Journal of Reliability

Science and

Engineering

PAPER « OPEN ACCESS You may also like
Probabilistic calibration of model parameters with :\_LLM_WMW;
approximate Bayesian quadrature and active _Him_h'ical Bavesian mocelng for
maCh | ne |earn|ng 3ngz{it?nhvsgnuagg[:atlon and reliability

Xinyu Jia, Weinan Hou and Costas
Papadimitriou

To cite this article: Pengfei Wei et al 2025 J. Reliab. Sci. Eng. 1 015003 ] ) o o

- Time-variant system reliability analysis via

stochastic process discretization and most
probable point trajectory approximation
Dequan Zhang, Hongfei Zhang, Pengfei
Zhou et al.

View the article online for updates and enhancements.

This content was downloaded from IP address 129.217.131.40 on 19/01/2026 at 14:31


https://doi.org/10.1088/3050-2454/ad9f62
/article/10.1088/3050-2454/ada036
/article/10.1088/3050-2454/ada036
/article/10.1088/3050-2454/adc580
/article/10.1088/3050-2454/adc580
/article/10.1088/3050-2454/adc580
/article/10.1088/3050-2454/adc45d
/article/10.1088/3050-2454/adc45d
/article/10.1088/3050-2454/adc45d

OPEN ACCESS

10P Publishing | ISECAEP Journal of Reliability Science and Engineering

J. Reliab. Sci. Eng. 1 (2025) 015003 (22pp) https://doi.org/10.1088/3050-2454/ad9f62

Probabilistic calibration of model
parameters with approximate Bayesian
quadrature and active machine learning

Pengfei Wei'*>*, Masaru Kitahara’, Matthias G R Faes*’ and Michael Beer>®’

! School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, People’s Republic
of China

2 Advanced Power Research Institute of Northwestern Polytechnical University, Chengdu, Sichuan,
People’s Republic of China

3 Department of Civil Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

4 Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler Strasse 5, 44227
Dortmund, Germany

5 Institute for Risk and Reliability, Leibniz University Hannover, Callinstr. 34, Hannover 30167, Germany
6 Department of Civil and Environmental Engineering, University of Liverpool, Liverpool L69 3BX,
United Kingdom

" International Joint Research Center for Resilient Infrastructure & International Joint Research Center for
Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai 200092, People’s
Republic of China

E-mail: pengfeiwei@nwpu.edu.cn

Received 21 October 2024, revised 19 November 2024
Accepted for publication 9 December 2024
Published 22 January 2025

CrossMark

Abstract

The calibration of computational models using experimental or operational data to achieve
accurate predictions is widely recognized as a crucial challenge in reliability engineering.
Bayesian model updating (BMU) has been developed as an appealing methodological
framework to achieve this goal, but existing methods range from very approximate but cheap
(e.g. Laplace approximation and conjugate priors), less approximate and a bit cheaper (e.g.
approximate Bayesian computation), to quite expensive and highly informative techniques such
as full Bayesian computation. The goal of this work is to achieve full Bayesian accuracy at a
low cost. The approximate Bayesian quadrature has emerged as a highly appealing scheme to
achieve this goal. In this work, we develop a family of new acquisition functions with
closed-form expressions to accelerate the approximate Bayesian quadrature for addressing the
BMU problem with the desired level of accuracy. The proposed method leverages information
revealed by both the mean predictions and the posterior covariance of the probabilistic
regression model trained for approximating the likelihood function. It thus provides a better
trade-off between exploration and exploitation. Results from both numerical and engineering
examples show that the proposed method is applicable to multimodel problems, achieving high
accuracy and efficiency.
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1. Introduction

Reliability assessment and design optimization based on phys-
ical models of failure have beome standard practices in reliab-
ility engineering due to the increasing complexity of products
and the high cost or even unavailability of implementing phys-
ical reliability tests. To this end, the credibility of physical
models has been of special concern for the theoretical devel-
opment of reliability methods driven by the physics of fail-
ure. However, due to the complexity of service environments
and failure mechanisms, it is difficult or even impossible to
capture all the physical details using mathematical models.
Furthermore, numerical solution of the mathematical models
may introduce extra prediction uncertainty resulting from the
numerical computation. For the above reasons, the established
computational simulators, although requiring significant com-
putational effort, may provide untrustworthy predictions. This
has motivated the development of methods to calibrate com-
putational simulators, with the proper fusion of measurements
generated from well-designed physical tests and the real-life
operation of the structure under consideration.

Several model calibration methodological frameworks
have been developed, which can generally be divided into two
groups, i.e. deterministic and non-deterministic. Deterministic
methods aim at calibrating the model parameters by min-
imizing the cost function and are realized by using effect-
ive sensitivity information computed by, e.g. adjoint methods
[1]. Deterministic methods seek to find a point estimate of
the parameters which best interprets the measurements; how-
ever, they are commonly criticized for their inability to treat
multimodal inference problems and their instability when
processing problems with measurement noise. On the other
hand, non-deterministic frameworks aim to model alternat-
ive types of root uncertainties, resulting in the representation
of a simulator’s prediction uncertainty using probabilistic or
non-probabilistic models [2]. This framework has received tre-
mendous attention in the past two decades since the milestone
work in [3]. This work focuses on the probabilistic frame-
work. Under this framework, the prediction uncertainty of
a simulator is attributed to two sources, i.e. model bias and
model parameters, and the Bayesian scheme is commonly
used for statistical inference [4]. Under this framework, the
problem can be further divided into to three subgroups [5],
i.e. bias correction only, parameters calibration only, as well
as bias correction and parameters calibration at once. In this
work, we only consider the model parameter calibration prob-
lem. For this case, if some model parameters are intrinsic-
ally random, the resulting probabilistic calibration problem is
termed ‘stochastic model updating’ and the numerical solu-
tion to the problem can be more challenging [6, 7] as it
involves several loops of numerical computation. In this study,

we follow the approach commonly used in most probabilistic
model updating literature [8, 9] and treat the model parameters
as deterministic-but-unknown variables with their epistemic
uncertainty described by a subjective probability model.

Methods for probabilistic parameter calibration, also called
Bayesian model updating (BMU), have been studied extens-
ively over the past two decades, and the available meth-
ods can be categorized into four groups. The first group
is ‘Markov chain Monte Carlo (MCMC) sampling” [10],
which uses the discrete Markov chain to sequentially approach
the posterior density of the model parameters. Following
the classical Metropolis—Hastings (MH) sampler [10], many
improved MCMC algorithms, such as the transitional MCMC
[11, 12], the Hamiltonian Monte Carlo [13], the random-then-
optimize scheme [14] and the covariance-based MCMC [9],
were developed to improve performance for specific types
of challenging BMU problems. Generally, MCMC sampling
schemes are computationally demanding for expensive-to-
evaluate simulators as each state requires at least one call of
the simulator, and can be less effective for multimodal prob-
lems due to the low probability of transferring from one region
to another disconnected and distant region.

The second group consists of methods based on Bayesian
filter algorithms, which were originally developed for prob-
abilistic prediction and updating of the state of a physical
system, and rely on state-space models. This group of meth-
ods includes Kalman filters (including its advanced versions),
particle filters, quadrature filters and functional Bayesian fil-
ter. One can refer to [15] for a review of selected Bayesian
filter algorithms. These algorithms have also been preliminar-
ily extended to the BMU problem. For example, the unscen-
ted Kalman filter [16] and the particle filter [17] have both
been extended for BMU with reasonable modifications and
improvements. Overall, the Bayesian filter algorithms are flex-
ible as they can sequentially fuse the measurements batch by
batch, but the high computational cost and lower suitability for
multimodal problems needs to be alleviated.

The third group of methods is usually named Bayesian
updating with structural reliability (BUS) and originate
from [18]. The basic idea is to reformulate the BMU prob-
lem as a structural reliability analysis problem, thus enabling
it to be solved using extensive well-developed structural reli-
ability methods, such as sampling (e.g. subset simulation and
line sampling) and moment-based methods (first-order and
second-order reliability methods). It should be noted that the
equivalent reliability problems usually have highly nonlinear
or even ill-behaved features, and the associated probability of
failure can be extremely small given the many observations.
Moreover, one factor, denoted as «, needs to be determined
as a prior for reliability analysis, which is non-trivial [19].
To alleviate extra challenges, many active learning schemes
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based on neural networks or Gaussian process (GP) regression
have been combined with the BUS scheme, see e.g. [19-21].
Despite the above improvements, the performance of tackling
multimodal problems still needs to be improved.

The last group, which has received attention in the com-
munity of machine learning, is called Bayesian quadrature,
which was originally developed for estimating multidimen-
sional integral equations [22]. This scheme has been exten-
ded to estimate the ‘evidence’ term, defined by the integral of
the likelihood over prior density and then also the posterior
density with the resultant surrogate. Two key issues need to be
addressed. The first concerns the approximation of the like-
lihood with a probabilistic regression model to capture the
prediction uncertainty [23], while the second aims at devising
acquisition functions to acquire a faster convergence rate [24].
For the latter issue, most of the current developments are based
on modification of the uncertainty sampling (US) acquisition
function, which does not make full use of the information of
the probabilistic regression model for approximating the like-
lihood. However, these methods have been shown to be super-
ior for addressing multimodal problems in terms of both accur-
acy and efficiency, owing to the flexibility and interpretabil-
ity of the GP regression model. It should be noted that there
are also other developments which cannot be attributed to the
above four groups, such as the transport map theory [25], but
we do not provide more detail as it is not the focus of this work.

Following the technical road-map of Bayesian quadrat-
ure, this work introduces a new family of acquisition func-
tions to offer greater flexibility in balancing exploration and
exploitation. This is realized by approximating a proxy func-
tion, defined by the square root of the likelihood, with a GP
model and then formulating the acquisition function by lever-
aging both posterior mean and covariance information from
the GP model. A closed-form expression of the new acquis-
ition function is also presented, allowing for efficient and
effective querying for the active learning process. Results of
the benchmark studies show that the proposed method is effi-
cient in terms of both the number of model calls and the com-
puter time and is applicable for inferring multimodal posterior
density, which is challenging but common in BMU.

The remainder of the paper is organized as follows.
Section 2 briefly reviews some of the research, including the
formulation of the BMU problem and the exact Bayesian
quadrature for the active learning of multidimensional integ-
rals. Section 3 presents the main developments in this work,
including the approximate Bayesian quadrature scheme, the
new acquisition function, the closed-form expressions and the
details of the algorithm, followed by benchmark studies in
section 4. Section 5 concludes this work.

2. Theoretical foundations

2.1 BMU

Let us denote by M (x, ) the response function of the compu-
tational model, where x = (x1,x2,. .. ,xn)T € X C R” denotes
the n-dimensional controllable input variables, which may

include, e.g., spatial variables, time variable and excitation.
0 =(61,6,,.. .,9(1)—r € T C RY indicates the d-dimensional
deterministic-but-unknown model parameters to be calibrated,

which may include initial/boundary conditions, physical para-
(k)

meters, etc. Further, denote by y,

a set of experimental meas-

k) ¢
X e TESPECE-

Nobs- Denote the experimental obser-

urements observed at a sequence of locations x
ively, with k=1,2,.
vation data as a set Dobs ={(x (()b)s, y(()ﬁ)s) Mo Neglecting the

model bias of M, the relationship between each observation

(k)

Yops and the model response can be formulated as:

8 = M (x2,6) +¢ (x2).
(k)

where e(xobs) is the measurement noise, which can be
described by a stochastic process defined on X. In most pub-
lications, this stochastic process is assumed to be Gaussian
white noise, i.e. € (x) = € ~ N (0,02), with o2 being the vari-
ance of noise. The goal of model parameter calibration is then
to infer the true value or a probability distribution of 8 given
the observations D,y and, perhaps, also a pre-specified prior
probability distribution of 8. One notes that, when considering
the model bias, denoted as §(x), both the deterministic-but-
unknown parameters and the model bias need to be modeled
using probabilistic frameworks. This requires methods for
joint updating of these two types of probabilistic models. This
can be more challenging and will not be treated in this work.

This problem can be formulated as either under a determin-
istic framework solved with optimization algorithms or a prob-
abilistic framework known as BMU, or specifically Bayesian
updating of model parameters, as the model bias is neglected.
It is known that deterministic methods commonly lead to mis-
leading deterministic results as the problems are commonly
indefinite and an infinite alternative possible values of 8 may
exist to fit the observations. The probabilistic framework for-
mulated with the Bayesian rule then turns out to be a compat-
ible way to treat such kind of paradox. Given the assumption
of the Gaussian white noise of ¢, the likelihood function of the
observations Dy can be formulated as:

( +% 9
obs?

ey

Nobs

obs‘e H¢ (yobs ) |U;%)a

where ¢ ( |05) refers to the density function of the Gaussian
distribution with zero mean and variance aﬁ. Then, given a
prior density 6 as p (6), the posterior density of 8 is expressed
as:

2

P(0[Dobs) =Z" "p(Dors|0) p (),

following the classical Bayesian rule, where the normalizing
constant Z is defined by the following d-dimensional integral:

3

z- / P (Dos|0)p (6) 6, “)

and is termed as ‘model evidence’, or simply as ‘evidence’,
as its value measures the strength of evidence of the model
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after being calibrated. The numerical analysis task for BMU
can then be simply described as estimating the posterior dens-
ity p(6|Dgps), which is generally impossible to solve ana-
Iytically unless the prior and posterior are a pair of conjug-
ate distributions. Moreover, due to the necessity of simulating
multiphysical and/or multiscale processes, the computational
cost for each call of the simulator M (x,8), and then also the
likelihood function p (Dgps|@), can be extremely expensive.
Therefore, estimating p (6| Dops ) with the desired accuracy and
as few simulator calls as possible has long been a ersistent and
important topic. Multiple branches of algorithms have been
developed for this numerical task, which include sampling
methods [8], transport map theory [25], Bayesian quadrature
[26] and structural reliability method [18], as reviewed in the
introduction. Bayesian quadrature will be used in this work
due to its simplicity and potential for addressing our current
challenges. An approximate version of Bayesian quadrature
will be developed, but in what follows we briefly review the
exact version and also its active learning scheme.

2.2. Exact Bayesian quadrature and active learning

We consider the estimation of a general d-dimensional integ-
ral:

Z=T1,[g] = / ¢(6)p(68)do, 5)

as an example, to review the basic rationale of Bayesian quad-
rature, where g (0) is an expensive-to-evaluate integrand and
IT,[-] = [;-p(8)dO denotes the integral operator over p(8).

Following the classical polynomial quadrature, the Bayesian
M

quadrature rule also consists of a set of nodes @ = [0(1)}
=1

(an M x d-dimensional matrix) and weights W = [w(l)] -1
(an M-dimensional column vector) and is presented as Z =
Z?il yOw® | with yO = g(8"). However, before the integ-
rand is computed, we may have no prior information on its
behavior or we may know some information, such as the
smoothness of the integrand. The Bayesian quadrature is then
initialized by assuming a prior GP model for g, then inferring
a posterior GP model for approximating the integrand condi-
tioned on the quadrature nodes S = {(8Y) 7)1(/'))})14”:1 and ulti-
mately deducing a posterior probability distribution for the
integral Z. This posterior probability distribution provides a
mean prediction for Z and also a posterior variance or confid-
ence interval for summarizing the prediction uncertainty res-
ulting from the prediction uncertainty of the GP model. Thus,
we first briefly review the content of the GP model.

The prior GP model of g is assumed to be g(0) ~
GP (m(6),x(0,8")), where m () is the prior mean function
which can be assumed to be zero, constant or polynomial and
K (0,0’) is the prior covariance function which is assumed
to be a positive-definite kernel function and reflects the prior
information on the smoothness of the integrand. For example,
a functional Hilbert space equipped with the commonly used
squared exponential kernel is composed of nearly all possible
smooth functions, while the Matérn kernel defines a Hilbert
space consisting of functions with their derivatives up to a

given order, which is also called Sobolev space [27] and is suit-
able for extrapolating less smooth functions. A Hilbert space
equipped with a positive definite kernel x(-,-) is called repro-
ducing kernel Hilbert space (RKHS) and is denoted as H. In
this work, we use the squared exponential kernel defined as:

d

0 9/ _ 2 (91‘_9[/)2 6
r(6,0") =ogexp _;T‘iz ; (6)
where 0} and {aiz};l:l are the variance and scale correla-
tion hyperparameters, respectively. It should be noted that,
due to the infinite number of available derivatives, the util-
ization of a squared exponential kernel tends to underestim-
ate the prediction variance. Based on the above prior assump-
tion, it is known that the column vector Y = [y(!] ?il follows
an M-dimensional Gaussian distribution, by maximizing the
joint density (the likelihood) of which, the hyperparameters
for defining m and x can be estimated. Then, by conditioning
on the training nodes S = {(8Y), yU )}, the posterior GP
model gy (8) ~ GP (1gm(0),com (0,8")) can be inferred
with the posterior mean fi, 3 and covariance cg y being for-
mulated as:

g (0) =m(0) +5(0,0) K~ (Y —m(O))
con (0,0') =1(0,0") —1(6,0)K ' (0,0"),

(Ta)
(7b)

where (6,0) is an M-dimensional row vector with its Ith
element being (6,0 and K is the M x M-dimensional
Gram matrix with its (k, /)th element being Cy; = /1(0(]‘) , 0(1)).
Intuitively, the posterior mean i, 5 presents a mean prediction
and the posterior variance 0; v (0) = com(0,0) summarizes
the prediction uncertainty.

Replacing the integrand g in equation (5) with the GP gy
yields [22, 28]:

g =1L, [in] = / 2(6)p(8) d. ®)

It is then trivial to conclude that Z is a Gaussian random vari-
able, denoted as ZM ~N ([LZM, 0%7 M) , resulting from the fact
that the linear projection of GP onto a deterministic function is
Gaussian. The posterior mean piz 5 and variance 0%7  are then
formulated as [29]:

pzm =11, [pg m (0)] =11, [m (0)]

+I1,[5(0,0)| K™ (Y —=m(@))  (%a)
oy =11,11 [cor (0,0")] =T1,11, [£(6,60")]
~1I,[k(6,0) K11, [k (©,0")] (9b)

where II)[]= [;-p(0')d0" and II,II[]= [} [;-p(6')
p(0)d6’'de. Similarly, the posterior mean pizy provides a
mean prediction of the integral Z, while the posterior vari-
ance O’%M summarizes the prediction uncertainty. It has
been shown repeatedly that while the integrand is within
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the RKHS equipped with the kernel x, the posterior vari-
ance exactly equals the square of the worst-case error [30],
ie. 07y = (supy. < |1, [8] — 1z ml)?, where ||-[|y refers to
the norm operator defined in the RKHS H. Thus, the posterior
variance provides a reasonable quantification of the prediction
uncertainty of pz . Further, the guarantee of convergence
of this quadrature rule for any integrand in H has also been
repeatedly proven for both random and adaptive design of
quadrature points [31, 32]. Due to the richness of the RKHS,
these theoretical results present sufficient confidence to extract
the potential of using Bayesian quadrature for solving BMU
problems and beyond, by simply addressing the numerical
error with the posterior variance 02 M

Furthermore, by the assumption of a zero prior mean
m(0) = 0, the posterior mean quadrature rule of equation (9a)
can be written in a classical quadrature form as puzy =
S wy(D with the weight vector being computed by
WT =11,k (0,0)] K. By further assumption of the ker-
nel form, nearly all the classical quadrature rules, such as the
Monte Carlo quadrature rule [24] and the many Gauss quadrat-
ure rules [33], can be recovered from this posterior mean rule
and thus Bayesian quadrature can be seen as a general exten-
sion of these classical rules. Another appealing feature beyond
this is that, benefiting from the probabilistic description of the
quadrature rule, the quadrature nodes can be obtained follow-
ing an adaptive design scheme, instead of the traditional ran-
dom or deterministic designs without considering the behavior
of the integrand. This adaptive scheme provides great potential
for accelerating the convergence.

An adaptive design scheme, so-called active learning, is
usually driven by an acquisition function which measures the
reward of a design. Two popular acquisition functions are
the US function [24] and the posterior variance contribution
(PVC) function [29] which are formulated as:

Aus (8) =03 4, (8)p* (), (10)
and
Arve (6) =11, [ce (6.6")]p(6) = (117 [1(8,6")]
-k(0,0)K7 ', [x(©,0")])p(6), (11)

respectively. The US function is indeed the prediction uncer-
tainty (weighted by the squared density) of the GP model.
Since the prediction uncertainty of Zy; is uniquely governed by
the prediction uncertainty of gy, it is expected that by adding
the point with the highest US function value as quadrature
node, the prediction uncertainty of the GP model, and thus
of the quadrature, can be reduced to a large extent. The PVC
function presents a more appealing mathematical interpreta-
tion and also performance. It is noted that the PVC function,
on the one hand, is the integral of the posterior covariance of
the GP model at the location 8 over the whole support T and,
on the other hand, measures the contribution of the prediction
uncertainty of the GP model at 8 to the prediction uncertainty
of the quadrature, by noting that [, Apyc (6)d6 = 0%7 w- Thus,
it is expected that by adding the peak point of the PVC func-
tion as a new quadrature point, the prediction uncertainty of the

quadrature is reduced by the highest amount. As PVC lever-
ages the posterior covariance information of the GP model
[29], it is shown to be more effective than the US in most cases.

Due to the multimodal behavior of the US and PVC func-
tions, heuristic algorithms such as particle swarm optimization
and genetic algorithms are commonly suggested for search-
ing their global peak points, which brings the requirement
that the acquisition function can be computed with trivial
cost and admits closed-form expressions. For the US function,
the closed-form expression is trivial, but for the PVC func-
tion, closed-form expressions are required for I1) [ (6,0")]
and II) [n (@,0')]. This is also necessary for closed-form
expressions of the posterior mean and variance of the quad-
rature. Fortunately, this is available given the squared expo-
nential kernel and the Gaussian form of p (@). Assuming that
p(0) is of standard Gaussian form with zero mean and unit
variance, the closed-form expressions for the kernel means
II,[x(8,0)],11, [/@ (0,9/)] and 11,11} [n (0,0/)] are repor-
ted in appendix A (see also [22, 28, 29] for theoretical deduc-
tion). The PVC function has recently been applied for address-
ing the BMU problem by combining it with a transitional
scheme [34], a sampling scheme [35] and the classical vari-
ational Bayesian inference [36]. The aim of this work is to
introduce an alternative, yet simpler, approximate Bayesian
quadrature strategy for BMU and then develop a generaliza-
tion of the PVC function, thereby enabling higher flexibility
in balancing the exploration and exploitation of the algorithm.

3. The proposed method

It has been widely recognized that, see e.g. [23, 26, 31], the
exact Bayesian quadrature rule reviewed in the last section
may cause large numerical bias if it is directly used for estim-
ating the evidence in equation (4). This is due to the fact that
the integrand in equation (4), which is exactly the likelihood
function p (D|0), is non-negative and its range of values may
cover several orders of magnitude, resulting in large bias if the
GP model is directly used for approximating the integrand.
Several approximate tricks have been developed to accom-
modate this conflict, resulting in several approximate Bayesian
quadrature schemes. One notes that, by saying ‘approximate
Bayesian quadrature’, we mean that the quadrature rules are
not exact and require an approximate description of the pos-
terior distribution of the answer. One should not confuse it
with the concept ‘approximate Bayesian computation (ABC)’
in Bayesian updating. These tricks include, e.g. approximating
the logarithm of the likelihood with GP [23] and approximat-
ing the square root of the likelihood with GP [26]. A function
being approximated by a GP model in this context is called
a ‘proxy function’. With these treatments, linear approxima-
tion and moment-matching schemes have been developed for
approximating the posterior features of the likelihood and, fur-
ther, those of the quadrature. Our development is motivated by
the scheme of approximating the square root of the likelihood
function presented in [26] and thus in what follows we present
an introduction to this trick and also some further mathemat-
ical developments for extending it.
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3.1 Approximate Bayesian quadrature: basic rationale

Instead of approximating the likelihood p(Doys|€) with a
GP, [26] proposed to approximate the proxy function defined
as the square root g(0) = /2(p(Dops|@) — ) with a GP
such that p (Dys|0) = o +0.5g% (0), where « is a small pos-
itive scalar, suggested to evolve with the training sample as
a=0.8 min0</>E@p(D0bs|0(1)). This transform has the bene-
fit of halving the variation range of the function, which can
be more suitable to be approximated by a GP. Then, by
approximating the proxy function g (6) with the GP g, (0) ~
GP (g m(0),com(0,0)), the induced stochastic process
Pu (Dovs|0) = a+0.5g3,(0) follows a non-central x* with
one degree of freedom, whose exact posterior mean and cov-
ariance do not admit closed-form expressions. Two tricks,
e.g. linearization and moment matching, have been developed
for deducing approximate but closed-form expressions for
these posterior features [26]. In this work, the linearization
trick is utilized and introduced below.

By linearizing p(Dobs|0) = a+0.5g> (@) at the mean
the,m (6) with Taylor series, one obtains:

P (Dobs|8) 2= v+ 0.5715 1y (8) + 116, (0) (8(8) — 11, (8)).
12)

Following this linearization, the likelihood p(Dobs|€)
can be approximated with a GP model pL (Dops|6) ~
GP (154 ()¢5 (0,0")), where the superscript ‘L’ refers
to ‘linearization’. Based on equation (12), the posterior mean

L : L : .
W, v and covariance ¢, are then derived as:

1154 (8) = a+0.5122 ,,(6) (13a)

511 (0,0") =t (0) cor (0.0") g1 (6') . (13b)

It is clear that the above linearization trick enables approx-
imating the likelihood with a GP model whose posterior mean
and covariance admits closed-form expressions. Then, based
on the Bayesian quadrature rule described by the first equalit-
ies of equations (9a) and (90), the posterior mean and variance
of the model evidence Z can be obtained as:

pizm =y [11p, (6)]
= a+0.511, (15 4 (0)]
—a+05)22 " +1,| YK k(©,02%)
xk(0,-O 22 +41,)| K'Y (14)

=110, [cf (6.6")] = T1T, 11,11 (8) s (8,8 g (6)]

Tt k(@,035) x k ($2,-22 22 +41,+ %) »
=cYy Xn(u_]v“:(ZE«‘rlﬂd)_lJr(%z)_]]_l“rla{) Y

—1
—’22*1+Id‘ Yk 'k 'ax 'y,

respectively, where ¢ is a constant computed by c=

_ - —-1/2
227" +1, 1/2’(22:+4Id)’1+(§2) 1+Id’ R S

diag {0},03,...,03} is a d-dimensional diagonal matrix with
its ith element being the scale-length parameter of the ith
dimension and u, v as well as €2 are all matrices of dimension
d % d, which are computed by:

1 —17 !
u= %(%z) @(2z:+41d)—‘} (22+41d)—‘+(§z)
(16a)
20 (2. \ ! o2 0N\
y=—"-(2X% 22X +41,) + (=X (16b)
3 \3 3
N=r(0,02%) xk(O,-O2% +41,). (16¢)

In equations (15) and (16), the notation « (-,-|X*) is used
and it is defined as the squared kernel governed by the weight
matrix X*, and thus, e.g. for u and v, the resultant covariance
matrix is computed by:

K (u,v|2*) = afexp <—; w—v) " (u —v)) . an

The above closed-form expressions, adapted from the sup-
plementary material of [37], are applicable for the case with a
Gaussian prior and a squared exponential kernel. The details
of the mathematical deductions of these expressions are also
reported in appendix B. Although these closed-form expres-
sions appear to be complex, when used correctly, they make
the algorithm numerically efficient and robust. Unfortunately,
for most of the other pairs of kernels and prior densities,
e.g. the Matérn kernel, the closed-form expressions are intract-
able and one should resort to numerical methods, e.g. Monte
Carlo simulation, for estimating these quantities.

3.2. Generalized PVC (GPVC) function for active learning

Based on the linearization trick and posterior covariance
expressed by equation (13b), the PVC function for active
learning of evidence can then be formulated as:
Abvc (8) = pu (0)p(0), (18)

where py (0) is a quantity of the same order with the posterior
variance pi; (Dops|@) and is defined by integrating the posterior
covariance c5y, (6,8") over the whole support of 8, i.e.
pu (0) =11, [cy ) (6,6")] . (19)

Compared with the posterior variance cﬁ 1(0,0), py (0) can
also be interpreted as a ‘variance’, but since it integrates
the spatial correlation information of the posterior GP model
P45 (Dobs|0), it conveys richer information than cﬁM (6,0).
It measures the contribution of the prediction uncertainty of

P4 (Dobs|@) at an arbitrary location @ to the prediction uncer-
tainty of the model evidence Z. It is thus expected to achieve
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the highest reduction in prediction uncertainty of Z by includ-
ing the location with the highest PVC value. The closed-form
expression of py (6) can be generated for squared kernel and
Gaussian prior density as:

pu(0) =bY K~ [k(0, -0 2% +41,)

xn(e ?,g ‘iz) X n(@,@|32)} K=y

—bY'K'[k(©,0)xk(0,0)|K ' [x(0,02%)
xk(0,—02% 4+ 41,)| K1Y, (20)

where b is a constant computed by b = |2§3_1 + Id‘ 71/2. One
can refer to appendix C for the mathematical details of dedu-
cing equation (20).

Despite the above appealing advantage, the PVC function
can be further improved by making a better trade-off between
exploration and exploitation, and this can be realized by prop-
erly incorporating the information reflected by the posterior
mean uﬁM (8). To achieve this, following the basic idea of
devising the generalized the US (GUS) function presented in
[38], a family of GPVC functions are proposed as:

AGpve (0) = p3; (0)p” (9)exp (viy (), (21)
with «, 3,7 > 0, where the extra term exp (’yuﬁM (0)) is
introduced to make a trade-off between exploration and
exploitation. For all Bayesian numerical methods, which also
includes Bayesian optimization [39, 40] and Bayesian reli-
ability analysis [41], the performance of an acquisition func-
tion in balancing the exploration and exploitation significantly
influences the performance of the convergence speed, where
‘exploration’ means the ability to explore the regions with high
uncertainty (measured by py, (0)) and ‘exploitation’ refers to
the ability of exploiting the regions with high posterior prob-
ability. Thus, with the definition of equation (21), the values
of « and ~ provide flexibility for balancing exploration and
exploitation. Given fixed values of 3 and 7, increasing o will
result in more focus on exploration, which is desired when the
number of quadrature points becomes larger. Thus, it is also
suggested to specify « as iteration-dependent. Specifically,
given 3,7 =1, « can be set as «(M)=max (1,In(M)) or
o (M) =+/M. 1t is noted that setting o, 3 =1 and =0 res-
ults in the classical PVC function defined by equation (18). As
a case study, the effects of the options on the three paramet-
ers «, 3 and ~y are investigated in this work. In these invest-
igations, the particle swarm algorithm is utilized to search for
global optima of the acquisition functions. Tto ensure numer-
ical stability, the target function is set as the logarithm of the
acquisition functions, in case the values of an acquisition func-
tion cover several orders of magnitude. This means searching
the location x™ of the next training point by maximizing the
following acquisition function:

InAGpyc (8) = alnpy (8) + Blnp (0) + '7/~L[§,M 0). (22
For standard Gaussian prior, Inp (8) cc —6' /2. Then, by
substituting equations (14) and (20) into equation (22), one

can obtain the closed-form expression of In A&pyc (0), allow-
ing for efficient optimization with any heuristic optimiza-
tion algorithm. In this work, the particle swarm algorithm is
utilized.

For non-Gaussian but explicit prior density, the Rosenblatt
transformation can be utilized to transfer the formulation of
the evidence as an integral over the standard Gaussian dens-
ity. Denote by P(0) and Py (0;,;) the joint cumulative dis-
tribution functions (CDFs) of 8 and 6., respectively, with
0., = (91,92,...,9i)T. Let ® (¢;) be the univariate CDF of
a standard Gaussian variable ¢J;. The ith component R; (6) of
the Rosenblatt transformation, denoted as ¢ = R (8), is for-
mulated as [42]:

R (0) = (I)il [Pill:i—l (0i|011i—1)] ; (23)
where Pih”_l (9,~|61;,-,1) =Py, (01:,‘) /Pl:ifl (01;,',1) refers to
the CDF of 6; conditional on the former i — 1 parameters
0,.;_1. Owing to the reversibility, the inverse Rosenblatt trans-
formation can be formulated as:

0=R""(9). (24)
Substituting equation (24) into equation (4) yields:
Z= /p (Dons| R (89)) ¢ (9) d0, (25)
T

where ¢ (1) refers to the density of standard Gaussian vector
9. Solving equation (25) with the developed adaptive Bayesian
quadrature, a posterior density of 9 can be formulated as:

q(9|Dobs) =p (Dobs‘,R_l (19)> ¢ (9) (26)

and is approximated by a GP model with prediction uncer-
tainty refined to desired accuracy. Then, the posterior density
P (0]Dops) can be ultimately formulated as:

P(0|Dobs) = q (R (0) [Dops) - (27)
To summarize, first we need to apply the inverse Rosenblatt
transformation to estimate the evidence Z and the posterior
density ¢ (9| Dops ), with desired accuracy, by solving the integ-
ral of equation (25) using the standard Bayesian quadrature
scheme and then apply the forward Rosenblatt transformation
using equation (27) to obtain a probabilistic estimate for the
targeted posterior density p (6| Dops)-

3.3. Summary of the algorithm

Based on the developments above, the pseudocode of the
adaptive Bayesian quadrature with GPVC as an acquisition
function is then summarized in algorithm 1. The inputs to
the algorithm include the prior density p(8), the likelihood
function p (Dops|@), the initial training sample size M, and
the stopping threshold €. M can be set as 615, depending
on the dimension of 6, and the initial samples can be gener-
ated by, e.g., Latin-hypercube sampling. The threshold € can
be determined based on the users’ tolerance to numerical error
and, generally, it is suggested to be 2%—-5%. The outputs of
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Algorithm 1. Adaptive Bayesian quadrature with GPVC as an acquisition function.

Input: p (0), p (Dobs|0), Mo, €.
Output: i 4 (6), ¢ 1 (0,0), iz, 0741, M

LN M
1 Generate initial training sample data S = { (0”) , y“)) }

of size My, using, e.g. Latin-hypercube
j=1

sampling, where y = \/2 (p (Dobs\e(j)) — a);

2 while 1 == 1do
3 | Train a GP model gy (@) based on S;

4 | Induce the posteriro mean M,f, v (0) and covariance c

equations (13a) and (13b) respectively;

5

6

7 | if COVzy < € then
8 | break while;
9

0

1

v (6,87) of the GP model p (D | 8) with

Compute posterior mean jiz,» and variance O’%Y wu of evidence based on equations (14) and (15);
Evaluate the coefficient of variation COVzy = ozm/ iz,m;

else
1 Infer the GPVC function A&pyc (0) by equation (21);
1 Calculate the next training sample 8 by maximizing equation (22) using, e.g. particle swarm
algorithm;
12 Evaluate the likelihood function p (Dops | 07) at 67
13 Compute y© =g (67) \/2 Dobs|07) — av);
14 Add the training sample { (07, *) } to the training data set S, and let M = M + 1;
15 | end

16 end

the algorithm then include a posterior Gaussian distribution
with mean 17y and variance a% u for the evidence term Z,
a posterior GP model p (0|Dob5) with explicit posterior mean
115 (0) and variance c5,(6,0), and the total number M of
simulator calls. For practlcal implementation, it is suggested
to use the delayed stopping judging strategy; that is to break
the algorithm when the stopping condition is satisfied multiple
times (e.g. two times) in succession. This will help to avoid
false convergence when may appear in the early training stage.

4. Case studies

In this section, we use one numerical example without physical
meaning and two engineering examples with physical back-
grounds to illustrate the proposed method and to prove the
superiority of the proposed GPVC function over the GUS
function. For fairness, we set five cases for both acquisition
functions with different values for the three parameters «, (5
and -, see table 1 for details. The three parameters have dis-
tinct effects on the performance of the algorithm. A higher
value of « tends to place more emphasis on exploration, while
alarge value of -y leads to more emphasis on exploitation and a
large value of 3 leads to a preference for exploring areas with
large values of prior density. At the current stage, it is still
impossible for us to make theoretical and quantitative conclu-
sions about their exact effect on the convergence rate. Based
on our vast numerical investigation, « is suggested to be higher
than 0.5 and can also increase with the sample size; 3 can be
set to a value between 0.5 and 2; and ~ should be less than 2.
Some of the five settings in table 1 are borrowed from good
practice of using the GUS acquisition functions (see e.g. [26,

Table 1. Settings of parameters for the two acquisition functions
used in the case studies.

Case ID a I3 0%
Case 1 1 1 0
Case 2 1 2 0
Case 3 1 1 1
Case 4 VM 1 1
Case 5 In (M) 1 1

31, 38]). Moreover, to avoid fake convergence, the algorithm
is only stopped when the stopping condition COVz < AV
is satisfied for two successive iterations, where the threshold
ACOV s set to be 2% for all cases.

4.1. A numerical illustrative example

For illustration and comparison, we consider a computational
model expressed as:

M (6,x) = 0, sin (62x), (28)
where 6; and 60, are two model parameters to be cal-
ibrated, whose true values are 1 and 0.2 respectively,
and x is the controllable input. It is assumed that at
five locations, xqs = (—0.5,1,0,0.6,0.5), measurement
is conducted and the corresponding values are yops =
(0.0077,0.5654, —0.4518, 0.2921, 0.3593). The measure-
ment noise is assumed to be white noise with the standard
deviation (STD) being 0.2. Thus, the likelihood function is

defined s p(Dowl0) = [Ti—y @ (x5, — M (8,49)022),
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Table 2. Results for the first test example.

Case Setting Method Means COVs M
Casel  a=1.B=13=0  Gpic 00747 00185 $33
Case2  a=1.8=27=1  Ghuc 00761 00185 1081
Cased  a=1B=LY=1  Gpyc 00769 00188 916
Case 4 a=VM,=1,v=1 8E\SZC (0)8;2491 8812(7) ;29-9
Cases  a=log(M). 3=17=1 Gove 00759 00182 833
Reference MCS 0.0801 0.0098 5 x 10*

where ¢ ( \0.22) refers to the Gaussian density with zero
mean and variance 0.2, and ‘-’ means the argument. The
prior density of @ is assumed to be standard Gaussian.

The Bayesian quadrature is implemented with GPVC and
GUS as acquisition functions for each case, and, for compar-
ison fairness, the algorithm with either acquisition function
is implemented repeatedly 10 times and the average results
for the evidence Z are then reported in table 2. The reference
value of Z is estimated by MCS using 5 x 10* samples and it
is 0.0801 with the corresponding COV being 0.0098, and thus
sufficiently accurate. It can be seen that, with either GPVC or
GUS under any of the five cases, the evidence suggests that
Z is accurately estimated as all the mean estimates are very
close to the reference results and the posterior COVs of all
estimates are less than 2%. This demonstrates the high accur-
acy of the Bayesian quadrature for estimating the evidence. It
is also shown that from the last column of table 2, for all five
cases, the algorithms require far fewer simulator calls on aver-
age. The distribution of the number of simulator calls across
the 10 replications is then reported in figure 1. It is obvious
that the algorithm with GPVC requires fewer simulator calls
on average, and the dispersion is obviously smaller than that
required by GUS. To further illustrate the convergence pro-
cess of the algorithm, the evolution of the confidence inter-
val of Z generated with GPVC and GUS under case 3 is com-
pared in figure 2. It is shown again that to reach the same level
of numerical accuracy, the GPVC function requires a smaller
number of model calls and it is also empirically shown that
the GPVC function has a higher convergence rate. It is shown
again that the proposed GPVC function results in faster con-
vergence than the GUS function.

From table 2, it is shown again that, given the same level
of error tolerance, the proposed GPVC under parameter set-
tings of case 1, case 4 and case 5 requires the least simulator
calls. Compared with GUS acquisition functions, the proposed
GPVC function under the setting of any cases is more efficient
than the classical GUS functions.

We then discuss the results for the posterior density
p(01,6,|D), which are generated under the setting of case 3
and are reported in figure 3. The true posterior density is also
shown in the upper left panel for illustrating the accuracy and

the posterior samples generated with the TMCMC are repor-
ted in the upper right panel for comparison. The results gen-
erated under setting 3 with GPVC and GUS as acquisition
functions are shown in the two lower panels. It is shown that
the true posterior density displays a bimodal feature, which is
caused by the non-monotonic behavior of the model response
with respect to the model parameters. This is on purpose as
it demonstrates the ability of the proposed method to capture
the multimodal feature. It is shown that, although the posterior
density shows multimodal behavior, both GUS and GPVC
produce accurate estimates of it, and the samples produced
by TMCMC match well with the reference density. The abso-
lute errors and the posterior STDs of the estimates reported in
figure 3 are then shown in figure 4. As can be seen, even for
the posterior density, both types of errors are sufficient, prov-
ing the high robustness of the estimates. It is also shown in
figure 3 that the probability density covers the true values of
0, and 6,, which are 1 and 0.2, respectively, with high prob-
ability. The uncertainty related to the posterior distribution is
caused by the measurement noise and the multimodal behavior
of the model functions, which are both properly accommod-
ated by the posterior distribution. In terms of computational
cost, the classical TMCMC commonly requires at least sev-
eral thousands of simulator calls. Comparably, the Bayesian
quadrature with either GUS and GPVC requires approxim-
ately 100 simulator calls, which is significantly smaller than
that of TMCMC. Thus, these results sufficiently demonstrate
the high efficiency and accuracy of the proposed method in
estimating both the evidence and the posterior density.

4.2. A two degrees of freedom structural dynamic model

A dynamic model of a two-storied shear building modified
from [43] is then adopted and is schematically shown in
figure 5. The masses of the first and seconds floor are given as
m; = 16531 kgand m, = 16 131 kg, respectively. The value of
stiffness of the interstory is assumed to be deterministic-but-
unknown and depends on two dimensionless parameters 6
and 0, i.e. k; = 01k and k, = 0k, withk =29.7 x 10° Nm~".
The problem is then formulated as an update of the density
of the two deterministic-but-unknown parameters 6 = (6;,6,),
given the measurements of the natural frequencies of the two
floors. The prior distributions of #; and 6, are assumed to be
log normal, i.e. §; ~ LN(1.3,1) and 6, ~ LN (0.8, 1), respect-
ively, and their joint prior density is denoted by p(6). The
values of the frequencies are measured to be ( Jobs, 15 fobs,z)T =
(3.13,9.83). By integrating the prior information and meas-
urements, the posterior PDF of parameters 6 is formulated as

p(0]Y) xexp[~J(0)]p(6), 29)
where the term J(6) denotes function of the fitness between
the measurements and the analytical values, and is expressed
as

2 2
o l fanaj _fost:| 7 (30)

J(e) T2 jZl [ fostUR
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Figure 1. Distribution of the number of simulator calls for all cases of the first example across 10 replications.
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Figure 2. Evolution of posterior confidence intervals of Z with respect to the iteration for case 3 of example 1.
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Figure 3. Comparison of results for posterior density of the first example, where PVC and VUS are used under setting of case 3. The
corresponding numbers of simulator calls are Npyc = 104 and Nyys = 114.
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Figure 4. Results of PVC for case 3 (Npyc = 104, Nyus = 114).
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Figure 5. A two-storied shear building model.

with og = 1/16 representing the STD of the measurement
noise. The two natural frequencies are calculated from the
dynamic model as:

1 kimy + komy + komy — ¢
fana,l = 7
us

2m1m2 (31)

)

1 kymy + komy + komy + ¢
f;ana,Z - 5
2 2mymy

where

c= \/k%m% — 2kikomymy + 2k1k2m§ + k%m% + 2k§m1m2 + k%m%
(32)

Under the above setting, we use the proposed method to
numerically infer the posterior density of 6.

Similarly, the algorithm is implemented with both GPVC
and GUS under five cases of parameter setting. For each set-
ting, the algorithm is repeated 10 times and the results for pos-
terior means and COVs of Z as well as the average number of
model calls are reported in table 3. The reference results are
also computed using MCS with 5 x 10* samples and the cor-
responding COV is 1.57%. Again, it is found that the algorithm
with either GUS or GPVC as acquisition function under any
of the five settings produces accurate estimate of Z with pos-
terior COVs being less than 2%, indicating the high accuracy
of the proposed method. The distribution of the model calls
required for each implementation is reported in figure 6. It is
shown that, except for the setting of case 2, the GPVC function
requires fewer model calls, and even for case 2, GPVC requires
almost the same number of model calls as GUS on average.
This sufficiently demonstrates the superiority of GPVC over
GUS.

Results for the posterior density computed under the set-
ting of case 3 are reported in the two lower panels of figure 7,
together with the reference solution generated analytically and
by TMCMC in the two upper panels. The number of model
calls required by the GPVC and GUS is 45 and 54, respect-
ively. The absolute error and posterior STDs of the estimates
by GUS and PVC are displayed in the comparison of GUS
and GPVC for case 3 (Npyc =45, Nyys = 54). The abso-
lute errors as well as the posterior STDs of these results are
reported in figure 8. It is shown that, while both GPVC and
GUS produce accurate and robust estimates of the posterior
density, the GPVC function requires the least model calls. The

Table 3. Results of evidence Z for the 2-DOF dynamic model.

Case Setting Method Means COVs M
Casel  a=1.8=13=0  Gpue 00470 00173 50
Case2  a=1.8=23=1  Ghve 00469 00185 377
Cased a=1.B=Ly=1  Gpvc 0oie9 00181 484
Cased  a=VILA=19=1  Gpvc 00471 00177 46
Cases  a=logM). #=1.7=1 Gpue 00471 00178 469
Reference MCS  0.0471 0.0157 5x 10*

evolution of the posterior confidence intervals of Z against the
iteration steps for these two implementations is schematically
compared in figure 9. It is shown that, for the two implementa-
tions, the GPVC function results in a higher convergence rate
than the GUS function. All these results demonstrate the high
efficiency and accuracy of the proposed GPVC function for
estimation of both the evidence Z and the posterior density.

4.3. Lubrication model for journal bearing of aero-engine
gear pump

Journal bearings are one of the most important components
of an aero-engine gear fuel pump as they provide support for
the extreme loads excited by the internal flow. Wear failure is
one of the main failure modes, and thus lubrication perform-
ance is one of the main concerns in the design stage. To predict
the lubrication performance under different operating modes,
and following [44], we have developed a complex simulator.
In this case study, we use a simplified version of this model to
illustrate the proposed method for calibrating the parameters
of the model. The geometric model of the gear pump and the
flow domain of the lubrication film are schematically shown
in figure 10. It is assumed that while operating, the pressure
and temperature can be measured and used for model calib-
ration. Practically, the maximum pressure Py, and the max-
imum temperature Tp,ax are measured.

The pressure and temperature fields of the lubrication film
are governed by a set of partial differential equations, which
are the integration of the generalized Reynolds equation, the
energy equation [44] and the viscosity—temperature relation-
ship. They are formulated as:

o (op o (op . \ 9 ( F
R200 (aoF2> "o (aze) " ROO (UFO) 69

R/ gL/ fﬁ),k@+ A a)
Pr\Ra0 "oy " ) T e T oy ay
(34
and
n =mnoexp[—0.0298 (T —Ty)], (35)



J. Reliab. Sci. Eng. 1 (2025) 015003

P Wei et al

65

60

551

35

30 -

25 -

GUS

GPVC

| |
Case 1 Case 2

Case 3

|
Case 4 Case 5

Figure 6. Distribution of the number of model calls for the 2-DOF dynamic model, where for each of the five settings, the GPVC and GUS

functions are utilized and implemented for ten times.
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Figure 8. Absolute errors and posterior STDs of the posterior density estimated with approximate Bayesian quadrature.
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Figure 9. Evolution of evidence with respect to steps of iteration for the 2-DOF dynamic model.
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(a) Bearing structure

(b) Fluid domain

Figure 10. The structure of bearing and its fluid domain.

Table 4. Setting of parameters for the journal bearing.

Parameter

Value

Bearing’s width B (mm)
Bearing’s radius R (mm)
Radial gap C (mm)

Bulk modulus of film 8 (Pa)

Density of lubrication film p (kg m™?)

Velocity U (ms™")

37

16
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Figure 11. Illustration of mesh and the solved fields of pressure and temperature of the lubrication film.

_rh1 _rh rhy?
Whhyere FO = f() ﬁdy’ F —fo %dy, and F» —fo y;dy—
%. The film thickness & can be computed as

h=C(l+ecos(6—¢)) (36)

and the velocity v, and v, can be computed by

b3 [R] 5 e
“E Lo LRl om(427)

Fo
(37
The model parameters are displayed in table 4.

dy

The finite difference method and the successive over-
relaxation method are used to solve the above equations,
where the discrete computational area of the film is given
in figure 11, together with the solved field of pressure, tem-
perature and their maxima with eccentricity ratio, attitude
angle, rotation speed and initial viscosity being set to 0.6,
0.1, 6200 and 9.78 x 10~*, respectively. Next, the observa-
tion data (527499.1407 Pa, 40.0417 C°) is used to infer the
unknown eccentricity ratio, attitude angle, rotate speed and
initial viscosity angle of the real bearing structure by using
the proposed method, where the prior distribution is assumed
to be N(0.4,0.1%), N(0,0.2%), N(6000,200%) and N(9.5 x
1074, (5 x 107%)?2), respectively.

Using the same parameter settings for the algorithm, the
results of the evidence Z are reported in table 5, where the last
column reports the average number of model calls across 10
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Table 5. Results of Z for the lubrication model of journal bearing.

Case Setting Method Means COVs M
GUS 0.0353 0.0083 20.5

Case 1 a=18=1,v=0 GPVC 0.0354 0.0113 21
GUS 0.0352 0.0134 238
Case 2 a=15=27y=I GPVC 0.0418 0.0132 282
GUS 0.0357 0.0128 19.4
Case 3 a=1p8=1y=I GPVC 0.0354 0.0106 17.4

GUS 0.0354 0.0143 55
Case 4 a=VM.p=17=1 GPVC 0.0344 0.0109 17.8
GUS 0.0347 0.0133 395
Case 5 a=log(M), f=1,7=1 GPVC 0.0356 0.0112 18.6

T
110 [ GPVC |
GUS

100 - .

90 - .

80 - .

70 - .

=
)

Z 60 |
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Figure 12. Distribution of the number of model calls required by each setting across 10 replications for the lubrication model.

replications. Due to the high computational cost of each model
call being expensive, the reference results are not computed
by MCS and the results from the two acquisition functions
are cross-validated. As shown, the mean estimates from all the
replications match well with one another and are thus believed
to be accurate. It is also shown that the posterior COVs of
all estimates are lower than 2%, indicating the robustness and
high accuracy of the mean estimates again. The distribution
of the number of model calls required by the algorithm under

each setting case is schematically shown in figure 12. From
both the last column of table 5 and figure 12, it can be seen
again, that GPVC requires fewer simulator calls than GUS,
although the superiority is not as significant as the last two
examples. We find that the GPVC usually shows higher superi-
ority for models with higher nonlinear behaviors.

The results for the posterior density are then reported in
figure 13. As there are four parameters being calibrated, it is
impossible to show the joint density and thus the results of
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Figure 13. Results of the marginal posterior probability density function (PDF) of the lubrication models.
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Figure 14. Results of variance-based sensitivity indices for the lubrication models.
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the marginal density are reported together with their priors. It
should be noted that this marginal posterior density of each
0, and the closed-form expression of the mean are reported
in appendix D. As can be seen from figure 13, the posterior
density estimated by GUS and GPVC match well, indicating
high accuracy. It is noted that, for each of the three parameters
0, ~ 84, the prior and posterior densities are almost the same.
This is due to the fact that the model response (pressure and
temperature of the film) are insensitive to these parameters.
This has also been proven in our long-term test. To demon-
strate this, the total effect variance-based sensitivity indices are
estimated and are reported in figure 14 (see [45] for details). It
is shown that the sensitivity indices of 6, ~ 6, are all close to
zero, indicating that they are non-influential. This is in good
agreement with the above conclusions. This may motivate
us to first perform sensitivity analysis before implementing
Bayesian updating of high-dimensional parameters. This can
substantially alleviate the challenge caused by the ‘curse of
dimensionality’. For the important parameter 6, the density
has been significantly modified and the uncertainty has been
substantially reduced. This, in turn, results in a reduction of
the prediction uncertainty of the lubrication model.

5. Conclusions

This work has developed an effective approximate Bayesian
quadrature algorithm, driven by a well-designed acquisition
function called GPVC, for adaptively inferring the evidence
and posterior density for BMU with desired accuracy. The
PVC function was originally developed for exact Bayesian

quadrature and has not been investigated for BMU. Instead of
simply extending it to BMU, a generalized version of it has
been proposed to provide sufficient flexibility and potential for
balancing the exploration and exploitation of the algorithm,
and to accelerate convergence. Another appealing feature of
the active learning procedure is the high efficiency of each
query, benefiting from the closed-form expressions of the
GPVC acquisition function.

Results of three examples under extensive different settings
have demonstrated that, given the same level of accuracy tol-
erance, the proposed GPVC function requires a much smaller
number of model calls and thus is more efficient, even for the
challenging task of estimating multimodal posterior density.
This conclusion has encouraged the utilization of the GPVC
function combined with the approximate Bayesian quadrature
for solving the BMU problem. Some further work is required.
Examples include a theoretical investigation of the conver-
gence rate of the GPVC function, an extension of the method
to cases with extremely small model evidence (typically, Z <
10~*) and an extension to the joint calibration of deterministic-
but-unknown model parameters and model bias. All this will
be conducted in future work.
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Appendix A. Closed-form expressions for kernel means

We assume that the weight density p (0) is of standard normal form with zero mean and diagonal unit covariance matrix. The
closed-form expressions for the three kernel means I1, [ (0,0)], 11 [+ (6,0") ]| and I, 1T} [ (6,0")] are given by:

— 1 _
1,[x(0,0)] =0} |E_l +14| 1/2f:xp {—2vec{diag {@(E +1,) IQT} H (A1)
—-1/2 1 -
) [x(0,0")] =05 |7 +1, " exp {—20 (=+1)" 01 (A.2)
1,01 [(6,0")] = 02|25~ +1,| %, (A3)
where I, refers to the M-dimensional identity matrix, 3 = diag (07,03, ...,03), and vec {diag[]} is the operator of vectorizing

the diagonal elements of a matrix.

Appendix B. Closed-form expressions for the approximate Bayesian quadrature

For simplicity, we assume a zero prior mean for g, i.e. m () = 0. When the linearization trick is utilized, the induced Gaussian
distribution of the integral is denoted as Zy ~ N (uzum,0%,,). Before inferring the posterior mean and variance of integral

Zy =11, [p& (Dons|0) ], we derive the formula for multiplying two covariance functions, i.e.
_ _ _ PN -l
R (0.€11)k(0.¢152) = (6, (€37 +¢37) (57 +37) (5727 T ) R(ECIT ), B

where £ and ¢ denote any vector with size d and & (-, |+ ) represents the covariance of any two vector with covariance matrix
being *. The posterior mean 7y is the expectation of 14, y (@) and is formulated as:

Hzm = Hp [:up,M (0)]
=a+0.5I0, (1  (8)
=a+05Y'K',[k(0,0)x(0,0) K'Y (B.2)

—a+05YTK Y 1, [+ (09,6)x (6,07)| 1.
k,l
Based on equation (B.1), equation (B.4) can be further derived as:

(k) (1)
k.l

)
2 . (B.3)

—a+0528 1| YT k(0,0 28) x £ (0,-0 25 + 41,)] YT K
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The posterior variance a%’ u 18 the expectation of fug 4 () conr (6,0”) g (6) and is formulated as:

7 =TI [p1g.00 (0) co.a (6,0”) pi.a (67)]
=YK LI [£(0,0)x(0,0")x (07,0)] K'Y
— VTR [5(0,0)x(8,0) K~ 'k (0,0") k (67,0)| K'Y

=yTK! {ZH,,HP’ [n (@“%e) k(6,0") K (e’,@<’>)] }K:‘y
&,
~ YT {ZZK“(’”)HPH; [x(e®,0)r(6,00)x(00,0")x(6",00)] }ic—'y

ki, st
i (B.4)

- 2.\
>R Wit (22+41d)*1+(§2> +L

n(@,@|32)Xn(?,—?|22+4[d+§z>
(22 —eesra ] [eR+a) 7+ (25) 7] |
xr ~23xm) 7 [eRtan T+ (33) ]

[(22 A1)+ (%2)“] Ty

—1
)

xYTK!

— |2zt +1,,|*1yTic—‘ [k(©,022) x k(0,—-0 22 +4I,)|K ™' [k (0,0]22) x k(0,022 +4I,)| K~ 'V.

Appendix C. Analytical results for the GPVC function

Similar to appendix B, the p (8) involved in the GPVC can be deduced as:

p(0) =11, [11gm(0) o (0,0") g1 (0")]
=y ' (00 K Nelo' 00 —1
V'K kzjnp{ (@ ,0) (6,0") (0,@ )}/c v

I (000)s(5.00)1 (0.0 (00

=[2x~! +Id|“/2y%*1 {/@(9,@22 +41,) X K (e — ?,g ‘iz) X n(®,®|32)] Ky

YT 4(0,0) x 1 (0,0)] K [k (8,022 x £ (0, —6[25 + 41,)| K~ V.

— 257" 1y

Appendix D. Analytical results for posterior marginal density

Similar to appendices B and C, the marginal PDF of model parameter 6 can be inferred as:

pposterior (9) =1_; [p (0|Dobs)]
= Zilnpﬂ' DJ (Dobs|9)]p (01)
— 2 {0+ 05V KL, [4(6,6)(6.6)] K1V} p(6) -

£(0.0022) (0~ 9. % [1%) |yt

—1/2 &
XK (®—i7 —@_,‘ |22_i + 4I—iM)

=a+05)227 +1| TYTE!

20
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