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A B S T R A C T

To alleviate the intensive computational burden of reliability analysis, a new parallel active
learning reliability method is proposed from the multi-point look-ahead paradigm. First, in the
framework of probability density evolution method, a global measure of epistemic uncertainty
about Kriging-based failure probability estimation, referred to as the targeted integrated mean
squared error (TIMSE), is defined and well proved. Then, three key ingredients are developed in
the workflow of parallel active learning reliability analysis: (i) A look-ahead learning function
called 𝑘-point targeted integrated mean square error reduction (𝑘-TIMSER) is deduced in closed
form, quantifying explicitly the reduction of TIMSE induced by adding a batch of 𝑘(≥ 1) new
points in expectation. (ii) A hybrid convergence criterion is specified according to the actual
reduction of TIMSE at each iteration. (iii) Both prescribed scheme and adaptive scheme are
devised to identify the rational size of batch of new points added per iteration. The most
distinctive feature of the proposed approach lies in that the multi-point enrichment process
is fully guided by the learning function 𝑘-TIMSER itself, without resorting to additional batch
selection strategies. Hence, it is much more theoretically elegant and easy to implement. The
effectiveness of the proposed approach is testified on three examples, and comparisons are
made against several existing reliability methods. The results show that the proposed method
achieves fair superiority over other existing ones in terms of the accuracy of failure probability
estimate and the number of iterations. Particularly, the advantage of the total computational
time becomes very evident in the proposed method, when computationally-expensive reliability
problems are considered.

1. Introduction

Probabilistic reliability analysis aims to quantify the failure probability of an engineering system with respect to some relevant
failure criteria, accounting for various uncertainties in the physical properties, external loads and environmental conditions, etc.
Nowadays, it has emerged as a core task in the design, performance assessment and maintenance decision-making of complex
engineering structures and infrastructures [1].
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Nomenclature

AK-MCS Adaptive Kriging-Monte Carlo simulation
ALR Active learning reliability
CDF Cumulative distribution function
COV Coefficient of variation
ED Experimental design
EFF Expected feasibility function
EM Ensemble of metamodels
EPDF Evolutionary probability density function
GDEE Generalized probability density evolution equation
IS Importance sampling
MCS Monte Carlo simulation
PABQ Parallel adaptive Bayesian quadrature
PDEM Probability density evolution method
PDF Probability density function
PEIF PDEM-oriented expected improvement function
PIE PDEM-oriented information entropy
ROI Regions of interest
SuS Subset simulation
TIMSE Targeted integrated mean squared error
TIMSER Targeted integrated mean square error reduction

The uncertainties in engineering systems are generally represented through a set of 𝑑 continuous random variables 𝑿 =
{𝑋1,… , 𝑋𝑑} ∈ X ⊂ R𝑑 , with a joint probability density function (PDF) 𝑓𝑿 (𝒙). Then, a single structural response or the extreme value
f multiple structural responses is often of interest to reliability analysis and is a function of 𝒙, with 𝒙 one realization of 𝑿. Such
nput–output mapping can be generalized as a computational model 𝑦 =  (𝒙) , ∶ X ∈ R𝑑 ↦ R1. Basically, a single evaluation

of  (⋅) is very computationally expensive, especially when a high-fidelity finite element model is involved. Conventionally, the
failure domain is defined as F = {𝒙 ∈ X ∶ (𝒙) ≥ ℎ}, with ℎ the associated failure threshold. Then, the failure probability 𝑃𝑓 of
this system can be defined as

𝑃𝑓 = P(𝑌 ≥ ℎ) =

⎧

⎪

⎨

⎪

⎩

∫X
𝟏F(𝒙)𝑓𝑿 (𝒙)d𝒙, routine 1⃝,

∫

∞

ℎ
𝑓𝑌 (𝑦)d𝑦, routine 2⃝,

(1)

where P(⋅) represents the probability measure; 𝟏F(𝒙) =
{

1, 𝒙 ∈ F
0, otherwise

denotes a failure indicator function; 𝑓𝑌 (𝑦) is the PDF of 𝑌 .

Eq. (1) indicates that the computation of 𝑃𝑓 can be essentially categorized into two distinct routines. The routine 1⃝ is dedicated
to tackling with a 𝑑-dimensional integral in the input space (𝑿-space). Then, typical reliability methods in this category include
analytical approximation methods, e.g., first- and second-order reliability methods [2,3], and simulation methods, e.g., Monte Carlo
simulation (MCS) [4], importance sampling (IS) [5], line sampling [6], and subset simulation (SuS) [7]. The routine 2⃝ is concerned

ith dealing with a one-dimensional integral in the output space (𝑌 -space). Then, typical reliability methods in this category include
moment methods [8,9] and probability density evolution method (PDEM) [10,11]. The PDEM is fully non-parametric and highly
flexible, yielding favorable performances in both static and dynamic reliability problems [12]. However, the computational burden
f PDEM is still relatively intensive to practical engineering problems.

In the past two decades, active learning reliability (ALR) methods [13] have constituted an active field of research, owing
to its favorable computational efficiency over those traditional reliability methods above. Its core lies in replacing the actual
omputational model with a cheap-to-evaluate surrogate model, which is used in conjunction with a reliability estimation algorithm
o provide an estimate of failure probability. Then, guided by a learning function, the experimental design (ED) for the surrogate
odel is sequentially enriched with new training samples and their model responses to improve the accuracy of failure probability

stimate progressively. This sequential enrichment process is ended when a relevant convergence criterion is met. Hence, the ALR
ramework is comprised of four main ingredients, namely surrogate model, reliability estimation algorithm, learning function, and
onvergence criterion [14]. Commonly-used surrogate models include polynomial chaos expansion [15,16], Kriging [17,18], support

vector regression [19,20], radial basis function [21], and ensemble of metamodels (EM) [22], to name just a few. Kriging is the
most popular method for its exact interpolation property and the ability to quantify epistemic uncertainty of prediction. Efficient
global reliability analysis [23] and adaptive Kriging-Monte Carlo simulation (AK-MCS) [24] are two pioneering contributions in the
framework of Kriging-based active learning reliability analysis. Then, the active learning methods combining Kriging with those
2 
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traditional reliability estimation methods, e.g., MCS [25], IS [14], SuS [26] or PDEM [27,28], have been well developed in the
literature. The interested readers are referred to [13,14] for a comprehensive review of this topic.

Sequential experimental design process is the most prominent feature of the ALR methods. It is essentially a problem of sequential
decision making under uncertainty [29]. This process is often achieved by defining a learning function, which assigns a score
to each candidate point reflecting its preference over others for the next evaluation of computational model. In the context
of active learning-based simulation methods, common Kriging-based learning functions include the U function [24], expected
easibility function (EFF) [23], stepwise uncertainty reduction [30,31], expected uncertainty reduction [25], expected margin

volume reduction [32], stepwise margin reduction [33], expected integrated error reduction [34], and integrated probability of
misclassification reduction [35]. Then, in the context of active learning-based PDEM, common Kriging-based learning functions
include the PDEM-oriented information entropy (PIE) [27], PDEM-oriented expected improvement function (PEIF) [28], and
tepwise truncated variance reduction [36]. Note that single-point enrichment process is generally used with these aforementioned

learning functions, due to their inherent point-to-point nature. This bottleneck makes the overall computational time of active
learning reliability methods still very intensive, especially when considering the large-scale engineering problems.

Recently, parallel computing has drawn increasing attention due to its potential of speeding up the overall computation and
aximizing the available computing resources [37]. Hence, parallel active learning reliability methods that allow adding multiple

new points per iteration have been explored by researchers, so as to reduce the total computational time dramatically. This goal is
often achieved by integrating a single-point learning function with some additional multi-point selection strategies. Those strategies
an be basically categorized into the following four groups. (i) The clustering strategy. The new samples are selected as the centroids
f 𝐾 clusters of candidate points weighted by the learning function values. Popular clustering techniques include the 𝐾-means
lustering strategy [38–41], the 𝐾-medoids clustering strategy [42,43], or the combination of them [44]. However, it is often

challenging to specify a reasonable value of 𝐾 in advance. (ii) Kriging believer or constant liar strategy [45]. The first new point
s selected by the learning function; then, the Kriging is retrained by adding the first new point and the Kriging mean at this
oint [38,46,47] or a constant value fixed by the user [48]; next, the learning function can be updated to add the second new point.

This process iterates until 𝐾 new points are selected. Clearly, there are a total of 𝐾 runs of retraining Kriging per iteration. (iii)
EM-based strategy [45]. The EM is a weighted average metamodel that combines 𝐾 distinct types of metamodel. Then, a learning
unction is used with each metamodel within the EM to select a total of 𝐾 new points, at most, per iteration [22]. Obviously, the

number of new samples is restricted by the amount of metamodels considered in the EM. (iv) Pseudo learning function strategy [49].
The first new point is selected by the learning function; then, the learning function is updated by multiplying itself by an influence
function of the first new point, and the second new sample can be thus selected. This process iterates until 𝐾 new samples are
selected [50,51]. However, the influence function is often expressed as a kernel function, which may be too empirical to reflect the
actual impact of adding a new point on the learning function.

In this study, a new parallel active learning reliability method is proposed from the multi-point look-ahead perspective. Its
distinctive feature lies in that the multi-point enrichment process is directly conducted based on the learning function itself,
liminating the need for additional parallel selection procedures. The major contributions of this study can be summarized as follows.

• Based on the overall error analysis of active learning reliability framework, a metric called targeted integrated mean squared
error (TIMSE) is proved, for the first time, as the upper bound of Kriging-induced error in the PDEM. Hence, the TIMSE acts
as a measure of epistemic uncertainty about Kriging-based failure probability estimation and guides the deployment of those
key ingredients of active learning paradigm.

• With the aim of minimizing the TIMSE, a goal-oriented learning function called 𝑘-point targeted integrated mean square error
reduction (𝑘-TIMSER) is derived in closed form. It quantifies the expected impact of adding a batch of 𝑘(≥ 1) new points on the
reduction of TIMSE. Notably, the 𝑘-TIMSER is the first multi-point learning function in the framework of active learning-based
PDEM.

• In the multi-point enrichment process, the number of new points added per iteration can be specified either by a prescribed
scheme or by an adaptive scheme, thanks to the good ability of 𝑘-TIMSER to quantify the expected gain of adding each
new point in the batch. Notably, the proposed adaptive scheme is also the first one in the parallel active learning reliability
framework.

The rest of this paper is arranged as follows. Section 2 reviews some basic concepts. Section 3 is dedicated to the multi-point
learning function 𝑘-TIMSER. Section 4 details the parallel active learning reliability analysis based on 𝑘-TIMSER. The efficacy of the
proposed approach is illustrated in Section 5 through three examples. Finally, some concluding remarks are given in Section 6.

2. Preliminaries

Section 2.1 revisits structural reliability analysis based on the PDEM. Section 2.2 reviews the regions of interest (ROI) in the
PDEM. Section 2.3 details the overall error analysis of active learning reliability framework. Section 2.4 states the motivation of
his study.
3 
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2.1. Probability density evolution method (PDEM)

Following the routine 2⃝ in Eq. (1), the core of PDEM lies in deriving the PDF 𝑓𝑌 (𝑦) of 𝑌 . To achieve this goal, a virtual stochastic
rocess 𝑉 (𝜏) associated with 𝑌 needs to be constructed, typically expressed as [12]

𝑉 (𝜏) = 𝑌 sin
( 5𝜋

2
𝜏
)

, 𝜏 ∈ [0, 1], (2)

where 𝜏 is a virtual time parameter. One may easily find that 𝑉 (𝜏)|𝜏=0 = 0, and 𝑉 (𝜏)|𝜏=1 = 𝑌 . Hence, 𝑓𝑌 (𝑦) equals the evolutionary
robability density function (EPDF) of 𝑉 (𝜏), denoted as 𝑓𝑉 (𝑣, 𝜏), at the ending instant 𝜏 = 1, i.e.,

𝑓𝑌 (𝑦) = 𝑓𝑉 (𝑣, 𝜏)|𝑣=𝑦,𝜏=1. (3)

Eq. (2) indicates that the augmented system [𝑉 (𝜏),𝑿] is probability-preserved, owing to all its randomness coming from 𝑿. After
a series of mathematical manipulations, the so-called generalized probability density evolution equation (GDEE) reads [10]

⎧

⎪

⎨

⎪

⎩

𝜕 𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)
𝜕 𝜏 + 𝑉̇ (𝑿, 𝜏) 𝜕 𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)

𝜕 𝑣 = 0,
𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)|𝜏=0 = 𝛿(𝑣)𝑓𝑿 (𝒙),

(4)

where 𝑓𝑉𝑿 (𝑣,𝒙, 𝜏) is the joint PDF of [𝑉 (𝝉),𝑿]; 𝑉̇ (⋅) is the derivative of 𝑉 (𝜏) with respect to 𝜏; 𝛿(⋅) is the Dirac’s delta function.
Once Eq. (4) is solved, 𝑓𝑉 (𝑣, 𝜏) is obtained as

𝑓𝑉 (𝑣, 𝜏) = ∫X
𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)d𝒙. (5)

Then, 𝑓𝑌 (𝑦) is gained from Eq. (3), and 𝑃𝑓 is finally evaluated by Eq. (1).
Clearly, the crux of PDEM lies in solving the GDEE (Eq. (4)), and the numerical workflow consists of four main steps as follows.

(1) Partition of probability space.
According to the GF discrepancy minimization-based strategy [52], generate a set of 𝑛r p representative points, denoted as
r p =

{

𝒙(𝑖), 𝑖 = 1,… , 𝑛r p
}

. Meanwhile, their assigned probabilities are denoted as r p =
{

𝑝(𝑖), 𝑖 = 1,… , 𝑛r p
}

, with the 𝑝(𝑖)

computed as

𝑝(𝑖) = ∫X(𝑖)
𝑓𝑿 (𝒙)d𝒙, 𝑖 = 1,… , 𝑛r p, (6)

where X(𝑖) represents the Voronoi cell of 𝒙(𝑖). For illustration, a set of well-selected representative points and their associated
assigned probabilities are displayed in the top panel of Fig. 1(a).

(2) Computational model evaluations.
Evaluate the computational model  (⋅) on each 𝒙(𝑖) ∈ r p to obtain the concerned quantity 𝑦(𝑖) = 

(

𝒙(𝑖)
)

. Then, they are
collected as r p =

{

𝑦(𝑖), 𝑖 = 1,… , 𝑛r p
}

.
(3) Discretization of GDEE.

For 𝒙(𝑖), 𝑖 = 1,… , 𝑛r p, the GDEE in Eq. (4) can be discretized as [28]
⎧

⎪

⎨

⎪

⎩

𝜕 𝑓 (𝑖)
𝑉 (𝑣, 𝜏)
𝜕 𝜏 + 𝑉̇ (𝒙(𝑖), 𝜏)

𝜕 𝑓 (𝑖)
𝑉 (𝑣, 𝜏)
𝜕 𝑣 = 0,

𝑓 (𝑖)
𝑉 (𝑣, 𝜏)|𝜏=0 = 𝛿(𝑣)𝑝(𝑖),

(7)

where 𝑓 (𝑖)
𝑉 (𝑣, 𝜏) represents the partial EPDF of 𝑉 (𝜏) conditional on 𝒙(𝑖), expressed as

𝑓 (𝑖)
𝑉 (𝑣, 𝜏) = ∫X(𝑖)

𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)d𝒙. (8)

Then, Eq. (7) can be solved by the finite difference method, e.g., the total variation diminishing scheme [1], resulting in
{

𝑓 (𝑖)
𝑉 (𝑣, 𝜏), 𝑖 = 1,… , 𝑛r p

}

.

(4) Computation of failure probability.
The EPDF 𝑓𝑉 (𝑣, 𝜏) in Eq. (5) is assembled as

𝑓𝑉 (𝑣, 𝜏) ≈
𝑛r p
∑

𝑖=1
𝑓 (𝑖)
𝑉 (𝑣, 𝜏). (9)

Then, substituting Eq. (9) into Eq. (3), 𝑓𝑌 (𝑦) is given as

𝑓𝑌 (𝑦) ≈
( 𝑛r p
∑

𝑖=1
𝑓 (𝑖)
𝑉 (𝑣, 𝜏)

)

|

|

|

|

|

|𝑣=𝑦,𝜏=1

=
𝑛r p
∑

𝑖=1

(

𝑓 (𝑖)
𝑉 (𝑣, 𝜏)||

|𝑣=𝑦,𝜏=1

)

=
𝑛r p
∑

𝑖=1
𝑓 (𝑖)
𝑌 (𝑦), (10)

where 𝑓 (𝑖)
𝑌 (𝑦) = 𝑓 (𝑖)

𝑉 (𝑣, 𝜏)|𝑣=𝑦,𝜏=1 denotes the partial PDF of 𝑌 conditional on 𝒙(𝑖). Further, substituting Eq. (10) into Eq. (1)
yields

𝑃𝑓 ≈ 𝑃𝑓 =
+∞

( 𝑛r p
∑

𝑓 (𝑖)
𝑌 (𝑦)

)

d𝑦 =
𝑛r p
∑

+∞
𝑓 (𝑖)
𝑌 (𝑦)d𝑦 =

𝑛r p
∑

𝑃 (𝑖)
𝑓 , (11)
∫ℎ 𝑖=1 𝑖=1

∫ℎ 𝑖=1

4 
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Fig. 1. Schematic of the computation of 𝑃𝑓 in PDEM.

where 𝑃𝑓 denotes the failure probability computed by the PDEM; 𝑃 (𝑖)
𝑓 = ∫ +∞

ℎ 𝑓 (𝑖)
𝑌 (𝑦)d𝑦 is the partial failure probability brought

by 𝒙(𝑖).

2.2. Regions of interest (ROI)

The summation in Eq. (10) is illustrated in the bottom panel of Fig. 1(a). Generally, 𝑓 (𝑖)
𝑌 (𝑦) centers at the vertical coordinate

𝑦 = 𝑦(𝑖) and decays quickly with the distance to this coordinate. Hence, 𝑓 (𝑖)
𝑌 (𝑦) is only significant in the vicinity of 𝑦 = 𝑦(𝑖). In this

way, only when 𝑦(𝑖) is close to or within [ℎ,+∞], the 𝑃 (𝑖)
𝑓 will gain significant value, as exemplified by three representative points

in the bottom panel of Fig. 1(b).
Besides, one may find that

∫

+∞

−∞
𝑓 (𝑖)
𝑌 (𝑦)d𝑦 = ∫

+∞

−∞
𝑓 (𝑖)
𝑉 (𝑣, 𝜏)|𝜏=1d𝑣 = ∫

+∞

−∞ ∫X(𝑖)
𝑓𝑉𝑿 (𝑣,𝒙, 𝜏)|𝜏=1d𝒙d𝑣 = 𝑝(𝑖), (12)

which implies that 𝑃 (𝑖)
𝑓 is only a portion of 𝑝(𝑖), with the proportional coefficient depending on 𝑦(𝑖).

In this way, 𝑃 (𝑖)
𝑓 can be reformulated as

𝑃 (𝑖)
𝑓 = 𝛤

(

𝑦(𝑖)
)

𝑝(𝑖), (13)

where the proportional coefficient 𝛤
(

⋅
)

∈ [0, 1] is a monotonically non-decreasing function with respect to 𝑦; see the middle panel
of Fig. 1(b).

Clearly, only the representative point 𝒙 featuring 𝛤
(

𝑦
)

> 0 contributes significantly to 𝑃𝑓 . Then, the local regions covered by
those critical points are called the regions of interest (ROI), defined as [28]

XR =
{

𝒙 ∈ X ∶  (𝒙) ≥ ℎr
}

, (14)

where 𝑦 = ℎ is the boundary of ROI, as plotted as the magenta line in Fig. 1.
r

5 
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Fig. 2. Overall error analysis of active learning reliability framework.

According to Eqs. (11) and (14), ℎr has to satisfy the following expression
𝑃𝑓 −

∑𝑛r p
𝑖=1 𝑃

(𝑖)
𝑓 1

(


(

𝒙(𝑖)
)

≥ ℎr
)

𝑃𝑓

≤ 𝜀r , (15)

where 1(⋅) is an indicator function that equals 1 if the bracketed event is true, and 0 otherwise; 𝜀r is a minor tolerance, say
10−5. Eq. (15) indicates that the ratio of failure probability induced by those representative points in the ROI to 𝑃𝑓 is at least
(1 − 𝜀r ) × 100% = 99.999%. Hence, the impact of those representative points outside the ROI is almost negligible.

Moreover, it can be found that once r p =
{

𝑦(𝑖), 𝑖 = 1,… , 𝑛r p
}

is available, the ℎr can be identified by trial and error. The
associated workflow is given in Appendix A.

2.3. Overall error analysis of active learning reliability framework

To improve the computational efficiency of PDEM, the active learning methods that combine Kriging and PDEM have been
developed by the first author and his co-workers [27,28]. For the sake of brevity, the basics of Kriging ̂𝑛

(

𝒙
)

are outlined in
Appendix B. Then, two existing Kriging-based learning functions, i.e., PIE [27] and PEIF [28], are outlined in Appendix C.

To show the motivation of this study, Fig. 2 illustrates the overall error analysis of a general ALR framework, where surrogate
model (e.g., Kriging) can be combined either with PDEM or with simulation methods (e.g., MCS, IS, or SuS). According to the sources
of uncertainty, the overall error of failure probability estimation can be viewed as a compound of two categories of error as follows.

• The first category of error arises from the reliability estimation algorithm being used. Due to the aleatoric uncertainty in 𝑿,
those reliability estimation algorithms have to numerically compute Eq. (1), giving rise to approximation error. For example,
the PDEM-caused error is mainly brought by the partition of probability space in Eq. (6) and further the discretization of GDEE
in Eq. (7). Similarly, the error in those simulation methods, e.g., MCS and SuS, is mainly due to the random sampling.

• The second category of error is brought by introducing surrogate model, e.g., Kriging. In essence, this error is the epistemic
uncertainty of failure probability estimation, due to only 𝑛 evaluations of  (⋅) (very limited) in the ED 𝑛, rather than the
exact knowledge of  (⋅). For example, the epistemic uncertainty of Kriging ̂𝑛

(

𝒙
)

is encapsulated by its posterior variance
𝜎2𝑛 (𝒙), which will further propagate to the epistemic uncertainty of Kriging-based failure probability estimation.

To reduce the overall error of failure probability estimation in the ALR framework, great efforts should be made to alleviate
hose two categories of error jointly, i.e.,

• To reduce the approximation error, the so-called ‘over-kill’ setting [14] is advocated for the reliability estimation algorithm
in the ALR framework. Specifically, the parameters of the reliability estimation algorithm are tuned to dramatically reduce
the variation of the failure probability estimate. For example, the number 𝑛r p of representative points in PDEM shall be
significantly increased to reduce the corresponding GF discrepancy. Hence, the 𝑛r p is often set as (103), instead of the
traditional (102) [28]. Similarly, to reduce the coefficient of variation (COV) of failure probability estimate in SuS, the number
of samples at each subset 𝑛s and the conditional probability 𝑝0 should be increased significantly. Hence, they are generally
set as (105) and 0.2–0.3, respectively, rather than 103 and 0.1 in the usual setting [14]. Although the number of generated
samples will increase to some extent, this overhead can be cheaply covered by the relatively negligible expense of surrogate
model to provide predictions.
6 
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Fig. 3. Theoretical philosophy of the proposed multi-point look-ahead paradigm.

• To reduce surrogate-induced error, the epistemic uncertainty about failure probability estimation can be substantially reduced
by adding more and more new samples. This can be readily achieved by the active learning workflow, where a learning
function selects a sequence of new samples that reduce a specific form of epistemic uncertainty measure at most.

Obviously, the first aspect can be readily realized with the off-the-shelf procedures. Then, the key of the second part lies in how
o build the main ingredients of the ALR framework, e.g., learning function and convergence criterion, so as to reduce the epistemic

uncertainty of failure probability with high efficiency.

2.4. Motivation of this study

From the perspective of Section 2.3, those previous studies are flawed in the following three aspects.

• Lack of an explicit link with the global epistemic uncertainty of 𝑃𝑓 . Existing learning functions, e.g., PIE (Eq. (C.3)) and PEIF
(Eq. (C.4)), are directly defined from some local uncertainty metrics about Kriging prediction at a single point 𝒙, rather than
from the global residual uncertainty of 𝑃𝑓 (a joint effect of all points in the probability space). Besides, the convergence criterion
is sometimes defined according to the maximum/minimum value of learning function, which only reflects the local uncertainty
measure of 𝑃𝑓 , rather than the global effect, and is too conservative [27,39]. Hence, existing active learning workflow is not
goal-oriented somewhat, and is not as parsimonious as possible.

• Inability of quantifying the gain of adding a new sample. Due to the first drawback, those existing learning functions are unable
to measure the impact of adding a new sample on reducing the epistemic uncertainty of 𝑃𝑓 . This drawback is also reflected by
their expressions, which are functions of the mean 𝜇𝑛(⋅) and variance 𝜎2𝑛 (⋅) of Kriging at a candidate point 𝒙, without involving
the covariance 𝑐𝑛(𝒙,𝒙′) of Kriging. In essence, they ignore the effect of adding a new point 𝒙 on any other point around it.
Note that this limitation is also observed in the learning function U (Eq. (C.1)) and EFF (Eq. (C.2)) in the AK-MCS. In fact,
those learning functions are collectively called as pointwise learning functions in [32,53].

• Need of additional multi-point selection procedures. Due to their point-to-point nature, those existing learning functions cannot
work directly with a batch of 𝑘(> 1) new samples. Then, the parallel enrichment process has to be conducted by combining a
pointwise learning function with an additional multi-point procedure, e.g., the 𝐾-means clustering strategy. Given the second
drawback, it is impossible for such practice to quantify the total impact of adding a batch of 𝑘(> 1) new samples on reducing
the epistemic uncertainty of 𝑃𝑓 .

To summarize, although existing (parallel) active learning reliability methods may provide favorable empirical results, they are
ot theoretically sound and consistent to some extent. Hence, there is still great room for improvement.

In this study, a new parallel active learning reliability method is developed, fully complying with the theoretical philosophy of
Fig. 2. First, a measure of epistemic uncertainty of Kriging-based failure probability estimation in the framework of PDEM is defined.
With the aim of minimizing such epistemic uncertainty, three key ingredients, i.e., learning function, convergence criterion, and the
number of new samples added per iteration, are built in a goal-oriented way. Thanks to the core role of such epistemic uncertainty
measure, those main ingredients are consistently assembled, as illustrated in Fig. 3. To the best of the authors’ knowledge, such
theoretical philosophy has not been explored in the field of parallel active learning-based PDEM, and is totally different from those
state-of-the-art approaches. More details will be provided in Sections 3 and 4.

3. The proposed multi-point learning function

The proposed approach starts by treating the response of computational model  (𝒙) as one possible sample path of Kriging
̂𝑛

(

𝒙
)

. Then, a measure of epistemic uncertainty about Kriging-based failure probability estimation 𝑃𝑓 ,𝑛 in the PDEM is defined in
Section 3.1. In this way, a new learning function is defined in Section 3.2 by quantifying the expected reduction of this epistemic
uncertainty measure induced by adding a batch of 𝑘 new samples. Finally, numerical implementation of the resulting multi-point
nrichment process is detailed in Section 3.3.
7 
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3.1. An epistemic uncertainty measure of failure probability estimation

Given an ED 𝑛 =
{

𝑛,𝑛
}

of size 𝑛, a Kriging ̂𝑛
(

𝒙
)

can be readily trained, with its mean 𝜇𝑛(𝒙), variance 𝜎2𝑛 (𝒙) and
ovariance 𝑐𝑛(𝒙,𝒙′) given by Eqs. (B.7), (B.8) and (B.9), respectively. Then, by performing PDEM on the Kriging predictions
{

̂𝑛
(

𝒙(𝑖)
)

, 𝑖 = 1,… , 𝑛r p
}

at the r p, the failure probability estimate can be obtained from Eqs. (11) and (13) such that

𝑃𝑓 ,𝑛 =
𝑛r p
∑

𝑖=1
𝑃 (𝑖)
𝑓 ,𝑛 =

𝑛r p
∑

𝑖=1
𝛤
(

̂𝑛
(

𝒙(𝑖)
))

𝑝(𝑖), (16)

where 𝑃 (𝑖)
𝑓 ,𝑛, 𝑖 = 1,… , 𝑛r p, denotes the partial failure probability estimate conditional on ̂𝑛

(

𝒙(𝑖)
)

.
Since the Kriging ̂𝑛

(

𝒙
)

is a Gaussian process, 𝑃𝑓 ,𝑛 is actually a random variable. Then, if replacing ̂𝑛
(

𝒙
)

by its posterior
ean 𝜇𝑛(𝒙) in Eq. (16), there exists

𝑃𝑓 ,𝑛 =
𝑛r p
∑

𝑖=1
𝑃 (𝑖)
𝑓 ,𝑛 =

𝑛r p
∑

𝑖=1
𝛤
(

𝜇𝑛
(

𝒙(𝑖)
))

𝑝(𝑖), (17)

where 𝑃 (𝑖)
𝑓 ,𝑛, 𝑖 = 1,… , 𝑛r p, denotes the partial failure probability estimate conditional on 𝜇𝑛(𝒙(𝑖)). Obviously, the 𝑃𝑓 ,𝑛 is a deterministic

uantity and is a natural estimate of 𝑃𝑓 ,𝑛.
Although 𝑃𝑓 ,𝑛 (Eq. (17)) is not the mean of 𝑃𝑓 ,𝑛 (Eq. (16)), it satisfies the following proposition.

Proposition 1. Denote the targeted integrated mean squared error (TIMSE) as

𝐻𝑛 = 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛 (𝒙

(𝑖))𝜋𝑛(𝒙(𝑖)), (18)

where 𝜋𝑛(𝒙) represents the probability of 𝒙 being located in the ROI, expressed as
𝜋𝑛(𝒙) = P

(

̂𝑛
(

𝒙
)

≥ ℎr
)

= 𝛷
(

𝜇𝑛(𝒙) − ℎr
𝜎𝑛(𝒙)

)

, (19)

where 𝛷(⋅) is the cumulative distribution function (CDF) of a standard Gaussian random variable. Then, there holds
E𝑛

[

(

𝑃𝑓 ,𝑛 − 𝑃𝑓 ,𝑛
)2

]

≤ 𝐻𝑛, (20)

where E𝑛[⋅] denotes the expectation with respect to ̂𝑛
(

𝒙
)

.

For the sake of brevity, the proof of Proposition 1 is provided in Appendix D. Eq. (20) implies that when the TIMSE 𝐻𝑛 → 0, 𝑃𝑓 ,𝑛
converges to the failure probability 𝑃𝑓 (Eq. (11)) in expectation. Hence, the 𝐻𝑛 is a measure of epistemic uncertainty of 𝑃𝑓 ,𝑛, arising
from only 𝑛 evaluations of computation model within the ED 𝑛. To improve the accuracy of 𝑃𝑓 ,𝑛, the 𝐻𝑛 shall be dramatically
reduced by adding more and more new samples. Following this, a learning function that explicitly quantifies the expected reduction
of 𝐻𝑛 brought by adding a batch of new points will be developed in Section 3.2.

3.2. The learning function 𝑘-TIMSER

First, the 𝐻𝑛 can be readily computed based on the current ED 𝑛; see Eq. (18). Then, assume that the 𝑛 is enriched with a
atch of 𝑘 new points +

𝑘 =
{

𝒙(1)+ ,… ,𝒙(𝑘)+
}⊤ and their associated responses +

𝑘 =
{

𝑦(1)+ ,… , 𝑦(𝑘)+
}⊤, the posterior of Kriging can be

updated according to the multi-point Kriging update formulas (Appendix E), with the look-ahead mean 𝜇𝑛+𝑘(𝒙), variance 𝜎2𝑛+𝑘(𝒙)
nd covariance 𝑐𝑛+𝑘(𝒙,𝒙′) given by Eqs. (E.1), (E.2) and (E.3), respectively.

In this way, the future TIMSE, arising from the addition of
{

+
𝑘 ,

+
𝑘
}

, can be expressed as

𝐻𝑛+𝑘(+
𝑘 ,

+
𝑘 ) = 𝑛r p

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝑘(𝒙

(𝑖))𝜋𝑛+𝑘(𝒙(𝑖);+
𝑘 ,

+
𝑘 ), (21)

which is a function of both +
𝑘 and +

𝑘 ; 𝜋𝑛+𝑘(𝒙;+
𝑘 ,

+
𝑘 ) is given by

𝜋𝑛+𝑘(𝒙;+
𝑘 ,

+
𝑘 ) = 𝛷

(

𝜇𝑛+𝑘(𝒙) − ℎr
𝜎𝑛+𝑘(𝒙)

)

,

= 𝛷

(

𝜇𝑛(𝒙) + 𝑐𝑛(𝒙,+
𝑘 )

⊤(+
𝑘 )

−1(+
𝑘 − 𝜇𝑛(+

𝑘 )) − ℎr
𝜎𝑛+𝑘(𝒙)

)

,

= 𝛷

(

𝜇𝑛(𝒙) − ℎr
𝜎𝑛+𝑘(𝒙)

+
𝑐𝑛(𝒙,+

𝑘 )
⊤(+

𝑘 )
−1

𝜎𝑛+𝑘(𝒙)
(

+
𝑘 − 𝜇𝑛(+

𝑘 )
)

)

,

= 𝛷
(

𝑎(𝒙) + 𝒃(𝒙)⊤ +
𝑘
)

,

(22)

where 𝑎(𝒙) = 𝜇𝑛(𝒙) − ℎr
𝜎𝑛+𝑘(𝒙)

and 𝒃(𝒙) =
(+

𝑘 )
−1𝑐𝑛(𝒙,+

𝑘 )
𝜎𝑛+𝑘(𝒙)

are a scalar quantity and a 𝑘 × 1 vector independent of +
𝑘 , respectively;

+
𝑘 = +

𝑘 − 𝜇𝑛(+
𝑘 ). Since +

𝑘 will not be exactly known without evaluating the actual  (⋅) on +
𝑘 , the 𝜋𝑛+𝑘(𝒙;+

𝑘 ,
+
𝑘 ) in Eq. (22)

and the 𝐻 (+,+) in Eq. (21) are unknown as well.
𝑛+𝑘 𝑘 𝑘

8 
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In view of this, the +
𝑘 is replaced by the Kriging predictions on +

𝑘 , i.e., 𝒀 +
𝑘 = ̂𝑛

(

+
𝑘
)

∼ 𝑘
(

𝜇𝑛(+
𝑘 ),

+
𝑘
)

. Then, Eq. (21) is
reformulated as

𝑛+𝑘(+
𝑘 ) = 𝑛r p

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝑘(𝒙

(𝑖))𝛱𝑛+𝑘(𝒙(𝑖);+
𝑘 ), (23)

which becomes a function of +
𝑘 solely; 𝛱𝑛+𝑘

(

𝒙;+
𝑘
)

takes the plain expression of 𝜋𝑛+𝑘
(

𝒙;+
𝑘 ,

+
𝑘
)

in Eq. (22), but the related term
+
𝑘 is replaced by 𝑼+

𝑘 , that is,
𝛱𝑛+𝑘

(

𝒙;+
𝑘
)

= 𝛷
(

𝑎(𝒙) + 𝒃(𝒙)⊤𝑼+
𝑘
)

, (24)

where 𝑼+
𝑘 = 𝒀 +

𝑘 − 𝜇𝑛(+
𝑘 ) ∼ 𝑘(𝟎,+

𝑘 ).
The potential impact of adding +

𝑘 on the TIMSE can be expressed as

𝛥𝑛+𝑘(+
𝑘 ) = 𝐻𝑛 −𝑛+𝑘(+

𝑘 ), (25)

where the ‘mathcal’ font acts as a reminder that it is not the actual reduction of TIMSE and is essentially a random quantity through
+
𝑘 . Hence, Eq. (25) fails to be a deterministic criterion.

In this regard, the learning function is defined by taking the expectation of 𝛥𝑛+𝑘(+
𝑘 ) with respect to 𝑼+

𝑘 , that is,
TIMSER𝑛+𝑘(+

𝑘 ) = E𝑼+
𝑘

[

𝛥𝑛+𝑘(+
𝑘 )

]

= E𝑼+
𝑘

[

𝐻𝑛 −𝑛+𝑘
(

+
𝑘
)]

= 𝐻𝑛 − E𝑼+
𝑘

[

𝑛+𝑘(+
𝑘 )

]

. (26)

Then, a batch of 𝑘 best next points, ∗
𝑘 =

{

𝒙(𝑛+1),… ,𝒙(𝑛+𝑘)
}

, will be exactly the candidate batch maximizing the expected
reduction of TIMSE, i.e.,

∗
𝑘 = arg max

+
𝑘 ∈cp

TIMSER𝑛+𝑘(+
𝑘 ), (27)

where cp =
{

𝒙(𝑖), 𝑖 = 1,… , 𝑛cp
}

denotes a candidate pool of size 𝑛cp and will be updated per iteration; see Section 4.3.
Clearly, as more and more batches of 𝑘 new samples are sequentially added by Eq. (27), the TIMSE 𝐻𝑛 is expected to be gradually

reduced step by step. Hence, the learning function in Eq. (26) is called 𝑘-point targeted integrated mean square error reduction
(𝑘-TIMSER) here.

Proposition 2. The closed-form expression of 𝑘-TIMSER in Eq. (26) is given as

TIMSER𝑛+𝑘(+
𝑘 ) = 𝑛r p

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))

[

𝜎2𝑛 (𝒙
(𝑖)) − 𝜎2𝑛+𝑘(𝒙

(𝑖))
]

, (28)

where the impact of +
𝑘 is implicitly encoded by 𝜎2𝑛+𝑘(𝒙); see Eq. (E.2).

For brevity, the proof of Proposition 2 is given in Appendix F. Further, Eq. (E.2) indicates that Eq. (28) involves internally the
following matrix manipulation

{

𝜎2𝑛 (𝒙
(𝑖)) − 𝜎2𝑛+𝑘(𝒙

(𝑖))
}𝑛r p
𝑖=1 =

{

𝑐𝑛(𝒙(𝑖),+
𝑘 )

⊤(+
𝑘 )

−1𝑐𝑛(𝒙(𝑖),+
𝑘 )

}𝑛r p
𝑖=1 = diag (𝑐𝑛(r p,+

𝑘 )
⊤(+

𝑘 )
−1𝑐𝑛(r p,+

𝑘 )
)

, (29)

where diag(⋅) returns the diagonal entries of a matrix, and the matrix size in diag(⋅) is 𝑛r p × 𝑛r p. Generally, 𝑛r p is (103−4), and the
esulting matrix size will be relatively significant.

To alleviate this computer memory issue, the following workaround is considered. For notational brevity, Eq. (29) is simplified
s ‘diag (𝐴⊤𝐵−1𝐴

)

’, where 𝐴 and 𝐵 are two matrices of size 𝑘×𝑛r p and 𝑘 × 𝑘, respectively. Then, this matrix operation is performed
ith the syntax ‘sum (𝐴. ∗ (𝐵 ⧵ 𝐴), 1)’ in MATLAB, where . ∗ denotes element-wise multiplication, and sum(⋅, 1) denotes the sum of

each column in a matrix. In this way, the maximum matrix size reduces from 𝑛r p × 𝑛r p to 𝑛r p × 𝑘, which is much easier to handle.

Remark 1. In comparison with those existing learning functions, e.g., PIE and PEIF, the proposed 𝑘-TIMSER is expressed as a
function of the mean 𝜇𝑛(𝒙), variance 𝜎2𝑛 (𝒙), and covariance 𝑐𝑛(𝒙,𝒙′) of Kriging; see Eqs. (28) and (29). This reflects a critical fact
that the 𝑘-TIMSER enables fully accounting for the influences of adding +

𝑘 on any other point around them and, further, the global
epistemic uncertainty of 𝑃𝑓 through 𝑐𝑛(⋅, ⋅). More importantly, the 𝑘-TIMSER can work directly with a batch of 𝑘 new samples.
Obviously, capitalizing on more useful information of Kriging and working directly with multiple new samples are two critical
theoretical advantages of 𝑘-TIMSER over other existing learning functions.

Remark 2. The relatively complex expression of 𝑘-TIMSER exactly comes from the two aspects outlined in Remark 1. Despite
relatively complex, the 𝑘-TIMSER only involves some simple matrix operations on Kriging predictions. Since Kriging is much cheaper
to train and predict when compared with the computational model itself, the 𝑘-TIMSER is very cheap to evaluate. Further, the benefit
of 𝑘-TIMSER in terms of improving the overall computational efficiency of reliability analysis will be manifested in Section 5.
9 
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3.3. Multi-point enrichment process based on 𝑘-TIMSER

It is computationally-intensive to directly carry out the maximization of dimension 𝑘 × 𝑑 in Eq. (27). Hence, a cost-effective
heuristic approach is devised here, of which the basic idea is to sequentially select a batch of new points one by one, instead of
electing them at once.

Specifically, when 𝑘 = 1, the 1-point TIMSER is expressed as

TIMSER𝑛+1(𝒙+) = 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))

[

𝜎2𝑛 (𝒙
(𝑖)) − 𝜎2𝑛+1(𝒙

(𝑖);𝒙+)
]

, (30)

where 𝜎2𝑛+1(⋅;𝒙+) acts as a reminder that 𝜎2𝑛+1(⋅) depends on 𝒙+ solely. Then, the 1-st best next point 𝒙(𝑛+1) is selected as

𝒙(𝑛+1) = arg max
𝒙+∈cp

TIMSER𝑛+1(𝒙+), (31)

and ∗
1 =

{

𝒙(𝑛+1)
}

.
When 𝑘 ≥ 2, assume that the former (𝑘− 1) best next points, i.e., ∗

𝑘−1 =
{

𝒙(𝑛+1),… ,𝒙(𝑛+𝑘−1)
}

, have been obtained and are taken
as the fixed arguments of the 𝑘-point TIMSER, that is,

TIMSER𝑛+𝑘(∗
𝑘 ,𝒙+) = 𝑛r p

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))

[

𝜎2𝑛 (𝒙
(𝑖)) − 𝜎2𝑛+𝑘(𝒙

(𝑖);∗
𝑘 ,𝒙+)

]

, (32)

where 𝜎2𝑛+𝑘(⋅;
∗
𝑘 ,𝒙+) is a reminder that 𝜎2𝑛+𝑘(⋅) is solely a function of 𝒙+ here. Then, the 𝑘th best next point 𝒙(𝑛+𝑘) can be selected as

𝒙(𝑛+𝑘) = arg max
𝒙+∈cp

TIMSER𝑛+𝑘
(

∗
𝑘−1,𝒙+

)

, (33)

and ∗
𝑘 = ∗

𝑘−1
⋃

{

𝒙(𝑛+𝑘)
}

.
Obviously, this heuristic approach reduces the original maximization problem of dimension 𝑘 × 𝑑 in Eq. (27) to 𝑘 consecutive

maximization problems of dimension 𝑑 in Eqs. (31) and (33), which are much computationally cheaper to solve.
Another key issue in this heuristic approach is when to terminate the sequential selection process, i.e., how to determine the

ize, 𝐾, of batch of new samples added per iteration. Here, two different schemes are detailed as follows.

• Prescribed scheme. The batch size 𝐾 is prescribed as a fixed value; then, sequentially increase 𝑘 until 𝐾 and solve the associated
𝑑-dimensional maximization problems in Eqs. (31) and (33), giving rise to ∗

𝐾 =
{

𝒙(𝑛+𝑘), 𝑘 = 1,… , 𝐾}

readily.
• Adaptive scheme. The batch size 𝐾 can be adaptively determined per iteration, thanks to the superior ability of 𝑘-TIMSER to

measure the expected gain of adding each new point. Specifically, according to Eqs. (31) and (33), the individual expected
gain of adding the 𝑘th new point can be expressed as

𝐺𝑛+𝑘 =

{

TIMSER𝑛+𝑘(∗
𝑘 ) − TIMSER𝑛+𝑘−1(∗

𝑘−1), 𝑘 > 1,

TIMSER𝑛+1
(

∗
1
)

, 𝑘 = 1, (34)

which generally reduces with the increasing of 𝑘. If the 𝐺𝑛+𝑘 itself or the 𝐺𝑛+𝑘
𝐺𝑛+1

is too minimal, adding 𝒙(𝑛+𝑘) is not useful to
further reduce the TIMSE in expectation. Hence, the sequential increase of 𝑘 shall be stopped. In this way, the 𝐾 is identified
as

𝐾 = inf
{

𝑘 ∈ N ∶
𝐺𝑛+𝑘
𝐺𝑛+1

≤ 𝜀G
⋃

𝐺𝑛+𝑘 ≤ 10−10
}

(35)

where inf {⋅} denotes the infimum of a set; the tolerance 𝜀G is set as 0.2 here.

Algorithm 1 provides the pseudo code of 𝑘-TIMSER-based multi-point enrichment process at a single iteration. The ‘for-loop’ in
ines 4–7 only involves some simple matrix operations and can be fastly run with the ‘parfor’ syntax in the MATLAB to support

parallel computing.

4. Parallel active learning reliability analysis based on 𝒌-TIMSER

Apart from the learning function 𝑘-TIMSER, another two ingredients of parallel active learning reliability analysis are outlined
ere. Section 4.1 states the initial ED. Section 4.2 presents the convergence criterion. Then, Section 4.3 details the implementation

of parallel active learning reliability analysis based on 𝑘-TIMSER. Finally, some discussions are given in Section 4.4.

4.1. Initial experimental design

To obtain a well-behaved Kriging in the initial stage, the initial ED is preferred to be as space-filling as possible. First, according
o the so-called ‘four-sigma’ rule, the upper and lower bounds of the sampling domain Xs at each dimension are set as

± −1( )
𝑥𝑙 = 𝐹𝑋𝑙
𝛷(±4) , 𝑙 = 1,… , 𝑑 , (36)

10 
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Algorithm 1 𝑘-TIMSER-based multi-point enrichment process at an iteration

Input: The Kriging ̂𝑛
(

𝒙
)

; the candidate pool cp =
{

𝒙(𝑖)+ , 𝑖 = 1,… , 𝑛cp
}

; the 𝐾 in the prescribed scheme or the 𝜀G in the adaptive
scheme.

1: Initialize: 𝑘 = 1, and the initial batch of new samples is set as ∗
0 = {}.

2: The Kriging ̂𝑛
(

𝒙
)

provides posterior mean 𝜇𝑛(𝒙), variance 𝜎2𝑛 (𝒙) and covariance 𝑐𝑛(𝒙,𝒙′) at all samples in the r p. ⊳ Eqs.
(B.7), (B.8), (B.9)

3: while true do
4: for 𝑖 = 1 ∶ 𝑛cp do
5: Compute the look-ahead variances

{

𝜎2𝑛+𝑘(𝒙
(𝑗);∗

𝑘−1,𝒙
(𝑖)
+ )

}𝑛r p
𝑗=1

at all points in r p. ⊳ Eq. (29)

6: Compute TIMSER𝑛+𝑘(∗
𝑘−1,𝒙

(𝑖)
+ ). ⊳ Eqs. (30) and (32)

7: end for
8: Select the 𝑘-th best next point 𝒙(𝑛+𝑘) from cp. ⊳ Eqs. (31) or (33)
9: Determine the 𝐾 value in the adaptive scheme according to 𝜀G. ⊳ Eqs. (34) and (35)

10: if 𝑘 ≥ 𝐾 then
11: Break;
12: else
13: Update: ∗

𝑘 = ∗
𝑘−1

⋃
{

𝒙(𝑛+𝑘)
}

, cp = cp ⧵
{

𝒙(𝑛+𝑘)
}

, and 𝑘 = 𝑘 + 1.
14: end if
15: end while
Output: The ∗

𝐾 =
{

𝒙(𝑛+𝑘), 𝑘 = 1,… , 𝐾}

obtained at this iteration.

where 𝐹𝑋𝑙
(⋅) is the CDF of the 𝑙th component 𝑋𝑙 in 𝑿. Then, the Xs is obtained by the following tensorization

Xs =
𝑑
∏

𝑙=1

[

𝑥−𝑙 , 𝑥+𝑙
]

. (37)

Finally, the Latin centroidal Voronoi tessellation sampling method [54] is used to generate a set of 𝑛0 uniform samples within
Xs, denoted as 𝑛0 =

{

𝒙(𝑖), 𝑖 = 1,… , 𝑛0
}

, with the size set as 𝑛0 = max(𝑑 + 1, 10).

4.2. Convergence criterion

A hybrid convergence criterion that combines two different ones is considered here, so as to secure the robustness of termination
of active learning reliability analysis process.

First, recall that the TIMSE 𝐻𝑛 acts as an epistemic uncertainty measure of 𝑃𝑓 ,𝑛, the metric 𝐻𝑛
𝑃𝑓 ,𝑛 can be used to specify a

onvergence criterion. When 𝐻𝑛
𝑃𝑓 ,𝑛 falls below a small tolerance, the accuracy of 𝑃𝑓 ,𝑛 is considered satisfactory, that is,

𝐻𝑛

𝑃𝑓 ,𝑛
≤ 𝜀H, (38)

where the setting of 𝜀H shall account for the distinction between static and dynamic reliability problems in terms of the order of
agnitude of Kriging variance. In static case, 𝜀H = min

{

10−3, 10−2 × max𝑖≤𝑛
𝐻𝑛
𝑃𝑓 ,𝑛

}

; then, in dynamic case, 𝜀H = min
{

1, 5 × 10−2 ×

max𝑖≤𝑛
𝐻𝑛
𝑃𝑓 ,𝑛

}

.
Second, denote ̃r p,𝑛 =

{

𝜇𝑛(𝒙(𝑖)), 𝑖 = 1,… , 𝑛r p
}

as the Kriging means evaluated at the r p. Then, the upper and lower confidence
bounds of ̃r p,𝑛 can be expressed as ̃±

r p,𝑛 =
{

𝜇𝑛(𝒙(𝑖)) ± 𝛼 𝜎𝑛(𝒙(𝑖)), 𝑖 = 1,… , 𝑛r p
}

, where the coefficient 𝛼 is usually taken as 1.96 =
𝛷−1(97.5%). Further, performing the PDEM on ̃r p,𝑛, ̃+

r p,𝑛 and ̃−
r p,𝑛 will give rise to three failure probability estimates 𝑃𝑓 ,𝑛, 𝑃+

𝑓 ,𝑛,
and 𝑃−

𝑓 ,𝑛, respectively. In this way, the second convergence criterion is defined from the confidence bound of 𝑃𝑓 ,𝑛 such that
|

|

|

𝑃+
𝑓 ,𝑛 − 𝑃−

𝑓 ,𝑛
|

|

|

𝑃𝑓 ,𝑛
≤ 𝜀B, (39)

where the tolerance 𝜀B is taken as 1% here.
Finally, the hybrid convergence criterion stipulates that only when both Eqs. (38) and (39) are satisfied simultaneously, the

active learning workflow is converged, that is,
{

𝐻𝑛

𝑃𝑓 ,𝑛
≤ 𝜀H

}

⋂

⎧

⎪

⎨

⎪

⎩

|

|

|

𝑃+
𝑓 ,𝑛 − 𝑃−

𝑓 ,𝑛
|

|

|

𝑃𝑓 ,𝑛
≤ 𝜀B

⎫

⎪

⎬

⎪

⎭

. (40)
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Fig. 4. Flowchart of 𝑘-TIMSER-based parallel active learning reliability method.

4.3. Implementation

Fig. 4 presents the workflow of the proposed method, which is summarized as follows.

(1) Partition of probability space.
Generate a representative point set r p =

{

𝒙(𝑖), 𝑖 = 1,… , 𝑛r p
}

, and compute their corresponding assigned probabilities
r p =

{

𝑝(𝑖), 𝑖 = 1,… , 𝑛r p
}

; see Section 2.1. Then, the r p is taken as the initial candidate pool cp in the following sequential
enrichment process.

(2) Initial ED.
Generate an initial input dataset 𝑛0 =

{

𝒙(𝑖), 𝑖 = 1,… , 𝑛0
}

of size 𝑛0 = max(10, 𝑑 + 1); then, evaluate the computational model
 (⋅) on 𝑛0 to obtain the corresponding responses 𝑛0 =

{

𝑦(𝑖), 𝑖 = 1,… , 𝑛0
}

, forming the initial ED 𝑛0 =
{

𝑛0 ,𝑛0

}

; see
Section 4.1. Let 𝑛it er = 1, and 𝑛 = 𝑛0.

(3) Training of Kriging.
Train a Kriging ̂𝑛

(

𝒙
)

based on the current ED 𝑛, where the kernel parameters 𝜽 are optimized according to the maximum
likelihood estimation method; see Eq. (B.5).

(4) Failure probability estimation.
The three failure probability estimates, 𝑃𝑓 ,𝑛, 𝑃+

𝑓 ,𝑛, and 𝑃−
𝑓 ,𝑛, are computed by performing the PDEM on the corresponding

Kriging predictions ̃r p,𝑛, ̃+
r p,𝑛 and ̃−

r p,𝑛, respectively. Meanwhile, in the computation of 𝑃𝑓 ,𝑛, an estimate of ℎr , denoted as
ℎ̃r , is obtained by substituting ̃r p,𝑛 into Algorithm A.1.

(5) Convergence criterion.
If the hybrid convergence criterion in Eq. (40) is satisfied, skip to Step (8); otherwise, continue to Step (6).

(6) Learning function.
Substitute ℎ̃r (Step (4)) into the expression of 𝑘-TIMSER in Eqs. (30) and (32); then, select a batch of 𝐾 best next points,
∗
𝐾 =

{

𝒙(𝑛+𝑘), 𝑘 = 1,… , 𝐾}

, from the candidate pool cp, where the 𝐾 value can be identified either by the traditional
prescribed scheme by or the newly-developed adaptive scheme, as detailed in Algorithm 1.

(7) Enrichment.
Evaluate the actual computational model  (⋅) on ∗

𝐾 in parallel, resulting in the corresponding new responses ∗
𝐾 =

{

𝑦(𝑛+𝑘), 𝑖 = 1,… , 𝐾}

. Then, conduct the following updates:  = 
⋃

{

∗ ,∗ },  =  ⧵ ∗ , and 𝑛 ← 𝑛 +𝐾.
𝑛+𝐾 𝑛 𝐾 𝐾 cp cp 𝐾

12 
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(8) End.
The results of the failure probability estimate 𝑃𝑓 ,𝑛, the total number of calls to computational model 𝑛call, and the total number
of iterations 𝑛it er are recorded at the end of this algorithm.

Remark 3. The total computational time of the proposed method (Fig. 4), as well as any other parallel active learning reliability
method, can be roughly calculated as

𝑡c = 𝑛it er × 𝑡it er , (41)

where 𝑛it er is the total number of iterations, and 𝑡it er is the running time of a single iteration. As plotted as cyan boxes in Fig. 4,
there holds 𝑡it er = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4, with 𝑡1, 𝑡2, 𝑡3, 𝑡4 being the training time of Kriging, the time of reliability analysis, the evaluation
time of computational model  (⋅), and the time of multi-point enrichment process at an iteration, respectively. The 𝑡1 and 𝑡2 are
elatively fixed, the 𝑡3 depends on the  (⋅) under consideration, and the 𝑡4 is related to the learning function being used. If  (⋅)
s more time-intensive than the learning function, the 𝑡3 will dominate 𝑡it er , i.e., 𝑡it er ≈ 𝑡3. In this way, the advantage of an active

learning reliability method in terms of reducing 𝑛it er will be readily converted into the advantage of reducing 𝑡c, as per Eq. (41). On
the contrary, if the  (⋅) itself is very cheap to evaluate and the time 𝑡4 of learning function dominates the 𝑡it er , i.e., 𝑡it er ≈ 𝑡4, it is
probable that although the 𝑛it er of an active learning reliability method is smaller, its 𝑡c is inversely greater.

Remark 4. It is admitted that the proposed 𝑘-TIMSER-based multi-point enrichment approach (Algorithm 1) needs slightly greater
ime 𝑡4 than the traditional practice of combining a pointwise learning function, e.g., U and EFF, with the 𝐾-means clustering

strategy. Then, as per Remark 3, the advantage of the proposed approach in terms of the total computational time 𝑡c will depend
on the total number of iterations 𝑛it er and the evaluation time 𝑡3 of  (⋅) under consideration. This will be further discussed in
Section 5.

4.4. Discussions

Recall that the main purpose of 𝑘-TIMSER is to select a sequence of new samples, so as to reduce dramatically the epistemic
ncertainty measure of failure probability estimation, i.e., TIMSE. Then, let us clarify the distinction between the following two

important quantities at each iteration of Fig. 4: (i) The expected reduction of TIMSE due to the batch of 𝐾 best next points ∗
𝐾 ,

hich is quantified by the learning function 𝑘-TIMSER in Step (6); (ii) The actual reduction of TIMSE brought by enriching the
xisting ED 𝑛 with the pair of ∗

𝐾 and their actual computational model responses ∗
𝐾 in Step (7).

According to the expressions of the learning function 𝑘-TIMSER in Eq. (28) and the TIMSE 𝐻𝑛 in Eq. (18), these two quantities
are computed as

𝐺𝐾 = TIMSER𝑛+𝐾 (∗
𝐾 ) = 𝐻𝑛 − 𝑛r p

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))𝜎2𝑛+𝑘(𝒙

(𝑖))|𝑘=𝐾 , (42)

𝛥𝐻𝐾 = 𝐻𝑛 −𝐻𝑛+𝐾 = 𝐻𝑛 − 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙

(𝑖)), (43)

respectively, where 𝜎2𝑛+𝑘(⋅)|𝑘=𝐾 is a reminder that it is given by the Kriging update formulas (Eq. (E.2)), distinguishing it from the
ctual variance 𝜎2𝑛+𝐾 (⋅) obtained by retraining the Kriging.

Then, the absolute difference between them is expressed as

|

|

𝛥𝐻𝐾 − 𝐺𝐾
|

|

=
|

|

|

|

|

|

𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙

(𝑖)) − 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))𝜎2𝑛+𝑘(𝒙

(𝑖))|𝑘=𝐾
|

|

|

|

|

|

,

= 𝑛r p
|

|

|

|

|

|

𝑛r p
∑

𝑖=1
(𝑝(𝑖))2

[

𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙
(𝑖)) − 𝜋𝑛(𝒙(𝑖))𝜎2𝑛+𝑘(𝒙

(𝑖))|𝑘=𝐾
]

|

|

|

|

|

|

,

≤ 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2 ||

|

𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙
(𝑖)) − 𝜋𝑛(𝒙(𝑖))𝜎2𝑛+𝑘(𝒙

(𝑖))|𝑘=𝐾
|

|

|

,

= 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜉ad(𝒙(𝑖)),

(44)

where 𝜉ad(𝒙(𝑖)) = |

|

|

𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙
(𝑖)) − 𝜋𝑛(𝒙(𝑖))𝜎2𝑛+𝑘(𝒙

(𝑖))|𝑘=𝐾
|

|

|

.

In essence, the difference between 𝛥𝐻𝐾 and 𝐺𝐾 is attributed to the distinction between the Kriging update formulas (Appendix E)
and the actual retraining of Kriging (Appendix B) as follows.

• When a pair of 𝐾 new samples and their actual computational model responses, i.e.,
{

∗
𝐾 ,

∗
𝐾
}

, are added into the ED 𝑛,
a new Kriging ̂𝑛+𝐾

(

𝒙
)

can be trained based on the augmented ED 𝑛+𝐾 = 𝑛
⋃
{

∗
𝐾 ,

∗
𝐾
}

. In essence, the retraining of
Kriging comprises two consecutive steps. First, reoptimize the kernel parameters 𝜽 according to Eq. (B.5). Second, recompute
13 
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Fig. 5. Difference of the actual gain 𝛥𝐻𝐾 and the expected gain 𝐺𝐾 .

the remaining parameters, i.e., 𝜷 and 𝜎2, based on 𝜽; see Eqs. (B.3) and (B.4). In this way, the updated mean 𝜇𝑛+𝐾 (𝒙), variance
𝜎𝑛+𝐾 (𝒙), and covariance 𝑐𝑛+𝐾 (𝒙,𝒙′) of the new Kriging ̂𝑛+𝐾

(

⋅
)

are provided in Eqs. (B.7), (B.8), and (B.9), respectively. Hence,
the 𝛥𝐻𝐾 is interpreted as the actual gain incurred by

{

∗
𝐾 ,

∗
𝐾
}

.
• As shown in Eqs. (E.1), (E.2), and (E.3), the look-ahead posteriors of Kriging are directly obtained from the current posteriors,

i.e., 𝜇𝑛(𝒙), 𝜎𝑛(𝒙), and 𝑐𝑛(𝒙,𝒙′), of Kriging ̂𝑛
(

⋅
)

, without optimizing the kernel parameters 𝜽. In essence, the Kriging update
formulas only recompute both 𝛽 and 𝜎2 based on the current values of 𝜽 [32]. Hence, the 𝐺𝐾 can be interpreted as the average
value of possible reduction of TIMSE brought by ∗

𝐾 , conditional on the Kriging assumption of their model responses.

In summary, the distinction between the Kriging update formulas and the actual retraining of Kriging lies in whether or not
the kernel parameters 𝜽 are re-optimized, as shown in Fig. 5. Hence, if the kernel parameters 𝜽 of Kriging only vary slightly
in two consecutive iterations, the Kriging update formulas are nearly equivalent to the actual retraining of Kriging, that is,
𝜎2𝑛+𝑘(𝒙)|𝑘=𝐾 ≈ 𝜎2𝑛+𝐾 (𝒙). Then, there holds

𝜉ad(𝒙) ≈ |

|

|

𝜋𝑛+𝐾 (𝒙)𝜎2𝑛+𝐾 (𝒙) − 𝜋𝑛(𝒙)𝜎2𝑛+𝐾 (𝒙)
|

|

|

= 𝜎2𝑛+𝐾 (𝒙) ||𝜋𝑛+𝐾 (𝒙) − 𝜋𝑛(𝒙)|| . (45)

Further, substitute Eq. (45) into Eq. (44), yielding

|

|

𝛥𝐻𝐾 − 𝐺𝐾
|

|

≤ 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝐾 (𝒙

(𝑖)) ||
|

𝜋𝑛(𝒙(𝑖)) − 𝜋𝑛+𝐾 (𝒙(𝑖))
|

|

|

. (46)

Besides, recall that the actual gain 𝛥𝐻𝐾 in Eq. (43) can be further expanded as

𝛥𝐻𝐾 = 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2

[

𝜋𝑛(𝒙(𝑖))𝜎2𝑛 (𝒙
(𝑖)) − 𝜋𝑛+𝐾 (𝒙(𝑖))𝜎2𝑛+𝐾 (𝒙

(𝑖))
]

,

≥ 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝐾 (𝒙

(𝑖)) ||
|

𝜋𝑛(𝒙(𝑖)) − 𝜋𝑛+𝐾 (𝒙(𝑖))
|

|

|

,

(47)

which is based on the fact that 𝜎2𝑛+𝐾 (𝒙) ≤ 𝜎2𝑛 (𝒙),∀𝒙 ∈ X.
Finally, substituting Eq. (47) into Eq. (46), there holds

|

|

𝛥𝐻𝐾 − 𝐺𝐾
|

|

≤ 𝛥𝐻𝐾 → 0, (48)

which indicates that when the kernel parameters 𝜽 of Kriging do not vary significantly with adding new samples, the |

|

𝛥𝐻𝐾 − 𝐺𝐾
|

|

onverges to 0. This is a common scenario in the latter iterations of active learning reliability analysis.
For illustration, Fig. 6 presents the comparison between 𝛥𝐻𝐾 and 𝐺𝐾 (prescribed scheme, 𝐾 = 5) in both the truss example

Section 5.2) and the reinforced concrete frame example (Section 5.3). Due to only a few training samples in the several initial
iterations, the kernel parameters 𝜽 of Kriging vary significantly with adding new samples, giving rise to notable difference between
𝛥𝐻𝐾 and 𝐺𝐾 . By comparison, very minor fluctuation of 𝜽 exists in the latter iterations, and the 𝐻𝑛+𝐾 converges gradually to 0.
Then, a good agreement between 𝛥𝐻𝐾 and 𝐺𝐾 is witnessed.

It is worth noting that since Step (6) is prior to Step (7) during the workflow of Fig. 4, it is necessary to formulate the 𝐺𝑘 in
Step (6), serving as an estimate of 𝛥𝐻𝐾 , during the active learning workflow. Fortunately, apart from several initial iterations, this
practice performs very well during the latter iterations of active learning process. Hence, this is very reassuring that the batches of
new samples selected by 𝑘-TIMSER are optimal for reducing the TIMSE at most at the latter iterations.
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Fig. 6. Comparison between 𝛥𝐻𝐾 and 𝐺𝐾 in two examples.

5. Numerical examples

The proposed method is testified on three examples with varying complexity. The MCS is conducted to provide the failure
probability estimate 𝑃MCS

𝑓 for reference. In the 𝑘-TIMSER, both the prescribed scheme and the adaptive scheme are considered to
etermine the size, 𝐾, of batch of new points added per iteration. The 𝐾 values in the prescribed scheme are set as 1, 5, 10, 15 and
0, respectively, while the 𝐾 value in the adaptive scheme is determined according to Eq. (35).

Several existing parallel active learning reliability methods are conducted for comparison, including the parallel AK-MCS [39], the
ALR module in Uqlab [14], and the PABQ [55]. Specifically, in the parallel AK-MCS [39], the 𝐾-means clustering method is used with
the classical AK-MCS to favor parallel computing. The default setups of the ALR module in Uqlab [14] are considered here, consisting
f the learning function U, the polynomial-chaos Kriging model, the SuS-based reliability algorithm, the convergence criterion based
n the bound of reliability index 𝛽, and the 𝐾-means clustering strategy. The PABQ comprises the following ingredients [55]:

the Kriging model, the Bayesian inference of failure probability estimation, the learning function called upper-bound variance
contribution, and the 𝐾-means clustering strategy. Note that the results from other existing reliability methods available in the
literature will also be reported in the tables.

All the reliability methods are run on an Intel i9-14900KF CPU processor at 3.2 GHz with 64 GB RAM and 20 CPU cores. Three
performance metrics are recorded for each reliability method, namely the total number of iterations 𝑛it er , the total number of calls
to computational model 𝑛call, and the final failure probability estimate 𝑃𝑓 . Due to computational time considerations, the maximum
value of 𝑛call is set as 200 in those active learning reliability methods. Then, the relative error of 𝑃𝑓 with respect to 𝑃MCS

𝑓 is computed
as

𝛿(1)
𝑃𝑓

= |

|

|

𝑃𝑓−𝑃MCS
𝑓

|

|

|

∕𝑃MCS
𝑓 × 100%, (49)

which represents the overall error of a reliability method. Besides, the pure PDEM [10] is conducted to provide the second reference
ailure probability 𝑃 PDEM

𝑓 for the proposed 𝑘-TIMSER. Then, another two error metrics are separately computed as

𝛿(2)
𝑃𝑓

= |

|

|

𝑃𝑓−𝑃 PDEM
𝑓

|

|

|

∕𝑃 PDEM
𝑓 × 100%, (50)

𝛿(3)
𝑃𝑓

= |

|

|

𝑃 PDEM
𝑓 −𝑃MCS

𝑓
|

|

|

∕𝑃MCS
𝑓 × 100%, (51)

which correspond to Kriging-caused error and PDEM-induced error in the 𝑘-TIMSER, respectively.
Those active learning reliability methods are repeated 10 times to account for the randomness arising from sampling and/or

nitial ED. Then, the average values of the four performance metrics, i.e., E
[

𝑛it er
]

, E
[

𝑛call
]

, E
[

𝑃𝑓
]

, and E
[

𝛿𝑃𝑓
]

, are listed in the tables.
Additionally, the sample coefficient of variation (COV) of 𝑃𝑓 , denoted as COV[𝑃𝑓 ], is calculated to reflect the variation of 𝑃𝑓 in those
active learning reliability methods. The average results of the total computational time 𝑡c are reported in the last two numerical
examples for comparison.

Remark 5. As per Section 2.3, two categories of error, i.e., PDEM-caused error 𝛿(3)
𝑃𝑓

in Eq. (51) and Kriging-induced error 𝛿(2)
𝑃𝑓

in

q. (50), need to be reduced to ensure the accuracy of 𝑃𝑓 in 𝑘-TIMSER. (i) The ‘over-kill’ setting of PDEM is used to reduce 𝛿(3)
𝑃𝑓

,
where the size 𝑛r p of r p is set as (103), rather than the usual (102). (ii) The 𝑘-TIMSER is defined to dramatically reduce the

IMSE, acting as the upper bound of 𝛿(2)
𝑃𝑓

. By doing so, the overall error 𝛿(1)
𝑃𝑓

of 𝑘-TIMSER in Eq. (49) is expected to be reduced to a
avorable level.
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Fig. 7. The 𝑘-TIMSER (adaptive scheme) in the four-branch function (Case 1).

5.1. A four-branch function

The four-branch function is a common benchmark in structural reliability analysis [13,24,38,55], which represents a series system
consisting of four distinct failure domains. The 𝑃𝑓 is defined as

𝑃𝑓 = P

(

𝑌 ≥
√

𝑏
2

)

= ∫

+∞
√

𝑏
2

𝑓𝑌 (𝑦)d𝑦, (52)

where

𝑌 =  (𝑿) = max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− (𝑋1−𝑋2)2

10 + 𝑋1+𝑋2
√

2
+ 𝑏

√

2
− 𝑎

− (𝑋1−𝑋2)2

10 − 𝑋1+𝑋2
√

2
+ 𝑏

√

2
− 𝑎

𝑋1 −𝑋2
𝑋2 −𝑋1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (53)

where 𝑿 =
{

𝑋1, 𝑋2
}

is a vector of two independent, standard Gaussian random variables; 𝑎 and 𝑏 are two constants. Two cases
ith distinct values of 𝑎 and 𝑏 are often considered in the existing literature: Case 1: 𝑎 = 3 and 𝑏 = 6; Case 2: 𝑎 = 3 and 𝑏 = 7.

5.1.1. Case 1: 𝑎 = 3 and 𝑏 = 6
Fig. 7 illustrates one run of 𝑘-TIMSER (adaptive scheme) in the four-branch function (Case 1). As marked as black circles in

Fig. 7(a), the samples in the initial ED are scattered in the entire probability space, facilitating Kriging to discover the four component
ailure domains as early as possible. Then, after the first two iterations, the batches of new samples added by 𝑘-TIMSER in the latter

iterations are mostly located around the actual ROI. Fig. 7(b) details the multi-point enrichment process in the adaptive scheme.
asically, the 𝐺𝑘+𝑘 value brought by adding the 𝑘th new point in the latter iterations is smaller than that in the former ones, implying

the gradual decrease of information gain brought by new samples. Fig. 7(c) shows that the number, 𝐾, of new samples added per
iteration increases in the first several iterations and reduces subsequently. This behavior avoids the waste of adding some ‘useless’
16 
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Table 1
Reliability results in the four-branch function (Case 1).

Method E
[

𝑛it er ] E
[

𝑛call
]

E
[

𝑃𝑓
]

(×10−3) COV[𝑃𝑓 ] (%) E
[

𝛿𝑃𝑓

]

(%) References

MCS – – 106 4.460 – – [39]
AK-MCS – 115 126 4.416 – – [24]
APCK-MCS (𝐾-means) 𝐾 = 6 15.4 98.4 4.458 1.500 – [39]

RBIK (K-medoids)
𝐾 = 6 17.7 110 4.429 0.070 – [42]
𝐾 = 8 13.7 111.9 4.428 0.070 – [42]
𝐾 = 10 12.1 121.4 4.429 0.070 – [42]

AK-MCS (𝐾-means) 𝐾 = 6 21 132 4.420 1.480 – [44]
AK-MCS (Combination)a 𝐾 = 6 19 120 4.420 2.180 – [44]

AK-KB𝑛 (𝐾-means) 𝐾 = 3 22.5 74.6 4.419 – – [41]
𝐾 = 6 11.5 73.1 4.411 – – [41]

P-AK-MCSb 𝐾 = 4 15.6 70.4 4.490 – – [50]
𝐾 = 8 8.8 74.4 4.560 – – [50]

AK-MCS-EUc Adaptive 12 53 4.430 – – [46]

PABQ (𝐾-means)

𝐾 = 6 6.6 43.6 4.440 2.530 – [55]
𝐾 = 10 5.2 52 4.400 2.220 – [55]
𝐾 = 15 4.6 64.8 4.440 1.350 – [55]
𝐾 = 20 4.1 71 4.440 1.290 – [55]

ALR in UQLAB

𝐾 = 5 20.3 106.5 4.571 1.424 3.509 –
𝐾 = 10 10.2 102 4.590 2.216 3.930 –
𝐾 = 15 8 115 4.541 2.493 2.985 –
𝐾 = 20 6.9 128 4.558 1.782 3.212 –

PDEM – – 2 × 103 4.451 – 0.193 –

𝑘-TIMSER

𝐾 = 1 28.7 37.7 4.450 0.038 0.199 (3.277 × 10−2) –
𝐾 = 5 7 40 4.450 0.024 0.197 (1.550 × 10−2) –
𝐾 = 10 4.8 48 4.450 0.016 0.196 (9.963 × 10−3) –
𝐾 = 15 4.1 56.5 4.451 0.020 0.195 (9.488 × 10−3) –
𝐾 = 20 3.9 68 4.451 0.001 0.194 (1.132 × 10−12) –
Adaptive 6.5 41.1 4.450 0.033 0.197 (2.196 × 10−2) –

a Combination of 𝐾-means and 𝐾-medoids clustering techniques.
b This is based on pseudo learning function.
c This is based on Kriging believer strategy.

new samples at the initial and final iterations. Fig. 7(d) and (e) presents the hybrid convergence criterion in Eq. (40). The 𝐻𝑛
𝑃𝑓 ,𝑛

reduces dramatically with the increasing of 𝑛it er , justifying the good ability of 𝑘-TIMSER to reduce the epistemic uncertainty of 𝑃𝑓 .
Consequently, 𝑃𝑓 ,𝑛 gradually converges to the referenced value 𝑃MCS

𝑓 .
Table 1 gives comparative results of different reliability methods in the four-branch function (Case 1). In comparison with the

classical AK-MCS, those parallel active learning reliability methods reduce 𝑛it er remarkably. In the prescribed scheme of 𝑘-TIMSER,
the 𝑛it er value reduces slowly but the 𝑛call value increases significantly when the prescribe batch size 𝐾 ≥ 10. This implies that the
blind increase of 𝐾 will cause 𝑘-TIMSER to add too many ‘useless’ new samples. By comparison, in the adaptive scheme of 𝑘-TIMSER,
the average value of 𝑛call is 41.1, which is much smaller than that of the prescribed scheme (𝐾 = 20). Hence, the adaptive scheme
achieves a good balance between 𝑛it er and 𝑛call.

The relative error 𝛿(3)
𝑃𝑓

of the pure PDEM is only 0.193%, implying that the ‘over-kill’ setting of PDEM yields favorable accuracy

f failure probability estimate. Then, both the overall error 𝛿(1)
𝑃𝑓

and the Kriging-induced error 𝛿(2)
𝑃𝑓

(in parenthesis) of 𝑘-TIMSER are

isted in Table 1. On the whole, the 𝛿(2)
𝑃𝑓

is always smaller than 0.03%, indicating that the Kriging-induced error has been sufficiently

reduced by the multi-point enrichment process. Then, the 𝛿(1)
𝑃𝑓

is dominated by the remaining PDEM-caused error 𝛿(3)
𝑃𝑓

, say < 0.2%.

Obviously, such a minimal value of 𝛿(1)
𝑃𝑓

demonstrates the good accuracy of 𝑘-TIMSER.

5.1.2. Case 2: 𝑎 = 3 and 𝑏 = 7
To shed light on the distinction between the adaptive scheme and the prescribed scheme in 𝑘-TIMSER, Fig. 8 presents the

performance of 𝑘-TIMSER (prescribed scheme, 𝐾 = 20) in the four-branch function (Case 2), and two unfavorable observations are
utlined here. (i) As marked as blue circles in Fig. 8(a), the batch of 20 new samples added in the first iteration are overlapped and

are far away from the actual ROI, due to the inferior performance of Kriging at the initial stage. (ii) As plotted as yellow circles in
Fig. 8(a), most of the 20 new samples added in the last iteration are outside the ROI. Hence, there is a waste of new samples in
hese two iterations. To mitigate the two hurdles, it is feasible to timely stop the multi-point enrichment process according to the
verage gain induced by adding each new sample; see Fig. 8(b). This is exactly the momentum of devising the adaptive scheme.
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Fig. 8. The 𝑘-TIMSER (prescribed scheme, 𝐾 = 20) in the four-branch function (Case 2). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2
Reliability results in the four-branch function (Case 2).

Method E
[

𝑛it er ] E
[

𝑛call
]

E
[

𝑃𝑓
]

(×10−3) COV[𝑃𝑓 ] (%) E
[

𝛿𝑃𝑓

]

(%) References

MCS – – 106 2.233 – – [24]
AK-MCS – 85 96 2.233 – – [24]
ISKRA(KB) 𝐾 = 12 7.68 92.16 2.230 1.500 – [38]
ISKRA(𝐾-means) 𝐾 = 12 9.62 115.44 2.215 1.500 – [38]

PA-BFPL
𝐾 = 5 7.5 42.5 2.130 3.070 – [56]
𝐾 = 12 5.3 61.6 2.240 1.590 – [56]
𝐾 = 15 4.4 61 2.220 1.080 – [56]

ALR in UQLAB

𝐾 = 5 10.1 55.5 1.910 7.760 14.715 –
𝐾 = 10 6.9 69 1.977 11.586 13.471 –
𝐾 = 15 6.9 98.5 2.150 10.637 8.026 –
𝐾 = 20 6.4 118 2.178 10.257 7.585 –

PABQ
𝐾 = 5 7.7 43.5 2.182 1.255 2.274 –
𝐾 = 10 5.1 51 2.213 1.690 1.367 –
𝐾 = 15 4.5 62.5 2.210 1.144 1.280 –
𝐾 = 20 4.3 76 2.223 1.359 1.001 –

PDEM – – 2 × 103 2.230 – 0.134 –

𝑘-TIMSER

𝐾 = 1 21.1 30.1 2.230 0.031 0.138 (2.038 × 10−2) –
𝐾 = 5 6.4 37 2.230 0.031 0.137 (1.905 × 10−2) –
𝐾 = 10 4 40 2.230 0.002 0.135 (1.423 × 10−3) –
𝐾 = 15 3.7 50.5 2.230 0.008 0.135 (2.821 × 10−3) –
𝐾 = 20 3.2 54 2.230 0.003 0.136 (1.649 × 10−3) –
Adaptive 5.6 35.3 2.230 0.027 0.137 (1.704 × 10−2) –

Obviously, in comparison with the traditional prescribe scheme, the adaptive scheme could avoid some wastes of computational
model evaluations, as shown in Fig. 7.

Table 2 lists the results of different reliability methods for the four-branch function (Case 2). The existing ISKRA, the PA-BFPL,
he ALR in Uqlab, and the PABQ provide adequate accuracy of failure probability estimates. Then, the proposed 𝑘-TIMSER needs
uch smaller values of 𝑛it er and 𝑛call. Based on the ‘over-kill’ setting, the pure PDEM comes with a much smaller value of 𝛿(3)

𝑃𝑓
,

ay 0.134%. Then, thanks to the multi-point enrichment process, the Kriging-induced error 𝛿(2)
𝑃𝑓

(in parenthesis) of 𝑘-TIMSER is
ery minimal, say < 0.02%. In this way, the 𝑘-TIMSER comes with a comparable value of 𝛿𝑃𝑓 to the pure PDEM, but only needing
pproximately 2.5% of 𝑛call.

5.2. A two-dimensional truss

The second example considers a two-dimensional truss under vertical concentrated loads (Fig. 9), which is also a benchmark
reliability problem in existing literature [14,39]. This truss comprises a total of 23 bars and 13 nodes. The random vector 𝑿 consists
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Fig. 9. A two-dimensional truss.

Table 3
Random variables in the two-dimensional truss [39].
Variable Unit Distribution Mean Standard deviation

𝐸1 − 𝐸2 Pa Lognormal 2.1 × 1011 2.1 × 1010
𝐴1 m2 Lognormal 2.0 × 10−3 2.0 × 10−4
𝐴2 m2 Lognormal 1.0 × 10−3 1.0 × 10−4
𝑃1 − 𝑃6 N Gumbel 5 × 104 7.5 × 103

of 10 random variables, that is, 𝑿 =
{

𝐸1, 𝐸2, 𝐴1, 𝐴2, 𝑃1,… , 𝑃6
}

, where 𝐸1 and 𝐴1 are Young’s modulus and cross section of horizontal
bars, respectively; 𝐸2 and 𝐴2 are Young’s modulus and cross section of diagonal bars, respectively; 𝑃1,… , 𝑃6 are vertical loads applied
on the upper nodes from left to right. The statistical information of those random variables is given in Table 3.

Finite element analysis of this truss is conducted with an in-house MATLAB code. Of interest is the mid-span deflection 𝑦 = 𝑈 (𝒙),
and the failure threshold is set as 12 mm. Hence, the 𝑃𝑓 is defined as

𝑃𝑓 = P(𝑌 ≥ 12) = ∫

+∞

12
𝑓𝑌 (𝑦)d𝑦 (54)

Fig. 10 presents one run of the proposed 𝑘-TIMSER (adaptive scheme) in the planar truss example. The 𝐺𝑛+𝑘 value of adding
the 𝑘th new sample in each iteration of multi-point enrichment process is illustrated in Fig. 10(a). Due to the inferior performance
of Kriging in the first iteration, the corresponding values of 𝐺𝑛+𝑘 are of minor magnitude and are invisible in the logarithmic
coordinates. Then, the 𝐺𝑛+𝑘 values in the remaining iterations are gradually reduced, and most of the new samples added by 𝑘-
TIMSER are located in the actual ROI; see Fig. 10(b). As a result, the TIMSE 𝐻𝑛 reduces significantly as the 𝑛it er increases, and a
good accordance between 𝑃𝑓 and 𝑃MCS

𝑓 is finally achieved; see Fig. 10(d) and (e).
Table 4 gives a comparison of different reliability methods for this planar truss example. In comparison with the existing parallel

AK-MCS, the ALR module in Uqlab and the PABQ, the proposed 𝑘-TIMSER exerts fair advantage in terms of 𝑛it er and 𝑛call. Since
the TIMSE 𝐻𝑛 is dramatically reduced (Fig. 10(d)), the Kriging-induced error 𝛿(2)

𝑃𝑓
is always smaller than 0.004%. Then, the overall

error 𝛿(1)
𝑃𝑓

is always smaller than 0.17%. In comparison with the pure PDEM, the 𝑘-TIMSER provides comparable accuracy of 𝑃𝑓 at
the cost of only 3.5% of 𝑛call. Besides, since a single run of finite element analysis of this truss is relatively cheap, the time 𝑡it er of
a single iteration is dominated by the time 𝑡4 of learning function. In this way, although the 𝑘-TIMSER needs smaller value of 𝑛it er
than the ALR module in Uqlab, its 𝑡c is greater than that of the ALR module in Uqlab.

5.3. Seismic reliability analysis of a spatial reinforced concrete frame

The third example considers a practical six-story, three-bay reinforced concrete frame under bidirectional seismic ground motion
excitation, with both geometric layout and reinforcement details displayed in Fig. 11. Finite element model of this frame is built using
the OpenSees software [57]. Both beams and columns are modeled by the force-based elements with fiber-discretized cross section.
The uniaxial consecutive relationships of rebar and concrete are described by Steel 01 and Concrete 01 models, respectively. The
thickness of concrete slab at each floor is set as 110 mm, and its weight is applied on the surrounding beams. Rayleigh damping is
specified, with damping ratio 5%. The related material parameters are viewed as independent random variables, with their statistical
information given in Table 5.

Fig. 12(a) and (b) present the time histories of the amplitude-normalized N-S and W-E components of El-Centro accelerogram,
respectively. The two horizontal components are applied on the 𝑥- and 𝑧-directions of this frame, respectively. Then, the
corresponding amplitude coefficients are taken as Gaussian random variables, with the means both 4 and the COVs both 0.1.

Fig. 13(a) and (b) display the hysteretic curves of concrete and rebar at the end section of corner column in the bottom floor,
respectively. Then, Fig. 13(c) illustrates the inter-story force–deformation curve of the bottom column in the 𝑧-direction. Clearly,
strong nonlinearity is observed in both material- and structure-levels.
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Fig. 10. The 𝑘-TIMSER (adaptive scheme) in the planar truss example.

Fig. 11. A six-story three-bay reinforced concrete frame.
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Table 4
Reliability results in the planar truss example.

Method E
[

𝑛it er ] E
[

𝑛call
]

E
[

𝑃𝑓
]

(×10−3) COV[𝑃𝑓 ] (%) E
[

𝛿𝑃𝑓

]

(%) E
[

𝑡c (s)
]

References

MCS – – 106 1.550 – – – [39]

AK-MCS 𝐾 = 1 272 283 1.520 – 1.935 – [39]
𝐾 = 6 26 162 1.530 – 1.290 – [39]

ALR in UQLAB

𝐾 = 5 14.6 79 1.558 1.870 1.505 148.3 –
𝐾 = 10 7.4 75 1.574 2.455 1.992 29.2 –
𝐾 = 15 6.3 90.5 1.568 2.118 1.816 31.8 –
𝐾 = 20 4.8 87 1.589 3.036 2.767 29.2 –

PABQ

𝐾 = 5 14.9 79.5 1.360 5.553 12.243 230.1 –
𝐾 = 10 8.2 82 1.377 3.303 11.174 119.6 –
𝐾 = 15 6 85 1.427 4.487 8.310 89.1 –
𝐾 = 20 5.1 92 1.428 6.361 9.342 79.1 –

PDEM – – 2 × 103 1.547 – 0.164 215.3 –

𝑘-TIMSER

𝐾 = 1 43.1 53.1 1.548 0.005 0.161 (4.641 × 10−3) 348.2 –
𝐾 = 5 10 56 1.547 0.003 0.163 (1.258 × 10−3) 92.7 –
𝐾 = 10 5.9 60 1.547 0.001 0.164 (1.008 × 10−4) 58.9 –
𝐾 = 15 4.5 63.5 1.547 0.004 0.162 (2.133 × 10−3) 52.3 –
𝐾 = 20 4 71 1.547 0.001 0.164 (2.004 × 10−12) 49.6 –
Adaptive 5.7 61.5 1.547 0.001 0.164 (1.981 × 10−4) 54.2 –

Table 5
Random variables in the reinforced concrete frame.

Variables Description Distribution Mean COV

𝑓𝑐 𝑐 (MPa) Confined concrete compressive strength Lognormal 35 0.1
𝜀𝑐 𝑐 Confined concrete strain at maximum strength Lognormal 0.005 0.05
𝑓𝑐 𝑢 (MPa) Confined concrete crushing strength Lognormal 25 0.1
𝜀𝑐 𝑢 Confined concrete strain at crushing strength Lognormal 0.02 0.05
𝑓𝑐 (MPa) Unconfined concrete compressive strength Lognormal 27 0.1
𝜀𝑐 Unconfined concrete strain at maximum strength Lognormal 0.002 0.05
𝑓𝑢 (MPa) Unconfined concrete crushing strength Lognormal 10 0.1
𝜀𝑢 Unconfined concrete strain at crushing strength Lognormal 0.006 0.05
𝑓𝑦 (MPa) Yield strength of rebar Lognormal 400 0.1
𝐸0 (GPa) Elastic modulus of rebar Lognormal 200 0.1
𝑏 Strain hardening ratio of rebar Lognormal 0.007 0.05

Fig. 12. Amplitude-normalized El-Centro accelerograms in two orthogonal directions.

Of interest are the inter-story drifts 𝑈𝑖,𝑗 (𝑿, 𝑡), 𝑖 = 1,… , 6, 𝑗 = 1, 2, between the 𝑖- and (𝑖 − 1)th floor at the 𝑗th direction. The
maximum allowable inter-story drift is set as 72 mm. Then, the system failure probability 𝑃𝑓 is defined as

𝑃 = P

( 6
⋃

2
⋃

(

∃𝑡 ∈ [0, 20s], ||𝑈 (𝑿, 𝑡)|| ≥ 72
)

)

, (55)
𝑓
𝑖=1 𝑗=1

|

𝑖,𝑗
|
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Fig. 13. Nonlinear hysteretic behaviors of spatial reinforced concrete frame.

which can be further recast as

𝑃𝑓 = P(𝑌 ≥ 72) = ∫

+∞

72
𝑓𝑌 (𝑦)d𝑦, (56)

with 𝑌 = max1≤𝑖≤6
(

max1≤𝑗≤2
(

max𝑡∈[0,20s]
|

|

|

𝑈𝑖,𝑗 (𝑿, 𝑡)||
|

))

.
Fig. 14 illustrates one run of the proposed 𝑘-TIMSER (adaptive scheme) in the reinforced concrete frame example. The 𝐺𝑘 values

in the first iteration are invisible in the logarithmic coordinate of Fig. 14(a), due to their minimal magnitude. Then, at least 16 new
amples are added at each subsequent iteration, most of which are located in the ROI; see Fig. 14(b). Consequently, both substantial

reduction of TIMSE 𝐻𝑛 and good accordance between 𝑃𝑓 and 𝑃MCS
𝑓 are achieved at the end of this algorithm; see Fig. 14(d) and

e).
Table 6 lists the results of different reliability methods in the reinforced concrete frame example. The parallel AK-MCS, the ALR

odule in Uqlab, and the PABQ all need at least 200 runs of finite element analysis, rendering them very time-consuming. On the
ontrary, the proposed 𝑘-TIMSER achieves better accuracy of 𝑃𝑓 at the cost of only 88 runs of finite element analysis at most. In
he 𝑘-TIMSER, the Kriging-induced error 𝛿(3)

𝑃𝑓
is at most 0.005%, and its overall error 𝛿(1)

𝑃𝑓
, say around 0.1%, is very close to that

f the pure PDEM with ‘over-kill’ setting. Although increasing the size 𝑛r p of r p may further reduce the PDEM-caused error, such
 minimal value of 𝛿(1)

𝑃𝑓
in the 𝑘-TIMSER is sufficient for practical engineering problems. More importantly, since the time 𝑡3 of

inite-element analysis of this reinforced concrete frame is much greater than that, 𝑡4, of 𝑘-TIMSER, the running time 𝑡it er of an
teration is governed by 𝑡3. Then, the remarkable advantage of 𝑘-TIMSER in terms of reducing 𝑛it er is readily converted to that of
educing the total computational time 𝑡c. It is observed that the 𝑡c of the proposed 𝑘-TIMSER is only at most 35.7% of other active
earning reliability methods. Finally, the results of Tables 4 and 6 indicate that the advantage of 𝑡c becomes very evident in the
roposed 𝑘-TIMSER, when computationally-expensive reliability problems are considered.

All the four parallel active learning reliability methods in Table 6 are faced with both the approximation error 𝛿(3)
𝑃𝑓

due to the

reliability estimation algorithm and the Kriging-induced error 𝛿(2)
𝑃𝑓

. For example, the approximation error in the ALR module in Uqlab
results from the Markov chain Monte Carlo sampling, and the approximation error in the parallel AK-MCS stems from the Monte
Carlo sampling. Although the 𝛿(3)

𝑃𝑓
in the parallel AK-MCS is theoretically minimal, its Kriging-induced error is relatively significant,

due to so vast number of Monte Carlo samples generated in the ‘over-kill’ setting. This is the reason why the overall error of the
parallel AK-MCS, say 10%, is greater than that of the ALR module in Uqlab, say 5%, and the proposed 𝑘-TIMSER, say 0.1%. This
also justifies the usage of more advanced reliability estimation algorithms, e.g., SuS or PDEM, rather than the crude MCS, in the
ALR framework [13,14]. Further, in the ‘over-kill’ setting, the sample size is generally (105−8) in the parallel AK-MCS, the ALR
module in Uqlab, and PABQ, while the sample size 𝑛r p is generally (103) in PDEM. Such relatively small sample size in PDEM is
the main reason why the Kriging-induced error can be reduced to such a minimal level in the 𝑘-TIMSER.

5.4. Discussions

Fig. 15 summarizes the results of both the prescribed scheme and the adaptive scheme of 𝑘-TIMSER above. On the one hand,
he 𝑛it er values needed by the prescribed scheme, marked as solid lines in Fig. 15, are generally reduced with the increasing of the

prescribed batch size 𝐾. However, the downward trend varies with the reliability problems at hand. For example, in the four-branch
function (Sections 5.1.1 and 5.1.2), the 𝑛it er is stalled after the 𝐾 exceeds 5, implying that further increasing 𝐾 will not reduce 𝑛it er
remarkably. By contrast, in the reinforced concrete frame example (Section 5.3), the 𝑛it er is stalled after the 𝐾 exceeds 15. Therefore,
the turning point that corresponds to the shift from rapid to slight decrease of 𝑛 can be viewed as the optimal value of 𝐾 in the
it er
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Fig. 14. The 𝑘-TIMSER (adaptive scheme) in the reinforced concrete frame example.

Table 6
Reliability results in the reinforced concrete frame example.

Method E
[

𝑛it er ] E
[

𝑛call
]

E
[

𝑃𝑓
]

(×10−3) COV[𝑃𝑓 ] (%) E
[

𝛿𝑃𝑓

]

(%) E
[

𝑡c
]

(s)

MCS – – 2 × 105 1.111 – – 8.1 × 106

AK-MCS

𝐾 = 5 >39 >200 9.778 8.099 11.991 >4.7 × 103
𝐾 = 10 >20 >200 9.860 9.744 11.252 >3.0 × 103
𝐾 = 15 >14 >200 1.022 4.053 8.023 >2.5 × 103
𝐾 = 20 >11 >200 1.027 4.721 7.544 >2.3 × 103

ALR in
UQLAB

𝐾 = 5 >39 >200 1.083 3.786 3.550 >4.6 × 103
𝐾 = 10 >20 >200 1.103 3.822 3.185 >3.5 × 103
𝐾 = 15 >14 >200 1.113 6.008 5.172 >3.4 × 103
𝐾 = 20 >11 >200 1.099 4.761 5.323 >2.1 × 103

PABQ

𝐾 = 5 >39 >200 1.059 32.035 25.104 >3.7 × 103
𝐾 = 10 >20 >200 1.009 5.147 9.287 >2.7 × 103
𝐾 = 15 >14 >200 0.986 15.359 12.724 >2.5 × 103
𝐾 = 20 >11 >200 1.026 12.655 12.043 >2.4 × 103

PDEM – – 2 × 103 1.110 – 0.102 1.3 × 105

𝑘-TIMSER

𝐾 = 1 58.5 71.5 1.110 0.003 0.106 (1.825 × 10−3) 3.4 × 103
𝐾 = 5 13 74 1.110 0.002 0.104 (1.687 × 10−3) 8.3 × 102
𝐾 = 10 7.4 78 1.110 0.001 0.102 (3.637 × 10−4) 8.1 × 102
𝐾 = 15 5.4 80 1.110 0.012 0.108 (5.695 × 10−3) 7.1 × 102
𝐾 = 20 4.7 88 1.110 0.001 0.103 (7.673 × 10−4) 7.5 × 102
Adaptive 5.7 78.8 1.111 0.002 0.104 (1.426 × 10−3) 7.1 × 102
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Fig. 15. Comparison between the prescribed scheme and the adaptive scheme in the 𝑘-TIMSER.

prescribed scheme. Unfortunately, this optimal value of 𝐾 is unknown a priori. On the other hand, the average 𝐾 values needed by
the adaptive scheme, plotted as dashed lines in Fig. 15, are observed to be close to the so-called ‘optimal’ batch size to some extent.

his implies that the adaptive scheme allows to account for the peculiar characteristics of different reliability problems, achieving
fair savings of computational model evaluations.

6. Concluding remarks

A cost-effective parallel active learning reliability method is developed based on the multi-point look-ahead paradigm. First,
he overall error of active learning reliability analysis is decomposed into two separate parts, i.e., the approximation error due

to reliability estimation algorithm and the surrogate-induced error arising from the limited ED. Then, a metric called TIMSE is
defined to measure the epistemic uncertainty of Kriging-estimated failure probability in the framework of PDEM. With the aim of
reducing TIMSE, three key ingredients are developed: (i) a multi-point learning function called 𝑘-TIMSER; (ii) a hybrid convergence
criterion; (iii) an adaptive scheme of identifying the rational size of batch of new samples added per iteration. The salient feature
that distinguishes the proposed method from most of existing parallel active learning reliability methods lies in that the multi-
oint enrichment process is conducted based on the learning function 𝑘-TIMSER itself, without resorting to any additional parallel

enrichment strategy. The proposed method is testified on three examples, where comparisons are made against several existing ones.
Finally, some concluding remarks are given as follows.

• In the framework of PDEM, the metric TIMSE is proved as the upper bound of Kriging-induced error. Hence, it is a fair measure
of epistemic uncertainty of Kriging-based failure probability estimation, due to only very limited evaluations of computational
model in the ED.

• Thanks to the elegant definition of TIMSE, the resulting learning function 𝑘-TIMSER is analytically tractable, which allows
quantifying the global gain of adding a batch of 𝑘(> 1) new points on the reduction of TIMSE in expectation.

• The number of new samples added by the 𝑘-TIMSER per iteration can be identified either by a traditional prescribed scheme or
by a newly-developed adaptive scheme. In comparison with the prescribed scheme, the adaptive scheme gains a fair balance
between the total computational time and the computing resource consumption.

• Thanks to the core role of TIMSE, the four key ingredients of parallel active learning reliability analysis, i.e., the PDEM, the
Kriging, the learning function 𝑘-TIMSER (and its parallelization), and the hybrid convergence criterion, are assembled in a
consistent way. Hence, the proposed multi-point look-ahead paradigm is theoretically rigorous and numerically elegant.

It is admitted that the proposed method may underperform in small failure probabilities, say ≤ (10−5), due to the limitation
f PDEM. Besides, more reasonable, i.e., less conservative, measure of epistemic uncertainty about Kriging-based failure probability
stimation can be defined to develop more fair form of learning function. They will be further investigated in the near future.
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Appendix A. Iterative identification of 𝒉𝐫

According to Eq. (15), the ℎr is exactly the infimum of all infeasible values of the boundary 𝜂, that is,

ℎr = inf
⎧

⎪

⎨

⎪

⎩

𝜂 ∈ R ∶
𝑃𝑓 −

∑𝑛r p
𝑖=1 𝑃

(𝑖)
𝑓 1

(


(

𝒙(𝑖)
)

≥ 𝜂
)

𝑃𝑓
≥ 𝜀r

⎫

⎪

⎬

⎪

⎭

. (A.1)

Hence, the ℎr can be sequentially identified through trial and error, as detailed in Algorithm A.1.

Algorithm A.1 Procedure of identifying ℎr
Input: r p =

{

𝑦(𝑖), 𝑖 = 1,… , 𝑛r p
}

, r p =
{

𝑝(𝑖), 𝑖 = 1,… , 𝑛r p
}

, and the failure threshold ℎ.
1: Initialize: 𝜂 ← ℎ, 𝜂inc ← ℎ∕50.
2: Solve the GDEE based on both r p and r p, resulting in

{

𝑃 (𝑖)
𝑓 , 𝑖 = 1,… , 𝑛r p

}

and 𝑃𝑓 . ⊳ Eqs. (7)–(10)

3: while
𝑃𝑓−

𝑛r p
∑

𝑖=1
𝑃 (𝑖)
𝑓 1

(

𝑦(𝑖)≥𝜂
)

𝑃𝑓
≥ 𝜀r do ⊳ Eq. (A.1)

4: 𝜂 ← 𝜂 − 𝜂inc;
5: end while
6: ℎr = 𝜂 .
Output: ℎr .

Appendix B. Basics of kriging

Kriging assumes the response of  (𝒙) as one realization of a underlying Gaussian process, expressed as [17]

(𝒙) ≈ ̂𝑛(𝒙) = 𝜷⊤𝒇 (𝒙) + 𝜎2𝑍(𝒙), (B.1)

where the trend function 𝜷⊤𝒇 (𝒙) = 𝛽0 +
∑𝑑

𝑙=1 𝛽𝑙𝑥𝑙, with 𝒇 (𝒙) = {

1, 𝑥1,… , 𝑥𝑑
}

a set of basis functions and 𝜷 =
{

𝛽𝑙 , 𝑙 = 0,… , 𝑑} a set
of unknown coefficients. 𝜎2 is the variance of Gaussian process; 𝑍 (𝒙) is a zero-mean, unit-variance Gaussian process fully described
by a correlation function 𝑅

(

𝒙,𝒙′;𝜽
)

with parameters 𝜽. The Matern-5/2 kernel function is adopted here, expressed as [17]

𝑅(𝒙,𝒙′;𝜽) =
𝑑
∏

𝑙=1

⎛

⎜

⎜

⎜

⎝

1 +
√

5
|

|

|

𝑥𝑙 − 𝑥′𝑙
|

|

|

𝜃𝑙
+ 5

3

⎛

⎜

⎜

⎝

|

|

|

𝑥𝑙 − 𝑥′𝑙
|

|

|

𝜃𝑙

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

exp
⎛

⎜

⎜

⎝

−
√

5
|

|

|

𝑥𝑙 − 𝑥′𝑙
|

|

|

𝜃𝑙

⎞

⎟

⎟

⎠

, (B.2)

where 𝒙 and 𝒙′ are two realizations of 𝑿; the kernel parameters 𝜽 =
{

𝜃𝑙 > 0, 𝑙 = 1,… , 𝑑}.
Suppose that an ED 𝑛 =

{

𝑛,𝑛
}

consists of a set of 𝑛 input samples 𝑛 =
{

𝒙(𝑖), 𝑖 = 1,… , 𝑛} and the associated computational
model responses 𝑛 =

{

𝑦(𝑖) = 
(

𝒙(𝑖)
)

, 𝑖 = 1,… , 𝑛}, both 𝜷 and 𝜎2 are estimated as

𝜷 =
(

𝑭 ⊤𝑹−1𝑭
)−1 𝑭 ⊤𝑹−1𝑛, (B.3)

𝜎2 = 1
𝑛
(𝑛 − 𝑭 𝜷)⊤𝑹−1(𝑛 − 𝑭 𝜷), (B.4)

where 𝑭 ∶=
[

𝑓𝑗 (𝒙(𝑖))
]

1≤𝑖≤𝑛,1,≤𝑗≤𝑑+1 is an information matrix; 𝑹 ∶=
[

𝑅(𝒙(𝑖),𝒙(𝑗);𝜽)
]

1≤𝑖,𝑗≤𝑛 is a matrix of correlations between all points
in 𝑛. Both 𝜷 and 𝜎2 depend on 𝜽, which can be estimated as [17]

𝜽̂ = arg min
𝜽∈𝛩

𝜎2 |𝑹|

1
𝑛 , (B.5)

where 𝛩 is the support of 𝜽.
Then, the Kriging prediction conditional on 𝑛 still follows a Gaussian process, that is,

̂𝑛
(

𝒙
)

∼ 
(

𝜇𝑛(𝒙), 𝑐𝑛(𝒙,𝒙′)
)

, (B.6)

with its mean 𝜇𝑛(𝒙), variance 𝜎2𝑛 (𝒙), and covariance 𝑐𝑛
(

𝒙,𝒙′
)

expressed as [17]

𝜇𝑛(𝒙) = 𝒇 (𝒙)⊤𝜷 + 𝒓(𝒙)⊤𝑹−1
(

𝑛 − 𝑭𝜷
)

, (B.7)

𝜎2𝑛 (𝒙) = 𝜎2
(

1 − 𝒓(𝒙)⊤𝑹−1𝒓(𝒙) + 𝒖(𝒙)⊤
(

𝑭 ⊤𝑹−1𝑭
)−1 𝒖(𝒙)

)

, (B.8)
( ′) 2

(

( ′) ⊤ −1 ′ ⊤ ( ⊤ −1 )−1 ′
)

𝑐𝑛 𝒙,𝒙 = 𝜎 𝑅 𝒙,𝒙 − 𝒓(𝒙) 𝑹 𝒓(𝒙 ) + 𝒖(𝒙) 𝑭 𝑹 𝑭 𝒖(𝒙 ) , (B.9)
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respectively, where the subscript 𝑛 implies that these quantities condition on 𝑛; 𝒓(𝒙) =
[

𝑅(𝒙,𝒙(1)),… , 𝑅(𝒙,𝒙(𝑛))]⊤; 𝒖(𝒙) =
𝑭 ⊤𝑹−1𝒓(𝒙) − 𝒇 (𝒙).

The 𝜇𝑛(𝒙) is a natural estimate of ̂𝑛
(

𝒙
)

, while 𝜎2𝑛 (𝒙) can be viewed as a local measure of epistemic uncertainty of ̂𝑛
(

𝒙
)

, due
o only very limited computational model evaluations in 𝑛.

Appendix C. Four existing pointwise learning functions

The U and EFF are two best-known learning functions in the active learning-based simulation methods. First, the U function is
xpressed as [24]

𝑈 (𝒙) =
|

|

𝜇𝑛(𝒙)||
𝜎𝑛(𝒙)

, (C.1)

whereby the best next point is selected as 𝒙(𝑛+1) = arg min𝒙 𝑈 (𝒙).
Second, the EFF is expressed as [23]

EFF(𝒙) = 𝜇𝑛(𝒙)
[

2𝛷
(

−
𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

−𝛷
(

−𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

−𝛷
(

𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)]

− 𝜎𝑛(𝒙)
[

2𝜙
(

−
𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

− 𝜙
(

−𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

− 𝜙
(

𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)]

+ 𝜀
[

𝛷
(

𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

−𝛷
(

−𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)]

,

(C.2)

where 𝜀 = 2𝜎𝑛(𝒙) here. Then, 𝒙(𝑛+1) = arg max𝒙 EFF(𝒙).
The PIE and PEIF are two existing learning functions in the active learning-based PDEM methods. First, the PIE is expressed

as [27]

PIE(𝒙) =
|

|

|

|

|

(

ln(
√

2𝜋 𝜎𝑛(𝒙)) + 1
2

)

(

1 −𝛷
(

ℎ − 𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

))

+
ℎ − 𝜀 − 𝜇𝑛(𝒙)

2
𝜙
(

ℎr − 𝜀 − 𝜇𝑛(𝒙)
𝜎𝑛(𝒙)

)

|

|

|

|

|

, (C.3)

where ℎ is the failure threshold; 𝜀 = 𝜎𝑛(𝒙) here. Then, 𝒙(𝑛+1) = arg max𝒙 PIE(𝒙).
Second, the PEIF is given by [28]

PEIF(𝒙) = (𝜇𝑛(𝒙) − ℎr )𝛷
(

𝜇𝑛(𝒙) − ℎr
𝜎𝑛(𝒙)

)

+ 𝜎𝑛(𝒙)𝜙
(

𝜇𝑛(𝒙) − ℎr
𝜎𝑛(𝒙)

)

, (C.4)

whereby 𝒙(𝑛+1) = arg max𝒙 PEIF(𝒙).

Appendix D. Proof of Proposition 1

Proof. First, according to Eqs. (16) and (17), there exists

E𝑛

[

(

𝑃𝑓 ,𝑛 − 𝑃𝑓 ,𝑛
)2

]

= E𝑛

⎡

⎢

⎢

⎣

( 𝑛r p
∑

𝑖=1
𝑃 (𝑖)
𝑓 ,𝑛 −

𝑛r p
∑

𝑖=1
𝑃 (𝑖)
𝑓 ,𝑛

)2
⎤

⎥

⎥

⎦

= E𝑛

⎡

⎢

⎢

⎣

( 𝑛r p
∑

𝑖=1

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)

)2
⎤

⎥

⎥

⎦

. (D.1)

Based on the Cauchy–Schwarz inequality, Eq. (D.1) satisfies

E𝑛

[

(

𝑃𝑓 ,𝑛 − 𝑃𝑓 ,𝑛
)2

]

≤ E𝑛

[

𝑛r p
𝑛r p
∑

𝑖=1

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)2

]

= 𝑛r p
𝑛r p
∑

𝑖=1
E𝑛

[

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)2

]

. (D.2)

Then, according to Eq. (13), E𝑛

[

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)2
]

can be expanded as

E𝑛

[

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)2

]

= E𝑛

[

(

𝛤
(

̂𝑛
(

𝒙(𝑖)
))

⋅ 𝑝(𝑖) − 𝛤
(

𝜇𝑛
(

𝒙(𝑖)
))

⋅ 𝑝(𝑖)
)2

]

,

=
(

𝑝(𝑖)
)2E𝑛

[

(

𝛤
(

̂𝑛
(

𝒙(𝑖)
))

− 𝛤
(

𝜇𝑛
(

𝒙(𝑖)
))

)2
]

.
(D.3)

Further, the first-order Taylor expansion of 𝛤
(

⋅
)

at 𝜇𝑛(𝒙) gives rise to
𝛤
(

̂𝑛
(

𝒙
))

− 𝛤
(

𝜇𝑛(𝒙)
)

≈ 𝛤 ′(𝜇𝑛(𝒙)
)

(

̂𝑛
(

𝒙
)

− 𝜇𝑛(𝒙)
)

, (D.4)

where 𝛤 ′(⋅
)

is the derivative of 𝛤
(

⋅
)

. Hence, there exists
(

𝛤
(

̂𝑛
(

𝒙
))

− 𝛤
(

𝜇𝑛(𝒙)
)

)2
≈
[

𝛤 ′(𝜇𝑛(𝒙)
)]2

(

̂𝑛
(

𝒙
)

− 𝜇𝑛(𝒙)
)2

, (D.5)

then,

E
[

(

𝛤
(

̂
(

𝒙
))

− 𝛤
(

𝜇
(

𝒙
))

)2
]

≈
[

𝛤 ′(𝜇 (𝒙)
)]2 E

[

(

̂
(

𝒙
)

− 𝜇 (𝒙)
)2

]

=
[

𝛤 ′(𝜇 (𝒙)
)]2 𝜎2(𝒙). (D.6)
𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛
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Substitute Eq. (D.6) into Eq. (D.3), yielding

E𝑛

[

(

𝑃 (𝑖)
𝑓 ,𝑛 − 𝑃 (𝑖)

𝑓 ,𝑛
)2

]

≈ (𝑝(𝑖))2𝜎2𝑛 (𝒙(𝑖))
[

𝛤 ′(𝜇𝑛(𝒙(𝑖))
)]2 . (D.7)

In this way, Eq. (D.2) can be further expressed as

E𝑛

[

(

𝑃𝑓 ,𝑛 − 𝑃𝑓 ,𝑛
)2

]

≤ 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛 (𝒙

(𝑖))
[

𝛤 ′(𝜇𝑛
(

𝒙(𝑖)
))]2 . (D.8)

As plotted as the purple solid line in the top panel of Fig. 1(b), 𝛤 ′(𝑦
)

equals 0 when 𝑦 ∈ (−∞, ℎr ], and it achieves the maximum
value when 𝑦 = ℎ. Generally, 𝛤

(

𝑦
)

varies slowly with 𝑦, and 𝛤 ′(𝑦
)

is often smaller than 𝜋𝑛(𝒙). Hence, Eq. (20) can be proved such
that

E𝑛

[

(

𝑃𝑓 ,𝑛 − 𝑃𝑓 ,𝑛
)2

]

≤ 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛 (𝒙

(𝑖))𝜋𝑛(𝒙(𝑖)) = 𝐻𝑛. □ (D.9)

Appendix E. Multi-point kriging update formulas

First, when providing an ED 𝑛 =
{

𝑛,𝑛
}

of size 𝑛, a Kriging ̂𝑛
(

𝒙
)

can be trained, with its mean 𝜇𝑛(𝒙), variance 𝜎2𝑛 (𝒙), and
ovariance 𝑐𝑛(𝒙,𝒙′) given by Eqs. (B.7), (B.8) and (B.9), respectively.

Then, denote +
𝑘 =

{

𝒙(1)+ ,… ,𝒙(𝑘)+
}⊤ and +

𝑘 =
{

𝑦(1)+ ,… , 𝑦(𝑘)+
}⊤ as a batch of 𝑘(≥ 1) new points and their computational model

responses, respectively. When 𝑛 is enriched with
{

+
𝑘 ,

+
𝑘
}

, the look-ahead mean, variance, and covariance of Kriging are given
by [58]

𝜇𝑛+𝑘(𝒙) = 𝜇𝑛(𝒙) + 𝑐𝑛
(

𝒙,+
𝑘
)⊤ (+

𝑘 )
−1 (+

𝑘 − 𝜇𝑛
(

+
𝑘
))

, (E.1)

𝜎2𝑛+𝑘(𝒙) = 𝜎2𝑛 (𝒙) − 𝑐𝑛
(

𝒙,+
𝑘
)⊤ (+

𝑘 )
−1𝑐𝑛

(

𝒙,+
𝑘
)

, (E.2)

𝑐𝑛+𝑘(𝒙,𝒙′) = 𝑐𝑛(𝒙,𝒙′) − 𝑐𝑛
(

𝒙,+
𝑘
)⊤ (+

𝑘 )
−1𝑐𝑛

(

𝒙′,+
𝑘
)

, (E.3)

which are called multi-point Kriging update formulas in [58]. 𝑐𝑛
(

𝒙,+
𝑘
)

∶=
[

𝑐𝑛
(

𝒙,𝒙(1)+
)

,… , 𝑐𝑛
(

𝒙,𝒙(𝑘)+
)

]⊤
is a 𝑘 × 1 vector of

covariances between 𝒙 and all points in +
𝑘 ; +

𝑘 ∶=
[

𝑐𝑛
(

𝒙(𝑖)+ ,𝒙(𝑗)+
)

]

1≤𝑖,𝑗≤𝑘
is a 𝑘 × 𝑘 matrix of covariances between all points in

+
𝑘 ; 𝜇𝑛(+

𝑘 ) ∶=
[

𝜇𝑛
(

𝒙(1)+
)

,… , 𝜇𝑛
(

𝒙(𝑘)+
)

]⊤
is the posterior means at all points in +

𝑘 .

Appendix F. Proof of Proposition 2

Proof. In TIMSER𝑛+𝑘(+
𝑘 ), the second term can be expanded as

E𝑼+
𝑘

[

𝑛+𝑘(+
𝑘 )

]

= 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝑘(𝒙

(𝑖))E𝑼+
𝑘

[

𝛱𝑛+𝑘(𝒙(𝑖);+
𝑘 )

]

, (F.1)

which is based on the fact that 𝜎2𝑛+𝑘(𝒙) is independent of 𝒀 +
𝑘 (and further 𝑼+

𝑘 ); see Eq. (E.2).
Then, according to Eq. (24), E𝑼+

𝑘

[

𝛱𝑛+𝑘(𝒙;+
𝑘 )

]

is expressed as

E𝑼+
𝑘

[

𝛱𝑛+𝑘(𝒙;+
𝑘 )

]

= ∫R𝑘
𝛷
(

𝑎(𝒙) + 𝒃(𝒙)⊤ +
𝑘
)

𝑓𝑼+
𝑘
( +

𝑘 )d +
𝑘 , (F.2)

where 𝑓𝑼+
𝑘
( +

𝑘 ) is the joint PDF of 𝑼+
𝑘 .

The basic definition of 𝛷(⋅) states that if 𝑍 ∼  (0, 1) is a standard Gaussian random variable independent of 𝑼+
𝑘 , there exists

𝛷
(

𝑎(𝒙) + 𝒃(𝒙)⊤ +
𝑘
)

= P
(

𝑍 ≤ 𝑎(𝒙) + 𝒃(𝒙)⊤ +
𝑘
)

= P
(

𝑍 ≤ 𝑎(𝒙) + 𝒃(𝒙)⊤𝑼+
𝑘 |𝑼

+
𝑘 =  +

𝑘
)

. (F.3)

Hence, according to the law of total probability, Eq. (F.2) is equivalent to
E𝑼+

𝑘

[

𝛱𝑛+𝑘(𝒙;+
𝑘 )

]

= ∫R𝑘
P
(

𝑍 ≤ 𝑎(𝒙) + 𝒃(𝒙)⊤𝑼+
𝑘 |𝑼

+
𝑘 =  +

𝑘
)

𝑓𝑼+
𝑘
( +

𝑘 )d +
𝑘 ,

= P
(

𝑍 ≤ 𝑎(𝒙) + 𝒃(𝒙)⊤𝑼+
𝑘
)

,

= P
(

𝑍 − 𝒃(𝒙)⊤𝑼+
𝑘 ≤ 𝑎(𝒙)

)

,

= P(𝑊 ≤ 𝑎(𝒙)),

(F.4)

where 𝑊 = 𝑍 − 𝒃(𝒙)⊤𝑼+
𝑘 is a Gaussian random variable, with its mean and variance expressed as

𝜇 = E
[

𝑍 − 𝒃(𝒙)⊤𝑼+] = 0 − 𝒃(𝒙)⊤𝟎 = 0, (F.5)
𝑊 𝑘
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𝜎2𝑊 = V[𝑍 − 𝒃(𝒙)⊤𝑼+
𝑘 ] = 1 + 𝒃(𝒙)⊤+

𝑘 𝒃(𝒙) = 1 +
𝑐𝑛(𝒙,+

𝑘 )
⊤(+

𝑘 )
−1

𝜎𝑛+𝑘(𝒙)
+
𝑘

(+
𝑘 )

−1𝑐𝑛(𝒙,+
𝑘 )

𝜎𝑛+𝑘(𝒙)

= 1 +
𝑐𝑛(𝒙,+

𝑘 )
⊤(+

𝑘 )
−1𝑐𝑛(𝒙,+

𝑘 )

𝜎2𝑛+𝑘(𝒙)
=

𝜎2𝑛 (𝒙)

𝜎2𝑛+𝑘(𝒙)
, (F.6)

where V[⋅] denotes the variance operator.
In this way, Eq. (F.4) is equivalent to

E𝑛
[

𝛱𝑛+𝑘(𝒙;+
𝑘 )

]

= 𝛷
(

𝑎(𝒙) − 𝜇𝑊
𝜎𝑊

)

= 𝛷
⎛

⎜

⎜

⎝

𝑎(𝒙) − 0
𝜎𝑛(𝒙)

𝜎𝑛+𝑘(𝒙)

⎞

⎟

⎟

⎠

= 𝛷
(

𝜇𝑛(𝒙) − ℎr
𝜎𝑛(𝒙)

)

= 𝜋𝑛(𝒙), (F.7)

which implies an interesting fact that in TIMSER𝑛+𝑘(+
𝑘 ), the addition of +

𝑘 has no impact on E𝑛
[

𝛱𝑛+𝑘(𝒙;+
𝑘 )

]

, but on the look-ahead
ariance 𝜎2𝑛+𝑘(𝒙) solely; see Eq. (E.2).

Substitute Eq. (F.7) into Eq. (F.1), yielding

E𝑼+
𝑘

[

𝑛+𝑘(+
𝑘 )

]

= 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝑘(𝒙

(𝑖))𝜋𝑛(𝒙(𝑖)). (F.8)

Finally, substituting Eq. (F.8) into Eq. (26) proves the analytical expression of TIMSER𝑛+𝑘(+
𝑘 ) in Eq. (28), that is,

TIMSER𝑛+𝑘(+
𝑘 ) = 𝐻𝑛 − E𝑼+

𝑘

[

𝑛+𝑘(+
𝑘 )

]

,

= 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛 (𝒙

(𝑖))𝜋𝑛(𝒙(𝑖)) − 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜎2𝑛+𝑘(𝒙

(𝑖))𝜋𝑛(𝒙(𝑖)),

= 𝑛r p
𝑛r p
∑

𝑖=1
(𝑝(𝑖))2𝜋𝑛(𝒙(𝑖))

[

𝜎2𝑛 (𝒙
(𝑖)) − 𝜎2𝑛+𝑘(𝒙

(𝑖))
]

. □

(F.9)

Data availability

Data will be made available on request.
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