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 A B S T R A C T

Effectively estimating output probability distributions in stochastic static and dynamic systems 
with a limited number of simulations is a significant challenge, especially for complex dis-
tributions with multi-modality and heavy tails. To address this challenge, this work explores 
the potential of the Laplace Transform (LT) and its inversion. First, the statistical information 
embedded in the derivatives of the LT is analysed, establishing the theoretical foundation for 
recovering output probability distributions. Subsequently, a novel analytical expression for the 
response probability density function (PDF) is derived by decomposing its inverse LT (ILT) 
using Euler’s formula. Building on the numerically estimated LT, a non-parametric numerical 
solution, termed the Numerical Decomposed ILT (NDILT) algorithm, is developed to flexibly 
estimate the main body of complex PDFs with limited samples. Second, the Taylor expansion 
of the real component of LT (RCLT) reveals its rich statistical content. Exploiting this property, 
another parametric method, the LT-based Maximum Entropy Method (LT-MEM), is proposed, 
incorporating estimated RCLT as constraints of the maximum entropy principle. By solving an 
optimization problem, LT-MEM can effectively reconstruct complex PDFs across their entire 
distribution domain using a small sample size. The proposed methods rediscover and harness 
the power of the LT and ILT to reconstruct complex-shaped probability distributions, offering a 
valuable alternative. Parameter selection strategies for NDILT and LT-MEM are provided, and 
their robust accuracy is validated through analytical and numerical examples across various 
challenging distributions.

1. Introduction

The output probability distributions of stochastic static and dynamic systems fully characterize the probabilistic properties of the 
system’s response, enabling the calculation of key statistical information, such as moments and tail probabilities. Accurate estimation 
of the output probability distributions, while accounting for input uncertainties in both system parameters and external excitations, 
is therefore essential for applications in uncertainty characterization, reliability analysis, engineering design optimization, etc. 
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In practice, output probability distributions often exhibit complex features like non-Gaussian behaviour, heavy tails, and multi-
modality, attributed to the complex probability distributions of input random variables and the highly nonlinear behaviour 
of systems. Additionally, the computational models for simulating real-world systems are often expensive to evaluate, which 
means a limited number of output samples are affordable for estimating the output probability distribution. These factors pose 
significant challenges for accurately and efficiently reconstructing the output distributions. Numerous methods for output probability 
distribution estimation of stochastic systems have been developed, which generally fall into two categories: non-parametric and 
parametric methods.

Non-parametric estimation avoids specifying a functional form for the response probability distribution of interest, providing 
flexibility by modelling data directly [1,2]. Common non-parametric methods include histogram-based approaches, Kernel Density 
Estimation (KDE) [3–5], B-spline-based techniques [1,6,7], and the Probability Density Evolution Method (PDEM) [8–12], etc. 
Histogram methods offer insights into the distributions of data derived from practical observations or sampling techniques, such as 
Monte Carlo Simulation (MCS) and its variants [13–15]. However, they lack an analytical Probability Density Function (PDF) repre-
sentation and may lose details due to discretization, particularly when samples are limited. KDE [3–5] is a popular non-parametric 
approach, known for simplicity and effectiveness, though its performance hinges on selecting an optimal bandwidth, which can 
be challenging [4,7]. Additionally, although KDE handles complex distributions well, it requires large samples to achieve the 
desired level of accuracy, especially for the distribution tail [2,16,17]. B-spline-based estimators, due to their localized support, limit 
each data point’s influence to adjacent basis elements, attracting recent attention [1,6,7]. However, some B-spline methods do not 
guarantee non-negativity or normalization of the PDF [7] and are challenging for problems with high-dimensional random inputs [1]. 
PDEM, originally introduced by Li and Chen [8], is effective in both static and dynamic applications [9–12,18]. Additionally, the 
direct probability integral method is developed to reconstruct PDFs using a weighted KDE, showing promising results [19–21], but 
shares KDE’s limitations [16,22]. Recently developed excellent non-parametric methods, such as the characteristic function inversion 
method [16], harmonic transform-based techniques [22,23] and Bayesian active learning method [24], effectively recover complex 
distributions but may require further exploration for high-dimensional cases.

Parametric methods, particularly moment-based approaches, are widely used to estimate PDFs by leveraging the statistical 
moments of target random variables. Traditional methods, including the Pearson system [25], shifted generalized lognormal distri-
bution [26], Hermite model [27], and saddlepoint approximation [28], etc., typically reconstruct PDFs using the first four moments. 
However, these methods are generally limited to uni-modal distributions with regular shapes [16]. The moment-based Maximum 
Entropy Method (MEM) [29–33] has emerged as a powerful alternative for reconstructing unknown distributions. Standard MEM, 
known as Integer Moment-based MEM (IM-MEM), uses integer moments for PDF estimation, but this can be insufficient for capturing 
tails accurately with low-order moments, while higher-order moments may induce numerical instability [30]. The Fractional 
Moment-based MEM (FM-MEM) [34] was introduced to address these limitations by using fractional moments as constraints, 
offering greater flexibility and enhanced accuracy. To ensure robustness, the Fractional Exponential Moment-based MEM (FEM-
MEM), which combines MEM with the Laplace transform (LT), was developed and widely applied [35–38]. Additionally, MEM 
with integer or fractional moments has also been extended to estimate multi-modal distributions [39,40]. Despite MEM’s success 
in response probability distribution estimation, reconstructing complex PDFs, especially those with multiple modes or heavy tails, 
remains challenging [22,41,42].

FEM-MEM has been extensively used for probability distribution reconstruction based on the LT along the real axis [37,38,43], 
but applications of the LT in the complex domain for this purpose remain largely unexplored. Given the widespread use of LT in 
various scientific disciplines [44], numerous numerical Inverse LT (ILT) methods have been developed, as detailed in Refs. [45,46], 
etc. However, these methods typically assume a known LT, which limits their practical application in reconstructing probability 
distributions. Efforts have been made to recover some specific PDFs with heavy tails via ILT [47]. Thus, the LT and its inversion 
hold significant potential for estimating complex-shaped probability distributions, meriting further exploration.

The main objective of this work is to develop LT-based methods for accurate and efficient estimation of output probability 
distributions in stochastic static and dynamic systems, especially for distributions with complex shapes. The contributions of this 
study are threefold:

(1) This work explores the potential of the LT and ILT for estimating output probability distributions with complex shapes in 
stochastic systems, offering a powerful alternative to capture intricate probabilistic information of output driven by complex 
input uncertainties and highly nonlinear system behaviour;

(2) A new analytic expression for the output PDF over the real domain is derived, named the Decomposed ILT (DILT) method, 
by decomposing its ILT in the complex domain. The DILT method is supported by its numerical algorithm, Numerical DILT 
(NDILT), which facilitates highly flexible and computationally efficient reconstruction of the main body of complex-shaped 
output probability distributions using a limited number of system simulations;

(3) Additionally, this work reveals that the real part of the LT in the complex domain encapsulates substantial statistical 
information about the probability distribution. Building on this insight, a method termed LT-MEM is proposed, integrating 
the Real Component of LT (RCLT) with the MEM. This method enables accurate reconstruction of complex-shaped probability 
distributions across their entire distribution range, leveraging the superior characteristics of the RCLT.

This work proposes an effective framework for reconstructing output probability distributions in stochastic static and dynamic 
systems. It comprises a non-parametric method, NDILT, and a parametric approach, LT-MEM. These methods leverage powerful 
mathematical tools, i.e., the LT in the complex domain and its inversion, offering a novel and robust alternative for estimating 
probability distributions with complex shapes. The basic workflow of the proposed methods is illustrated in Fig.  1. The rest of 
2 



Y. Zhang et al. Computer Methods in Applied Mechanics and Engineering 439 (2025) 117887 
Fig. 1. Basic workflow of the proposed methods.

this paper is structured as follows. In Section 2, the problem to be addressed in this study is formulated. Section 3 and Section 4 
present the proposed DILT and LT-MEM, respectively. Four test examples in Section 5 demonstrate the effectiveness of the proposed 
methods, and Section 6 provides some concluding remarks.

2. Problem formulation

Let Θ =
[

𝛩1, 𝛩2,… , 𝛩𝑑
]

∈ 𝛺Θ ⊆ R𝑑 represent a vector of 𝑑 continuous random variables, defined over the probability 
space (𝛺Θ,F ,P

)

. Here, 𝛺Θ is the sample space, F  is a 𝜎-algebra on 𝛺Θ, and P ∶ 𝛺Θ → [0, 1] is the probability measure on 
(

𝛺Θ,F
)

. These input variables Θ characterize the uncertainties associated with both system parameters and external excitations 
in the stochastic systems under consideration. For a static system, the output of interest, denoted as 𝑍, can then be defined by a 
deterministic computational model, represented as: 

𝑍 = 𝐺 (Θ) , (1)

where 𝐺 (⋅) ∶ R𝑑 → R is a deterministic mapping that represents a physical system. For a dynamic system, the response at a given 
time instant can also be expressed as in Eq. (1).

Since the input parameters of the concerned system are random variables, the output response 𝑍 is also a random variable. Its 
PDF, denoted as 𝑓𝑍 (𝑧), can be expressed as 

𝑓𝑍 (𝑧) = ∫𝛺Θ

𝛶 (𝑧 − 𝐺 (𝜽)) 𝑓Θ (𝜽)d𝜽, (2)

where 𝛶 (⋅) is the Dirac delta function and 𝑓Θ (𝜽) denotes the joint PDF of Θ.
The output PDF 𝑓𝑍 (𝑧) completely characterizes the probabilistic properties of the system’s response, serving as a crucial 

foundation for uncertainty characterization, reliability analysis, and related applications. However, in most real-world scenarios, 
the analytical solution of the output PDF 𝑓𝑍 (𝑧) is not available, necessitating the development of numerical methods to estimate 
𝑓𝑍 (𝑧). On the other hand, computational models for simulating real-world systems are often computationally expensive, limiting the 
number of output samples for estimating the output probability distributions. This constraint causes many state-of-the-art numerical 
methods to struggle with low flexibility and accuracy, particularly when dealing with complex-shaped distributions. To address the 
research gap, effective LT-based methods for PDF estimation are proposed in the following two sections.
3 
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3. NDILT for probability density estimation

The LT can capture complete statistical information about a random variable, making it an invaluable tool for reconstructing its 
PDF. Building on the LT, this section proposes a new method for estimating unknown PDFs. It begins with a concise overview of the 
foundational concepts and properties of the LT. Next, a new analytical expression for reconstructing PDF is derived by decomposing 
the ILT, forming the core of the proposed DILT method. Finally, the corresponding numerical algorithm, referred to as the NDILT, 
is presented to facilitate the practical implementation of the DILT method.

3.1. Definition of the LT and its inversion

The bilateral LT of output PDF 𝑓𝑍 (𝑧), denoted as function 
[

𝑓𝑍 (𝑧) ; 𝑐
]

∶ C ↦ C, can be defined as 


[

𝑓𝑍 (𝑧) ; 𝑐
]

= ∫

∞

−∞
𝑓𝑍 (𝑧) exp (−𝑐𝑧)d𝑧, (3)

where 𝑐 is a complex number, i.e., 𝑐 = 𝑎+ i𝑏 with real numbers 𝑎 and 𝑏, and i =
√

−1 is the imaginary unit. For clarity, all instances 
of LT in this paper refer exclusively to the bilateral LT.

In Eq. (3), 𝑓𝑍 (𝑧) and its LT 
[

𝑓𝑍 (𝑧) ; 𝑐
] are interconnected, such that knowing one enables the recovery of the other [48]. The 

existence of LT is guaranteed if there exist constants ℎ−, ℎ+ ∈ R, such that [48] 

0 ≤ ∫

∞

0
𝑓𝑍 (𝑧) exp

(

−ℎ+𝑧
)

d𝑧 < ∞, 0 ≤ ∫

0

−∞
𝑓𝑍 (𝑧) exp (−ℎ−𝑧)d𝑧 < ∞. (4)

Then, the existence domain of the LT can be defined as {𝑐 ∶ 𝑎 ∈
(

−∞, ℎ−max
)

∩
(

ℎ+min,∞
)}

, where ℎ−max denotes the maximum value 
of ℎ− and ℎ+min represents the minimum value of ℎ+. In this paper, the concerned output PDFs are assumed to have a non-empty 
existence domain.

Accordingly, the ILT, denoted by ̄ [

𝑓𝑍 (𝑧) ; 𝑐
]

, is defined through the following complex integral: 

𝑓𝑍 (𝑧) = ̄
[

𝑓𝑍 (𝑧) ; 𝑐
]

= 1
2𝜋i ∫

𝑎+i∞

𝑎−i∞
exp(𝑐𝑧)

[

𝑓𝑍 (𝑧) ; 𝑐
]

d𝑐. (5)

It should be noted that the integration in Eq. (5) is performed along the imaginary axis, and the result is independent of the fixed 
real part 𝑎 [16,22,49,50]. Then, Eq. (5) can be rewritten as 

𝑓𝑍 (𝑧) = ̄
[

𝑓𝑍 (𝑧) ; 𝑐
]

= 1
2𝜋 ∫

+∞

−∞
exp(𝑐𝑧)

[

𝑓𝑍 (𝑧) ; 𝑐
]

d𝑏. (6)

For the output 𝑍, its raw moments are encoded within the derivatives of the  [

𝑓𝑍 (𝑧) ; 𝑐
] at the origin, given by [51] 

E
[

𝑍𝐾 ] = (−1)𝐾
d𝐾

[

𝑓𝑍 (𝑧) ; 𝑐
]

d𝑐𝐾
|

|

|

|

|𝑐=0
, (7)

where E [⋅] denotes the expectation operator, E [

𝑍𝐾 ] represents the 𝐾th raw moment of 𝑍. Clearly, the LT retains complete statistical 
features of a probability distribution, which can subsequently be retrieved via the ILT.

3.2. Proposed DILT method

Eq. (6) offers a conceptually straightforward way to reconstruct the PDF 𝑓𝑍 (𝑧). However, despite its theoretical clarity, solving 
Eq. (6) is challenging due to the integration involving a complex-valued integrand. To address this, this section re-derives the 
analytic expression for the interested PDF 𝑓𝑍 (𝑧) by decomposing the ILT, termed the DILT method, and provides the corresponding 
numerical algorithm, called the NDILT algorithm, to facilitate practical implementation, as detailed below. In the DILT method, 
𝑓𝑍 (𝑧) is reformulated as an integral of a real-valued function over the real domain, providing an efficient alternative for computing 
output probability distributions.

3.2.1. New analytic expression of PDF using DILT
First, according to the Euler’s formula, exp(−𝑐𝑧) can be expressed as follows 

exp(−𝑐𝑧) = exp(−𝑎𝑧)
[

cos (−𝑏𝑧) + i sin (−𝑏𝑧)
]

. (8)

By substituting Eq. (8) into Eq. (3), the LT  [

𝑓𝑍 (𝑧) ; 𝑐
] can be rewritten as 


[

𝑓𝑍 (𝑧) ; 𝑐
]

= ∫

∞

−∞
𝑓𝑍 (𝑧) exp(−𝑎𝑧)

[

cos (−𝑏𝑧) + i sin (−𝑏𝑧)
]

d𝑧

= 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

+ 𝐼 [𝑓𝑍 (𝑧) ; 𝑐
]

,
(9)

where 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and 𝐼 [𝑓𝑍 (𝑧) ; 𝑐

] represent the real and imaginary components of the LT, denoted as RCLT and ICLT, 
respectively, which are defined as follows 

𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

= E
[

exp(−𝑎𝑍) cos (−𝑏𝑍)
]

=
∞
𝑓𝑍 (𝑧) exp(−𝑎𝑧) cos (−𝑏𝑧)d𝑧, (10)
∫−∞

4 
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𝐼 [𝑓𝑍 (𝑧) ; 𝑐
]

= E
[

exp(−𝑎𝑍)i sin (−𝑏𝑍)
]

= ∫

∞

−∞
𝑓𝑍 (𝑧) exp(−𝑎𝑧)i sin (−𝑏𝑧)d𝑧. (11)

After that, substituting Eqs. (8), (10) and (11) into Eq. (6), the ILT (Eq. (6)) can be further decomposed as 
𝑓𝑍 (𝑧) = ̄

[

𝑓𝑍 (𝑧) ; 𝑐
]

= 1
2𝜋 ∫

+∞

−∞
𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

exp(𝑎𝑧) cos (𝑏𝑧)d𝑏

+ 1
2𝜋 ∫

+∞

−∞
𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

exp(𝑎𝑧)i sin (𝑏𝑧)d𝑏

+ 1
2𝜋 ∫

+∞

−∞
𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

exp(𝑎𝑧)i sin (𝑏𝑧)d𝑏

+ 1
2𝜋 ∫

+∞

−∞
𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

exp(𝑎𝑧) cos (𝑏𝑧)d𝑏,

(12)

It can be observed that Eq. (12) effectively decomposes the integral in Eq. (6) into its real and imaginary components. Specifically, 
the first two terms on the right-hand side of Eq. (12) represent the real part of 𝑓𝑍 (𝑧), while the last two terms correspond to the 
imaginary part. Considering that 𝑓𝑍 (𝑧) is a real-valued function, a new analytic expression for 𝑓𝑍 (𝑧) is derived by omitting the 
imaginary part in Eq. (12), as follows 

𝑓𝑍 (𝑧) = 1
2𝜋 ∫

+∞

−∞
𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

exp (𝑎𝑧) cos (𝑏𝑧)d𝑏

+ 1
2𝜋 ∫

+∞

−∞
𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

exp (𝑎𝑧) i sin (𝑏𝑧)d𝑏.
(13)

Due to the complexity of Eq. (13), deriving an analytical solution remains challenging, even when 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and 𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

are known. Moreover, if the LT of 𝑓𝑍 (𝑧) is unknown, Eq. (13) cannot be solved directly due to the presence of 𝑓𝑍 (𝑧) in the integrand. 
Consequently, it is necessary to pursue a numerical solution, which is detailed below.

3.2.2. Numerical algorithm for DILT
The inner integrals of Eq. (13), namely RCLT 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and ICLT 𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

, are defined as expected values. Consequently, 
these integrals can be estimated numerically from samples of 𝑍, denoted as 𝒛̄ =

(

𝑧̄1, 𝑧̄2,… , 𝑧̄𝑖,… , 𝑧̄𝑛𝑡
)

, where 𝑖 = 1, 2,… , 𝑛𝑡. The 
numerical estimates, denoted as ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and ̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

, respectively, are given as follows 

̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

= 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
exp

(

−𝑎𝑧̄𝑖
)

cos
(

−𝑏𝑧̄𝑖
)

, (14)

̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐
]

= i 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
exp(−𝑎𝑧̄𝑖) sin

(

−𝑏𝑧̄𝑖
)

. (15)

The numerical evaluations of 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] (Eq. (14)) and 𝐼 [𝑓𝑍 (𝑧) ; 𝑐

] (Eq. (15)) are critical for recovering the unknown PDF 
𝑓𝑍 (𝑧), as any induced errors may adversely propagate into the PDF calculation. Therefore, careful selection of the sampling methods 
for evaluating ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] (Eq. (14)) and ̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐

] (Eq. (15)) is essential. To balance accuracy and efficiency, this paper 
employs a low-discrepancy point selection strategy, called the New Generating Vector-based Number-Theoretical Method (NGV-
NTM) [52], with details provided in Appendix  A. Once the representative point set of the input random variables Θ, denoted as 
𝜽 =

{

𝜽𝑖 =
(

𝜃𝑖,1, 𝜃𝑖,2,… , 𝜃𝑖,𝑑
)

, 𝑖 = 1, 2,… , 𝑛𝑡
}

, is obtained by NGV-NTM, repeatedly deterministic model evaluations, i.e., 𝑍 = 𝐺 (Θ), 
are conducted to generate the corresponding output samples of 𝑍, i.e., 𝒛̄. These samples can then be substituted into Eqs. (14) and 
(15) to compute the numerical ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and ̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

.
By substituting Eqs. (14) and (15) into Eq. (13), the numerical estimation of the PDF 𝑓𝑍 (𝑧), referred to as the NDILT algorithm, 

is obtained as follows 
𝑓𝑍 (𝑧) ≈ 𝑓𝑍 (𝑧)

= 𝛥𝑏
2𝜋

𝑟
∑

𝑘=−𝑟

[

1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
exp(−𝑎𝑧̄𝑖) cos

(

−𝑏𝑘𝑧̄𝑖
)

]

exp(𝑎𝑧) cos
(

𝑏𝑘𝑧
)

+ 𝛥𝑏
2𝜋

𝑟
∑

𝑘=−𝑟

[

1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
exp(−𝑎𝑧̄𝑖) sin

(

−𝑏𝑘𝑧̄𝑖
)

]

exp(𝑎𝑧) sin
(

−𝑏𝑘𝑧
)

,

(16)

where 𝑓𝑍 (𝑧) represents the estimated PDF; 𝛥𝑏 denotes the discretization step; 𝑏𝑘 = 𝑘𝛥𝑏 and 2𝑟 + 1 denotes the total number of 
discretizations.

The numerical PDF 𝑓𝑍 (𝑧) is expressed in Eq. (16) as a summation of a finite number of terms. Therefore, the number of these 
terms must be determined carefully. Specifically, the RCLT 𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and ICLT 𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

, for a fixed value of 𝑎, approach zero 
as |𝑏| increases due to their decaying nature. Once the values of the RCLT and ICLT become sufficiently small, their contribution 
to the accuracy of the numerical PDF is minimal and can thus be neglected. Moreover, both RCLT and ICLT exhibit the same 
5 
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Fig. 2. Schematic diagram of the estimated interval [𝑏̂L , 𝑏̂U]. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

convergence behaviour. Therefore, to determine the number of cumulative terms and mitigate the effects of tail estimation errors 
in the numerical RCLT and ICLT, an estimated finite interval of 𝑏, denoted as [𝑏̂L, 𝑏̂U

]

=
[

−𝑏̂U, 𝑏̂U
]

, where 𝑏̂L and 𝑏̂U represent the 
estimated lower and upper bounds of 𝑏, should be specified in accordance with the following formula: 

𝑏U ≤ 𝑏̂U ≤ 𝑏U, (17)

where 
⎧

⎪

⎨

⎪

⎩

𝑏U = min
{

𝑏̄ ∣ ∀𝑏 ∈
(

𝑏̄,+∞
)

, ||
|

̂𝑅 (

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
)

|

|

|

≤ 𝜌1̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 0
]

}

, 𝑏̄ ∈ [0,+∞)

𝑏U = min
{

𝑏̄ ∣ ∀𝑏 ∈
(

𝑏̄,+∞
)

, ||
|

̂𝑅 (

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
)

|

|

|

≤ 𝜌2̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 0
]

}

, 𝑏̄ ∈ [0,+∞)
, (18)

where ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
]

= ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
]

, ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 0
] is the value of ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
] with 𝑏 = 0; 𝑎 is set to 𝑎 = −0.01; 𝜌1 and 𝜌2

are empirically set to 𝜌1 = 0.001 and 𝜌2 = 0.05, respectively. The schematic diagram of calculating the interval [𝑏̂L, 𝑏̂U
] is shown in 

Fig.  2.
Utilizing the parameters 𝜌1 and 𝜌2 (𝜌1 > 𝜌2 > 0), the range of admissible values for 𝑏̂U is determined by Eq. (18). Subsequently, 

a specific value of 𝑏̂U is selected from the interval [𝑏U, 𝑏U] using Eq. (17), thereby ensuring both robustness and flexibility, while 
mitigating the propagation of tail errors of numerical LT. In this regard, Eq. (17) defines the abscissa intervals for the main body of 
the numerical RCLT ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] and ICLT ̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐

]

, see the green part in Fig.  2, for values that can be accurately computed, 
while discarding tail regions (see the red part in Fig.  2) that converge to zero but introduce estimation errors. The numerical RCLT 
and ICLT within the interval [𝑏̂L, 𝑏̂U

] can then be applied in Eq. (16) to estimate the PDF. In Eq. (16), a small value of 𝑎 = −0.01
is selected for the real part parameter 𝑎 to prevent divergence in the numerical integration.  The numerical integration step size, 
𝛥𝑏, should be sufficiently small to ensure the accuracy of the estimated PDF, depending on the problem at hand, yet not so small 
as to incur unnecessary computational costs. In this work, 𝛥𝑏 is set to 0.01 to strike a balance between accuracy and efficiency. 
Furthermore, the parameter 𝑟 is defined as 𝑟 = 𝑏̂U∕𝛥𝑏.

3.3. Step-by-step procedure of the proposed NDILT algorithm

The implementation procedure of the NDILT algorithm is illustrated in Fig.  3, with the detailed steps outlined as follows:

Step 1: Determine the number of input random variables 𝑑 and number of samples 𝑛𝑡, and then generate the corresponding 
representative point set 𝜽 =

{

𝜽𝑖 =
(

𝜃𝑖,1, 𝜃𝑖,2,… , 𝜃𝑖,𝑑
)

, 𝑖 = 1, 2,… , 𝑛𝑡
} using NGV-NTM, as described in Appendix  A.

Step 2: Substitute each point from the representative point set 𝜽 into the response function 𝑍 = 𝐺 (Θ), and perform repeatedly 
deterministic model evaluations to obtain the output samples 𝒛̄ =

(

𝑧̄1, 𝑧̄2,… , 𝑧̄𝑖,… , 𝑧̄𝑛𝑡
)

, 𝑖 = 1, 2,… , 𝑛𝑡, of 𝑍.
Step 3: Substitute samples 𝒛̄ of 𝑍 into Eqs. (14) and (15) to compute the numerical ICLT ̂𝐼 [𝑓 𝑧 ; 𝑐

] and RCLT ̂𝑅 [

𝑓 𝑧 ; 𝑐
]

.
𝑍 ( ) 𝑍 ( )

6 
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Fig. 3. Flowchart of the proposed NDILT and LT-MEM.

Step 4: Calculate the estimated interval [𝑏̂L, 𝑏̂U
] for 𝑏 using Eq. (17).

Step 5: Substitute the numerical ICLT ̂𝐼 [𝑓𝑍 (𝑧) ; 𝑐
] and RCLT ̂𝑅 [

𝑓𝑍 (𝑧) ; 𝑐
] within the interval [𝑏̂L, 𝑏̂U

] into Eq. (16) to obtain the 
numerical PDF 𝑓𝑍 (𝑧).

The NDILT method (Eq. (16)) enables accurate estimation of the main body of highly complex multi-modal PDFs, using a limited 
number of sample points, as demonstrated in the test examples in Section 5. On the other hand, the series with truncation errors 
and trigonometric terms in Eq. (16) may introduce oscillations and negative values in the tails of the estimated PDF 𝑓𝑍 (𝑧). Thus, 
the NDILT method is preferred when the distribution tail is not a primary concern.

4. LT-MEM for probability density estimation

This section proposes another PDF estimation method, i.e., LT-MEM, to address the oscillations and non-positivity in the tails 
of the NDILT method proposed in Section 3.2. The proposed LT-MEM leverages the values of RCLT as constraints of the maximum 
entropy principle, enabling effective reconstruction of probability distributions with complex shapes across the entire distribution 
range. Furthermore, the relationship between the RCLT and the integer moments is derived, revealing its ability to encapsulate 
substantial probabilistic information and thus highlighting its strengths in modelling complex distributions.

4.1. Generalized paradigm of the MEM

The MEM is a well-established approach for recovering PDFs from a limited number of moments. This method guarantees that 
the recovered PDF remains unbiased and accurately reflects the available moments while minimizing the introduction of extraneous 
or misleading information [43,53].

In MEM, the Shannon entropy of 𝑓𝑍 (𝑧) is given by 


[

𝑓𝑍 (𝑧)
]

= −∫

∞
𝑓𝑍 (𝑧) ln

[

𝑓𝑍 (𝑧)
]

d𝑧. (19)

−∞

7 
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Generally, the unified framework for various MEMs can be expressed as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find: 𝑓𝑍 (𝑧)
Maximize: 

[

𝑓𝑍 (𝑧)
]

= − ∫ ∞
−∞ 𝑓𝑍 (𝑧) ln

[

𝑓𝑍 (𝑧)
]

d𝑧
Subject to: ∫ ∞

−∞ 𝑓𝑍 (𝑧) 𝑑𝑧 = 1
∫ ∞
−∞ (𝑇 (𝑧))𝛼𝑙 𝑓𝑍 (𝑧)d𝑧 = ̂𝛼𝑙

𝑇 (𝑍), 𝑙 = 1, 2,… , 𝐿

, (20)

where 𝑓𝑍 (𝑧) represents the estimated PDF obtained by the MEM; ̂𝛼𝑙
𝑇 (𝑍) denotes the 𝛼𝑙th order sample moment of 𝑇 (𝑍); 𝐿 indicates 

the total number of the statistical moments; and 𝑇 (⋅) is a user-defined mapping function. IM-MEM and FM-MEM correspond to 
integer and fractional values of 𝛼𝑙, respectively.

As mentioned above, traditional MEMs, which rely on integer or fractional moments, often require large data samples and face 
challenges related to inflexibility and numerical instability. These issues make them difficult to apply to the estimation of complex 
PDFs commonly encountered in real-world engineering, thereby limiting their practical applicability [32,42]. On the other hand, 
while the proposed NDILT method can accurately and flexibly reconstruct complex PDFs in the main body, it may experience 
oscillations and non-positivity in the tails. To address these limitations, the so-called LT-MEM is proposed for output PDF estimation, 
which is described in detail in the following sections.

4.2. Proposed LT-MEM

To uniformly address diverse problems and enhance the robustness of the proposed LT-MEM across various distribution domains, 
an intermediate random variable 𝑌  is introduced to normalize 𝑍: 

𝑌 = (𝑍 − 𝜇̂𝑍 )∕𝜎̂𝑍 , (21)

where 𝜇̂𝑍 and 𝜎̂𝑍 denote the sample mean and standard deviation of 𝑍, respectively.
The estimated mean 𝜇̂𝑍 and standard deviation 𝜎̂𝑍 of 𝑍 can be obtained from the samples 𝒛̄ without requiring for additional 

evaluation of the 𝐺 (⋅) function, as shown below: 

𝜇̂𝑍 = 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
𝑧̄𝑖, 𝜎̂𝑍 =

√

√

√

√

1
𝑛𝑡 − 1

𝑛𝑡
∑

𝑖=1

(

𝑧̄𝑖 − 𝜇̂𝑍
)2. (22)

Once the estimated PDF 𝑓𝑌 (𝑦) of 𝑌  is obtained, the estimated PDF 𝑓𝑍 (𝑧) of 𝑍 can be determined accordingly and is expressed 
as 

𝑓𝑍 (𝑧) = 𝑓𝑌 (𝑦)∕𝜎̂𝑍 . (23)

Then, the focus shifts to deriving the PDF 𝑓𝑌 (𝑦), which can be achieved using the proposed LT-MEM method.
In the LT-MEM, the RCLT of 𝑓𝑌 (𝑦), denoted as 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

, is specified as the constraint in MEM. For clarity, the expression 
for the RCLT of 𝑓𝑌 (𝑦) is restated as follows 

𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

= E
[

exp(−𝑎𝑌 ) cos (−𝑏𝑌 )
]

= ∫𝛺𝑌

𝑓𝑌 (𝑦) exp(−𝑎𝑦) cos (−𝑏𝑦)d𝑦, (24)

where 𝛺𝑌  is the sample space of 𝑌 .
To illustrate the mathematical properties of the RCLT, 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

, of 𝑓𝑌 (𝑦), consider the Taylor series expansion of the term, 
exp(−𝑎𝑌 ) cos (−𝑏𝑌 ), around the origin: 

exp(−𝑎𝑌 ) cos (−𝑏𝑌 ) = 1 − 𝑎𝑌 +

(

𝑎2 − 𝑏2
)

𝑌 2

2!
−

(

𝑎3 − 3𝑎𝑏2
)

𝑌 3

3!
+⋯

+
(−1)𝐾

𝐾!

⌊𝐾∕2⌋
∑

𝑘=0
𝐶 (𝐾, 2𝑘) (−1)𝑘 𝑎𝑛−2𝑘𝑏2𝑘𝑌 𝐾 +⋯ ,

(25)

where ⌊⋅⌋ denotes the floor function; and 𝐶 (𝐾, 2𝑘) is the binomial coefficient, which can be computed as follows 

𝐶 (𝐾, 2𝑘) = 𝐾!
(2𝑘)! (𝐾 − 2𝑘)!

. (26)

Thus, the 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] can be rewritten as 

𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

= E
[

exp(−𝑎𝑌 ) cos (−𝑏𝑌 )
]

= 1 − 𝑎E [𝑌 ] +

(

𝑎2 − 𝑏2
)

E
[

𝑌 2]

2!
−

(

𝑎3 − 3𝑎𝑏2
)

E
[

𝑌 3]

3!
+⋯

+
(−1)𝐾

𝐾!

⌊𝐾∕2⌋
∑

𝑘=0
𝐶 (𝐾, 2𝑘) (−1)𝑘 𝑎𝑛−2𝑘𝑏2𝑘E

[

𝑌 𝐾 ] +⋯.

(27)

Here, 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] is expressed as a weighted summation of an infinite number of raw moments of 𝑌 , indicating that it encompasses 

a substantial amount of probabilistic information related to its raw moment counterpart.
8 
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Likewise, the expansion of exp(−𝑎𝑌 ) cos (−𝑏𝑌 ) can be also performed at the mean of 𝑌 , denoted as 𝜇𝑌 = E [𝑌 ], following the same 
pattern as the expansion around the origin (Eq. (25)). In this case, each derivative is evaluated at 𝜇𝑌 , resulting in a more complex 
expression due to the presence of 𝜇𝑌  in the exponential and trigonometric functions. For higher-order terms, the general pattern of 
the powers of 𝑎 and 𝑏 will persist, and the trigonometric and exponential factors will reflect the shift by 𝜇𝑌 . Thus, the expansion up 
to the infinite order will involve a series of increasingly complex terms comprising powers of (𝑌 −𝜇𝑌 ), exp(−𝑎𝜇𝑌 ), and trigonometric 
factors such as cos (𝑏𝜇𝑌

) and sin (𝑏𝜇𝑌
)

. For simplicity, the expansion of 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] at 𝜇𝑌  is presented with the first three explicit 

expressions as follows 
𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

= E (exp(−𝑎𝑌 ) cos (−𝑏𝑌 ))

=
cos

(

𝑏𝜇𝑌
)

exp(𝑎𝜇𝑌 )
−

[

𝑎 cos
(

𝑏𝜇𝑌
)

+ 𝑏 sin
(

𝑏𝜇𝑌
)]

E
[(

𝑌 − 𝜇𝑌
)]

exp(𝑎𝜇𝑌 )

+

[(

𝑎2 − 𝑏2
)

cos
(

𝑏𝜇𝑌
)

+ 2𝑎𝑏 sin
(

𝑏𝜇𝑌
)]

E
[

(

𝑌 − 𝜇𝑌
)2
]

2 exp(𝑎𝜇𝑌 )
+⋯ ,

(28)

where E
[

(

𝑌 − 𝜇𝑌
)𝐾

]

 is the 𝐾th central moment of 𝑌 .
Eqs. (27) and (28) clearly indicate that the 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] encapsulates the statistical information about moments. This suggests 

that the potential utility of 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] for estimating unknown PDFs is significant, as it can capture a wealth of probabilistic 

information even for small values of 𝑎 and 𝑏. However, despite its conceptual advantages, directly calculating 𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

using Eq. (24) is often challenging or even infeasible, given that 𝑓𝑌 (𝑦) is unknown. Consequently, numerical approximations of 
𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
] become essential, which can be calculated using methods analogous to those in Eq. (14), and can be expressed as 

̂𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

= 1
𝑛𝑡

𝑛𝑡
∑

𝑖=1
exp(−𝑎𝑦̄𝑖) cos

(

−𝑏𝑦̄𝑖
)

, (29)

where the samples of 𝑌 , denoted as 𝒚̄ =
(

𝑦̄1, 𝑦̄2,… , 𝑦̄𝑖,… , 𝑦̄𝑛𝑡
)

, can be calculated using Eq. (21) based on the samples 𝒛̄.
Here, by treating the numerical RCLT of 𝑓𝑍 (𝑧), i.e., ̂𝑅 [

𝑓𝑌 (𝑦) ; 𝑐
]

, as constraints within the entropy maximum problem presented 
in Eq. (20), the proposed LT-MEM can be readily formulated as follows 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find: 𝑓𝑌 (𝑦)
Maximize: 

[

𝑓𝑌 (𝑦)
]

= − ∫𝛺𝑌
𝑓𝑌 (𝑦) ln

[

𝑓𝑌 (𝑦)
]

d𝑦
Subject to: ∫𝛺𝑌

𝑓𝑌 (𝑦) 𝑑𝑦 = 1
∫𝛺𝑌

𝑓𝑌 (𝑦) exp(−𝑎𝑙𝑦) cos
(

−𝑏𝑙𝑦
)

d𝑦 = ̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

, 𝑙 = 1, 2,… , 𝐿

, (30)

where ̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
] is the 𝑙th numerical RCLT of 𝑓𝑌 (𝑦) with 𝑎 = 𝑎𝑙 and 𝑏 = 𝑏𝑙; 𝐿 stands for the number of the given RCLT 

constraints; 𝑓𝑌 (𝑦) is the estimation PDF; and 𝒂 =
[

𝑎1,… , 𝑎𝐿
] and 𝒃 = [

𝑏1,… , 𝑏𝐿
] are undetermined parameters.

The numerical RCLT constraints introduced in Eq. (30) incorporate bounded trigonometric terms alongside the FEMs [29,35,43]. 
This enhancement not only preserves the benefits of FEMs but also increases the flexibility of the MEM. As a result, the proposed 
LT-MEM can reconstruct more complex probability distributions without compromising the stability of the optimization process. 
Moreover, by employing the values of RCLT as constraints instead of relying solely on integer or fractional moments, the traditional 
MEM is effectively extended without introducing theoretical challenges.

The Lagrangian function associated with Eq. (30) can then be formulated as follows [29,34] 

L = −∫𝛺𝑌

𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦)
]

d𝑦 −
(

𝜆0 − 1
)

[

∫𝛺𝑌

𝑓𝑌 (𝑦) 𝑑𝑦 − 1
]

−
𝐿
∑

𝑙=1
𝜆𝑙

[

∫𝛺𝑌

𝑓𝑌 (𝑦) exp(−𝑎𝑙𝑦) cos
(

−𝑏𝑙𝑦
)

d𝑦 − ̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

]

,
(31)

where 𝝀 =
[

𝜆1, 𝜆2,… , 𝜆𝑙 ,… , 𝜆𝐿
] denotes the Lagrange multiplier vector.

To obtain the optimal solution of Eq. (30), the following condition must be satisfied
𝜕L

𝜕𝑓𝑌 (𝑦)
= 𝛿L

= −𝛿 ∫𝛺𝑌

𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦)
]

d𝑦 −
(

𝜆0 − 1
)

𝛿
[

∫𝛺𝑌

𝑓𝑌 (𝑦)d𝑦 − 1
]

−
𝐿
∑

𝑙=1
𝜆𝑙𝛿

[

∫𝛺𝑌

𝑓𝑌 (𝑦) exp(−𝑎𝑙𝑦) cos
(

−𝑏𝑙𝑦
)

d𝑦 − ̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

]

= −
{

𝛿𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦)
]

+ 𝑓𝑌 (𝑦) 𝛿
{

ln
[

𝑓𝑌 (𝑦)
]}}

d𝑦
∫𝛺𝑌

9 
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−
(

𝜆0 − 1
)

[

∫𝛺𝑌

𝛿𝑓𝑌 (𝑦)d𝑦
]

−
𝐿
∑

𝑙=1
𝜆𝑙 ∫𝛺𝑌

𝛿𝑓𝑌 (𝑦) exp(−𝑎𝑙𝑦) cos
(

−𝑏𝑙𝑦
)

d𝑦

= −∫𝛺𝑌

{

ln
[

𝑓𝑌 (𝑦)
]

+ 𝑓𝑌 (𝑦) 1
𝑓𝑌 (𝑦)

}

𝛿𝑓𝑌 (𝑦)d𝑦

− ∫𝛺𝑌

(

𝜆0 − 1
)

𝛿𝑓𝑌 (𝑦)d𝑦 − ∫𝛺𝑌

𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

𝛿𝑓𝑌 (𝑦)d𝑦

= ∫𝛺𝑌

{

− ln
[

𝑓𝑌 (𝑦)
]

− 1 −
(

𝜆0 − 1
)

−
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

}

𝛿𝑓𝑌 (𝑦)d𝑦

= 0.

(32)

So that 

− ln
[

𝑓𝑌 (𝑦)
]

− 1 −
(

𝜆0 − 1
)

−
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

= 0, (33)

which yields the analytical expression of 𝑓𝑌 (𝑦) as follows 

𝑓𝑌 (𝑦) = exp

[

−𝜆0 −
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

]

. (34)

Considering the normalization condition of the PDF, we have 

∫ 𝑓𝑌 (𝑦)d𝑦 = ∫𝛺𝑌

exp

[

−𝜆0 −
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

]

d𝑦

= 1
exp

(

𝜆0
) ∫𝛺𝑌

exp

[

−
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

]

d𝑦

= 1.

(35)

Then, the coefficient 𝜆0 can be determined accordingly as follows 

𝜆0 = ln

{

∫𝛺𝑌

exp

[

−
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

]

d𝑦
}

. (36)

The maximum entropy problem (Eq. (30)) can be solved by reformulating it as an equivalent dual problem, which involves 
minimizing Kullback–Leibler divergence [54] between the true PDF 𝑓𝑌 (𝑦) and its estimation 𝑓𝑌 (𝑦) [34,55]. The Kullback–Leibler 
divergence is defined as follows 


[

𝑓, 𝑓
]

= ∫𝛺𝑌

𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦) ∕𝑓𝑌 (𝑦)
]

d𝑦

= ∫𝛺𝑌

𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦)
]

d𝑦 − ∫𝛺𝑌

𝑓𝑌 (𝑦) ln
[

𝑓𝑌 (𝑦)
]

d𝑦.
(37)

Generally, a smaller Kullback–Leibler divergence indicates a smaller difference between the true PDF and its approximation, 
suggesting higher estimation accuracy.

Substituting Eqs. (19) and (34) into Eq. (37) yields 


[

𝑓, 𝑓
]

= −
[

𝑓𝑌 (𝑦)
]

− ∫𝛺𝑌

[

−𝜆0 −
𝐿
∑

𝑙=1
𝜆𝑙 exp(−𝑎𝑙𝑦) cos

(

−𝑏𝑙𝑦
)

]

𝑓𝑌 (𝑦)d𝑦

= −
[

𝑓𝑌 (𝑦)
]

+ 𝜆0 +
𝐿
∑

𝑙=1
𝜆𝑙 ∫𝛺𝑌

exp(−𝑎𝑙𝑦) cos
(

−𝑏𝑙𝑦
)

𝑓𝑌 (𝑦)d𝑦

= −
[

𝑓𝑌 (𝑦)
]

+ 𝜆0 +
𝐿
∑

𝑙=1
𝜆𝑙̂𝑅

𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

,

(38)

where the entropy − [

𝑓𝑌 (𝑦)
] of the true PDF is constant and independent of ̂𝑅

𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
] and 𝝀 =

[

𝜆1, 𝜆2,… , 𝜆𝐿
]

.
Therefore, one can define 

 (𝒂, 𝒃, 𝝀) = 
[

𝑓, 𝑓
]

+
[

𝑓𝑌 (𝑦)
]

= 𝜆0 +
𝐿
∑

𝜆𝑙̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

.
(39)
𝑙=1

10 
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In this context, the constrained optimization problem in Eq. (30) can be reformulated into an unconstrained form as follows 
{

Find: 𝒂 =
[

𝑎1,… , 𝑎𝐿
]

, 𝒃 =
[

𝑏1,… , 𝑏𝐿
]

and 𝝀 =
[

𝜆1,… , 𝜆𝐿
]

Minimize:  (𝒂, 𝒃, 𝝀) = 𝜆0 +
∑𝐿

𝑙=0 𝜆𝑙̂
𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
] . (40)

The LT-MEM not only effectively reconstructs complex-shaped probability distributions but also eliminates the tail oscillations 
observed in NDILT, ensuring the non-negativity and normalization condition of the estimated PDF. Eq. (40) can be performed using 
the simplex search method in Matlab [34]. Subsequently, the parameter 𝒂, 𝒃 and the Lagrange multipliers 𝝀 can be determined 
accordingly. Finally, the estimated PDF 𝑓𝑌 (𝑦) of 𝑌  is calculated by substituting the optimized values of 𝒂, 𝒃 and 𝝀, into Eqs. (34) 
and (36). The PDF 𝑓𝑍 (𝑧) is then obtained using Eq. (23).

4.3. Parameters configuration in LT-MEM

It is important to note that several parameters in the LT-MEM need to be preconfigured before solving the optimization problem 
(Eq. (40)). These parameters include the estimated optimization bounds for 𝒂, 𝒃, and 𝝀, denoted as [𝑎̂L, 𝑎̂U], [𝑏̂L, 𝑏̂U] and [𝜆̂L, 𝜆̂U], 
respectively. Additionally, the number of constraints 𝐿, the approximate integration limits [𝑦̂L, 𝑦̂U] for the estimated PDF 𝑓𝑌 (𝑦), and 
the number of sample points 𝑛𝑡 also need to be specified. In this paper, the values for these parameters are determined empirically, 
as detailed below.

To approximate the integration limits [𝑦̂L, 𝑦̂U] of 𝑓𝑌 (𝑦), a methodology based on the available set of moments is introduced [56,
57]. In this approach, the original moments 𝑚𝐽  of 𝑌 , for 𝐽 = 0, 1,… , , are first shifted to point-of-interest  using the following 
linear transformation [56]: 

𝑚́𝐽 =
𝐽
∑

𝑗=0

(

𝐶 (𝐽 , 𝑗) (−)𝐽−𝑗 𝑚𝑗
)

, (41)

where 𝑚́𝐽  represents the linearly shifted moment.
Then, determine the maximal mass 𝜏 at 0, such that [56] 

𝜏 =

|

|

|

|

|

|

|

|

|

𝑚́0 𝑚́1 ⋯ 𝑚́́
𝑚́1 𝑚́2 ⋯ 𝑚́́+1
⋮ ⋮ ⋱ ⋮
𝑚́́ 𝑚́́+1 ⋯ 𝑚́2́

|

|

|

|

|

|

|

|

|

⋅

|

|

|

|

|

|

|

|

|

𝑚́2 𝑚́3 ⋯ 𝑚́́+1
𝑚́3 𝑚́4 ⋯ 𝑚́́+2
⋮ ⋮ ⋱ ⋮

𝑚́́+1 𝑚́́+2 ⋯ 𝑚́2́

|

|

|

|

|

|

|

|

|

−1

, (42)

where ́ = ⌊


2 ⌋; and the 𝜏 is specified as 𝜏 = 10−

(

́+1
)

. Then, the Eq. (42) is solved in real coordinate space for  [56], with 
the solutions serving as the approximate lower and upper integration limits, i.e., [𝑦̂L, 𝑦̂U]. It is recommended that the number   of 
original moments 𝑚𝐽  be between 4 and 8 [56]; in this paper,  = 4 is adopted.

The estimated optimization interval [𝑏̂L, 𝑏̂U] of 𝑏 needs to be specified in a manner similar to Eq. (17), with a slight variation. 
Since the variable 𝑌  is a normalized intermediate variable, the maximum value of RCLT with 𝑏 = 0, i.e., 𝑅 [

𝑓𝑍 (𝑧) ; 𝑎, 0
]

, is typically 
close to 1 across different problems. Therefore, the estimated optimization interval [𝑏̂L, 𝑏̂U] for 𝑏 in LT-MEM, where 𝑏̂L = −𝑏̂U, is 
determined by satisfying the following condition: 

𝑏U ≤ 𝑏̂U ≤ 𝑏U, (43)

where 
⎧

⎪

⎨

⎪

⎩

𝑏U = min
{

𝑏̄ ∣ ∀𝑏 ∈
(

𝑏̄,+∞
)

, ||
|

̂𝑅 (

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
)

|

|

|

≤ 𝜌1
}

, 𝑏̄ ∈ [0,+∞)

𝑏U = min
{

𝑏̄ ∣ ∀𝑏 ∈
(

𝑏̄,+∞
)

, ||
|

̂𝑅 (

𝑓𝑍 (𝑧) ; 𝑎, 𝑏
)

|

|

|

≤ 𝜌2
}

, 𝑏̄ ∈ [0,+∞)
, (44)

in which 𝑎 is specified as −0.01.
In this paper, the number 𝑛𝑡 of points in the representative point set 𝜽 used for calculating the samples of 𝑍 is set as follows: 

𝑛𝑡 = 400 for estimating simple standard distribution (e.g., normal, gamma, lognormal, etc.), 𝑛𝑡 = 1000 for low-dimensional problems 
(𝑑 ≤ 20), 𝑛𝑡 = 1500 or more as appropriate for high-dimensional problems (𝑑 > 20). The number 𝐿 of constraints for the numerical 
RCLT ̂𝑅

𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
] in the LT-MEM is recommended to be between 3 and 10, depending on the complexity of the distribution. 

In this study, 𝐿 = 3 is chosen for uni-modal probability distributions and 𝐿 = 6 for multi-modal cases. The estimated optimization 
bounds [𝜆̂L, 𝜆̂U] for the Lagrange multiplier 𝝀 are suggested to range from [𝜆̂L, 𝜆̂U] = [−50, 50] to [𝜆̂L, 𝜆̂U] = [−100, 100]. In this 
study, [𝜆̂L, 𝜆̂U] = [−50, 50] is selected. For the optimization parameter 𝒂, the suggested optimization bounds [𝑎̂L, 𝑎̂U] range from 
[𝑎̂L, 𝑎̂U] = [−0.1, 0.1] to [𝑎̂L, 𝑎̂U] = [−10, 10], which should be chosen carefully based on the specific problem at hand.  In this study, 
an enumeration strategy is employed to determine the final optimization bound [𝑎̂L, 𝑎̂U]. In this process, the LT-MEM is solved 
sequentially for each optimization bound [𝑎̂L, 𝑎̂U] =

[

−𝑖𝛥𝑎, 𝑖𝛥𝑎
]

, where 𝑖 = 1, 2,… , 100, and a step size of 𝛥𝑎 = 0.1 is adopted. Then, 
the bound that yields the steady-state optimal solution of the objective function (𝒂, 𝒃, 𝝀) is selected from the interval [−𝑖𝛥𝑎, 𝑖𝛥𝑎

]

as the final optimization bounds [𝑎̂L, 𝑎̂U].
Finally, the optimization problem in Eq. (40) is reformulated as a bounded optimization problem, represented as follows: 

⎧

⎪

⎨

⎪

Find: 𝒂 =
[

𝑎1,… , 𝑎𝐿
]

, 𝒃 =
[

𝑏1,… , 𝑏𝐿
]

𝑎𝑛𝑑 𝝀 =
[

𝜆1,… , 𝜆𝐿
]

Minimize:  (𝒂, 𝒃, 𝝀) = 𝜆0 +
∑𝐿

𝑙=0 𝜆𝑙̂
𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
]

Subject to: 𝑎̂ ≤ 𝑎 ≤ 𝑎̂ , 𝑏̂ ≤ 𝑏 ≤ 𝑏̂ , 𝜆̂ ≤ 𝜆 ≤ 𝜆̂ , 𝑙 = 1, 2,… , 𝐿
(45)
⎩

L 𝑙 U L 𝑙 U L 𝑙 U
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Table 1
Distribution information for Example 1. 
 Distribution Exact PDF 𝜅 𝛾 Weights 𝜔  

 Normal 𝑓 (𝑧; 𝜅, 𝛾) =
1

√

2𝜋𝛾2
exp

(

− (𝑧−𝜅)2

2𝛾2

)

, 𝑧 ∈ R. 0 1 1  

 Lognormal 𝑓 (𝑧; 𝜅, 𝛾) =
1

𝑧𝛾
√

2𝜋
exp

{

−(log 𝑧−𝜅)2

2𝛾2

}

, 𝑧 > 0. −0.0196 0.1980 1  

 Gamma 𝑓 (𝑧; 𝜅, 𝛾) =
1

𝛤 (𝜅)𝛾𝜅
𝑧𝜅−1 exp (−𝑧∕𝛾) , 𝑧 > 0. 9.5000 0.5000 1  

 Exponential 𝑓 (𝑧; 𝜅) = 1
𝜅
exp

(

−𝑧
𝜅

)

, 𝑧 ≥ 0. 0.6667 – 1  

 Gaussian mixture
𝑓
(

𝑧; 𝜅1 , 𝜅2 , 𝛾1 , 𝛾2 , 𝜔1 , 𝜔2
)

=
∑2

𝑖=1 𝜔𝑖
1

√

2𝜋𝛾2𝑖
exp

(

−
(

𝑧−𝜅𝑖
)2

2𝛾2𝑖

)

, 𝑧 ∈ R. [1, 10] [0.75, 1] [0.5, 0.5]  

 Gaussian mixture
𝑓
(

𝑧; 𝜅1 ∽ 𝜅3 , 𝛾1 ∽ 𝛾3 , 𝜔1 ∽ 𝜔3
)

=
∑3

𝑖=1 𝜔𝑖
1

√

2𝜋𝛾2𝑖
exp

(

−
(

𝑧−𝜅𝑖
)2

2𝛾2𝑖

)

, 𝑧 ∈ R. [10, 15, 20] [1, 1, 1] [0.3, 0.4, 0.3] 

Note: 𝛤 (⋅) = gamma function.

4.4. Step-by-step procedure of the proposed LT-MEM method

The calculation procedure of the proposed LT-MEM is illustrated in Fig.  3, with the detailed steps outlined below:

Step 1: Same as Step 1: of the NDILT method outlined in Section 3.3.
Step 2: Same as Step 2: of the NDILT method (see Section 3.3).
Step 3: Calculate the samples 𝒚̄ =

(

𝑦̄1, 𝑦̄2,… , 𝑦̄𝑖,… , 𝑦̄𝑛𝑡
)

 of the intermediate random variable 𝑌  using Eq. (21).
Step 4: Approximate the integration limit [𝑦̂L, 𝑦̂U

] of 𝑓𝑌 (𝑦) by solving Eq. (42).
Step 5: Determine the estimated optimization bounds for 𝒂, 𝒃, and 𝝀, i.e., [𝑎̂L, 𝑎̂U], [𝑏̂L, 𝑏̂U] and [𝜆̂L, 𝜆̂U], respectively, as well as the 

number 𝐿 of constraints, following the guidelines provided in Section 4.3.
Step 6: Solve the optimization problem expressed in Eq. (45) using the bounded simplex search method in MATLAB to obtain the 

optimized parameters of 𝒂, 𝒃, and 𝝀. In each iteration, the constrains ̂𝑅
𝑙
[

𝑓𝑌 (𝑦) ; 𝑎𝑙 , 𝑏𝑙
] are calculate using Eq. (29), and 𝜆0

is determined using Eq. (36).
Step 7: Substitute the optimized parameters of 𝒂, 𝒃, and 𝝀 into Eq. (34) to calculate the estimation PDF 𝑓𝑌 (𝑦).
Step 8: Calculate the estimated PDF 𝑓𝑍 (𝑧) using Eq. (23).

5. Numerical examples

This section presents four examples, encompassing both analytical and numerical cases, to demonstrate the performance of the 
proposed NDILT method and LT-MEM for PDF estimation. For comparison, the crude MCS and the FEM-MEM [29,35,43] are also 
employed across all examples. Note that the FEM-MEM utilizes NGV-NTM as in the proposed methods.

5.1. Example 1: Analytical distributions

To validate the proposed method, several analytical uni-modal and multi-modal distributions with known exact PDFs are 
considered. Details are summarized in Table  1.

The NDILT and LT-MEM methods are implemented to reconstruct the PDFs listed in Table  1 using 400 samples. Results, including 
PDFs, Cumulative Distribution Functions (CDF) and Probability Of Exceedance (POE) curves, are shown in Figs.  4, 5, 6, 7, 8 and
9, alongside crude MCS (with 1 × 107 runs) and the FEM-MEM (with 400 runs) results. The LT-MEM parameter configurations are 
provided in Table  2. The results demonstrate that the proposed LT-MEM accurately reconstructs PDFs with pronounced skewness 
and heavy tails. In contrast, FEM-MEM performs well for distributions with minimal skewness and lighter tails, such as the standard 
normal distribution (see Fig.  4), but loses accuracy in the tails for heavily skewed distributions (see Figs.  5, 6 and 7). Additionally, 
LT-MEM effectively reconstructs both uni-modal and multi-modal distributions, whereas FEM-MEM encounters challenges with 
multi-modal cases (see Fig.  8). The NDILT algorithm also demonstrates flexibility and accuracy in reconstructing the main body 
of complex probability distributions, particularly for multi-modal forms (see Figs.  8 and 9). To further investigate the performance 
of the proposed methods in handling probability distributions with an exceptionally large number of modes, two Gaussian mixture 
models with 10 and 100 components are analysed, respectively. The results are shown in Figs.  10 and 11. It is observed that 
the NDILT method consistently achieves high accuracy in reconstructing the main body of probability distributions with tens of 
modes. On the other hand, the LT-MEM method is capable of accurately reconstructing distributions with a few modes across the 
entire domain, but may experience a reduction in accuracy and flexibility in the main body when applied to distributions with an 
exceptionally large number of modes. Additionally, while NDILT may exhibit oscillations and non-positivity in the tails, it remains 
competitive for applications focused on accurately capturing the main body of the probability distribution, where tail details are 
less critical. On the other hand, in scenarios requiring high precision in the tails, such as reliability assessments of systems with 
small failure probabilities (e.g., < 10−4), the NDILT method may exhibit limited accuracy.
12 
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Fig. 4. (a) PDF, (b) CDF and (c) POE of Normal distribution in Example 1.

 
Fig. 5. (a) PDF, (b) CDF and (c) POE of Lognormal distribution in Example 1.

 
Fig. 6. (a) PDF, (b) CDF and (c) POE of gamma distribution in Example 1.

 
Fig. 7. (a) PDF, (b) CDF and (c) POE of exponential distribution in Example 1.
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Fig. 8. (a) PDF, (b) CDF and (c) POE of Gaussian mixture distribution (2 components) in Example 1.

 
Fig. 9. (a) PDF, (b) CDF and (c) POE of Gaussian mixture distribution (3 components) in Example 1.

 
Fig. 10. (a) PDF, (b) CDF and (c) POE of Gaussian mixture distribution (10 components) in Example 1.

 
Fig. 11. (a) PDF, (b) CDF and (c) POE of Gaussian mixture distribution (100 components) in Example 1.
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Table 2
Parameters configuration of LT-MEM for Example 1. 
 Distribution Optimization bounds Parameter

 [𝜆̂L , 𝜆̂U] [𝑎̂L , 𝑎̂U] [𝑏̂L , 𝑏̂U] 𝐿   
 Normal

[−50, 50]

[−4, 4]
[−5, 5] 3

4

 
 Lognormal [−1.4, 1.4]  
 Gamma [−4, 4]  
 Exponential [−9.5, 9.5]  
 Gaussian mixture (2 components) [−1.8, 1.8] [−15, 15] 6  
 Gaussian mixture (3 components) [−0.5, 0.5]  

Table 3
Basic random variables for Example 2. 
 Variable Mean Standard deviation Weights 𝜔  
 𝛩1  [6.0055, 6.9591, 10.4848, 14.4320] [0.3838, 0.6509, 1.7566, 1.3628] [0.2150, 0.1917, 0.4447, 0.1486] 
 𝛩2  [7.5828, 9.8110,14.6230, 17.5797] [0.7462, 1.3062, 1.7064, 0.7076] [0.1324, 0.3600, 0.2915, 0.2161] 

 
Fig. 12. Points in the first two-dimension (Example 2).

5.2. Example 2: A nonlinear mathematical model

In this example, a nonlinear mathematical model is considered, defined by the following response function [22,39]: 

𝑍 = 43 − 360
(

𝛩1 + 6
) + 0.02

(

𝛩2 − 14
)3 , (46)

where 𝛩1 and 𝛩2 are independent random variables, each following a multi-modal distribution modelled by a Gaussian mixture 
model. The parameters for these distributions are detailed in Table  3.

First, the representative point set 𝜽, containing 𝑛𝑡 = 1000 points is generated using the NGV-NTM method (Appendix  A). Fig. 
12(a) shows the initial two-dimensional NTM point set 𝒖 (1597 points) and the two-dimensional cutting point set 𝒖̂ (1000 points). 
The new generating vector 𝐯 is then derived from 𝒖̂ using Two-Round Sorting Strategy (TRSS) (Eqs. (A.2) and (A.3)). Subsequently, 
the NGV-NTM point set 𝒖̃ (1000 points) and representative point set 𝜽 (1000 points) are generated using Eqs. (A.4) and (A.5), as 
shown in Figs.  12(b) and 12(c), respectively. 

The probability distribution of 𝑍 (Eq. (46)) is then estimated using the proposed NDILT algorithm and LT-MEM, based on output 
samples 𝒛̄ =

(

𝑧̄1, 𝑧̄2,… , 𝑧̄𝑖,… , 𝑧̄𝑛𝑡
)

, 𝑖 = 1, 2,… , 𝑛𝑡, generated from 1000 evaluations of the response function. The LT-MEM parameters 
are configured as follows: [𝑎̂L, 𝑎̂U] = [−0.8, 0.8], [𝑏̂L, 𝑏̂U] = [−10,−10], [𝜆̂L, 𝜆̂U] = [−50,−50], 𝐿 = 6 and  = 4. Fig.  13 presents the 
PDF curves calculated by the proposed methods and FEM-MEM with 1000 samples, with the MCS histogram (with 1 × 107 runs) as 
reference. The PDF curves from the proposed methods show a good alignment with the reference histogram, whereas FEM-MEM 
exhibits significant deviations. The proposed methods accurately capture both the peaks and the valley of the bi-modal distribution, 
highlighting their effectiveness. Fig.  14 further displays the CDF and POE curves on a logarithmic scale, showing that the LT-MEM 
provides more accurate tail estimation compared to the NDILT algorithm, both with 1000 samples. The CDF curve generated by 
FEM-MEM deviates significantly from the MCS reference, highlighting its limitations in complex PDF estimation. Overall, LT-MEM 
captures the full bi-modal distribution range, especially the tails, while NDILT flexibly reconstructs the main body, with some tail 
oscillations. Quantitatively, the Kullback–Leibler divergence between LT-MEM and the MCS benchmark is 0.0013, demonstrating 
LT-MEM’s superior accuracy in reconstructing the multi-modal distribution across the entire distribution domain.
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Fig. 13. PDF of 𝑍 in Example 2.

Fig. 14. (a) CDF and (b) POE of 𝑍 in Example 2.

Table 4
Basic random variables for Example 3. 
 Variable Description Distribution Mean C.O.V Weights 𝜔 
 𝐴 Cross-sectional area Normal 2000 mm2 0.20 1  
 𝐸 Young’s modulus Normal 200 GPa 0.20 1  
 𝑃0 Vertical load Gaussian mixture [350, 700] kN [0.1, 0.1] [0.4, 0.6]  
 𝑃1 ∼ 𝑃12 Vertical loads Lognormal 60 kN 0.20 1  
Note: C.O.V = Coefficient of variation.

5.3. Example 3: A spatial truss structure

The third example considers a 120-bar spatial truss structure subjected to vertical loads, as shown in Fig.  15 [58–60]. The 
finite element model of this structure, built in OpenSEES software (Version: 3.2.2-x64), contains 49 nodes and 120 truss members. 
All members share the same cross-sectional area and Young’s modulus, denoted by 𝐴 and 𝐸, respectively. Vertical loads, labelled 
𝑃0 ∼ 𝑃12, are applied to nodes 0 ∼ 12, respectively. This example focuses on the vertical displacement of node 0, denoted as 
𝑍

(

𝐴,𝐸, 𝑃0 ∼ 𝑃12
)

, with 𝐴,𝐸, 𝑃0 ∼ 𝑃12 treated as 15 random variables, as listed in Table  4.
A total of 1000 deterministic model analyses are conducted for this structure using the 1000 representative points in 𝜽. The 

LT-MEM parameters are configured as follows: [𝑎̂L, 𝑎̂U] = [−5.2, 5.2], [𝑏̂L, 𝑏̂U] = [−10,−10], [𝜆̂L, 𝜆̂U] = [−50,−50], 𝐿 = 6 and  = 4. 
Figs.  16 and 17 present the PDFs, CDFs, and POEs for 𝑍, as calculated by the proposed methods and MCS, with FEM-MEM results for 
comparison. For this multi-modal distribution, LT-MEM consistently provides highly accurate results, while NDILT captures the main 
body of the PDF effectively. The Kullback–Leibler divergence between LT-MEM and MCS results is 0.0012, highlighting LT-MEM’s 
robustness and accuracy for PDF estimation.
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Fig. 15. A 120-bar space truss structure subject to thirteen vertical loads.

5.4. Example 4: A spatial steel frame structure with viscous dampers under fully nonstationary stochastic ground motion

To further demonstrate the practical applicability of the proposed methods, this example considers a two-bay, four-storey 
nonlinear spatial steel frame structure with three viscous dampers subjected to fully nonstationary ground motion, as shown in 
Fig.  18 [61]. The structure is modelled and analysed using the OpenSEES software (Version: 3.2.2-x64). In this model, the floor 
slabs are assumed to be rigid, with the IPE270 beams and IPB300 columns used. The column mass is taken as its self-weight, while 
the beam mass is defined as ‘‘self-weight of beam + dead loads 𝐷𝐿 + 0.2 × live loads 𝐿𝐿’’. Steel material behaviour follows a 
bilinear stress–strain model (Fig.  18). The viscous dampers on the first floor are modelled using the Maxwell model, which consists 
of a linear spring and a nonlinear dashpot in series, with three coefficients: axial elastic stiffness of the linear spring (𝐾 ), damping 
𝑑

17 
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Fig. 16. PDF of 𝑍 in Example 3.

Fig. 17. (a) CDF and (b) POE of 𝑍 in Example 3.

Fig. 18. A two-bay four-storey nonlinear spatial steel frame structure with viscous dampers.
18 
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Table 5
Basic random variables for Example 4. 
 Variable Description Distribution Mean C.O.V Weights  
 𝐷𝐿 Dead load Lognormal 10 N∕m2 0.05 1  
 𝐿𝐿 Live load Lognormal 10 N∕m2 0.1 1  
 𝐹𝑦 Yield strength of the steel Normal 250 MPa 0.15 1  
 𝐸𝑠 Young’s modulus of the steel Gaussian mixture [1, 2.3 ] ×105 MPa [0.1, 0.1] [0.4, 0.6] 
 𝑏 Strain-hardening ratio Normal 0.001 0.05 1  
 𝐾𝑑 Axial stiffness of linear spring Normal 25 Pa 0.1 1  
 𝐶𝑑 Damping coefficient Normal 20.7452 0.1 1  
 𝛼𝑑 Velocity exponent Normal 0.35 0.05 1  
 𝜉1 ∼ 𝜉1024 Random variables of random ground motions Standard normal 0 – 1  

Fig. 19. PDF of  in Example 4.

coefficient (𝐶𝑑), and velocity exponent (𝛼𝑑). Rayleigh damping is applied with damping ratios of 0.03 for both the first and second 
modes.

The non-stationary ground motions are considered as the external excitation of structures and modelled using Expansion Optimal 
Linear Estimation (EOLE) method [62,63]. Based on EOLE, the random ground motions 𝑈̈g (𝑡) can be expressed as follows 

𝑈̈g (𝑡) ≈ 𝜇𝑈̈g(𝑡) +
𝑁𝑡
∑

𝑖=1

𝜉𝑖
√

𝜚𝑖
𝝍𝑇

𝑖 𝑪 𝑈̈g , (47)

where 𝜇𝑈̈g(𝑡) represents the mean of random ground motions (which is zero); 𝑁𝑡 denotes the total number of discrete times and the 
truncation orders; 𝜉𝑖s are the independent standard normal random variables; 𝜚𝑖 and 𝝍 𝑖 denote the eigenvalues and eigenvectors 
of 𝑪 𝑈̈g , respectively; and 𝑪 𝑈̈g  is the covariance matrix with elements 𝐶𝑈̈g

(

𝑡𝑘̄, 𝑡𝑚̄
)

,
(

𝑘̄, 𝑚̄ = 1, 2,… , 𝑁𝑡
)

. Further details on the EOLE 
method can be found in Appendix  B and Ref. [63].

In this example, the ground motions 𝑈̈g (𝑡) are discretized into 𝑁𝑡 = 1024 time steps, meaning 1024 independent standard normal 
random variables are involved. As a result, a total of 1032 basic random variables are involved in this structure, capturing both 
the randomness of external loads and structural properties, and are listed in Table  5. Then, the representative point set 𝜽 in the 
1032-dimensional random variable space is generated according to Eq. (A.4). Given the ultra-high dimensionality, 1500 points are 
used for this example. 

First, the maximum absolute inter-storey drift of the whole structure, denoted by , is considered the quantity of interest. The 
parameters for LT-MEM are configured as follows: [𝑎̂L, 𝑎̂U] = [−4.4, 4.4], [𝑏̂L, 𝑏̂U] = [−10,−10], [𝜆̂L, 𝜆̂U] = [−50,−50], 𝐿 = 6 and  = 4. 
Using the proposed methods with 1500 runs, the PDF, CDF and POE curves of  are calculated and illustrated in Figs.  19 and 20. 
For comparison, the results from the FEM-MEM (1500 runs) are also included, along with benchmark results from MCS (1 × 106

runs). The proposed methods closely align with the MCS benchmarks, while the FEM-MEM results exhibit significant deviation.
The displacement of the top storey of the structure, denoted by 𝑍, is analysed next. The PDF, CDF, and POE curves for the 

top storey’s displacement at three specific time instants calculated by the proposed methods are shown in Figs.  21, 22 and 23, 
respectively. The parameter configurations for LT-MEM at these three time instants are summarized in Table  6. Additionally, the 
LT-MEM is utilized to capture the evolution of the PDF for the top storey’s displacement. Fig.  24 illustrates this PDF evolution 
over the time interval [0, 15] seconds, along with the Kullback–Leibler divergence between the results obtained from LT-MEM 
and MCS at each time instant. The strong agreement between these results computed by the proposed methods and those from MCS 
19 
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Fig. 20. (a) CDF and (b) POE of  in Example 4.

 
Fig. 21. (a) PDF, (b) CDF and (c) POE of top floor drift at 6 s in Example 4.

 
Fig. 22. (a) PDF, (b) CF and (c) POE of top floor drift at 12 s in Example 4.

demonstrates the effectiveness of the proposed methods for high-dimensional stochastic dynamic analysis of structures, underscoring 
their accuracy and efficiency.

6. Concluding remarks

This work explores the powerful capabilities of the LT and ILT for estimating complex-shaped output probability distributions in 
stochastic static and dynamic systems, accounting for uncertainties arising from both system parameters and external excitations. 
Specifically, we propose two efficient methods, NDILT and LT-MEM, for reconstructing output distributions, with a particular focus 
on handling intricate distributions. DILT, derived by decomposing the ILT that incorporates Euler’s formula, provides a new analytic 
20 
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Fig. 23. (a) PDF, (b) CDF and (c) POE of top floor drift at 18 s in Example 4.

Table 6
Parameters configuration of LT-MEM for Example 4. 
 Time instant Optimization bounds Parameter

 [𝜆̂L , 𝜆̂U] [𝑎̂L , 𝑎̂U] [𝑏̂L , 𝑏̂U] 𝐿   
 6s

[−50, 50]
[−5.4, 5.4]

[−10, 10] 3 4
 

 12s [−5.3, 5.3]  
 18s [−0.7, 0.7]  

 
Fig. 24. (a) PDF, (b) Contour of PDF and (c) relative entropy of PDF of top floor drift of dynamical response in Example 4.

expression for unknown PDFs. Leveraging the rigorous theoretical foundation of DILT and the accurate estimation of RCLT and 
ICLT from reasonable sample sizes, the numerical algorithm of DILT, i.e., NDILT, offers a highly flexible approach for estimating 
the main body of PDFs with complex shapes using limited data. However, NDILT may exhibit oscillations and negative values in the 
tail region, making it particularly ideal for cases where the distribution tail is not a primary concern. On the other hand, inspired 
by the information-rich RCLT, LT-MEM leverages the RCLT as the constraint in the maximum entropy framework. This approach 
enables accurate reconstruction of probability distributions over their full domain, including both the main body and tails, and 
extends traditional MEM for complex-shaped distribution. LT-MEM addresses NDILT’s limitations, making it particularly effective 
for applications requiring precise tail estimation, such as reliability analysis. Some analytical distributions and numerical examples 
are studied to verify the effectiveness of the proposed methods. The results indicate that the proposed methods are applicable to 
both explicit and implicit problems. Furthermore, the proposed methods mitigate the ‘‘curse of dimensionality’’ to some extent, 
making them applicable to high-dimensional problems while balancing both accuracy and efficiency. For general problems with 
random inputs ranging from low- to high-dimensional, the proposed methods can estimate complex probability distributions with 
satisfactory accuracy, using approximately one thousand samples.

The proposed methods exhibit strong potential as a valuable tool for uncertainty characterization and propagation in complex 
problems, though some limitations need to be enhanced in future research. NDILT, despite its simplicity and flexibility, faces tail 
oscillation and non-positivity issues that require further careful investigation. LT-MEM avoids tail oscillations and non-positivity 
but at the cost of reduced flexibility for multi-modal PDFs. Determining the estimated bounds of the optimization parameter in 
LT-MEM remains empirical, particularly for parameter 𝒂. Future work should focus on refining parameter determination strategies 
and enhancing the robustness of LT-MEM.
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Appendix A. NGV-NTM

The NGV-NTM point set is based on the New Generating Vector construction method (NGV) and the Number-Theoretical 
Method (NTM) [52]. In the NGV-NTM, the initial two-dimensional NTM point set, denoted as 𝒖 =

{

𝒖𝑞 =
(

𝑢𝑞,1, 𝑢𝑞,2
)

, 𝑞 = 1, 2,… , 𝑛
}

, 
consisting of 𝑛 points within the two-dimensional unit cube space 𝐶2 = [0, 1]2, is determined first. This is achieved as follows [64]: 

{

𝑄𝑞,𝑖 ≡ 𝑞ℎ𝑖 (mod 𝑛)
𝑢𝑞,𝑖 =

(

2𝑄𝑞,𝑖 − 1
)

∕2𝑛
𝑞 = 1, 2,… , 𝑛; 𝑖 = 1, 2, (A.1)

where ℎ𝑖 is the components of the generating vector 𝐡 =
(

ℎ1, ℎ2
)

≡ (1, 𝑎́) (mod 𝑛); 𝑎́ is the primitive root of the prime number 𝑛; the 
integers ℎ𝑖 and 𝑎́𝑖−1 are congruent modulo 𝑛. In this paper, the number of points in the point set 𝒖 is specific as 𝑛 = 1597, and the 
primitive root is chosen as 𝑎́ = 679 [52]. Then, the points of 𝒖 can be generated using Eq. (A.1).

Second, the cutting strategy [12] is employed to obtain the two-dimensional cutting point set 𝒖̂ =
{

𝒖̂𝑞 =
(

𝑢̂𝑞,1, 𝑢̂𝑞,2
)

,
𝑞 = 1, 2,… , 𝑛𝑡

} with a user-defined number 𝑛𝑡 of points (where 0 < 𝑛𝑡 ≤ 𝑛), achieving by cutting the point set 𝒖 using a square 
cutting region 𝐶2

cut =
[

0, 𝑢cut
]2 , 𝑢cut ∈ [0, 1]. Points 𝒖𝑞 that fall within the square cutting region 𝐶2

cut are selected as 𝒖𝑞 . The purpose 
of the cutting strategy is to generate a sparsified uniform point set. The algorithm details are provided in Algorithm 1.

Algorithm 1 : Cutting method [12]
1: while 𝑛̂ < 𝑛𝑡 do 
2:       Increase the value of 𝑢cut;

3:       Calculate: 𝒖̂ =
{

𝒖̂𝑞 =
(

𝑢̂𝑞,1, 𝑢̂𝑞,2
)

, 𝑞 = 1, 2,⋯ , 𝑛̂
}

=
{

𝒖𝑞 ∈𝒖 ∶ 𝑢𝑞,1 < 𝑢cut ∩ 𝑢𝑞,2 < 𝑢cut , 𝑞 = 1, 2,⋯ , 𝑛
} ;

4: end while

Next, the NGV construction method [52] is implemented based on a TRSS to efficiently construct the generating vector, denoted 
as 𝐯 =

(

𝑣1, 𝑣2,… , 𝑣𝑞 ,… , 𝑣𝑛𝑡
)

, 𝑞 = 1, 2,… , 𝑛𝑡; 0 < 𝑣𝑞 ≤ 𝑛𝑡, for high-dimensional point sets, which is express as follows 

⎧

⎪

⎨

⎪

⎩

𝒖̄ = sort
(

𝒖̂(2)
)

P𝒖̄ = 𝑓−1

𝒖̂(2)
(𝒖̄)

, (A.2)

{

P̄ = sort
(

P𝒖̄
)

𝐯 = 𝑓
−1

P

(

P̄
)

, (A.3)

where Eqs. (A.2) and (A.3) refer to the first and second rounds of sorting operations, respectively. In Eq. (A.2), 𝒖̂(2) represents the sec-
ond dimension of the cutting point set 𝒖̂. The function sort (⋅) arranges elements in ascending order, and 𝒖̄ =

(

𝑢̄1, 𝑢̄2,… , 𝑢̄𝑞 ,… , 𝑢̄𝑛𝑡
)

is the sorted version of 𝒖̂(2). The set P =
[

1, 2,… , 𝑛𝑡
] indicates the positions of each element 𝑢̂𝑞,2 in 𝒖̂(2). The function 𝑓𝒖̂(2)  maps P

to 𝒖̂(2) and its inverse is denoted as 𝑓−1
𝒖̂(2)

(⋅). In Eq. (A.3), P𝒖̄ represents the positions of the sorted elements 𝑢̄𝑞 in 𝒖̂(2), while 𝑓P

defines a function mapping L  to P𝒖̄, where L  contains the positions of each element in P𝒖̄. The inverse function is expressed as 
𝑓−1 ⋅ .
P
( )
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Table B.7
Parameters in the PSD and the time–frequency–modulation function (Example 4). 
 Item 𝑎̄2max

(

cm/s2
)

𝜍𝑔 (rad/s) 𝜄𝑔 𝜍𝑓 (rad/s) 𝜄𝑓 𝑟̄ 𝜂 𝜛 𝜅́  
 Value 150  8𝜋 0.60 0.8𝜋 0.6 2.95 0.240 0.241 0.005 
Note: 𝜛 = 𝜂 + 0.001

Finally, the NGV-NTM point set 𝒖̃ =
{

𝒖̃𝑞 =
(

𝑢̃𝑞,1, 𝑢̃𝑞,2,… , 𝑢̃𝑞,𝑑
)

, 𝑞 = 1, 2,… , 𝑛𝑡
} in the 𝑑-dimensional unit hypercube space 

𝐶𝑑 = [0, 1]𝑑 can be recursively derived by the dimension-by-dimension mapping as follows [52,65] 
⎧

⎪

⎨

⎪

⎩

𝑢̃𝑞,𝑖 =
2𝑞 − 1
2𝑛𝑡

, 𝑖 = 1

𝑢̃𝑞,𝑖 = 𝑢̃𝑣𝑞 ,𝑖−1, 𝑖 = 2, 3,… , 𝑑
, 𝑞 = 1, 2,… , 𝑛𝑡, (A.4)

where 𝑢̃𝑞,𝑖 is the 𝑞th point of the 𝑖th dimension in the NGV-NTM point set 𝒖̃ and 𝑢̃𝑣𝑞,𝑖−1  is the 𝑣𝑞th point of the (𝑖 − 1)th dimension 
of 𝒖̃.

Once the NGV-NTM point set 𝒖̃ is obtained, it can be transformed into the representative point set 𝜽 =
{

𝜽𝑞 =
(

𝜃𝑞,1, 𝜃𝑞,2,… , 𝜃𝑞,𝑑
)

,
𝑞 = 1, 2,… , 𝑛𝑡

} in the 𝑑-dimensional original random-variate space 𝛺Θ through the isoprobabilistic transformation 

𝜃(𝑖)𝑞 = −1 (𝒖̃
(

𝑢̃𝑞,𝑖
))

= −1 (𝑢̃𝑞,𝑖
)

, 𝑖 = 1, 2,… , 𝑑; 𝑞 = 1, 2,… , 𝑛𝑡, (A.5)

where −1(⋅) represents the inverse CDF of random variable in Θ =
[

𝛩1, 𝛩2,… , 𝛩𝑑
]

; and 𝒖̃ (⋅) denotes the CDF of the uniform 
distribution with parameter [0, 1].

Appendix B. Details of EOLE in the Example 4

In EOLE (Eq. (47)), the covariance matrix 𝑪 𝑈̈g  can be calculated as the inverse Fourier transform of its Power Spectrum Density 
(PSD), which is given by 

𝐶𝑈̈g

(

𝑡𝑘̄, 𝑡𝑚̄
)

≈ ∫

+𝜍𝑢

−𝜍𝑢


(

𝑡𝑘̄, 𝜍
)


(

𝑡𝑚̄, 𝜍
)

𝑆 (𝜍) exp(i𝜍𝜏)𝑑𝜍,
(

𝑘̄, 𝑚̄ = 1, 2,… , 𝑁𝑡
)

, (B.1)

where 𝜍 represents the frequency; the upper cut-off frequencies 𝜍𝑢 is set to 𝜍𝑢 = 50𝜋 [63]; 𝜏 denotes the time difference; 𝑆 (𝜍) is the 
classic Clough–Penzien PSD;  (𝑡, 𝜍) is the time–frequency modulation function accounting for non-stationarity. The expressions for 
𝑆 (𝜍) and  (𝑡, 𝜍) are as follows 

𝑆 (𝜍) =
𝜍4𝑔 + 4𝜄2𝑔𝜍

2
𝑔 𝜍

2

(

𝜍2𝑔 − 𝜍2
)2

+ 4𝜄2𝑔𝜍2𝑔 𝜍2

𝜍4
(

𝜍2𝑓 − 𝜍2
)2

+ 4𝜄2𝑓 𝜍
2
𝑓 𝜍

2

𝑎̄2max

𝑟̄2
[

𝜋𝜍𝑔

(

2𝜄𝑔 +
1
2𝜄𝑔

)] , (B.2)

 (𝑡, 𝜍) =
exp (−𝜂𝑡) − exp

(

−
(

𝜅́ |

|

|

𝜍 − 𝜍𝑔
|

|

|

+𝜛
)

𝑡
)

exp (−𝜂𝑡∗) − exp
(

−
(

𝜅́ |

|

|

𝜍 − 𝜍𝑔
|

|

|

+𝜛
)

𝑡∗
) , 𝑡 > 0, 𝜍 > 0

𝑡∗ =
ln
(

𝜅́ |

|

|

𝜍 − 𝜍𝑔
|

|

|

+𝜛
)

− ln 𝜂

𝜅́ |

|

|

𝜍 − 𝜍𝑔
|

|

|

+ (𝜛 − 𝜂)
.

(B.3)

The specific values for these parameters in Eqs. (B.1)–(B.3) are listed in Table  B.7 [63,66]. 
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