on the
first four statistical moments [2]. Similarly as in case of Sobol indices,
conditional distributions can be easily obtained from PCE [36] as well
as advanced distribution-based sensitivity indices [21,37]. The analyt-
cal approach has also three main drawbacks: flexibility of analytical
3 
approximations of PDF/CDF is typically limited, analytical formulas for
direct estimation of statistical moments from PCE are known only for
some polynomials. Moreover it is computationally efficient to estimate
only the first four statistical moments, which significantly limits utiliza-
tion of the advanced analytical PDF approximations typically based on
higher number of statistical moments.

3. Fractional moments from polynomial chaos expansion

In this section, we introduce our proposed method to determine the
robability density function 𝑓𝑌 (𝑦) of a random variable 𝑌 based on the
ost-processing of the PCE in the form of fractional moments. Recall
n this context that the 𝑟th absolute fractional moment of the random
ariable 𝑌 is defined as [38]:

E
[

|𝑌 |𝑟
]

= ∫

∞

−∞
|𝑦|𝑟 𝑓𝑌 (𝑦) 𝑑 𝑦, (7)

where 𝑟 can be any real number. Clearly, when 𝑟 in Eq. (7) takes an
integer value, the equation reduces again to the description of a general
moment, making Eq. (7) in essence a generalization of the well-known
concept of statistical moments.

The main advantage of working with fractional moments, is that
[

|𝑌 |𝑟
]

carries information about an infinite number of discrete mo-
ments. This can be understood by first performing a Taylor series
expansion of |𝑌 |𝑟 around its mean value 𝜇𝑌 = 𝐸[|𝑌 |]:

|𝑌 |𝑟 =
∞
∑

𝑖=0

(

𝑟
𝑖

)

𝜇(𝑟−𝑖)𝑦
(

𝑦 − 𝜇𝑌
)𝑖 , (8)

with 𝑖 any non-negative integer, 𝜇(𝑟−𝑖)𝑦 the expected value of |𝑌 |(𝑟−𝑖) and
the fractional binomial

(𝑟
𝑖

)

given by:
(

𝑟
𝑖

)

=
𝑟(𝑟 − 1)(𝑟 − 2) … (𝑟 − 𝑖 + 1)

𝑖(𝑖 − 1)(𝑖 − 2) … 1 . (9)

Taking the expectation of both sides of Eq. (8) yields:

E
[

|𝑌 |𝑟
]

=
∞
∑

𝑖=0

(

𝑟
𝑖

)

𝜇(𝑟−𝑖)𝑦 E
[

(

𝑦 − 𝜇𝑌
)𝑖
]

, (10)

from which can be seen that the right-hand side indeed contains an
infinite number 𝑖 = 1,… ,∞ of integer moments while the left-hand side
of the equation is the 𝑟th fractional moment of 𝑌 . In this equation, the
term

(𝑟
𝑖

)

𝜇(𝑟−𝑖)𝑦 can be thought of as a sort of weight that is assigned to
the integer moment in the series expansion that describes the fractional
moment. In this context, observe that when 𝑖 is fixed,

(𝑟
𝑖

)

𝜇(𝑟−𝑖)𝑦 increases
as 𝑟 increases, whereas when 𝑟 is fixed, the value of

(𝑟
𝑖

)

𝜇(𝑟−𝑖)𝑦 decreases
when 𝑖 increases. This indicates that the higher the fractional order 𝑟,
the greater the contribution of higher-order integer moments to the 𝑟th
fractional moment value. To effectively estimate 𝑓𝑌 (𝑦) from the PCE,
it is as such important to estimate higher-order fractional moments. At
the same time, it is important to keep in mind that these higher-order
fractional moments are much more difficult to obtain than lower-order
fractional moments. This trade-off needs to be addressed case-by-case
when applying the proposed technique.

3.1. Estimation of the fractional moments via Hölder’s inequality

Direct numerical estimation of fractional moments by Monte Carlo
approach could be computationally expensive, especially in engineering
applications. However, the estimation can be significantly accelerated
by approximation in form of Hölder’s inequality:

E
[

|𝑌 |𝑟
]

⩽
(

E
[

|𝑌 |𝑠
])

𝑟
𝑠 . (11)

Hölder’s inequality is often utilized for estimation of error bounds in
various applications of theory of probability, however it can be also
utilized for an efficient estimation of fractional moments from standard
integer statistical moments.
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Fig. 1. Error analysis of the moments derived from PCE using Hölder’s inequality.
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However, it might be still computationally expensive to estimate
igher integer moments by crude Monte Carlo methods. Therefore we
ropose to combine Hölder’s inequality with PCE surrogate model, as
he latter is well-known for an accurate and an efficient statistical
nalysis of QoI. Such approach should be significantly more stable
n comparison to sampling methods, since the first four statistical
oments can be obtained analytically from PCE coefficients, i.e. 𝑠 ∈

1, 2, 3, 4]. It is clear that the error of the approximation grows with
he difference |𝑠− 𝑟|. Therefore, an integer moment E

[

|𝑌 |𝑠
]

utilized for
he estimation of a fractional moment should be selected as close as
ossible to the selected 𝑟. Note that Hölder’s inequality according to
q. (11) is valid only for 1 < 𝑟 < 𝑠 <∞ and thus, for the sake of clarity,
t is necessary to use Eq. (12), if the nearest integer moment 𝑠 > 𝑟:

E
[

|𝑌 |𝑠
]

⩾
(

E
[

|𝑌 |𝑟
])

𝑠
𝑟 . (12)

Naturally it is possible to reliably estimate fractional moments only
in the interval between integer moments obtained from PCE, i.e. 𝑟 ∈
1, 4). The error caused by Hölder’s inequality can be seen in Fig. 1

presenting a typical behavior of the algorithm (𝑀PCE and 𝑀MC are mo-
ents estimated from PCE and by Monte Carlo sampling respectively).

t can be seen, that the relative error is growing with a distance from
nteger moments. From the figure, it is also clear it is beneficial to use
he closest integer moment for the derivation of a fractional moment.
he red and blue lines represent estimations based on upper and lower

nteger moments. The numerical results were obtained from the first
xample presented in the next section.

The proposed framework has several benefits in comparison to
standard approach based on statistical sampling. First of all, fractional
moments are obtained from PCE without additional sampling as a
part of analytical post-processing (including statistical and sensitivity
analysis). The computational cost of the whole process is thus as-
ociated to construction of a surrogate model which can be further
sed for additional tasks in contrary to a standard approach. More-

over, the analytical post-processing could be more stable as will be
nvestigated in the first numerical example. Naturally, the proposed
pproach is highly sensitive to an accuracy of the surrogate model
ffected by various sources, and thus one could use various advanced
lgorithms for construction of PCE, e.g. sparse solvers [12], domain

decompositions [39,40], active learning [18,20] or recently proposed
physics-informed PCE [41,42]. Moreover, one can easily use the pro-
osed approach to derive also conditional fractional moments similarly

as in the commonly used approach for integer-moments based sensitiv-
ity analysis [9,21]. Comparison to standard numerical methods will be
presented also in Discussion section.
 i

4 
3.2. Description of the PDF based on the fractional moments

Fractional moments are especially important for estimation of the
ost suitable probability distribution of the QoI. Although it might be

ufficient to fit a selected well-known distribution in simple applica-
ions, artificial distributions parameterized by statistical moments are
ore flexible and can capture more complicated shapes of probability
istributions. Some of the simplest parameterized distributions are the
ram–Charlier expansion or Edgeworh series based on perturbation
f Gaussian distribution exploiting information from the first four
tatistical moments [2]. It was shown, that Gram–Charlier expansion is

efficient especially in combination with PCE, since we can obtain neces-
sary statistical moments analytically [21]. However, once the fractional

oments are estimated directly from PCE, it is possible to use more
dvanced and flexible distribution models such as recently proposed
ixture of extended inverse Gaussian and log extended skew-normal
istributions (M-EIGD-LESND) [7], which is described as:

𝑓𝑀−𝐸 𝐼 𝐺 𝐷−𝐿𝐸 𝑆 𝑁 𝐷(𝑥; 𝜗) =

𝑤𝜂
√

𝑏
2𝜋
𝑥−𝜂∕2−1 exp

[

−
𝑏(𝑥𝜂 − 𝑎)2

2𝑥𝜂𝑎2

]

+(1 −𝑤) 1
𝑑 𝑥𝜙

(

𝑙 𝑜𝑔(𝑥) − 𝑐
𝑑

) 𝛷(𝜏
√

1 + 𝜃2 + 𝜃 𝑙 𝑜𝑔(𝑥)−𝑐𝑑 )

𝛷(𝜏)
,

with 𝑥 > 0, (13)

where 𝜙(⋅) and 𝛷(⋅) are the probability density and cumulative den-
sity functions associated with a standard Gaussian distribution, re-
spectively, and 𝑙 𝑜𝑔(⋅) denotes natural logarithm. The M-EIGD-LESND
ontains a set of 8 free parameters, {𝑤, 𝜂 , 𝑎, 𝑏, 𝑐 , 𝑑 , 𝜃 , 𝜏}, which are
btained by a matching of estimated fractional moments and fractional
oments of M-EIGD-LESND. This task requires to solve system of non-

inear equations by any numerical solver (see [7] for more details). It
s noteworthy that the 𝑟th fractional moment of the M-EIGD-LESND
unction, 𝑀𝑟

𝑋𝑀−𝐸 𝐼 𝐺 𝐷−𝐿𝐸 𝑆 𝑁 𝐷 can be analytically determined as [7]:

𝑀𝑟
𝑋𝑀−𝐸 𝐼 𝐺 𝐷−𝐿𝐸 𝑆 𝑁 𝐷 = 𝑤 exp

[ 𝑏
𝑎

]

√

2𝑏
𝜋
𝑎𝑟∕𝜂−0.5𝐾0.5−𝑟∕𝜂

( 𝑏
𝑎

)

+ (1 −𝑤) exp (𝑐 𝑟 + 0.5𝑑2𝑟2)
𝛷
(

𝜏 + 𝜃 𝑑 𝑟
√

1+𝜃2

)

𝛷(𝜏)
, (14)

with 𝐾𝛼(𝛽) the modified Bessel function of the second kind. The thus ap-
roximated distribution function can then be used further for reliability
nalysis or distribution-based sensitivity analysis. The M-EIGD-LESND
s adopted in numerical examples to measure the error of the proposed
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method in comparison to a traditional Monte Carlo-type approach.
owever, note that this model was adopted just for the sake of illus-

ration of the whole framework and it is generally possible to adopt
ny artificial distributions parameterized by fractional moments, which
hould be selected with respect to the analyzed problem at hand.

3.3. Numerical algorithm

The proposed approach allows for significant extension of a statis-
tical or sensitivity analysis of costly mathematical models. Specifically,
estimated fractional moments can be used for an approximation of
probability distribution of QoI as summarized in the following pseudo-
algorithm employed in the numerical examples. In the algorithm, the
vector 𝐫 contains all fractional moments considered in the analysis
(whose dimensionality is 8) and ⌈⋅⌋ denotes rounding to the closest
integer.

Algorithm 1 Estimation of fractional moments by PCE and construction
f a probability distribution
Input: experimental design (ED) with samples of 𝑿 and Y = M(𝑿),
set of basis functions A

1: get 𝜷 by OLS
2: get 𝜇𝑌 , 𝜎2𝑌 , 𝛾𝑌 and 𝜅𝑌 analytically from 𝜷
3: for 𝑟 in 𝐫 do
4: find a nearest integer moment 𝑠 = ⌈𝑟⌋
5: get approximated 𝑟th fractional moment by Eq. (11) (or Eq. (12)

if 𝑟 > 𝑠)
6: end for
7: get parameters of M-EIGD-LESND from fractional moments [7]
Output: E

[

|𝑌 |𝐫
]

and corresponding PDF/CDF of M-EIGD-LESND

4. Numerical examples

The proposed approach (referenced as PCE in figures) is presented
n four numerical examples of increasing complexity and which illus-

trated different aspects of the approach. The first toy example repre-
sents a proof of concept and convergence of the proposed method. The
econd example shows a typical application of the proposed method
nd its clear benefits over other existing techniques. In the third ex-

ample, we investigate the impact of the bi-modal distribution on the
convergence of the proposed technique. And finally, the last example
hows the performance of the methodology in a finite element model

of considerable dimension.
The proposed approach is utilized for estimation of the following

fractional moments E
[

|𝑌 |𝑟
]

, 𝑟 ∈ 𝐫 = [1.1, 1.2, 1.8, 1.9, 2.1, 2.2, 2.9, 3].
ote that the fractional moments are close to the integer moments
btained analytically from PCE in order to reduce the error of approxi-
ation by Hölder’s inequality. Fractional moments are further used for

dentification of the most suitable probability distribution as described
n the previous section. The PCE is constructed using the UQPy pack-
ge [43]. The obtained results of the proposed approach are compared
o approximation based on standard sampling approach represented
y Latin Hypercube Sampling (LHS) [13,44]. Naturally, one can use
arious advanced or adaptive sampling schemes [20,45,46] instead of
HS for achieving higher accuracy, however this task is beyond the
cope of this paper. Also note that, the sampling technique should be
elected with respect to stability of PCE construction [12], and thus it
ight be problematic to use sampling techniques developed specifically

or numerical integration or estimation of fractional moments. The
easoning is that the estimation of fractional moments is just a part

of UQ and thus we need general statistical sample covering the whole
esign domain further used for statistical and sensitivity analysis or
onstruction of various surrogates.

Additionally, results are also compared to classic G–C expansion
erived from PCE [20] (PCE-GC) to show the benefits of advanced
5 
and flexible distribution models represented by M-EIGD-LESND in this
paper. To compare the methods, we estimate error by non-negative
Kullback–Leibler divergence 𝐷K L

(

𝑌 ∥ 𝑌
)

of a reference CDF 𝐹𝑌 and
an approximated CDF 𝐹𝑌 . The error is calculated on CDF for improved
numerical stability [47] as implemented in SciPy [48]:

𝐷K L
(

𝑌 ∥ 𝑌
)

= 𝐹𝑌 (𝜒) ln
𝐹𝑌 (𝜒)
𝐹𝑌 (𝜒)

+ 𝐹𝑌 (𝜒) − 𝐹𝑌 (𝜒), (15)

where 𝜒 ∈ R. The total error 𝜖 is than obtained by integration of 𝐷K L
simply as:

𝜖 = ∫R
𝐷K L

(

𝑌 ∥ 𝑌
)

𝑑 𝜒 . (16)

All approximations are constructed for increasing number of simula-
tions. In order to get reliable statistical information on convergence,
we run 𝑛st at = 100 repetitions of the algorithm and plot E[𝜖] ±𝜎 interval
f the obtained errors.

4.1. Academic example: Gaussian distribution

The very first example shows the convergence of the proposed
ethod. This toy example is represented by a simple analytical function

f input random vector containing three independent Gaussian vari-
bles 𝐗 ∼ N (𝝁 = 10,𝝈𝟐 = 4) and thus the quantity of interest is also a
aussian variable 𝑌 ∼ N (𝜇 = 50, 𝜎2 = 12):

𝑌 = 20 +𝑋1 +𝑋2 +𝑋3. (17)

Typical realizations of identified probability distributions based on
ractional moments estimated by LHS and the proposed approach for
ncreasing size of ED can be seen in Fig. 2. Since it is possible to ana-

lytically obtain reference distribution, there is not any error caused by
approximation of the probability distribution for a reference solution.
Although the resulting distribution of QoI is very simple, the estimated
istributions converge slower then expected due to over-parameterized
pproximating function taking 8 fractional moments into account. The

convergence of LHS is further affected by sensitivity to outliers, while
the proposed method via PCE is clearly more stable. General conver-
gence of both methods can be seen in Fig. 7(a). Note that besides higher
ccuracy in mean values, the variance of the proposed method is sig-

nificantly smaller in comparison to LHS for 𝑛sim > 35 samples. Utilized
-EIGD-LESND approximation is universal parameterized distribution

suitable for various types of distribution, nonetheless it might be over
sophisticated for approximation of a simple distribution and a simple

odels should be preferred, e.g. the well-known G–C expansion [2] as
can be seen in this example. Since the resulting distribution of QoI is a
Gaussian distribution, G–C leads very fast to the exact solution, though
as can be seen for 𝑛𝑠𝑖𝑚 = 10 it could lead to unstable approximations of
PDF/CDFs.

Although the main purpose of the proposed method lies in efficient
ost-processing of the existing surrogate model, it is also more stable
nd robust in comparison to standard sampling techniques. The sta-
ility of the proposed method can be seen in Fig. 3 showing obtained

distributions for 𝑛sim = 200 simulations. Although PCE leads to a slight
error near the mean value, it leads to almost perfect accuracy at both
tails of the CDF. Although LHS is very efficient method for estimation of
mean values, it has clearly worse performance in estimation of higher
moments affected by tails and thus also fractional moments. Note that
although PCE is based on identical samples, it is an approximation of
QoI over the whole input space and thus its result is less affected by
outliers. This fact is also supported by results obtained from 107 samples
generated by LHS sampling using PCE surrogate model instead of the
original mathematical model (PCE-LHS). The results of PCE-LHS are
identical to LHS with original model, which clearly shows that although
the surrogate model is accurate, LHS sampling adds additional error
to estimated fractional moments and thus it is beneficial to employ
the proposed approach instead of numerical estimation if a PCE is
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Fig. 2. Typical realization of results for the first example (Gaussian distribution). The rows show estimated PDFs, CDFs and errors in approximations respectively. Each column
corresponds to increasing number of simulations used for estimation of fractional moments and probability distributions.
Fig. 3. Convergence study for 𝑛sim = 200.
e

available. The PCE-LHS with 107 samples will be used for comparison
of estimated fractional moments also in the following examples.

This result further supports our intention to derive probability dis-
tribution directly from PCE instead of utilization of standard sampling
techniques in combination with existing surrogate model. Naturally, G–
C expansion identified the exact solution of the QoI’s distribution as can
be expected, since the G–C expansion is based on perturbation of Gaus-
sian distribution and thus very suitable for this example. Nevertheless,
it shows very high accuracy of the integer statistical moments estimated
directly from PCE coefficients.

4.2. Finite element model of a plate

The second case study deals with a model of a thin steel plate of 1
m] by 1 [m] that is fully clamped at one side. The plate is subjected
o a distributed load over the top surface, and its displacement 𝒖
s computed using a finite element model consisting of 100 evenly
istributed linear shell elements, resulting in 121 nodes. As such, there
6 
are 110 active nodes in the model. In the analysis, the degrees of
freedom per node correspond to one translation and two rotations. The
QoI for this problem is the vertical displacement of one of the corner
nodes of the plate. Fig. 4 illustrates schematically the problem under
consideration

The corresponding equilibrium equation associated with the finite
lement model of the plate is represented as:

𝑲(𝜽)𝒖 = 𝒇 , (18)

with 𝑲 ∈ R330×330 the stiffness matrix of the plate; 𝜽 = [𝐸 , 𝑡, 𝜈], with
𝐸 representing Young’s modulus and 𝑡 the thickness of the plate; 𝜈
Poisson’s ratio, 𝒇 ∈ R330 is a vector collecting the forces acting on the
nodes of the FE model; and 𝒖 ∈ R330 the resulting displacement vector.
We assume 𝐸 , 𝑡, 𝜈 to be (truncated) Gaussian variables with vector of
mean values 𝝁𝑇 = [2.1 × 1011, 5 × 10−3, 0.3] with vector of coefficients of
variation 𝐯 = [0.15, 0.1, 0.1]. It is assumed that the degrees-of-freedom
of the finite element model have been ordered such that the first 110
components of 𝒖 correspond to vertical displacements.
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Fig. 4. Schematic representation of clamped plate.

Table 1
Relative errors of fractional moments estimated by PCE, LHS and PCE-LHS methods in
he second example for 𝑛𝑠𝑖𝑚 = 40.
r 1.1 1.2 1.8 1.9 2.1 2.2 2.9 3

PCE 0.011 0.019 0.006 0.006 0.034 0.050 0.038 0.060
LHS 0.008 0.011 0.035 0.042 0.057 0.066 0.159 0.178
PCE-LHS 0.020 0.024 0.056 0.063 0.078 0.086 0.156 0.167

The selected realizations of approximations are compared in Fig. 5.
In contrast to the previous example, a reference solution cannot be
btained analytically and thus we use empirical CDF obtained by LHS
ith 𝑛sim = 106 simulations. The proposed approach leads to accurate
pproximation of the target distribution already for 𝑛sim = 20 samples in
ontrast to standard LHS. Moreover the convergence of the accuracy for
ncreasing 𝑛sim is stable, while standard LHS approach achieves lower
ccuracy for 𝑛sim = 60 in comparison to 𝑛sim = 40. Identical behav-

ior of both methods can be seen also in statistical results compared
in Fig. 7(b). The proposed approach achieves both lower mean and
ariance of the estimated total error. Note that both methods converge
o the identical mean accuracy, though the convergence of PCE is
ignificantly faster. The obtained results clearly show the main benefits
f PCE: numerical efficiency, consistency in the estimated moments
ven for low 𝑛sim and analytical post-processing accelerating UQ of QoI.
or more detailed comparison of a typical simulation, the relative errors
f numerical values of estimated fractional moments for 𝑛𝑠𝑖𝑚 = 40 can
e found in Table 1.

Interestingly, G–C expansion does not converge to the reference
istribution and its solutions also do not represent valid PDFs/CDFs.
his fact is clearly caused by the fact that the QoI’s distribution is
ignificantly different from Gaussian distribution (non-negative, high
kewness etc.). The divergence of the G–C expansion can be seen also
n Fig. 7(b) for increasing 𝑛𝑠𝑖𝑚. From the numerical results, it can be
oncluded that G–C expansion is not suitable for general distributions
f QoI. Note that, the well-known limitations of G–C expansions [2]
re mitigated by the proposed approach based on the identical training

data and the identical surrogate model in form of PCE. The proposed
ethodology can be further combined with various field-dependent
istribution models parameterized by fractional moments, which will
e investigated in further research.

4.3. Dynamic car model

The third case study in this paper considers a so-called quarter-car
model. This is a 2 degree of freedom idealization of the dynamics of the
suspension of a moving car. Specifically, this case study is concerned
with assessing the distribution of the comfort of the vehicle suspension,
given the uncertainty in some of the properties of the system. The
quarter-car dynamics can be represented as a set of two ordinary
differential equations:

𝑚𝑠𝑥𝑠 + 𝑐𝑠(𝑥̇𝑠 − 𝑥̇𝑢𝑠) + 𝑘𝑠(𝑥𝑠 − 𝑥𝑢𝑠) = 0, (19)

𝑥̈ − 𝑐 (𝑥̇ − 𝑥̇ ) − 𝑘 (𝑥 − 𝑥 ) + 𝑐 (𝑥̇ − 𝑥̇ ) + 𝑘 (𝑥 − 𝑥 ) = 0, (20)
𝑢𝑠 𝑢𝑠 𝑠 𝑠 𝑢𝑠 𝑠 𝑠 𝑢𝑠 𝑡 𝑢𝑠 0 𝑡 𝑢𝑠 0 i

7 
with ∙̇ denoting the time derivative of ∙, 𝑥𝑢𝑠 the displacement of
the unsprung mass (i.e., the suspension components, wheel and other
omponents directly connected to them); 𝑥𝑠 the displacement of the
prung mass (i.e., all components resting on the suspension); 𝑚𝑢𝑠 and
𝑚𝑠 the unsprung and sprung mass of a quarter of the car; 𝑐𝑠 and 𝑐𝑡
respectively the damping coefficients of the suspension and tire; 𝑘𝑠 and
𝑘𝑡 respectively the stiffness coefficients of the suspension and tire. We
assume 𝑐𝑠, 𝑘𝑠, 𝑘𝑡 to be (truncated) Gaussian variables with vector of
mean values 𝝁𝑇 = [1 × 104, 4.8 × 104, 2 × 105] with identical coefficient of
variation 𝑣 = 10%. Finally, 𝑥0 and 𝑥̇0 are the displacement and velocity
in vertical direction that excite the bottom of the wheel (i.e., the road
profile). The complete road profile is denoted by 𝑥0(𝑡), with 𝑡 denoting
he simulation time.

To solve this coupled system of ODEs, a state-space model is em-
ployed:

𝑑
𝑑 𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑢𝑠 − 𝑥0
𝑥̇𝑢𝑠

𝑥𝑠 − 𝑥𝑢𝑠
𝑥̇𝑠

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑨

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑢𝑠 − 𝑥0
𝑥̇𝑢𝑠

𝑥𝑠 − 𝑥𝑢𝑠
𝑥̇𝑠

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

−1
4𝑐𝑡
𝑚𝑢𝑠
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝑥̇0, (21)

with the matrix 𝑨 equal to:

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−4𝑘𝑡
𝑚𝑢𝑠

−4(𝑐𝑠+𝑐𝑡)
𝑚𝑢𝑠

4𝑘𝑠
𝑚𝑢𝑠

4𝑐𝑠
𝑚𝑢𝑠

0 −1 0 1

0 4𝑐𝑠
𝑚𝑠

−4𝑘𝑠
𝑚𝑠

−4𝑐𝑠
𝑚𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

Four state variables are considered, being respectively the tire de-
flection (𝑥𝑢𝑠−𝑥0); the unsprung mass velocity 𝑥̇𝑢𝑠; the suspension stroke
𝑥𝑠 − 𝑥𝑢𝑠, and sprung mass velocity 𝑥̇𝑠. Typically, in the context of
assessing the dynamical comfort of a car, two parameters are of interest:
the suspension stroke (i.e., the relative displacement of the car body

ith respect to the unsprung mass) and the acceleration of the sprung
ass. In the proceeding study, the damping effect of the tire, 𝑐𝑡 is

onsidered negligible. The limit state function in this example is based
n the first excursion event of the suspension stroke, and explicitly
efined as:

1 − max
𝑡

(

1
𝑥𝑐

|

|

𝑥𝑠(𝑡) − 𝑥𝑢𝑠(𝑡)||
)

, (23)

with 𝑥𝑐 = 30 mm the threshold value for the stroke.
Similarly as in the previous examples, selected realizations of ap-

proximations for increasing 𝑛sim can be seen in Fig. 6. Note that
the distribution of QoI is bimodal (as can be clearly seen from em-
irical CDFs) and thus it cannot be accurately approximated by the

adopted M-EIGD-LESND. However, the obtained results show very fast
convergence of the proposed approach to the optimal solution with
minimum possible error, while standard LHS converges to the optimum
significantly slower as can be seen in the last column showing the
obtained distributions for 𝑛sim = 200. For more detailed comparison of a
typical simulation, the relative errors of numerical values of estimated
fractional moments for 𝑛𝑠𝑖𝑚 = 100 can be found in Table 2.

Statistical results compared in Fig. 7 show stable accuracy of the
roposed method for 𝑛sim > 60, while LHS has significantly larger
ariance and lower mean accuracy. Although this general behavior
f standard LHS could be seen also in the previous example, it is
mplified in the last example by the fact that fractional moments of the
nvestigated bimodal distribution are even more affected by position of

samples in the input random space. The convergence of G–C expansion
as similar trend as in the previous example, though it still leads to

valid distribution functions of QoI. However, the obtained accuracy
has a very large variance and a diverging trend for increasing 𝑛sim.

he behavior of G–C expansion is clearly affected by the fact, that
ractional moments play much higher role in this example and thus it
s not possible to get accurate approximations only from the first four

nteger moments.
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Fig. 5. Typical realization of results for the second example (FEM of a plate). The rows show estimated PDFs, CDFs and errors in approximations respectively. Each column
corresponds to increasing number of simulations used for estimation of fractional moments and probability distributions.
Fig. 6. Typical realization of results for the third example (dynamic car model). The rows show estimated PDFs, CDFs and errors in approximations respectively. Each column
corresponds to increasing number of simulations used for estimation of fractional moments and probability distributions.
4.4. Case study: Seepage under a sheet pile

This case study involves characterizing the uncertainty associated
ith the seepage flow 𝑌f low under a sheet pile. The physical problem is

epresented schematically in Fig. 8.
8 
The sheet pile retains a water column of 7 [m] and it is buried 8 [m]
deep into a permeable silty sand soil layer. The permeability of the soil
is modeled as an isotropic log-normal random field, with mean value
5 × 10−6 [m/s], a coefficient of variation of 100% and a correlation

modeled considering a quadratic exponential function. The correlation
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Fig. 7. Convergence plots showing mean values and ±𝜎 interval of the total error 𝜖 obtained by the proposed method and standard LHS approach for (a) Gaussian model, (b)
plate model and (c) Dynamic car model.
Fig. 8. Scheme of the investigated example: Seepage under sheet pile.
Table 2
Relative errors of fractional moments estimated by PCE, LHS and PCE-LHS methods in
the third example for 𝑛𝑠𝑖𝑚 = 100.

r 1.1 1.2 1.8 1.9 2.1 2.2 2.9 3

PCE 0.001 0.001 0.000 0.000 0.001 0.002 0.001 0.002
LHS 0.004 0.004 0.007 0.007 0.008 0.008 0.012 0.013
PCE-LHS 0.016 0.017 0.025 0.026 0.029 0.030 0.038 0.039

is equal to 𝑒−𝑑2∕𝐿2 , where 𝑑 denotes Euclidean distance between lo-
cations in the soil layer and 𝐿 is the correlation length, considered
here as 𝐿 = 10 [m]. The random field is discretized using the mid-
point method and is described through the Karhunen–Loève expansion
with 10 terms. This ensures that more than 95% of the variability of
the underlying Gaussian random field is retained. The seepage flow
is assumed to follow Darcy’s law. The associated partial differential
equation that allows quantifying the seepage flow corresponds to the
Laplace type and it is solved using the finite element method. The finite
element mesh involves 6090 quadratic triangular elements and 12 427
nodes, as represented schematically in 8. For the boundary conditions,
it is assumed that all sides of the soil layer illustrated in Fig. 8 are
impermeable, except for the sides marked as upstream (water inlet) and
downstream (water outlet). The QoI is defined as the following safety
margin with given deterministic threshold 𝑌 = 20 × 10−5 − 𝑌f low.

This example represents very complicated task for the proposed
approach, since the input random vector contains 10 random vari-
ables (weights from Karhunen–Loève expansion) and thus the PCE
contains very large number of basis functions. Moreover, the resulting
distribution of QoI is highly non-Gaussian as can be seen from the refer-
ence empirical distribution obtained from 1000 simulations depicted in
9 
Fig. 9 (right) together with the typical realization of the algorithm for
𝑛sim = 100. It can be seen that the fractional moments estimated from
the experimental design (LHS) are highly sensitive to outliers and thus
the approximated distribution is significantly different in comparison
to the reference solution. This trend can be seen also in the error plots
measuring a difference between the approximated distribution and the
empirical distribution for the increasing 𝑛sim ∈ [50, 100, 150, 200] shown
in Fig. 9 (left).

5. Discussion

In the previous section, we presented thorough comparison of the
proposed method to M-EIGD-LESND based on fractional moments esti-
mated directly from the experimental design generated by LHS, and
G–C expansion derived from the PCE. It was shown that although
G–C expansion based on the first four statistical moments derived
analytically from PCE is superior in the first example, it can become
unstable for significantly non-Gaussian distributions and more suitable
parametric distributions should be employed. Moreover, from the nu-
merical results it can be concluded it is beneficial to derive fractional
moments analytically from PCE as a part of the post-processing instead
of the direct numerical estimation from training data. Moreover it
was also shown in Tables 1 and 2, that analytical derivation of frac-
tional moments directly from PCE is more accurate in comparison to
numerical estimation from large set of realizations generated from PCE
approximation.

Naturally, the total accuracy of the estimated probability distribu-
tion is highly dependent on a selected parametric distribution. There-
fore, a comparison to general data-driven methods will be presented in
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Fig. 9. Convergence plots showing mean values and ±𝜎 interval of the total error 𝜖 obtained by the proposed method and standard LHS approach for the last example (left). A
typical realization of the algorithm for 𝑛sim = 100 (right).
Fig. 10. Typical realization of results for the second example (FEM of a plate). The rows show estimated PDFs, CDFs and errors in approximations respectively. Each column
corresponds to increasing number of simulations used for estimation of fractional moments and probability distributions.
c
c
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this section. The first standard data-driven method is based on well-
nown Kernel Density Estimation (KDE) using the Gaussian kernel
ith the bandwidth given by the most common Silverman’s rule of

humb based on 107 samples generated from PCE (PCE-KDE). The
econd approach for general comparison is Maximum Entropy Method
sing fractional moments (MEM) [49] based on training data. The
EM is popular technique for approximation of the target probability

istribution, which could be further used for general UQ of physical
ystems [50], sensitivity analysis [51] or combined with dimensional

reduction method to perform reliability analysis [52]. Note that for
he sake of a fair comparison, training data were generated by LHS
lthough more advanced sampling methods could be used specifically
or improvement of KDE and MEM [53,54], or one can use more
dvanced sampling techniques for construction of PCE [55].

The selected methods were compared in the second example — FEM
f a plate. The obtained numerical results of a typical realization can

be seen in Fig. 10. Note that the errors are calculated with respect to
he reference empirical PDF based on 107 simulations of the original

mathematical model. It can be seen that the proposed approach is very
10 
accurate and stable also for very low number of simulations, while PCE-
KDE is highly sensitive to the accuracy of PCE predictions (including
outliers) and its stability is improving with the size of ED. Moreover, it
can lead to unrealistic approximations due to the selected bandwidth as
an be seen in the third column. Although the MEM is generally very ac-
urate and efficient method, its results are significantly worse for very
ow number of samples as shown in this example. The statistical conver-
ence graphs presented in Fig. 11 confirms the previous results. While

KDE-PCE starts with a very high variance of the error, it converges
apidly to accurate results with increasing 𝑛𝑠𝑖𝑚 and thus increasing
ccuracy of the PCE. On the other hand, MEM does not converge
or such low sizes of ED due to the fact that it is purely data-driven
pproach, though it achieves very high accuracy for large EDs.

6. Conclusions & further work

A novel approach for estimation of fractional moments directly from
polynomial chaos expansion was proposed in this paper. The proposed
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Fig. 11. Convergence plots showing mean values and ±𝜎 interval of the total error 𝜖
obtained by the proposed method, LHS, PCE-KDE and MEM for the second example
(FEM of a plate).

method combines well-known formulas for estimation of integer statis-
ical moments from PCE coefficients together with Hölder’s inequality

in order to analytically obtain arbitrary fractional moments. The frac-
tional moments were further used for a construction of probability
istribution based on adopted M-EIGD-LESND algorithm. Obtained re-
ults from the presented numerical examples clearly show that the

proposed method leads to stable and accurate estimations. Moreover,
it achieves also a superior computational efficiency in comparison to
a standard method based on Latin hypercube sampling and higher
flexibility in comparison to classic Gram–Charlier expansion derived
directly from PCE. Therefore, it can be concluded that an error caused
by an Hölder’s inequality approximation is typically lower than er-
ror caused by discrete sampling methods, at least for low-size ED.
Naturally, the benefits of the proposed method will be crucial for
distribution-based sensitivity measures typically based on differences
between conditional probability distributions, which can be accessed
from a single PCE [21]. On the other hand, it is well-known that PCE
uffers from curse of dimensionality and thus the proposed approach is

not suitable for high-dimensional applications. There are also still some
mportant topics for further research. First of all, the accuracy of PCE is
ighly dependent on the type of sampling scheme [12] and thus it will

be necessary to investigate the most suitable sampling schemes and/or
active learning algorithms with respect to an estimation of statistical
moments [20].
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