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Abstract
Buckling is the most significant failure mode for thin-walled structures. In particular, geometric imperfections
have a major influence on the buckling behavior. These spatial correlated imperfections are inherently random
and can be modeled using random fields. Therefore, computationally expensive probabilistic buckling
analyses have to be performed. For some structures, a linear pre-buckling behavior can be observed. In this
case, the stability point can be calculated with a linear buckling analysis, which is widely used in engineering.
However, the results of linear buckling analyses strongly differ from the correct buckling load in case of a
non-linear pre-buckling behavior. Then, a non-linear buckling analysis is required, which is computationally
expensive for probabilistic safety assessments based on Monte Carlo simulations.
This paper aims to estimate the second-order statistics of buckling loads for thin-walled structures exhibiting
strongly non-linear pre-buckling behavior. The estimation leverages existing correlations between the
outcomes of linear and non-linear buckling analyses. The proposed approach utilizes the framework of
Control Variates, wherein the more expensive analysis (non-linear buckling analysis) is run a few times only,
while the cheaper linear buckling analysis is run a considerable number of times. The proposed method is
demonstrated on a variety of structures, including a folded plate with multiple types of stability points, a
composite shell panel and a cylinder with random geometric imperfections. In these numerical examples,
stochastic buckling analysis using Control Variates is approximately 5 to 20 times faster than classical Monte
Carlo simulation.
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1 INTRODUCTION6

One of the dominant failure modes of thin-walled structures is buckling. Geometric and material imperfections, such as deviations7

in shape and thickness, residual stresses, variations in boundary conditions and material properties have a substantial influence8

on the buckling behavior. Even small variations in geometric imperfections significantly influence the load-bearing capacity. The9

exact shape of imperfections is frequently unknown or in other words uncertain. Deterministic and semi-probabilistic design10

concepts are based on very conservative design factors, also known as knockdown factors (KDFs). The development of reliable11

and more economical KDFs remains a focus of numerous ongoing research projects, as illustrated, e.g., in [38].12

In a probabilistic approach, the aleatory uncertainties of spatially varying imperfections are modeled as random fields,13

see, e.g., in [31, 7, 26]. In this paper, random imperfections are applied to the finite element (FE) model, and Monte Carlo14

simulations (MCS) are conducted to determine the second-order statistics of random buckling loads. However, to quantify15

the uncertain shape of the geometrical imperfections only a few measurements are available. The definition of deterministic16

random field parameters under these limited data would imply a precise probabilistic knowledge on the stochastic distribution17

and its spatial correlation. Therefore, in [17, 14, 18], the concept of polymorphic (mixed/hybrid) uncertainty models [23], also18

known as imprecise probabilities [6, 12], is introduced to consider epistemic uncertainties of shell imperfections by means of19
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intervals or fuzzy numbers. An extension to quantify the uncertainties in boundary conditions, material properties, and thickness20

imperfections is provided in [16]. This paper initially explores the feasibility of using the Control Variates method for stochastic21

buckling analyses, with an emphasis on the spatial correlation of random imperfections. A potential extension of this work could22

involve applying the method to address polymorphic uncertainty, such as random fields with interval or fuzzy correlation lengths.23

A numerical treatment of aleatory and epistemic uncertainties requires a multi-loop algorithm consisting of the fundamental24

solution (e.g. FE buckling analysis), the MCS loop and the fuzzy or interval analysis. This can be highly computationally25

expensive and the effort increases rapidly for buckling design optimization, as illustrated in [15]. Additionally, when geometric26

imperfections are applied to an FE model, the geometrical deviation at each node is a single input variable. This leads to a27

high-dimensional input space of uncertain variables. Therefore, appropriate surrogate models can be used to replace the time28

consuming FE analysis. For instance, an approach for efficiently analyzing the imperfection sensitivity using reduced order29

models is presented in [4, 22]. Furthermore, neural network surrogate models to approximate FE buckling analysis are shown30

in [24, 32]. Based on a first surrogate model for the fundamental solution, a further surrogate model can be constructed to31

replace the MCS, see for example [21]. An approach for bounding imprecise failure probabilities of linear structural systems is32

introduced in [19]. However, this approach is not applicable to non-linear buckling problems, as it relies on the assumption of a33

linear mapping between input and output quantities within the used operator norm theory.34

This paper aims to estimate the second-order statistics (mean and standard deviation) of the buckling loads of thin-walled35

shell structures, with imperfections characterized by probabilistic models. The proposed approach is based on the concept of36

Control Variates [3], which has been studied in various engineering applications, such as [1, 8, 30]. The main contribution of this37

work is to introduce Control Variates for probabilistic buckling analysis, where geometric imperfections are modeled as random38

fields. The idea is to leverage the existing correlations between the solutions of linear and non-linear buckling analyses.39

In case of non-linear pre-buckling behavior, a non-linear buckling analysis provides an accurate prediction of the buckling40

load, and a linear buckling analysis leads to imprecise results. It should be noted, that for some structures with a linear pre-41

buckling behavior, the linear buckling analysis can still yield an incorrect prediction due to buckling mode interaction. However,42

in case of multiple buckling loads nearly at the same level, e.g., for an axially loaded cylinder, the "exact" buckling load can be43

calculated and the shape of the associated buckling mode is not relevant. Furthermore, the non-linear buckling analysis requires44

a geometrically non-linear path-following analysis involving an iterative procedure. Therefore, the linear buckling approach45

is typically less computationally expensive than the non-linear buckling analysis. Second-order statistics are determined by46

sampling, involving a limited number of non-linear analyses and a relatively large number of linear buckling analyses. Thus, the47

presented Control Variates approach reduces overall computational costs, as the more expensive non-linear buckling analysis48

is performed only a few times, while the less costly linear buckling analysis is executed more frequently. Furthermore, by49

exploiting the correlation between linear and non-linear analyses, it is still possible to estimate the statistics of the accurate50

buckling load, even when the linear buckling analysis is applied to cases with strong non-linear pre-buckling behavior.51

In this paper, the Control Variates approach is demonstrated for stochastic buckling analysis of a composite cylindrical shell52

panel. Random geometric imperfections are modeled as random fields using the Karhunen-Loève Expansion (KLE). The shape53

of the random imperfection can be controlled by the correlation length. Thus, second-order statistics of the buckling loads54

are analyzed for various correlation lengths using Monte Carlo simulations (MCS). To illustrate the applicability of Control55

Variates, the correlation between linear and non-linear buckling analysis is investigated. The effectiveness of Control Variates in56

estimating the second-order statistics of buckling loads is demonstrated on various thin-walled structures, including a folded57

plate with different types of stability points, a composite shell panel and a cylinder subjected to random geometric imperfections58

with varying correlation lengths.59

60

The paper’s innovative contributions and key features can be summarized as follows:61

● Introduction of Control Variates with splitting technique for stochastic buckling analyses62

● Efficient estimation of the second-order statistics of buckling loads63

● Leveraging correlations between linear and non-linear buckling analyses64

● Random field modeling with Control Variates65

● Study to the effectiveness of Control Variates for various correlated random geometric imperfections66

● Stochastic buckling analysis using Control Variates is approximately 5 to 20 times faster than classical Monte Carlo simulation67

In Sections 2 and 3, the fundamentals of numerical buckling analysis and the estimation of second-order statistics using Monte68

Carlo simulations are presented. Following this, the Control Variates approach for buckling is introduced in Section 4. Section 569
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illustrates the concept on three different examples: a folded plate, a composite cylindrical shell panel and a composite cylinder.70

Finally, Section 6 provides of conclusion and outlines potential directions for future research.71

2 BASICS OF LINEAR AND NON-LINEAR BUCKLING ANALYSIS72

Various strategies are available for identifying a stability point, as discussed, e.g., in [43, 40]. For a specific load level λP0 with a
load factor λ and a basic external load P0, a non-linear eigenvalue problem can be constructed

[Klin +ΛKnlin]φ = 0, (1)

where it is assumed that

Pcr ∼ ΛKnlin. (2)

In Eq. (1), Λ can be interpreted as a load increasing factor and φ is the associated eigenvector. The tangent stiffness matrix KT

is divided in linear Klin and non-linear parts Knlin. Generally, the tangent stiffness matrix depends on the displacement u and
stress state σ(u), respectively. If the variational formulation allows to separate Knlin, the initial displacement matrix KU and the
geometrical matrix KG can be introduced

KT = Klin +Knlin = Klin +KU(u) +KG(σ(u)). (3)

A solution for Λ = 1 in Eq. (1) yields the classical form of an eigenvalue problem for the tangent stiffness matrix

(Klin +ΛKnlin)φ = 0⇔ KTφ = 0⇔ (KT – ω1)φ = 0, (4)

wherein a stability point is indicated for ω = 0. In the non-linear case, the eigenvalue Λ is an indicator for the type of stability

Λ > 1 → stable
Λ = 1 → indifferent (stability point)
Λ < 1 → unstable.

(5)

Furthermore, the non-linear critical load vector can be computed by

Pcr = Pcr,nlin = Λ(λP0) with Λ = 1. (6)

In addition, the type of stability point can be determined by the following criterion, see, e.g., [33, 44],

φTPcr

⎧⎪⎪⎨⎪⎪⎩

= 0 bifurcation point

≠ 0 limit point.
(7)

A schematic non-linear load-displacement curve λP0 – u with corresponding eigenvalue-displacement curves Λ(λP0) – u and73

ω – u are depicted in Fig. 1, see black, red and blue curve, respectively.74

For some structures, a linear pre-buckling behavior can be observed. In such cases, only a single linear calculation step and
the solution of an eigenvalue problem are required. This motivates the use of the linear buckling analysis as a special case of the
non-linear analysis. It starts from the displacement state u = 0, where the linear solution

KT(0)u0 = P0 ⇔ u0 = K–1
T (0)P0 (8)

is computed for an external basic load of P0 (λ0 = 1) with KT(0) = Klin. Thus, the linear buckling analysis is defined as

[Klin +Λ0Knlin(u0)]φ0 = 0. (9)
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F I G U R E 1 Schematic representation of linear and non-linear buckling analysis

The associated critical load and displacement vectors are

P̃cr = Pcr,lin = Λ0P0, (10)

ũcr = ucr,lin = Λ0u0. (11)

75

However, as shown in Fig. 1, the results of a linear buckling analysis (maximum value of the green curve) can significantly
differ from the non-linear buckling load (maximum value of the black curve) in case of non-linear pre-buckling behavior. This
requires a comprehensive geometrically non-linear path-following analysis using an iterative procedure such as the Newton-
Raphson scheme. In this paper, the non-linear buckling analysis is performed by a path-following analysis, where the signs of
the diagonal elements of the tangent stiffness matrix are observed. A change in the sign of the diagonal elements of KT indicates
a change in the equilibrium state, with

∀Dii , Dii > 0 → stable
∃Dii , Dii = 0 → indifferent, (stability point)
∃Dii , Dii < 0 → unstable.

. (12)

If at least one of the diagonal elements Dii becomes negative, the calculation is terminated and the load state is saved. At this76

equilibrium state, the critical load vector Pcr and the the initial post-buckling mode φcr can be computed with the non-linear77

eigenvalue problem given by Eq. (1). Based on the special loading conditions in the examples, the buckling loads Pcr and P̃cr can78

be computed from the associated load vectors Pcr and P̃cr.79

3 SECOND-ORDER STATISTICS OF BUCKLING LOAD80

3.1 Uncertainty in buckling load81

The behavior of structures prone to buckling may be affected by several factors, which cannot be quantified deterministically. For82

example, there may be imperfections in the shells with respect to their nominal dimensions due to uncertainty associated with the83

manufacturing processes. Also parameters such as Young’s modulus or Poisson’s ratio may be affected by uncertainties due to84

variability associated with batches of raw material. Therefore, these sources of uncertainty must be explicitly accounted for such85

that their effect can be properly quantified. In the following, it is assumed that material and geometrical properties of a structure86

are collected in the vector ξ. The uncertainty associated with ξ is characterized by a random variable vector Ξ with probability87

density function pΞ(ξ) [11]. As the buckling load of a structure Pcr depends on the properties of the structure ξ, which are88

assumed to be uncertain, it is clear that the buckling load becomes uncertain as well. In other words, the buckling load Pcr is89

a random variable, with its own probability density function. Calculating the probability density function associated with the90

buckling load may be challenging for problems of engineering interest, particularly in the tails of the distribution. However, the91

calculation of second-order statistics (that is, mean and variance) may be more tractable while still providing valuable insights92

on the uncertainty associated with the buckling load.93
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3.2 Estimation of second-order statistics of buckling loads by means of Monte Carlo simulation94

Recall that the non-linear buckling load Pcr depends on the properties of the structure ξ. For cases of practical interest, there95

exists no closed-form relation between the model properties and buckling load. Rather, they must be derived from an FE analysis.96

As such, an analysis is usually only available in the form of a black-box. That is, for a given input ξ, one obtains the output97

Pcr. In this context, Monte Carlo simulation appears as a natural alternative for computing the sought second-order statistics,98

see e.g. [20]. In a nutshell, a Monte Carlo simulation consists of generating n independent samples ξ(j), j = 1, . . . , n of the99

properties of the structure distributed according to pΞ(ξ). Then, the buckling loads for each of the samples are calculated,100

yielding Pcr (ξ(j)) , j = 1, . . . , n. Under the assumption that the samples of the properties ξ(j), j = 1, . . . , n are grouped in matrix101

Ξn, estimates of the mean value µ̂′1(Pcr,Ξn) and the variance µ̂2(Pcr,Ξn) are obtained by the following expressions102

µ̂′1(Pcr,Ξn) =
1
n

n

∑
j=1

Pcr(ξ(j)), (13)

µ̂2(Pcr,Ξn) =
1

n – 1

n

∑
j=1
(Pcr(ξ(j)) – µ̂′1(Pcr,Ξn))2, (14)

As these estimates are produced by Monte Carlo simulations, they are affected by inherent randomness associated with the103

sampling process. A means to quantify the quality of these estimates is by calculating their respective variances σ̂2[⋅], see e.g. [2],104

σ̂2 [µ̂′1 (Pcr,Ξn)] =
µ̂2 (Pcr,Ξn)

n
, (15)

σ̂2 [µ̂2 (Pcr,Ξn)] =
µ̂4 (Pcr,Ξn)

n
–
(n – 3) µ̂2

2 (Pcr,Ξn)
(n – 1)n

. (16)

In the last equation, µ̂4 (Pcr,Ξn) denotes the estimator of the fourth-order central moment of the non-linear buckling load. It105

is estimated using Eq. (A3) in Appendix A.106

Equations (15) and (16) indicate that the variances of the estimators for the second-order statistics depend on the number of107

samples n. It is desirable that these variances are as small as possible, as this increases the confidence that the quantities being108

estimated are good approximations of the exact second-order statistics. In other words, it is desirable to obtain estimates of109

these statistics with sufficient precision. However, small variances (or equivalently, high precision) may entail a large number of110

simulations n, which can be quite costly from a numerical viewpoint, as it implies performing n non-linear buckling analyses.111

Therefore, in practical applications, it is expected that n is actually small and therefore, the estimators will possess large112

variability. Such a concept is illustrated schematically in Fig. 2, where the probability density associated with an estimator µ̂113

(which represents either mean or variance, see red curve) is relatively flat, reflecting high uncertainty on the true value of the114

sought statistic.115

4 CONTROL VARIATES: A TOOL FOR AGGREGATING ESTIMATES OF NON-LINEAR116

AND LINEAR BUCKLING ANALYSES117

4.1 Control Variates118

The objective is to estimate the second-order statistics of the non-linear buckling load of a structural system. Estimating these119

statistics with sufficient precision by means of Monte Carlo simulation may demand a considerable number of non-linear120

buckling analyses. However, from the discussion in Section 2, it is known that calculating linear buckling loads is numerically121

less demanding than its non-linear counterpart, although it leads to different values of the sought buckling load. A natural122

question in this scenario is: is it possible to leverage on linear analysis to estimate statistics of the non-linear buckling load? The123

answer to this question is affirmative, as this can be carried out within the framework of Control Variates [20, 29]. Indeed, let124

µ denote a statistic, which can represent either the mean µ′1 or the variance µ2. Then, the estimator of µ considering Control125

Variates (CV) is the following:126
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µ̂(CV) = µ̂(Pcr,Ξn) – γµ̂(P̃cr,Ξn) + γµ̂(P̃cr,Ξm). (17)

In the above equation, Ξn and Ξm denote two sets with n and m samples, respectively; γ is the so-called control parameter, which127

is actually a real number whose calculation is discussed later on; and µ̂(x,Ξy) denotes estimation of the statistics µ considering128

the response x (where x could represent either the non-linear or linear buckling load) and Ξy denotes a sample set (where y could129

represent either n or m). It is assumed that m > n. The idea behind the Control Variates estimator in Eq. (17) is the following.130

● The last term γµ̂(P̃cr,Ξm) denotes the sought statistic calculated considering the linear buckling load employing a large131

number of samples m, which is moreover amplified by γ. This last term by itself does not lead to the sought statistic because it132

involves the linear buckling load (amplified by γ) instead of its non-linear counterpart. However, as m is large, this estimator133

should possess a relatively low variance. This is illustrated schematically in Fig. 2, where the probability density associated134

with this estimator (shown with the green line) is quite peaked.135

● The difference µ̂(Pcr,Ξn) – γµ̂(P̃cr,Ξn) in Eq. (17) can be interpreted as a correction term, as it subtracts the value of the136

statistic associated with the linear buckling load amplified by γ and adds the statistic calculated with the non-linear buckling137

load. Usually, the variance of this difference should be relatively small, even if n itself is small. The reason is that while138

the linear and non-linear buckling loads produce different results, it is expected nevertheless that there is a high degree of139

correlation between them. The probability density associated with this difference is represented schematically with a violet140

line in Fig. 2.141

The summation of the two terms described above leads to the Control Variates estimator of Eq. (17). In essence, such an estimator142

allows to aggregate the results stemming out of linear and non-linear buckling analyses but still leads to conclusions about the143

non-linear buckling load. In fact, the effect of the linear buckling load cancels out from Eq. (17), as the subtraction between the144

second and third terms of the right-hand side of that equation is equal to zero. But in that process, the presence of those second145

and third terms helps in decreasing the variance of the statistics of the buckling load. Indeed, this estimator usually possesses a146

relatively small variance, as illustrated schematically in Fig. 2 with the probability density function in blue color.147

estimator
γµ

(
P̃cr

)
µ (Pcr)− γµ

(
P̃cr

)
µ (Pcr)

µ̂(Pcr,Ξn)

µ̂ (Pcr,Ξn)− γµ̂
(
P̃cr,Ξn

)
µ̂ (Pcr,Ξn)− γµ̂

(
P̃cr,Ξn

)
+ γµ̂

(
P̃cr,Ξm

)
γµ̂

(
P̃cr,Ξm

)
probability
density

F I G U R E 2 Schematic representation of Control Variates estimator.

The advantage of the Control Variates estimator is that in the calculation process, correlations between linear and non-148

linear buckling loads are exploited. This implies that the information retrieved from linear buckling analyses may improve the149

conclusions that are drawn respecting non-linear buckling analyses. In this sense, the aforementioned control parameter γ plays150

a key role. To understand this concept, it is essential to study the variance of the Control Variates estimator. It can be shown that151

the variance σ̂2 associated with the Control Variates estimator is equal to [20]:152

σ̂2 [µ̂(CV)] = σ̂2 [µ̂ (Pcr,Ξn)] – 2γδ̂ [µ̂ (Pcr,Ξn) , µ̂ (P̃cr,Ξn)] + γ2σ̂2 [µ̂ (P̃cr,Ξn)]
+γ2σ̂2 [µ̂ (P̃cr,Ξm)] , (18)
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where δ̂[⋅, ⋅] denotes the covariance estimator between the arguments. It is noted that the variance of the Control Variates153

estimator as shown in Eq. (18) is a quadratic function with respect to the control parameter γ. Therefore, γ can be selected such154

that this variance is minimized, which implies forcing the derivative of Eq. (18) with respect to γ to be equal to zero. In such155

way, one determines the optimal control parameter γ∗, which is equal to:156

γ∗ =
δ̂ [µ̂ (Pcr,Ξn) , µ̂ (P̃cr,Ξn)]

σ̂2 [µ̂ (P̃cr,Ξn)] + σ̂2 [µ̂ (P̃cr,Ξm)]
. (19)

In summary, the application of Eqs. (17), (18) and (19) allows estimating the sought statistic (either mean or variance) by means157

of Control Variates. These equations are applied in the following order. First, the buckling loads considering linear (P̃cr) and158

non-linear analysis (Pcr) are calculated for each sample contained in the set Ξn. In addition, the buckling loads considering linear159

analysis only are evaluated for each sample contained in the set Ξm. Considering all of these samples, Eq. (19) is evaluated to160

obtain the optimal control parameter γ∗. This optimal control parameter is then used together with the samples of the buckling161

loads associated with the sets Ξn and Ξm to evaluate the sought statistic through Eq. (17) as well as the variance of this estimator162

by means of Eq. (18).163

As noted from the above description, the application of Control Variates is completely non-intrusive. That is, it is not necessary164

to access to system’s matrices. It just suffices to conduct linear and non-linear buckling analyses for different sets of samples.165

Then, the Control Variates estimate in Eq. (17) merges the information contained in these samples to produce an estimate of166

the sought statistic involving non-linear buckling analysis. Indeed, the role that the samples of the linear buckling load in the167

estimator is simply exploiting correlations to reduce the variance of the estimator of the sought statistic. In that sense, the168

optimal control parameter γ∗ in Eq. (19) plays a pivotal role. To understand its role better, consider the case where there is a169

high covariance between buckling loads calculated using linear and non-linear buckling analysis. In such situation, performing170

linear buckling analysis is almost as good as performing non-linear buckling analysis, meaning that both types of analyses are171

capable of uncovering the effects of uncertainty in the buckling load. In such situation of high covariance, the control parameter172

γ⋆ will naturally approach to 1 and thus, the Control Variates estimator provides more importance to the information carried173

by the samples of the linear buckling load, which translates into an estimator of the sought statistic with reduced variance. In174

the (unlikely) event that the covariance δ̂ between the linear and non-linear buckling load is zero, the control parameter itself175

becomes zero and the estimator of Eq. (17) reduces to its plain Monte Carlo counterpart. In such a case, as there is no covariance176

δ̂, the Control Variates estimate cannot leverage on the information carried by the samples of the linear buckling load and177

therefore, the sought estimate is produced based on the samples of the non-linear buckling analysis only.178

To summarize the concepts described above, the application of Control Variates for estimating buckling loads can be visualized179

as follows. First, a relatively small number of samples of the buckling load are generated considering non-linear buckling180

analysis. As the number of samples drawn is small, the estimators drawn out of those samples (such as mean and variance) will181

be most likely highly uncertain (implying that their variances are high). But then, if one performs additional sampling resorting182

to linear buckling analyses, it is possible to exploit covariance between linear and non-linear buckling analysis to reduce the183

variance of the estimators associated with the non-linear buckling load.184

4.2 Control Variates with Splitting185

The previous section has presented the application of the Control Variates framework. For its practical implementation, note
that the same samples of the linear and non-linear buckling load are used for both evaluating the optimal control parameter
(see Eq. (19)) and the sought statistic (see Eq. (17)). However, such a strategy induces bias in the estimator of the statistic,
as documented, e.g., in [29]. The effect of bias can be particularly notorious in case that the sample set Ξn possesses a small
number n of samples, which is expected to be precisely the case in practical applications, because performing n non-linear
buckling analyses is numerically demanding. A remedy to eliminate bias is to resort to a Splitting approach, as proposed in [3].
This is a quite convenient scheme, as it does not demand performing additional buckling analyses (neither linear nor non-linear).
The splitting approach consists of dividing the set of available samples into subsets. Then, the associated estimators (e.g. mean,
variance, optimal control parameter) are estimated for each of these subsets. Finally, the estimators for the subsets are aggregated
in such a way that bias is effectively eliminated. As discussed in [3], the number of subsets to be considered should be equal or
larger than 3. However, a large number of subsets may increase the variance. Therefore, in this paper, the minimum number of 3
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subsets is considered to implement the splitting approach.
How does the splitting approach work in practice? First, each of the sample sets Ξn and Ξm is partitioned into three subsets
Ξm∗,k and Ξn∗,k, where k = 1, 2, 3 and n∗ = n/3 and m∗ = m/3. Here, it is implicitly assumed that n and m are selected such that
they are multiples of 3. For each subset k, the subset controller τ(k) is defined [3], as shown in Table 1. Once that the subsets

T A B L E 1 Subset controllers τ(k) for each subset k.

Subset k Subset controller τ(k)
1 2
2 3
3 1

have been defined, the expressions for calculating the sought statistic, its variance and the optimal control parameter by means of
Control Variates with Splitting (CV+S) are:

µ̂(CV+S) = 1
3

3

∑
k=1

µ̂(Pcr,Ξn∗,k) – γτ(k)µ̂(P̃cr,Ξn∗,k) + γτ(k)µ̂(P̃cr,Ξm∗,k), (20)

σ̂2 [µ̂(CV+S)] = 1
32

3

∑
k=1

σ̂2 [µ̂ (Pcr,Ξn∗,k)] – 2γ∗τ(k)δ̂ [µ̂ (Pcr,Ξn∗,k) , µ̂ (P̃cr,Ξn∗,k)]+

(γ∗τ(k))
2
σ̂2 [µ̂ (P̃cr,Ξn∗,k)] + (γ∗τ(k))

2
σ̂2 [µ̂ (P̃cr,Ξm∗,k)] , (21)

γ∗τ(k) =
δ̂ [µ̂ (Pcr,Ξn∗,τ(k)) , µ̂ (P̃cr,Ξn∗,τ(k))]

σ̂2 [µ̂ (P̃cr,Ξn∗,τ(k))] + σ̂2 [µ̂ (P̃cr,Ξm∗,τ(k))]
, k = 1, 2, 3. (22)

The structure of Eqs. (20), (21) and (22) reveals the essence of the Splitting approach. That is, when applying Control Variates to186

calculate either the estimator of the sought statistic (see Eq. (20)) or its variance (see Eq. (21)), one considers the k-th subset of187

samples for calculating µ̂ while the optimal control parameter is calculated using the τ(k)-th subset of samples. As k ≠ τ(k),188

such strategy effectively ensures that bias is avoided, as demonstrated in detail in [3]. Furthermore, it is noted from Eqs. (20),189

(21) and (22) that the implementation of the Splitting strategy does not demand any additional buckling analyses. Instead, it190

demands performing calculations of the different estimators and optimal control parameters over different subsets, which is quite191

cheap from a numerical viewpoint. In summary, the Splitting technique offers a convenient way to avoid the undesirable effects192

of bias while not increasing numerical costs.193

4.3 Estimation of the mean194

The preceding section illustrates how a statistic of interest µ is estimated by means of Control Variates with Splitting, where µ195

can represent either mean or variance. When the focus is on estimating the mean of the non-linear buckling load (denoted as196

µ̂′1
(CV+S)

) by means of Control Variates with Splitting as well as the variance of that estimator (that is, σ̂2 [µ̂′1
(CV+S)]), Eqs. (20),197

(21) and (22) adopt the following specific form, respectively198

µ̂′1
(CV+S) = 1

3

3

∑
k=1

µ̂′1(Pcr,Ξn∗,k) – ατ(k)µ̂
′

1(P̃cr,Ξn∗,k) + ατ(k)µ̂
′

1(P̃cr,Ξm∗,k), (23)

σ̂2 [µ̂′1
(CV+S)] = 1

32

3

∑
k=1

µ̂2,0 (Pcr, P̃cr,Ξn∗,k)
n∗

– 2α∗τ(k)
µ̂1,1 (Pcr, P̃cr,Ξn∗,k)

n∗

+ (α∗τ(k))
2 µ̂0,2 (Pcr, P̃cr,Ξn∗,k)

n∗
+ (α∗τ(k))

2 µ̂0,2 (Pcr, P̃cr,Ξm∗,k)
m∗

, (24)
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α∗τ(k) =
µ̂1,1(Pcr,P̃cr,Ξn∗ ,τ(k))

n∗

µ̂0,2(Pcr,P̃cr,Ξn∗ ,τ(k))
n∗ + µ̂0,2(Pcr,P̃cr,Ξm∗ ,τ(k))

m∗

, k = 1, 2, 3. (25)

In the above equations, µ̂′1 refers to the estimator of the mean (see Eq. (13)); α∗τ(k) represents the optimal control parameter199

associated the τ(k)-th subset which is related with the estimation of the mean; and the term µ̂p,q represents the estimator of the200

bivariate central co-moment of order (p, q) between the non-linear and linear buckling loads. Detailed expressions for evaluating201

these co-moments are listed in A.202

4.4 Estimation of the variance203

When the objective is to estimate the variance of the buckling load (denoted as µ̂2
(CV+S)) as well as the variance of that estimator204

(represented as σ̂2 [µ̂2
(CV+S)]) by means of Control Variates with Splitting, Eqs. (20), (21) and (22) must be formulated as205

µ̂2
(CV+S) = 1

3

3

∑
k=1

µ̂2(Pcr,Ξn∗,k) – βτ(k)µ̂2(P̃cr,Ξn∗,k) + βτ(k)µ̂2(P̃cr,Ξm∗,k), (26)

σ̂2 [µ̂2
(CV+S)] = 1

32

3

∑
k=1

B1 (Pcr, P̃cr,Ξn∗,k) – 2βτ(k)B2 (Pcr, P̃cr,Ξn∗,k)

+ (βτ(k))
2

B3 (Pcr, P̃cr,Ξn∗,k) + (βτ(k))
2

B4 (Pcr, P̃cr,Ξm∗,k) , (27)

β∗τ(k) =
B2 (Pcr, P̃cr,Ξn∗,τ(k))

B3 (Pcr, P̃cr,Ξn∗,τ(k)) + B4 (Pcr, P̃cr,Ξm∗,τ(k))
, k = 1, 2, 3. (28)

In the last three equations, µ̂2 represents the estimator of the variance (see Eq. (14)); β∗τ(k) is the optimal control parameter206

associated with the τ(k)-th subset which is related with the estimation of the variance; and B1, B2, B3 and B4 are real constants207

that are calculated by:208

B1 (Pcr, P̃cr,Ξn∗,k) =
µ̂4,0 (Pcr, P̃cr,Ξn∗,j)

n∗
–
(n∗ – 3)
(n∗ – 1)n∗ µ̂

2
2,0 (Pcr, P̃cr,Ξn∗,k) , (29)

B2 (Pcr, P̃cr,Ξn∗,k) =
2µ̂2

1,1 (Pcr, P̃cr,Ξn∗,k)
(n∗ – 1)n∗ +

µ̂2,2 (Pcr, P̃cr,Ξn∗,k)
n∗

–
µ̂2,0µ0,2 (Pcr, P̃cr,Ξn∗,k)

n∗
, (30)

B3 (Pcr, P̃cr,Ξn∗,k) =
µ̂0,4 (Pcr, P̃cr,Ξn∗,j)

n∗
–
(n∗ – 3)
(n∗ – 1)n∗ µ̂

2
0,2 (Pcr, P̃cr,Ξn∗,k) , (31)

B4 (Pcr, P̃cr,Ξm∗,k) =
µ̂0,4 (Pcr, P̃cr,Ξm∗,k)

m∗
–
(m∗ – 3)
(m∗ – 1)m∗ µ̂

2
0,2 (Pcr, P̃cr,Ξm∗,k) . (32)

Expressions for evaluating the co-moments associated with the calculation of constants B1, B2, B3 and B4 can be found in A.209

5 NUMERICAL EXAMPLES210

Three numerical examples are presented using geometric non-linear quadrilateral shell elements with moderate rotations, as211

described in [42]. This four-node element is based on the isoparametric concept with linear shape functions. To prevent shear212

locking, the assumed natural strain (ANS) method is implemented. The element is incorporated into an extended version of213

the general finite element analysis program (FEAP) [36]. An interface has been developed to enable FEAP to be called from214

MATLAB, allowing the calculation of buckling load solutions within the Monte Carlo loop.215
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The linear buckling analysis is performed using the subspace iteration method as described in [5, 25]. In [5], the recommended216

number of eigenvalues to be determined by iteration is given by N = min{2 n, n+8}, where n is the number of desired eigenvalues.217

The first eigenvalue indicates the stability point. Therefore, n is set to one to maximize performance of the Control Variates218

approach. To compare the speed-up factors between the Control Variates approach and the Monte Carlo simulation for the219

presented examples, all calculations were performed on the same workstation with the following setup: 2 × CPUs Intel Xeon220

E5-2667 v4 8 cores @ 3.20 GHz, 128 GB RAM, Win 10 x64221

5.1 Folded Plate222

The first example of a folded plate, as depicted in Fig. 3, is to show that the Control Variates method works successfully in the223

presence of two types of stability points: bifurcation points and a limit point (snap-through). A distributed load p is applied to

F I G U R E 3 Folded Plate subjected to a distributed load

224

the plate at the hinged sleeve along the line x = Lx. The plate is simply supported at the edges x = 0 and x = k ⋅ Lx, with boundary225

conditions u = v = w = 0. The lengths Lx and Ly are set to 100 cm and the plate thickness is defined as t = 5 cm. A length factor226

k allows to control the symmetry of the system and thus also the buckling behavior. For k = 1.75 and k = 2.00, the system227

is non-symmetric, whereas a symmetric system occurs when k = 2.00. For an initial analysis, the Young’s modulus is set to228

E = 1000 kN/cm2 and the height to h = 10 cm. Each subarea to the left and right of the hinged sleeve is discretized with 10 × 10229

elements. The vertical displacements of all nodes of the hinged sleeve are linked. The resulting load P = p Ly is computed for an230

increasing vertical displacement wc at x = Lx, y = Ly/2 using the arc-length method with a displacement control of ∆w = 0.02 cm.231

The resulting load–displacement curve for a non-symmetric system (k = 1.75) is depicted in Fig. 4. Two bifurcation points232

(A) and (B) occur before the snap-through point (C). In addition, associated eigenvectors φcr are depicted in Fig. 4. The first233

eigenvectors in point (A) and (B) represent a local buckling of the left or right part of the folded plate, whereas the eigenvectors234

at point (C) indicate the snap-through as a global buckling failure mode. By applying the corresponding eigenvectors as small235

imperfections at points (A) and (B), the resulting secondary equilibrium paths, illustrated by the red dashed lines, can be traced.236

A non-linear buckling analysis yields a buckling load of Pcr = 9.92 kN at bifurcation point (A), Pcr = 14.07 kN at point (B) and237

Pcr = 14.67 kN at the snap-through point (C). The critical load from the linear buckling analysis is P̃cr = 10.83 kN.238

In the following, the length factor k, height h, and Young’s modulus E are modeled as Gaussian random variables. Their mean
values µ and standard deviations σ are listed in Table 2. The stochastic non-linear buckling response is analyzed via a Monte
Carlo simulation with 5000 samples, resulting in a mean value of the critical buckling load µPcr = 9.94 kN and a coefficient
of variation of δPcr = 18.82 %. All buckling loads correspond to the load, where the first diagonal element becomes negative.
Despite the significant influence of the three random input parameters defined in Table 2 on the buckling behavior, a strong
correlation of ρ = 0.99 between linear and non-linear buckling analyses is evident, see Fig. 5. These conditions are well-suited
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F I G U R E 4 Load-displacement curves of the folded plate

T A B L E 2 Folded plate: Quantification of material and geometric parameters as Gaussian random variables

parameter mean value µ standard deviation σ

length factor k [-] 1.75 0.05
height h [cm] 10 1
Young’s modulus E [kN/cm2] 1000 100

F I G U R E 5 Correlation between buckling loads calculated using non-linear Pcr and linear analysis P̃cr

for applying the Control Variates method. The results are given in Table 3. The estimates obtained using Monte Carlo and
Control Variates with Splitting are nearly identical, as indicated by the coefficient of variation δ in Table 3. To compare the
numerical efforts between the two approaches for estimating second-order statistics, the total number of analyses performed for
Control Variates is expressed as an equivalent number of analyses ne (relative to plain Monte Carlo simulation). This equivalent
number of analyses is calculated by

ne = n + n +m
fs

, (33)
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T A B L E 3 Estimates of second-order statistics for the buckling load of the folded plate.

Approach Monte Carlo
Control Variates
with Splitting

n 1750 150
m – 3000
ne 1750 736
̂µ′1 N 9.99 9.97

V [ ̂µ′1]N2 0.002 0.002
δ
µ̂′1

0.45% 0.39%

µ̂2 N2 3.582 3.614
V [µ̂2]N4 0.015 0.018

δµ̂2 3.45% 3.65%
δPcr 19% 19%

where n is the number of samples for the non-linear buckling analysis and m is the number of samples for the linear buckling239

analysis. The speedup factor fs is defined as the ratio between the execution time of one non-linear buckling analysis and one240

linear buckling analysis. The number of ne = 736 taken from Table 3 means that the Control Variates requires only a number of241

736 equivalent simulations instead of 1750 Monte Carlo simulations. In other words, for a sample size of n = 150 and m = 3000,242

a speedup factor of fs = 5.38 is obtained, indicating that the linear buckling analysis is 5.38 times more computationally efficient243

than the non-linear buckling analysis.244

Finally, it should be noted that even if a bifurcation path exists in the pre-buckling stage, the method still performs successfully.245

The only essential requirement is a strong correlation between the linear and non-linear buckling analyses, while the type of246

stability point plays a subordinate role. If a sufficiently strong correlation exists, the Control Variates method yields reliable247

results.248

5.2 Composite shell panel249

This example demonstrates the use of the Control Variates approach to predict buckling loads in a composite shell panel subjected250

to a single load and random geometric imperfections. For details on the shell panel model, see [41]. Fig. 6 illustrates the system251

modeled with a 30 × 30 FE mesh. The panel is simply supported along the two lateral edges. System symmetry cannot be252

exploited due to applied random geometrical imperfections.253

F I G U R E 6 Cylindrical composite shell panel subjected to a single load

The transversely isotropic material properties of the laminate are provided in Table 4. The panel consists of a three-layer254

laminate with a total thickness of h = 12.7 mm. The corresponding stacking sequence is given in Fig. 6.255



Control variates method to estimate stochastic buckling loads 13

T A B L E 4 Transversal isotropic material properties of the laminate

E11 [N/mm2] E22 [N/mm2] G12 [N/mm2] G13 [N/mm2] G23 [N/mm2] ν12 [-]
3300 1100 660 660 450 0.3

First of all, the buckling behavior is analyzed without any imperfections. The load-displacement curves, evaluating the load256

P versus the vertical displacement wc at the center of the panel, are depicted in Fig. 7. These curves are obtained using the257

arc-length method with a displacement control ∆w = 0.5 mm.258

F I G U R E 7 Load-displacement curves of the composite shell panel

A pronounced non-linear pre-buckling behavior is observed. Consequently, the non-linear buckling analysis using the criterion259

in Eq. (12) results in a critical load of Pcr = 1.73 kN, while the linear buckling analysis according to Eq. (9) yields a higher260

critical load of P̃cr = 2.02 kN.261

The next step is to generate random geometric imperfections of the cylindrical shell shape (reference surface) modeled as262

Gaussian random fields using the Karhunen-Loève Expansion (KLE). For the fundamentals to random field modeling, see, e.g.,263

[35, 37]. Accordingly, the random geometric deviations in radial direction of the shell panel can be expressed as264

ŵrad(x, θ) = µ +
M

∑
i=1

√
λi ξi(θ) φi(x). (34)

Here, the mean value µ is set to zero to model geometric imperfections that vary around the reference surface. The parameter265

ξi(θ) is a standard normal distributed random variable, φi(x) are the eigenfunctions and λi the eigenvalues of the covariance266

matrix formulated for the FE mesh with M nodes. This covariance matrix is assumed to be homogeneous267

C(τ) = σ2ρ(τ), (35)
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where the variance σ2 is set to one in this example. The autocorrelation function (acf) ρ(τ) is defined as a function of the relative
distance τ of two FE nodes xi, xj

ρ(xi, xj) = ρ(τ) with τ = xj – xi. (36)

In practical applications, analytical models for autocorrelation are frequently used [9, 13]. For the presented example, the
Whittle–Matérn acf is chosen to generate the shell imperfections

ρ(τ) = 21–ν

Γ(ν) (
√

2ν
τ

ℓc
)
ν

Kν (
√

2ν
τ

ℓc
) , (37)

where Kν is the modified Bessel function of the second kind and Γ(ν) denotes the Gamma function. The parameter ℓc is the268

correlation length and ν is the so-called “smoothness” parameter, which is set to ν = 1.5.269

The correlation length influences the imperfection shape, thereby it also influences the buckling behavior and the second-order270

statistics of the buckling load. Fig. 8 illustrates the mean µPcr and the coefficient of variation δPcr of the buckling load as functions271

of the correlation length.272

For the small correlation length ℓc = 150 mm, a minimal mean value µPcr = 1.68 kN and a maximum coefficient of variation273

δPcr = σPcr /µPcr = 10 % can be observed. From this point, the mean value converges to the imperfection-free buckling load274

Pcr = 1.73 kN and the coefficient of variation decreases. This is because, for large correlation lengths, the effect of geometric275

imperfections vanish. Examining the vertical axis of Fig. 8 (left), the mean value shows small variation. However, the correlation276

length has a significant influence on the coefficient of variations, see Fig. 8 (right). Therefore, two different correlation lengths277

are selected to investigate the effectiveness of Control Variates: the smaller length of ℓc = 150 mm, which results in wavy278

realizations, and a larger length of ℓc = 500 mm, which produces more uniform imperfection shapes as depicted in Fig. 9.279

F I G U R E 8 Mean µPcr (left) and coefficient of variation δPcr (right) of the buckling load as a function of the correlation length

In addition, the load-displacement curves for two realizations of the selected correlation lengths are depicted Fig. 7. For these280

realizations, a small difference in the buckling load can be observed, consistent with the slight deviations in the mean value281

shown in Fig. 8 (left). In Fig. 10, the eigenvectors φcr at the stability point are depicted for the panel without and with the282

imperfection from Fig. 9 (left).283

The eigenvectors are quite similar. However, the eigenvector with imperfections is non-symmetric, leading to different post-284

buckling behavior. Table 5 summarizes the second-order statistics for both correlation lengths, as evaluated using a Monte Carlo285

simulation with 5000 realizations.286

For instance, Fig. 11 shows the Monte Carlo convergence test for generated random imperfections with the correlation length287

ℓc = 150 mm. For 1000 samples, the relative error of δPcr compared to the reference solution provided in Table 5 is smaller than288

5%.289
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F I G U R E 9 Random geometrical imperfection with respect to the shell surface for ℓc = 150 mm (left) and ℓc = 500 mm (right)

F I G U R E 10 Eigenvectors φcr at the stability point of the shell panel without (left) and realization with random imperfection
for the correlation length ℓc = 150 mm (right)

T A B L E 5 Second-order statistics of the buckling load for different correlation lengths

correlation length ℓc [mm] µPcr [kN] δPcr [%]
150 1.68 10.0
500 1.72 4.7

Fig. 12 shows the correlations between buckling loads calculated using non-linear (Pcr) and linear analysis (P̃cr) for the small290

and large correlation length. For each correlation length, 5000 random fields are generated and the buckling loads with the linear291

and non-linear buckling analysis are calculated.292

It is noteworthy that a strong correlation of ρ = 0.97 is observed even for the small correlation length of ℓc = 150 mm.293

Compared to the larger length ℓc = 500 mm, the correlation between linear and non-linear buckling analyses decreases only294

slightly. This is a good condition for using Control Variates. To calculate the linear solutions is 4.8 faster than performing the295

non-linear buckling analyses. However, for the small correlation length, the subspace eigenvalue solver requires sometimes more296

iteration steps to compute the correct eigenvalue. This means that the chosen eigenvalue solver and its properties significantly297

influence the effectiveness of the Control Variates approach.298

The results of the estimates of second-order statistics using the Control Variates approach are provided for both correlation299

lengths in Table 6. The estimates produced using Monte Carlo and Control Variates with Splitting are practically identical in300

terms of both accuracy and precision, measured in terms the coefficient of variation δ in Table 6. For a smaller correlation length301

ℓc = 150 mm, the number of ne = 285 according to Eq. (33) means that the Control Variates requires only a number of 285302

equivalent simulations instead of 600 Monte Carlo simulations. In other words, for the number of samples n = 90 and m = 999, a303

speedup factor of fs = 5.58 is achieved, which means that the linear buckling analysis is 5.58 times faster than the non-linear304

buckling analysis.305

For the larger correlation length, Control Variates performs more efficiently with fs = 5.75 and an equivalent number of 227306

analyses instead of 600. This can be explained by analyzing Fig. 12, as the correlation coefficient between linear and non-linear307

buckling loads is ρ = 0.99, which is larger than the correlation coefficient associated with a shorter correlation length. In other308



16 FINA ET AL.

F I G U R E 11 Monte Carlo convergence test for correlation length ℓc = 150 mm

F I G U R E 12 Comparison between buckling loads calculated using non-linear (Pcr) and linear analysis (P̃cr) for the correlation
lengths ℓc = 150 mm (left) and ℓc = 500 mm (right)

words, for the case of a longer correlation length, linear buckling analysis provides a better approximation for calculating the309

exact buckling load. In addition, the subspace eigenvalue solver converges faster for smooth imperfection shapes.310

When examining the results of Table 6, it is observed that while the mean buckling load increases slightly with the correlation311

length, the variance decreases considerably. This is a very interesting behavior, as in problems of linear static stochastic FE312

analysis, usually the opposite behavior is observed [45, 10]. This highlights the non-linear nature of the problem at hand.313

5.3 Composite cylinder314

Buckling analysis of cylindrical shells is particularly challenging from both theoretical and numerical perspectives, and it is315

associated with high computational costs. Therefore, the effectiveness of the Control Variates method is investigated for an316

imperfection-sensitive composite cylinder subjected to random geometric imperfections. For this purpose, cylinder Z23, derived317

from [28, 39], is analyzed. The corresponding FE model is depicted in Fig. 15. The cylinder has a length of L = 510 mm and a318

radius of R = 250 mm, resulting in a circumference approximately three times larger than its length. Based on a convergence319

study, an FE mesh with 240 shell elements in the circumferential direction and 80 elements in the axial direction is chosen.320

This approximately regular FE mesh effectively captures the critical buckling modes and is used as the high fidelity model for321

the non-linear buckling analysis. In contrast, a coarser mesh of 120 × 40 is used as a low-fidelity model to perform the linear322

buckling analysis within the Control Variates approach. The cylinder’s laminate consists of 10 layers with a stacking sequence323

of [±60○, 0○2,±68○,±52○,±37○], corresponding to the fiber orientation φ depicted in Fig. 15. A single layer has a thickness324
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T A B L E 6 Estimates of second-order statistics for the buckling load of the composite shell panel.

Approach Monte Carlo
Control Variates
with Splitting

Monte Carlo
Control Variates
with Splitting

ℓc [mm] 150 500
n 600 90 600 60
m – 999 – 900
ne 600 285 600 227
̂µ′1 kN 1.7 1.69 1.72 1.73

V [ ̂µ′1] kN2 5 × 10–5 4.1 × 10–5 1.0 × 10–5 8.1 × 10–6

δ
µ̂′1

0.4% 0.4% 0.2% 0.2%

µ̂2 kN2 0.03 0.03 0.006 0.006
V [µ̂2] kN4 2.8 × 10–6 2.8 × 10–6 1.2 × 10–7 1.0 × 10–7

δµ̂2 5.6% 5.8% 5.6% 5.6%
δPcr 10.2% 10% 4.6% 4.4%

F I G U R E 13 FE model of the composite cylinder

of 0.125 mm, leading to a total shell thickness of t = 1.25 mm. The material parameters are given in Table 7. The cylinder is

E11 [N/mm2] E22 [N/mm2] G12 [N/mm2] G23 [N/mm2] ν12 [–]
123 550 8 708 5 695 3 400 0.319

T A B L E 7 Material parameters for the composite cylinder Z23

325

clamped at both ends. At the lower edge, the boundary conditions are u = v = w = 0,φx = φy = 0. Only vertical displacements of326

the nodes at the upper edge are allowed u = ua, while v = w = 0,φx = φy = 0 remain fixed. The resulting axial load is computed327

as P = 2πRp for an increasing vertical displacement ua using the arc-length method. The displacement step size significantly328

influences the computational time. Therefore, five initial coarse displacement steps of ∆ua = 0.1 mm are applied. This coarse329

steps are estimated based on the lowest expected buckling load of the cylinder under random imperfections. Subsequently, the330

cylinder is further loaded with a smaller displacement step size of ∆ua = 0.01 mm until the first zero diagonal element Dii occurs331

in the tangent stiffness matrix.332

In this example, the random geometric imperfections are generated using the EOLE (Expansion Optimal Linear Estimation)
method from [27]. The method allows to represent the random field with only a few random variables by minimizing the variance
error. The main advantage is that the covariance matrix is only required on a sub-set of field nodes, the so-called "random field
mesh". Thus, a coarser mesh can be defined for the random field compared to the finer mesh required for the FE analysis. The
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expression for the series to compute random radial imperfections of the cylinder is

ŵrad(x, θ) = µ + (
M

∑
i=1

ξi(θ)√
λi

φi(xS))C(xS, x), (38)

with the standard normal distributed random variable ξi(θ), the vector xS = [x1 ... xS
i ... xS

M] of M random field nodes and the333

vector x = [x1 ... xj ... xN] of N nodes in the full domain (e.g. FE nodes). Consequently, C(xS, x) denotes the covariance matrix,334

which contains the covariances between random field nodes and FE nodes. The eigenfunctions φi(xS) and eigenvalues λi are335

obtained from the covariance matrix C(xS
i , xS

j ) based on the random field mesh. Both covariance matrices C(xS, x) and C(xS, xS)336

are calculated using the homogeneous correlation structure in Eq. (36) and the Whittle–Matérn acf in Eq. (37). Depending on337

the smoothness of the random field, the number of random field nodes can be smaller than the number of FE nodes. This allows338

to reduce the size of the eigenvalue problem of the covariance matrix. In this example, a random field mesh with M = 60 × 20339

nodes is defined based on a convergence study, where the second-order statistics of the buckling load are evaluated. In Eq. (38),340

the constant mean value µ is set to zero and the standard deviation of the field is chosen as σ = 1. Considerung the presented341

measured geometric imperfections of the cylinder in [39], the random imperfection are scaled to a peak to peak value of 2 mm.342

In a first stuty, the stochastic buckling behavior is analyzed for different correlation length. The results of the mean µPcr and343

the coefficient of variation δPcr of the buckling load as functions of the correlation length are depicted in Fig. 14. For each

F I G U R E 14 Mean µPcr (left) and coefficient of variation δPcr (right) of the buckling load as a function of the correlation length

344

correlation length, a Monte Carlo simulation with 500 samples is performed. In Fig. 14 (left), the resulting nonlinear buckling345

load of Pcr = 261.64 kN of the cylinder without imperfections is depicted as a horizontal line. Due to the applied scaling of the346

random geometric imperfections, the mean of the buckling load asymptotically approaches a value below the nonlinear buckling347

load as the correlation length increases. In contrast, the coefficient of variation decreases with increasing correlation length, see348

Fig. 14 (right). A maximum coefficient of variation of δPcr = σPcr /µPcr = 7.3 % results for the correlation length of ℓc = 150 mm,349

which is selected for the following investigations. With respect to the mean of the buckling load µPcr = 174.70 for the chosen350

correlation length of ℓc = 150 mm, the knockdown factor (KDF) is µPcr /Pcr = 174.7/261.64 = 0.67.351

The load-displacement curves of the composite cylinder with and without random radial imperfections are depicted in Fig.14.352

A typical linear pre-buckling behavior of a cylindrical shell can be observed. At the stability point (A) of the cylinder without353

imperfections, the initial post-buckling mode φcr is depicted. Due to the clamped edges, where the radial expansion of the354

cylinder is suppressed, the buckling mode is characterized by radial displacements at top and bottom of the cylinder. Furthermore,355

a sample of the scaled radial imperfection is depicted in Fig.14, which is associated to the blue load-displacement curve and a356

buckling load of Pcr = 165.86 kN (KDF of 0.63).357

The buckling load of the linear analysis using the high fidelity model (FE mesh with 240 × 80 elements) is P̃cr = 276.96 kN.358

Whereas, the linear buckling load using the low fidelity model (FE mesh with 140 × 40 elements) is P̃cr = 301.02 kN. The model359

behaves significantly stiffer. However, the correlation between the linear and nonlinear analysis decreases only slightly. This can360

be observed in the correlation plots in Fig. 16, where only the model of the linear analysis is changed. The nonlinear buckling361



Control variates method to estimate stochastic buckling loads 19

F I G U R E 15 Load-displacement curve of the composite cylinder Z23 with the first eigenvector at the stability point of the
cylinder without imperfection and a random radial imperfection, magnified (x20)

analysis is performed with the high fidelity model. On the given computational setup, the linear analysis using the low-fidelity

F I G U R E 16 Comparison between buckling loads calculated using non-linear (Pcr) and linear analysis (P̃cr) using the high
fidelity model (left) and the low fidelity model (right) for the linear buckling analysis

362

model is 13 times faster compared to the high-fidelity model. Thus, the effectiveness of the Control Variates method can be363

significantly enhanced by performing the linear buckling analysis using the low-fidelity model. The results of Control Variates364

approach compared to the Monte Carlo simulation are given in Table 8. According to Eq. (33), the Control Variates requires only365

a number of ne = 285 equivalent simulations instead of 390 Monte Carlo simulations. This results in a speed-up factor of 20.69.366

Despite the correlation is approximately 10 % lower than in the other examples, the computational time is significantly reduced.367

Thus, the CV method can serve as an effective tool for increasing the efficiency of stochastic analyses in shell buckling.368



20 FINA ET AL.

T A B L E 8 Estimates of second-order statistics for the buckling load for the composite cylinder.

Approach Monte Carlo
Control Variates
with Splitting

n 390 210
m – 990
ne 390 268
̂µ′1 N 176.5 176.1

V [ ̂µ′1]N2 0.41 0.33
δ
µ̂′1

0.4% 0.3%

µ̂2 N2 161.4 154.2
V [µ̂2]N4 137.8 129.8

δµ̂2 7.3% 7.4%
δPcr 7.2% 7.1%

6 CONCLUSIONS369

The paper highlights a promising approach to estimate the second-order statistics of buckling loads. By integrating results from370

both linear and non-linear buckling analyses, this method achieves enhanced accuracy and significantly reduced computational371

costs compared to full-scale Monte Carlo simulations. However, the effectiveness of the Control Variates method for buckling372

problems depends on various factors and can be further optimized. One factor is the eigenvalue solver used for the linear buckling373

analysis. Therefore, other solvers have to be tested in this context.374

Another important factor are the correlation properties of the random field, as random geometric imperfections. In this paper375

the influence of different correlation lengths are studied, but the correlation function and its differentiability may also influence376

the computational efficiency of calculating second-order statistics with Control Variates. Defining relevant correlation lengths and377

functions based on experimental data is essential for quantifying the benefits of Control Variates in realistic scenarios. To account378

for epistemic uncertainties, correlation parameters can be quantified using polymorphic uncertainty models. The application of379

the Control Variates method in the context of polymorphic uncertainties (imprecise probabilities) is also conceivable.380

Finally, the composite shell panel discussed is primarily an academic example. The approach should be tested on a range of381

structures, including stiffened panels, fiber-steered composites, cylindrical shells, and large-scale structures, to assess its broader382

applicability. New ideas for further research can be summarized as follows:383

● Efficient eigenvalue solvers for Control Variates384

● Study to the influence of the correlation functions and their differentiability on estimating second-order statistics using385

Control Variates.386

● Application of Control Variates for various structures, such as cylindrical shells, stiffened panels, fiber-steered composites387

and large-scale structures388

● Application of Control Variates in the framework of polymorphic uncertainties (imprecise probabilities)389

● Extension of the current framework from a single variable for performing Control Variates (in this case, buckling load from390

linear analysis) to several variables (for example, higher-order buckling loads from linear analysis). It is to be noted that391

extension towards several variables within the framework of Control Variates is possible, as discussed in e.g. [3].392
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APPENDIX478

A BIVARIATE CENTRAL CO-MOMENTS479

Bivariate central co-moments between the non-linear buckling load Pcr and linear buckling load P̃cr are denoted as µp,q (Pcr, P̃cr),
where the pair of integer numbers p and q represent the order associated with Pcr and P̃cr, respectively. Monte Carlo simulation
is employed to estimate these co-moments considering a sample set Ξl with l independent, identically distributed samples of Ξ.
The list of co-moments required to implement the expressions of this paper are listed below. This list has been produced using
the software package mathStatica [34]. Note that the expressions below consider the auxiliary variable sp,q, which is defined as
sp,q = ∑l

i=1 (Pcr (ξ(i)))
p (P̃cr (ξ(i)))

q
, where ξ(i) is the i-th sample of the sample set Ξl.

µ̂1,1 =
ls1,1 – s0,1s1,0

(l – 1)l (A1)

µ̂2,2 =
1

(l – 3)(l – 2)(l – 1)l
((–2l2 + 4l – 6) s2,1s0,1 + (–2l2 + 4l – 6) s1,0s1,2+

(l3 – 2l2 + 3l) s2,2 + ls2,0s2
0,1 + 4ls1,0s1,1s0,1 + ls0,2s2

1,0+
(6 – 4l)s2

1,1 + (3 – 2l)s0,2s2,0 – 3s2
1,0s2

0,1) (A2)

µ̂4,0 =
1

(l – 3)(l – 2)(l – 1)l
((–4l2 + 8l – 12) s3,0s1,0 + (l3 – 2l2 + 3l) s4,0+

6ls2,0s2
1,0 + (9 – 6l)s2

2,0 – 3s4
1,0) (A3)

µ̂0,4 =
1

(l – 3)(l – 2)(l – 1)l
((–4l2 + 8l – 12) s0,3s0,1 + (l3 – 2l2 + 3l) s0,4+

6ls0,2s2
0,1 + (9 – 6l)s2

0,2 – 3s4
0,1) (A4)

Squared co-moments as well as co-moment products are estimated with the equations listed below [34].

µ̂2
1,1 =

1
(l – 3)(l – 2)(l – 1)l

((l2 – 3l + 2) s2
1,1 + (l – l2) s2,2+

(2 – 2l)s1,0s1,1s0,1 + (2l – 2)s2,1s0,1 + (2l – 2)s1,0s1,2+
s2

1,0s2
0,1 – s2,0s2

0,1 – s0,2s2
1,0 + s0,2s2,0) (A5)

µ̂2
2,0 =
(l2 – 3l + 3) s2

2,0 + (l – l2) s4,0 – 2ls2,0s2
1,0 + (4l – 4)s3,0s1,0 + s4

1,0

(l – 3)(l – 2)(l – 1)l (A6)

µ̂2
0,2 =
(l2 – 3l + 3) s2

0,2 + (l – l2) s0,4 – 2ls0,2s2
0,1 + (4l – 4)s0,3s0,1 + s4

0,1

(l – 3)(l – 2)(l – 1)l (A7)

µ̂2,0µ0,2 =
1

(l – 3)(l – 2)(l – 1)l
((l2 – 3l + 1) s0,2s2,0 + (l – l2) s2,2+

(2 – l)s2,0s2
0,1 + (2l – 2)s2,1s0,1 + (2 – l)s0,2s2

1,0+
(2l – 2)s1,0s1,2 + s2

1,0s2
0,1 – 4s1,0s1,1s0,1 + 2s2

1,1) (A8)
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