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A B S T R A C T

Estimation of the response probability distributions of computer simulators subject to input random variables
is a crucial task in many fields. However, achieving this task with guaranteed accuracy remains an open
computational challenge, especially for expensive-to-evaluate computer simulators. In this work, a Bayesian
active learning perspective is presented to address the challenge, which is based on the use of the Gaussian
process (GP) regression. First, estimation of the response probability distributions is conceptually interpreted
as a Bayesian inference problem, as opposed to frequentist inference. This interpretation provides several
important benefits: (1) it quantifies and propagates discretization error probabilistically; (2) it incorporates
prior knowledge of the computer simulator, and (3) it enables the effective reduction of numerical uncertainty
in the solution to a prescribed level. The conceptual Bayesian idea is then realized by using the GP regression,
where we derive the posterior statistics of the response probability distributions in semi-analytical form
and also provide a numerical solution scheme. Based on the practical Bayesian approach, a Bayesian active
learning (BAL) method is further proposed for estimating the response probability distributions. In this context,
the key contribution lies in the development of two crucial components for active learning, i.e., stopping
criterion and learning function, by taking advantage of the posterior statistics. It is empirically demonstrated
by five numerical examples that the proposed BAL method can efficiently estimate the response probability
distributions with desired accuracy.
1. Introduction

Computer simulators are widely used across various fields of science
and engineering to model, analyze, and predict the behavior of com-
plex systems in the presence of randomness. For example, in physics,
simulating quantum systems aids in understanding particle behavior,
interactions, and probabilistic outcomes. In applied mechanics and
engineering, finite element models are employed extensively for study-
ing the performance of structures, considering randomness in their
internal structural properties and external operating conditions. In the
latter context, typical research topics include: (1) Reliability analysis,
which assesses the probability that a system produces an undesired
response; (2) Statistical moment evaluation, focused on determining
the statistical moments of the system’s response; and (3) Probability
distribution estimation, which involves estimating the probability dis-
tribution of the system response. Among these, a central problem is

∗ Corresponding author.
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the estimation of the response probability distributions, such as the
cumulative distribution function (CDF), complementary CDF (CCDF),
and probability density function (PDF). This task is crucial because it
provides a complete characterization of the uncertain system response,
allowing a more comprehensive understanding of the underlying sys-
tem behavior under random influences without the need for costly and
time-consuming physical experiments. However, the long runtime of
a single evaluation of computer simulations often makes this process
particularly challenging.

Over the past few decades, a variety of methods have been devel-
oped for estimating the response probability distributions of computer
simulators. Commonly used methods can be broadly classified into
three types: simulation-based methods, statistical moment-based meth-
ods and surrogate-assisted methods. Often considered as the most
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straightforward approach, simulation-based methods estimate the re-
ponse probability distribution by first generating numerous samples of
he response of interest. Examples of such methods include Monte Carlo
imulation (MCS) [1] and its various variants such as stratified sam-
ling [2,3], Latin hypercube sampling [2,4] and quasi-MCS [5].Using
he response samples, regular density estimation approaches (such
s histogram and kernel denstiy estimation) can then be performed

to approximate the underlying probability distribution. In general,
simulation-based methods are less or not sensitive to the input dimen-
sionality and non-linearity of the computer simulator under consid-
eration. Nonetheless, they often suffer from slow convergence rates,
necessitating a significant number of simulations. This drawback be-
comes particularly pronounced when dealing with an expensive-to-
evaluate computer simulator. As an alternative, statistical moment-
ased methods approximate the probability distribution of the response
f interest from knowledge of its estimated statistical moments through
 prescribed distribution model. Note that most, but not all, of the

methods in this category were developed in the context of reliabil-
ity analysis, but are equally applicable to the topic of this work. A
on-exhaustive list includes high-order moments-based methods [6–

10], fractional moments-based maximum entropy methods [11,12] and
ractional moments-based mixture distribution methods [13,14]. In

addition, recent advances have explored approaches based on harmonic
moments [15,16] and characteristic function [17–19]. Nonetheless,
a common criticism of such methods is that the numerical errors
behind those probability distribution estimates are rarely known and
emain challenging to derive. Last but not least, surrogate-assisted
ethods have also been developed for response probability distribution

estimation. The key idea is to use a simplified model to substitute
the original expensive computer simulator based on a set of care-
fully selected input–output data points. Representative methods include
polynomial chaos expansions [20–22], Gaussian process (GP) regres-
ion or Kriging [23–26]. The interested reader is referred to [27] for a
omprehensive study of active learning based surrogates for estimating
esponse probability distributions. It is shown that surrogate-assisted
ethods have the potential to reduce the computational burden if
ell designed. In addition to the three types of methods mentioned
bove, it is worth noting that many other probability distribution
stimation methods have been developed in specific field of stochastic
ynamics, for example, path integrals [28], globally-evolving-based

generalized density evolution equation [29], probability density evo-
lution method [30,31], direct probability integral method [32,33], to
ust name a few. It is noteworthy that the latter two methods can also be
applied to stochastic static systems. In summary, despite considerable
efforts, it remains an open challenge to efficiently and accurately
estimate the response probability distributions of expensive computer
simulators.

To address the research gap, this work aims to present a Bayesian
ctive learning perspective on the response probability distribution

estimation of expensive computer simulators using GP regression. The
main contributions can be summarized as follows:

• The estimation of response probability distributions is conceptu-
ally interpreted as a Bayesian inference problem. This interpreta-
tion brings several important benefits: (1) it provides a principled
approach to quantifying and propagating discretization error as
a source of epistemic uncertainty in a probabilistic way through
a computational pipeline; (2) it allows the incorporation of our
prior knowledge about the computer simulator into the estima-
tion; and (3) it enables the effective reduction of the numerical
uncertainty in the solution of the response probability distribution
to a prescribed level.

• The conceptual Bayesian idea is then realized by the virtue of
the GP regression, an easy-to-use Bayesian model to define a
distribution over functions. A GP prior is first assigned to the
computer simulator under consideration, and then conditioning
 B
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the GP prior on several computer simulator evaluations yields a
posterior GP over the computer simulator. We derive the posterior
statistics of the response CDF, CCDF and PDF in semi-analytical
form and also provide the MCS solutions. The developed Bayesian
approach can be seen as an extension of the Bayesian approach
for failure probability estimation reported in [34–36] and belongs
to a probabilistic numerical method [37].

• The problem of response probability distribution estimation is
finally framed in a Bayesian active learning setting. Specifically,
a Bayesian active learning method is proposed for estimating the
response probability distributions, based on the above practical
Bayesian approach. In this context, the key contribution is the
development of two crucial components for active learning by
making use of the posterior statistics: a stopping criterion and a
learning function.

The rest of the paper is structured as follows. Section 2 presents the
ormulation of the problem to be solved in this work. The conceptual
ayesian framework for response probability distribution estimation is
iven in Section 3, followed by the practical one. In Section 4, we

introduce the proposed Bayesian active learning method for response
robability distribution estimation. Five numerical examples are stud-
ed in Section 5 to illustrate the proposed method. Section 6 concludes
he paper with some final remarks.

2. Problem formulation

Consider a physical model represented by a real-valued determinis-
tic computer simulator 𝑔 ∶ R𝑑 ↦ R. The input to the model is a vector
of 𝑑 continuous random variables, i.e., 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑 ] ∈  ⊆ R𝑑 ,
with the prescribed joint PDF 𝑓𝑿 (𝒙). As a consequence, the response
of the model is also a random variable denoted by 𝑌 ∈  ⊆ R,
i.e., 𝑌 = 𝑔(𝑿). The CDF of 𝑌 is defined by:

𝐹𝑌 (𝑦) = P (𝑌 ≤ 𝑦) = P (𝑔(𝑿) ≤ 𝑦) = ∫
𝐼𝐴(𝒙)𝑓𝑿 (𝒙)d𝒙, (1)

where P is the probability measure; 𝐴 = {𝒙 ∈ |𝑔(𝒙) ≤ 𝑦}; 𝐼𝐴(𝒙) is the
ndicator function: 𝐼𝐴(𝒙) = 1 if 𝒙 ∈ 𝐴, and 𝐼𝐴(𝒙) = 0 otherwise. The
CDF of 𝑌 is given by:

𝐹 𝑌 (𝑦) = P (𝑌 > 𝑦) = P (𝑔(𝑿) > 𝑦) = ∫
𝐼𝐴(𝒙)𝑓𝑿 (𝒙)d𝒙, (2)

where 𝐴 is the complement set of 𝐴, i.e., 𝐴 = {𝒙 ∈ |𝑔(𝒙) > 𝑦}. Note
hat 𝐹 𝑌 (𝑦) = 1 −𝐹𝑌 (𝑦) holds. Assuming that 𝐹𝑌 (𝑦) is almost everywhere
ifferentiable, 𝑌 admits a PDF, which is expressed as:

𝑓𝑌 (𝑦) =
d𝐹𝑌 (𝑦)
d𝑦

= ∫
𝛿(𝑦 − 𝑔(𝒙))𝑓𝑿 (𝒙)d𝒙 = ∫

𝜁𝐵(𝒙)𝑓𝑿 (𝒙)d𝒙, (3)

where 𝛿(⋅) is the Dirac delta function; 𝐵 = {𝒙 ∈ |𝑦 = 𝑔(𝒙)}; 𝜁𝐵(𝒙) =
(𝑦 − 𝑔(𝒙)).

The analytical solutions of Eqs. (1)–(3) are not available, except for
some rather simple cases. Therefore, in practice, one has to resort to
numerical methods. A numerical solution scheme often requires the
computer simulator to be evaluated many times. This can be computa-
tionally prohibitive if the computer simulator is expensive to evaluate,
s is often the case.

3. Bayesian inference about response probability distributions

This section treats the estimation of response probability distri-
butions as a Bayesian inference problem, as opposed to frequentist
inference. First, a conceptual Bayesian framework is created, which
provides the philosophical foundations of this work. Second, a practical

ayesian framework is developed based on the GP regression.
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Fig. 1. Conceptual illustration of the Bayesian inference about the response CDF.
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3.1. Conceptual Bayesian framework

As in many existing probabilistic numerical methods (e.g., Bayesian
ptimization [38,39] and Bayesian quadrature [40–42]), the premise of

a Bayesian inference treatment of the response probability distribution
estimation is that the 𝑔 function should be thought of as being random.
This is because, even though 𝑔 is, by our definition, a deterministic
mapping, it remains numerically unknown until we actually evaluate
it. Furthermore, even when it can be evaluated, it is computationally
impractical to compute it at every possible location. Once we admit
that we do have epistemic uncertainty about 𝑔 due to discretization, it
becomes natural to use a Bayesian approach to the problem of response
probability distribution estimation. Take the estimation of the response
CDF (Eq. (1)) as an example. A Bayesian approach starts by placing a
rior distribution on the 𝑔 function. Conditioning this prior on several
valuations of 𝑔 provides a posterior distribution over 𝑔 according
o the Bayes’ law. This posterior distribution subsequently induces a
osterior distribution over the indicator function 𝐼𝐴, and ultimately, a
osterior distribution over the sought response CDF 𝐹𝑌 . The conceptual
dea is illustrated in Fig. 1. It should be noted that the response CCDF

and PDF can be treated in a similar way.
The conceptual Bayesian framework offers several significant ad-

antages, among which the following are particularly noteworthy:

• It provides a principled approach to quantifying and propagating
the discretization error in a fully probabilistic manner through
a computational pipeline. The Bayesian framework treats the
discretization errorarising from observing 𝑔 at several discrete
locations as a source of epistemic uncertainty, enabling prob-
abilistic analysis and reasoning. This allows for the systematic
quantification and propagation of the discretization error through
a computational pipeline. Note that the posterior distribution over
the response probability distribution reflects the fact that 𝑔 has
been discretized.

• It allows the integration of our prior beliefs of the 𝑔 function
into the estimation process. Specifically, prior knowledge regard-
ing properties of 𝑔, such as smoothness, periodicity, or other
structural characteristics, can be encoded through its prior dis-
tribution. By doing so, the resulting method not only aligns with
existing domain knowledge but also often achieves faster conver-
gence and reduces computational cost. This capability stems from
the Bayesian nature of the framework, offering a flexibility that
is not possible in frequentist inference.

• It facilitates the effective reduction of numerical uncertainty in
the solution of the response probability distribution to a spec-
ified level. The well-quantified uncertainty can provide useful
 p
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information for designing computer experiments in order to ef-
fectively reduce the numerical uncertainty to an accepted level.
An illustrative exploration of this feature is provided in Section 4,
highlighting its significance and potential benefits.

3.2. Practical Bayesian framework

3.2.1. Prior distribution
A stochastic process can be assigned to 𝑔 as a prior distribution

o express our uncertainty associated with it. Among many possible
ptions, this study adopts the widely-used GP prior such that:

𝑔0(𝒙) ∼ (𝑚𝑔0 (𝒙), 𝑘𝑔0 (𝒙,𝒙′)), (4)

where 𝑔0 denotes the prior distribution of 𝑔 before seeing any observa-
tions; 𝑚𝑔0 (𝒙) ∶  ↦ R is prior mean function and 𝑘𝑔0 (𝒙,𝒙

′) ∶  × ↦ R
s the prior covariance (also known as the kernel) function. The GP
rior is fully specified by 𝑚𝑔0 (𝒙) and 𝑘𝑔0 (𝒙,𝒙

′). The prior mean function
reflects the general trend of 𝑔, while the prior covariance function
encodes key assumptions about the smoothness, periodicity, and other
properties of 𝑔. Without loss of generality, we employ a constant prior
mean and a Gaussian kernel (though other choices can be employed if
specific prior knowledge is available):

𝑚𝑔0 (𝒙) = 𝛽 , (5)

𝑘𝑔0 (𝒙,𝒙
′) = 𝜎20 exp

(

−1
2
(𝒙 − 𝒙′)𝜮−1(𝒙 − 𝒙′)⊤

)

, (6)

where 𝛽 ∈ R; 𝜎0 > 0 is the standard deviation of 𝑔0; 𝜮 = diag
{

𝑙21 , 𝑙22 ,… , 𝑙2𝑑
}

is a diagonal matrix with 𝑙𝑖 > 0 being the characteristic
length-scale in the 𝑖th dimension. The parameters collected in 𝝑 =
{

𝛽 , 𝜎0, 𝑙1, 𝑙2,… , 𝑙𝑑
}

are known as hyper-parameters.

3.2.2. Estimating hyper-parameters
Assume that we now have a dataset  = { ,}, where  =

{

𝒙(𝑖)
}𝑛
𝑖=1 is an 𝑛-by-𝑑 matrix with its 𝑖th row being 𝒙(𝑖), and  =

{

𝑦(𝑖)
}𝑛0
𝑖=1

is an 𝑛-by-1 vector with 𝑦(𝑖) = 𝑔(𝒙(𝑖)). The hyper-parameters can be
earned from data  by maximizing the log marginal likelihood:

log 𝑝( | ,𝝑) = −1
2

[

( − 𝛽)⊤𝑲−1
𝑔0
( − 𝛽) + log |𝑲𝑔0 | + 𝑛 log(2𝜋)

]

, (7)

where 𝑲𝑔0 is an 𝑛-by-𝑛 covariance matrix with its (𝑖, 𝑗)-th entry is
𝑲𝑔0

]

𝑖,𝑗
= 𝑘𝑔0 (𝒙

(𝑖),𝒙(𝑗)). In addition to maximum likelihood estimation,
ethods such as cross-validation, maximum a posteriori estimation,

nd the fully Bayesian approach can also be used to select the hyperpa-
ameters. Among these, the fully Bayesian approach is conceptually ap-
ealing; however, it may present challenges in obtaining the analytical
osterior distribution of the GP regression.
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3.2.3. Posterior statistics
Conditioning the GP prior on the data  gives the posterior distri-

ution of 𝑔, which also follows a GP:

𝑔𝑛(𝒙) ∼ (𝑚𝑔𝑛 (𝒙), 𝑘𝑔𝑛 (𝒙,𝒙′)), (8)

where 𝑔𝑛 represents the posterior distribution of 𝑔 after seeing 𝑛 obser-
ations; 𝑚𝑔𝑛 (𝒙) ∶  ↦ R is the posterior mean function, and 𝑘𝑔𝑛 (𝒙,𝒙

′) ∶
 ×  ↦ R is the posterior covariance function:

𝑚𝑔𝑛 (𝒙) = 𝑚𝑔0 (𝒙) + 𝒌𝑔0 (𝒙, )⊤𝑲−1
𝑔0

(

 −𝒎𝑔0 ( )
)

, (9)

𝑘𝑔𝑛 (𝒙,𝒙
′) = 𝑘𝑔0 (𝒙,𝒙

′) − 𝒌𝑔0 (𝒙, )⊤𝑲−1
𝑔0
𝒌𝑔0 ( ,𝒙′), (10)

where 𝒎𝑔0 ( ) is an 𝑛-by-1 mean vector with its 𝑖th element being
𝑚(𝒙(𝑖)); 𝒌𝑔0 (𝒙, ) is an 𝑛-by-1 covariance vector with its 𝑖th element
being 𝑘𝑔0 (𝒙,𝒙

(𝑖)); 𝒌𝑔0 ( ,𝒙′) is an 𝑛-by-1 vector with its 𝑖th element being
𝑘𝑔0 (𝒙

(𝑖),𝒙′). For further detailed information on the above standard GP
regression, please refer to [43].

The induced posterior distribution of 𝐼𝐴 conditional on  follows a
eneralized Bernoulli process (GBP):

𝐼𝐴,𝑛(𝒙) ∼ (𝑚𝐼𝐴,𝑛 (𝒙), 𝑘𝐼𝐴,𝑛 (𝒙,𝒙′)), (11)

where 𝐼𝐴,𝑛 denotes the posterior distribution of 𝐼𝐴 after seeing 𝑛
observations; 𝑚𝐼𝐴,𝑛 (𝒙) ∶  ↦ R and 𝑘𝐼𝐴,𝑛 (𝒙,𝒙

′) ∶  ×  ↦ R are
the posterior mean and covariance functions respectively, which can
be derived as follows:
𝑚𝐼𝐴,𝑛 (𝒙) =E

[

𝐼𝐴,𝑛(𝒙)
]

=1 ⋅ P
(

𝐼𝐴,𝑛(𝒙) = 1) + 0 ⋅ P (

𝐼𝐴,𝑛(𝒙) = 0)

=P
(

𝑔𝑛(𝒙) ≤ 𝑦
)

=𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

,

(12)

𝑘𝐼𝐴,𝑛 (𝒙,𝒙
′) =E

[(

𝐼𝐴,𝑛(𝒙) − 𝑚𝐼𝐴,𝑛 (𝒙)
) (

𝐼𝐴,𝑛(𝒙′) − 𝑚𝐼𝐴,𝑛 (𝒙
′)
)]

=E
[

𝐼𝐴,𝑛(𝒙)𝐼𝐴,𝑛(𝒙′)
]

− E
[

𝐼𝐴,𝑛(𝒙)
]

E
[

𝐼𝐴,𝑛(𝒙′)
]

=P
(

𝑔𝑛(𝒙) ≤ 𝑦, 𝑔𝑛(𝒙′) ≤ 𝑦
)

− 𝑚𝐼𝐴,𝑛 (𝒙)𝑚𝐼𝐴,𝑛 (𝒙
′)

=𝛷2

(

[

𝑦
𝑦

]

;
[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′
)

]

,

[

𝜎2𝑔𝑛 (𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2𝑔𝑛

(

𝒙′
)

])

−𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙′
)

𝜎𝑔𝑛 (𝒙
′)

)

,

(13)

where 𝛷 is the CDF of a standard normal variable; 𝛷2 is the bivariate
normal CDF; 𝜎𝑔𝑛 (𝒙) ∶  ↦ R is the posterior standard deviation
unction of 𝑔, i.e., 𝜎𝑔𝑛 (𝒙) =

√

𝑘𝑔𝑛 (𝒙,𝒙). The posterior variance function
of 𝐼𝐴, denoted by 𝜎2𝐼𝐴,𝑛 (𝒙) ∶  ↦ R, is given by:

𝜎2𝐼𝐴,𝑛 (𝒙) = 𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

. (14)

Similarly, the posterior distribution of 𝐼𝐴 conditional on  also
ollows a GBP:

𝐼𝐴,𝑛(𝒙) ∼ (𝑚𝐼𝐴,𝑛
(𝒙), 𝑘𝐼𝐴,𝑛 (𝒙,𝒙

′)), (15)

where 𝐼𝐴,𝑛 denotes the posterior distribution of 𝐼𝐴; 𝑚𝐼𝐴,𝑛
(𝒙) ∶  ↦ R

and 𝑘𝐼𝐴,𝑛 (𝒙,𝒙
′) ∶  ×  ↦ R are the posterior mean and covariance

unctions respectively, which are given by:

𝑚𝐼𝐴,𝑛
(𝒙) = 𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

, (16)

𝑘𝐼𝐴,𝑛 (𝒙,𝒙
′) = 𝛷2

(

[

𝑦
𝑦

]

;
[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′
)

]

,

[

𝜎2𝑔𝑛 (𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2𝑔𝑛

(

𝒙′
)

])

− 𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
)

𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙′
)

′

)

. (17)

𝜎𝑔𝑛 (𝒙) 𝜎𝑔𝑛 (𝒙 )

4 
The posterior variance function of 𝐼𝐴, denoted by 𝜎2𝐼𝐴,𝑛
(𝒙) ∶  ↦ R,

eads:

𝜎2𝐼𝐴,𝑛
(𝒙) = 𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

. (18)

We note that 𝑘𝐼𝐴,𝑛 (𝒙,𝒙
′) = 𝑘𝐼𝐴,𝑛 (𝒙,𝒙

′) and 𝜎2𝐼𝐴,𝑛 (𝒙) = 𝜎2𝐼𝐴,𝑛
(𝒙) hold.

The posterior distribution of 𝜁𝐵 conditional on  follows a Dirac
elta process (DDP):

𝜁𝐵 ,𝑛(𝒙) ∼ 𝛿(𝑦 − 𝑔𝑛(𝒙)), (19)

where 𝜁𝐵 ,𝑛 denotes the posterior distribution of 𝜁𝐵 . The posterior mean
and covariance functions of 𝜁𝐵 can be derived as follows:
𝑚𝜁𝐵 ,𝑛 (𝒙) =E

[

𝜁𝐵 ,𝑛(𝒙)
]

=E
[

𝛿(𝑦 − 𝑔𝑛(𝒙))
]

=∫

+∞

−∞
𝛿(𝑦 − 𝑔𝑛,𝑖(𝒙))𝑓𝑔𝑛(𝒙)(𝑔𝑛,𝑖(𝒙))d𝑔𝑛,𝑖(𝒙)

=𝑓𝑔𝑛(𝒙)(𝑦)

= 1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

,

(20)

𝑘𝜁𝐵 ,𝑛 (𝒙,𝒙′) =E
[(

𝜁𝐵 ,𝑛(𝒙) − 𝑚𝜁𝐵 ,𝑛 (𝒙)
) (

𝜁𝐵 ,𝑛(𝒙′) − 𝑚𝜁𝐵 ,𝑛 (𝒙′)
)]

=E
[

𝜁𝐵 ,𝑛(𝒙)𝜁𝐵 ,𝑛(𝒙′)
]

− E
[

𝜁𝐵 ,𝑛(𝒙)
]

E
[

𝜁𝐵 ,𝑛(𝒙′)
]

=E
[

𝛿(𝑦 − 𝑔𝑛(𝒙))𝛿(𝑦 − 𝑔𝑛(𝒙′))
]

− 𝑚𝜁𝐵 ,𝑛 (𝒙)𝑚𝜁𝐵 ,𝑛 (𝒙′)

=∫

+∞

−∞ ∫

+∞

−∞
𝛿(𝑦 − 𝑔𝑛,𝑖(𝒙))𝛿(𝑦 − 𝑔𝑛,𝑗 (𝒙′))𝑓𝑔𝑛(𝒙),𝑔𝑛(𝒙′)

×
(

𝑔𝑛,𝑖(𝒙), 𝑔𝑛,𝑗 (𝒙′)
)

d𝑔𝑛,𝑖(𝒙)d𝑔𝑛,𝑖(𝒙′)
− 𝑚𝜁𝐵 ,𝑛 (𝒙)𝑚𝜁𝐵 ,𝑛 (𝒙′)

=𝑓𝑔𝑛(𝒙),𝑔𝑛(𝒙′) (𝑦, 𝑦) − 𝑚𝜁𝐵 ,𝑛 (𝒙)𝑚𝜁𝐵 ,𝑛 (𝒙′)

=𝜙2

(

[

𝑦
𝑦

]

;
[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′
)

]

,

[

𝜎2𝑔𝑛 (𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2𝑔𝑛

(

𝒙′
)

])

− 1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

1
𝜎𝑔𝑛 (𝒙

′)
𝜙

(

𝑦 − 𝑚𝑔𝑛

(

𝒙′
)

𝜎𝑔𝑛 (𝒙
′)

)

,

(21)

where 𝑔𝑛,𝑖 and 𝑔𝑛,𝑗 represents two realizations of 𝑔𝑛; 𝑓𝑔𝑛(𝒙) is the PDF of

𝑛 (𝒙); 𝑓𝑔𝑛(𝒙),𝑔𝑛(𝒙′) is the joint PDF of 𝑔𝑛(𝒙) and 𝑔𝑛(𝒙′); 𝜙2 is the bi-variate
ormal PDF. The posterior variance function of 𝜁𝐵 is expressed as:

𝜎2𝜁𝐵 ,𝑛 (𝒙) =
[

𝛿(0) − 1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)]

1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

.

(22)

As 𝛿(0) = ∞, the posterior variance function of 𝜁𝐵 does not exist.

The posterior distribution (denoted by 𝐹𝑌 ,𝑛) of 𝐹𝑌 can be generated
by considering the push-forward of 𝐼𝐴,𝑛 by the integration operator.
However, the exact type of this distribution is not known. Fortunately,
we can derive the posterior mean and variance functions by applying
ubini’s theorem as follows:

𝑚𝐹𝑌 ,𝑛 (𝑦) =E
[

𝐹𝑌 ,𝑛(𝑦)
]

=E
[

∫
𝐼𝐴,𝑛(𝒙)𝑓𝑿 (𝒙)d𝒙

]

=∫
E
[

𝐼𝐴,𝑛(𝒙)
]

𝑓𝑿 (𝒙)d𝒙

= 𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
)

𝑓 (𝒙) d𝒙,

(23)
∫ 𝜎𝑔𝑛 (𝒙)
𝑿
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𝜎2
𝐹𝑌 ,𝑛 (𝑦) = V

[

𝐹𝑌 ,𝑛 (𝑦)
]

E
[

(

𝐹𝑌 ,𝑛 (𝑦) − 𝑚𝐹𝑌 ,𝑛 (𝑦)
)2

]

E
[

(

∫
𝐼𝐴,𝑛(𝒙)𝑓𝑿 (𝒙)d𝒙 − ∫

E
[

𝐼𝐴,𝑛(𝒙)
]

𝑓𝑿 (𝒙)d𝒙
)2

]

=E
[

(

∫

(

𝐼𝐴,𝑛(𝒙) − E
[

𝐼𝐴,𝑛(𝒙)
])

𝑓𝑿 (𝒙)d𝒙
)2

]

=E
[(

∫

[

𝐼𝐴,𝑛(𝒙) − E
[

𝐼𝐴,𝑛(𝒙)
]]

𝑓𝑿 (𝒙)d𝒙
) (

∫

[

𝐼𝐴,𝑛(𝒙′) − E
[

𝐼𝐴,𝑛(𝒙′)
]]

𝑓𝑿 (𝒙′)d𝒙′
)]

E
[(

∫ ∫

(

𝐼𝐴,𝑛(𝒙) − E
[

𝐼𝐴,𝑛(𝒙)
]) (

𝐼𝐴,𝑛(𝒙′) − E
[

𝐼𝐴,𝑛(𝒙′)
])

𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′
)]

=∫ ∫
E
[(

𝐼𝐴,𝑛(𝒙) − E
[

𝐼𝐴,𝑛(𝒙)
]) (

𝐼𝐴,𝑛(𝒙′) − E
[

𝐼𝐴,𝑛(𝒙′)
])]

𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′

=∫ ∫
𝑘𝐼𝐴,𝑛 (𝒙,𝒙

′)𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′

=∫ ∫

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛷2

([

𝑦
𝑦

]

;

[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′)

]

,

[

𝜎2
𝑔𝑛

(𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2

𝑔𝑛

(

𝒙′)

])

−𝛷
(

𝑦−𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷
(

𝑦−𝑚𝑔𝑛 (𝒙′)
𝜎𝑔𝑛 (𝒙′)

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

× 𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′,

(24)

where V is the variance operator. To avoid the complexity of calculat-
ing the posterior variance, an upper bound on 𝜎2𝐹𝑌 ,𝑛 (𝑦) is derived using
the Cauchy–Schwarz inequality (i.e., 𝑘𝐼𝐴,𝑛 (𝒙,𝒙

′) ≤ 𝜎𝐼𝐴,𝑛 (𝒙) 𝜎𝐼𝐴,𝑛
(

𝒙′
)

):

𝜎2𝐹𝑌 ,𝑛 (𝑦) =∫ ∫
𝜎𝐼𝐴,𝑛 (𝒙) 𝜎𝐼𝐴,𝑛

(

𝒙′
)

𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′

=
(

∫
𝜎𝐼𝐴,𝑛 (𝒙) 𝑓𝑿 (𝒙)d𝒙

)2

=
⎛

⎜

⎜

⎝

∫

√

√

√

√𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙)d𝒙
⎞

⎟

⎟

⎠

2

.

(25)

Analogously, the posterior mean and variance functions of 𝐹 𝑌 are
given by:

𝑚𝐹 𝑌 ,𝑛 (𝑦) = ∫
𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙) d𝒙, (26)

𝜎2
𝐹 𝑌 ,𝑛 (𝑦)

= ∫ ∫

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛷2

(

[

𝑦
𝑦

]

;
[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′
)

]

,

[

𝜎2𝑔𝑛 (𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2𝑔𝑛

(

𝒙′
)

])

−𝛷
(

𝑦−𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷
(

𝑦−𝑚𝑔𝑛 (𝒙′)
𝜎𝑔𝑛 (𝒙

′)

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

× 𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′. (27)

Furthermore, an upper bound on 𝜎2
𝐹 𝑌 ,𝑛 (𝑦) is available:

𝜎2
𝐹 𝑌 ,𝑛 (𝑦) =

⎛

⎜

⎜

⎝

∫

√

√

√

√𝛷

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙)d𝒙
⎞

⎟

⎟

⎠

2

. (28)

It should be noted that there exist 𝜎2
𝐹 𝑌 ,𝑛 (𝑦) = 𝜎2𝐹𝑌 ,𝑛 (𝑦) and 𝜎2

𝐹 𝑌 ,𝑛 (𝑦) =

𝜎2𝐹𝑌 ,𝑛 (𝑦).
Likewise, we can obtain the posterior mean and variance functions

f 𝑓𝑌 :

𝑚𝑓𝑌 ,𝑛 (𝑦) = ∫
1

𝜎𝑔𝑛 (𝒙)
𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙) d𝒙, (29)

𝜎2 (𝑦)
𝑓𝑌 ,𝑛 o

5 
= ∫ ∫

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜙2

(

[

𝑦
𝑦

]

;
[

𝑚𝑔𝑛 (𝒙)
𝑚𝑔𝑛

(

𝒙′
)

]

,

[

𝜎2𝑔𝑛 (𝒙) 𝑘𝑔𝑛 (𝒙,𝒙
′)

𝑘𝑔𝑛 (𝒙
′,𝒙) 𝜎2𝑔𝑛

(

𝒙′
)

])

− 1
𝜎𝑔𝑛 (𝒙)

𝜙
(

𝑦−𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

1
𝜎𝑔𝑛 (𝒙

′)𝜙
(

𝑦−𝑚𝑔𝑛 (𝒙′)
𝜎𝑔𝑛 (𝒙

′)

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

× 𝑓𝑿 (𝒙)𝑓𝑿 (𝒙′)d𝒙d𝒙′. (30)

In addition, an upper bound on 𝜎2𝑓𝑌 ,𝑛 (𝑦) can also be derived:

𝜎2
𝑓𝑌 ,𝑛 (𝑦)

=
⎛

⎜

⎜

⎝

∫

√

√

√

√

[

𝛿(0) − 1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)]

1
𝜎𝑔𝑛 (𝒙)

𝜙

(

𝑦 − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙)d𝒙
⎞

⎟

⎟

⎠

2

.

(31)

Eq. (31) implies that the upper bound of 𝜎2𝑓𝑌 ,𝑛 (𝑦) goes to infinity, so it
is not meaningful.

The posterior mean functions of the response CDF, CCDF and PDF
can naturally provide point estimates, while the posterior variance
functions (or their upper bound functions, if they exist) can serve as
measures of uncertainty for the response probability distributions.

3.2.4. Numerical treatment of posterior statistics
Note that all posterior statistics of 𝐹𝑌 , 𝐹 𝑌 and 𝑓𝑌 are not analyti-

cally tractable (if exist) and thus require numerical treatment. In this
study, Monte Carlo simulation (MCS) is employed. Taking the posterior
statistics of 𝐹𝑌 as an example, the estimators of 𝑚𝐹𝑌 ,𝑛 (𝑦) and 𝜎𝐹𝑌 ,𝑛 (𝑦)
are given by:

̂ 𝐹𝑌 ,𝑛 (𝑦) =
1
𝑁

𝑁
∑

𝑗=1
𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

, (32)

𝜎̂𝐹𝑌 ,𝑛 (𝑦) =
1
𝑁

𝑁
∑

𝑗=1

√

√

√

√𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

, (33)

where
{

𝒙(𝑗)
}𝑁
𝑗=1 is a set of 𝑁 random samples generated according to

𝑓𝑿 (𝒙). The variances of 𝑚̂𝐹𝑌 ,𝑛 (𝑦) and 𝜎̂𝐹𝑌 ,𝑛 (𝑦) can be expressed as:

V
[

𝑚̂𝐹𝑌 ,𝑛 (𝑦)
]

= 1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

[

𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

− 𝑚̂𝐹𝑌 ,𝑛 (𝑦)
]2

, (34)

V
[

𝜎̂𝐹𝑌 ,𝑛 (𝑦)
]

=

1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

⎡

⎢

⎢

⎣

√

√

√

√𝛷

(

𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

𝛷

(

−
𝑦 − 𝑚𝑔𝑛

(

𝒙(𝑗)
)

𝜎𝑔𝑛
(

𝒙(𝑗)
)

)

−𝜎̂𝐹𝑌 ,𝑛 (𝑦)
⎤

⎥

⎥

⎦

2

.

(35)

Following the practical Bayesian framework described above, one
an obtain point estimates for the response probability distributions,
long with their associated uncertainty measure estimates, given the
ata . The design of computer experiments thus is important for

the accuracy and efficiency, which involves the determination of the
number and locations of the input samples.

4. Bayesian active learning of response probability distributions

In this section, a Bayesian active learning method is developed
ased on the practical Bayesian framework for estimating response
robability distributions. This implies that the response probability
istributions are estimated in an iterative way until a certain criterion
s fulfilled. Since an upper bound on the posterior variance function
or the response PDF does not exist, we will focus on the response CDF
nd CCDF in the active learning process, with the response PDF being
btained as a by-product at the end.
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4.1. Stopping criterion

One of the critical challenges in Bayesian active learning is deter-
mining when to stop the iterative process, known as stopping criterion.
n general, formulating a stopping criterion might depend on several

considerations, such as the primary goal, available resources, and other
factors. Hereto, the accuracy of the response CDF and CCDF is of great
interest.

A natural measure of the accuracy of the response CDF is its poste-
rior coefficient of variation (CoV) function. However, such a measure
involves the posterior variance function of the response CDF, which can
be computationally demanding. Alternatively, we use the upper bound
of the posterior CoV function of the response CDF as a measure of its
accuracy, which is defined as:

CoV𝐹𝑌 ,𝑛 (𝑦) =
𝜎𝐹𝑌 ,𝑛 (𝑦)
𝑚𝐹𝑌 ,𝑛 (𝑦)

, (36)

where 𝑚𝐹𝑌 ,𝑛 (𝑦) is given in Eq. (23) and 𝜎𝐹𝑌 ,𝑛 (𝑦) is given in Eq. (25).
Likewise, the upper bound of the posterior CoV function of the response
CCDF is used as a measure of its accuracy:

CoV𝐹 𝑌 ,𝑛 (𝑦) =
𝜎𝐹 𝑌 ,𝑛 (𝑦)
𝑚𝐹 𝑌 ,𝑛 (𝑦)

, (37)

where 𝑚𝐹 𝑌 ,𝑛 (𝑦) is given in Eq. (26) and 𝜎𝐹 𝑌 ,𝑛 (𝑦) is given in Eq. (28).
In order to ensure the accuracy of both the response CDF and CCDF,

e introduce the following stopping criterion in this study:

max
𝑦∈

𝐻𝑛(𝑦) < 𝜖 , (38)

where 𝐻𝑛(𝑦) = max
(

CoV𝐹𝑌 ,𝑛 (𝑦),CoV𝐹 𝑌 ,𝑛 (𝑦)
)

; 𝜖 is a user-specified
hreshold. This stopping criterion means that the iterative process stops
s soon as the upper bounds of the posterior CoV functions of both
he response CDF and CCDF for any 𝑦 ∈  are less than a predefined
hreshold 𝜖.

Remark 1. If greater accuracy in the left tail of the sought dis-
tribution is of particular interest, the stopping criterion can be de-
fined as max𝑦∈ CoV𝐹𝑌 ,𝑛 (𝑦) < 𝜖. On the contrary, if the right tail is
of greater interest, the stopping criterion can instead be defined as
max𝑦∈ CoV𝐹 𝑌 ,𝑛 (𝑦) < 𝜖.

4.2. Learning function

Another critical component in Bayesian active learning is the mech-
nism or strategy used to select the most informative data points to
valuate next, known as the learning (or acquisition) function. This
unction comes into play when the stopping criterion (Ineq. (38)) is not
et. The desired learning function should be able to suggest promising
oints which, once evaluated, are expected to decrease the value of the
eft-hand side term of Ineq. (38).

First, we identify a critical location at which 𝐻𝑛(𝑦) has the largest
alue:

𝑦⋆ = argmax
𝑦∈

𝐻𝑛(𝑦). (39)

Then, we can define a new learning function, denoted by 𝐿𝑛 ∶  ↦
R:

𝐿𝑛(𝒙|𝑦⋆) =
√

√

√

√𝛷

(

𝑦⋆ − 𝑚𝑔𝑛 (𝒙)
𝜎𝑔𝑛 (𝒙)

)

𝛷

(

−
𝑦⋆ − 𝑚𝑔𝑛 (𝒙)

𝜎𝑔𝑛 (𝒙)

)

𝑓𝑿 (𝒙). (40)

Note that this learning function is taken from the integrand of the upper
bound on the posterior standard deviation function of 𝐹𝑌 and 𝐹 𝑌 at
= 𝑦⋆, i.e., ∫ 𝐿𝑛(𝒙|𝑦⋆)d𝒙 = 𝜎𝐹𝑌 ,𝑛

(

𝑦⋆
)

= 𝜎𝐹 𝑌 ,𝑛
(

𝑦⋆
)

. Therefore, it can
be interpreted as a measure of the contribution at 𝒙 to the total value
f 𝜎

(

𝑦⋆
)

or 𝜎
(

𝑦⋆
)

.
𝐹𝑌 ,𝑛 𝐹 𝑌 ,𝑛
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Having defined the learning function, the next best point to evaluate
he 𝑔 function can be selected by:

𝒙(𝑛+1) = argmax
𝒙∈

𝐿𝑛(𝒙). (41)

Remark 2. The proposed strategy involves a two-step learning func-
tion, similar to the one in [24]. However, in our method, both the
earning function for identifying the critical location and the one for

selecting the next best input point are directly related to the accuracy
measure derived from the posterior statistics of the response CDF
and CCDF (outlined in Section 4.1). Furthermore, our approach elimi-
nates the need for kernel selection, simplifying implementation while
maintaining effectiveness.

Remark 3. It is also possible to bypass the two-step strategy by directly
aximizing 𝐿𝑛(𝒙|𝑦). However, this approach is not explored further in

his study.

4.3. Implementation procedure of the proposed method

The implementation procedure of the proposed Bayesian active
earning method can be summarized in seven main steps, accompanied

by a flowchart in Fig. 2.
Step 1: Generate 𝑁 samples according to 𝑓𝑿 (𝒙)
Since several intractable integrals (i.e., 𝑚𝐹𝑌 ,𝑛 (𝑦), 𝑚𝐹 𝑌 ,𝑛 (𝑦), 𝑚𝑓𝑌 ,𝑛 (𝑦),

𝜎𝐹𝑌 ,𝑛 (𝑦) (𝜎𝐹 𝑌 ,𝑛 (𝑦))) entail numerical integration under the same density
𝑓𝑿 (𝒙), we first generate a set of 𝑁 samples according to 𝑓𝑿 (𝒙) using
 suitable low-discrepancy sequence (Sobol sequence in this study),
hich are denoted as

{

𝒙(𝑗)
}𝑁
𝑗=1. The number of samples 𝑁 depends on

he expected statistical error for approximating these integrals.
Step 2: Define an initial observation dataset
The Bayesian active learning process needs to be initialized with

an initial set of observations. First, a small number (say 𝑛0) of uni-
form points,  =

{

𝒙(𝑖)
}𝑛0
𝑖=1, are generated within a hyper-rectangular

𝛬1 =
∏𝑑

𝑟=1
[

𝑎𝑟, 𝑏𝑟
]

⊆  using an appropriate low-discrepancy sequence
(Hammersley sequence in this study). In this study, the lower and
pper bounds in the 𝑟th dimension are specified by: 𝑎𝑟 = 𝐹−1

𝑋𝑟
(𝜌) and

𝑟 = 𝐹−1
𝑋𝑟

(1 −𝜌1), where 𝐹𝑋𝑟
denotes the marginal CDF of 𝑋𝑟 and 𝜌1 is a

mall truncation probability. Second, the 𝑔-function is evaluated at 
o produce the corresponding response values, i.e.,  =

{

𝑦(𝑖)
}𝑛0
𝑖=1 with

(𝑖) = 𝑔(𝒙(𝑖)). Finally, the initial dataset is formed by  = { ,}. Let
= 𝑛0.
Step 3: Obtain the posterior statistics of 𝑔
This step involves obtaining the posterior GP of 𝑔 conditional on

, i.e., 𝑔𝑛(𝒙) ∼ (𝑚𝑔𝑛 (𝒙), 𝑘𝑔𝑛 (𝒙,𝒙′)). Such a task can be performed by
any well-developed GP regression toolboxes. In this study, we employ

he fitrgp function available in the Statistics and Machine Learning
oolbox of Matlab R2024a.
Step 4: Evaluate the posterior statistics of 𝐹𝑌 and 𝐹 𝑌
Step 4.1 Evaluate the posterior mean and standard deviation

unctions of 𝑔 at
{

𝒙(𝑗)
}𝑁
𝑗=1, i.e., 𝑴 =

{

𝑚𝑔𝑛 (𝒙
(𝑗))

}𝑁

𝑗=1
and 𝜩 =

{

𝜎𝑔𝑛
(

𝒙(𝑗)
)

}𝑁

𝑗=1
;

Step 4.2 Discretize the range of interest
[

𝑦min, 𝑦max
]

into ℎ equally
spaced sub-intervals, i.e., 𝑦min = 𝑦0 < 𝑦1 < ⋯ < 𝑦ℎ = 𝑦max with spacing
(𝑦max − 𝑦min)∕ℎ. Note that the lower and upper bounds 𝑦min and 𝑦max
are difficult to know a priori. Therefore, we propose to estimate them
from the posterior GP of 𝑔. More specifically, 𝑦min and 𝑦max are specified
by the 𝑝 and 1 − 𝑝 quantiles of 𝑴 − 𝜆𝜩 and 𝑴 + 𝜆𝜩, respectively,
where 𝜆 is introduced to account for the posterior standard deviation.
In this manner, the region of interest of the response CDF and CCDF
is expected to be that with probability within 𝑝 and 1 − 𝑝, where the
value of 𝑝 can be specified according to the requirements of practical



C. Dang et al.

t

r

F

i

𝑝

G
e

Structural Safety 114 (2025) 102579 
Fig. 2. Flowchart of the proposed BAL method.
a
t

applications.
Step 4.3 First, obtain the estimates 𝑚̂𝐹𝑌 ,𝑛

(

𝑦𝑡
)

, 𝑚̂𝐹 𝑌 ,𝑛
(

𝑦𝑡
)

and
𝜎̂𝐹𝑌 ,𝑛

(

𝑦𝑡
)

(𝜎̂𝐹 𝑌 ,𝑛
(

𝑦𝑡
)

) by using 𝑴 and 𝜩, 𝑡 = 0, 1,… , ℎ. Then, calculate
he upper bound estimates on the posterior CoV functions of the

esponse CDF and CCDF by ̂CoV𝐹𝑌 ,𝑛 (𝑦𝑡) =
𝜎̂𝐹𝑌 ,𝑛 (𝑦𝑡)
𝑚̂𝐹𝑌 ,𝑛 (𝑦𝑡) and ̂CoV𝐹 𝑌 ,𝑛 (𝑦𝑡) =

𝜎̂𝐹𝑌 ,𝑛 (𝑦𝑡)
𝑚̂𝐹𝑌 ,𝑛 (𝑦𝑡)

.

Step 5: Check the stopping criterion
If the stopping criterion max𝑦𝑡 𝐻̂𝑛(𝑦𝑡) < 𝜖 is satisfied twice in a

row, where 𝐻̂𝑛(𝑦𝑡) = max
( ̂CoV𝐹𝑌 ,𝑛 (𝑦𝑡),

̂CoV𝐹 𝑌 ,𝑛 (𝑦𝑡)
)

, then go to Step
7; otherwise, go to Step 6.

Step 6: Enrich the observation dataset
In this stage, the previous observation dataset needs to be enriched.

irst, identify the critical location 𝑦⋆ = argmax𝑦𝑡 𝐻̂𝑛(𝑦𝑡) and identify the
next best point 𝒙(𝑛+1) by 𝒙(𝑛+1) = argmax𝒙∈𝛬2

𝐿𝑛(𝒙) (Genetic algorithm
s used in this study), 𝛬2 is specified in similar with 𝛬1 by replacing
𝜌1 with 𝜌2. Then, the 𝑔-function is evaluated at 𝒙(𝑛+1) to obtain the
corresponding output 𝑦(𝑛+1), i.e., 𝑦(𝑛+1) = 𝑔(𝒙(𝑛+1)). At last, the previous
dataset  is enriched with

{

𝒙(𝑛+1), 𝑦(𝑛+1)}, i.e.,  =  ∪
{

𝒙(𝑛+1), 𝑦(𝑛+1)}.
Let 𝑛 = 𝑛 + 1 and go to Step 3.

Step 7: Evaluate the posterior mean of 𝑓𝑌 and return the results
Calculate 𝑚̂𝑓𝑌 ,𝑛 (𝑦𝑡) using the current 𝑴 and 𝜩, 𝑡 = 0, 1,… , ℎ. Return

𝑚̂𝐹𝑌 ,𝑛
(

𝑦𝑡
)

, 𝑚̂𝐹 𝑌 ,𝑛
(

𝑦𝑡
)

, ̂CoV𝐹𝑌 ,𝑛 (𝑦𝑡),
̂CoV𝐹 𝑌 ,𝑛 (𝑦𝑡) and 𝑓𝑌 ,𝑛(𝑦𝑡) as the final

results.

5. Numerical examples

In this section, five numerical examples are investigated to demon-
strate the performance of the proposed BAL method for estimating the
response CDF, CCDF and PDF. The parameters of our method is set
as follows: 𝑁 = 5 × 105, 𝑛0 = 10, 𝜌1 = 10−5, 𝜌2 = 10−8, ℎ = 100,

= 5 × 10−5, 𝜆 = 2 and 𝜖 = 0.20. For comparison, one of the
representative existing methods, called active learning- based GP (AL-

P) metamodelling method [24], is also conducted for the first three
xamples. The number of training candidates is set to 5 × 105 with
7 
other parameters specified in each example. For both the proposed BAL
method and the AL-GP method, 20 independent runs are performed to
assess their robustness. When no analytical (or semi-analytical) solution
is available, MCS is used to produce a reference result.

5.1. Example 1: A toy example

The first example considers a toy example taken from [24]:

𝑌 = 𝑔(𝑿) = min
[

𝑋1 −𝑋2, 𝑋1 +𝑋2
]

, (42)

where 𝑋1 and 𝑋2 are two independent standard normal variables. The
CDF, CCDF and PDF of 𝑌 can be expressed as:

𝐹𝑌 (𝑦) = 𝛷

(

𝑦
√

2

) (
2 −𝛷

(

𝑦
√

2

))

, (43)

𝐹 𝑌 (𝑦) = 1 −𝛷

(

𝑦
√

2

) (
2 −𝛷

(

𝑦
√

2

))

, (44)

𝑓𝑌 (𝑦) =
√

2𝜙

(

𝑦
√

2

) (
1 −𝛷

(

𝑦
√

2

))

. (45)

Although 𝛷 does not have an analytical expression in terms of el-
ementary functions, it can be computed accurately using numerical
methods or approximations. Therefore, we still consider the results of
Eqs. (43)–(45) as ‘exact’.

For the AL-GP method, the range of interest is set to [−6.0, 3.5]
nd the stopping criterion threshold is set to 𝜖 = 0.15. Fig. 3 shows
he results of the response CDF and CCDF. As can be observed in

Figs. 3(a) and 3(b), both the AL-GP method and the proposed BAL
method produce CDF/CCDF mean curves that are close to the exact
ones, along with notably narrow mean ± std dev bands. It is worth
noting that the proposed method can provide the error measures for the
response CDF/CCDF, i.e., the upper bounds of the CoV functions of the
response CDF and CCDF, as depicted in Figs. 3(c) and 3(d), respectively.
It can be seen that the mean curves and also the mean + std dev
curves are all well below the 𝜖 = 0.20 threshold. Additionally, the
proposed method can also produce the response PDF as a by-product,
with statistical results shown in Fig. 4. The mean curve is close to the
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Fig. 3. Response CDF and CCDF for Example 1.
Fig. 4. Response PDF for Example 1.

Table 1
Comparison of the number of 𝑔-function calls for Example 1.

Method 𝑁call

Mean CoV

Proposed method 10 + 15.00 = 25.00 12.91%
AL-GP 12 + 33.20 = 45.20 50.74%

exact one and the mean ± std dev band is quite narrow. On average, the
proposed method requires significantly fewer 𝑔-function calls than the
AL-GP method (see Table 1). Additionally, the AL-GP method exhibits
a higher CoV for the number of 𝑔-function evaluations compared to the
proposed method.

For illustrative purposes, the points selected during an arbitrary run
of our approach are shown in Fig. 5. As can be seen, the 10 initial
8 
Fig. 5. Design of computer experiments for Example 1.

points are evenly distributed in the input space, as expected. During the
active learning phase, only 14 additional points are identified before
the proposed stopping criterion is met, which strategically chosen by
maximizing the proposed learning function.

5.2. Example 2: The Ishigami function

As a second example, consider the Ishigami function:

𝑌 = sin(𝑋1) + 𝑎 sin2(𝑋2) + 𝑏𝑋4
3 sin(𝑋1), (46)

where 𝑎 = 7 and 𝑏 = 0.1; 𝑋1, 𝑋2 and 𝑋3 are three independent uniform
random variables within −𝜋 , 𝜋 .
[ ]



C. Dang et al. Structural Safety 114 (2025) 102579 
Fig. 6. Response CDF and CCDF for Example 2.
Table 2
Comparison of the number of 𝑔-function calls for Example 2.

Method 𝑁call

Mean CoV

Proposed method 10 + 187.00 = 197.00 2.88%
AL-GP 12 + 226.55 = 238.55 3.93%

The reference solutions of the response CDF, CCDF and PDF are
generated using MCS with 107 samples. The range of interest and
stopping criterion threshold of the AL-GP method are set to [−10.5, 17.5]
and 𝜖 = 0.15, respectively. The results for the response CDF and
CCDF are shown in Fig. 6. Figs. 6(a) and 6(b) indicate that both the
AL-GP method and the proposed method can yield highly accurate re-
sponse CDF and CCDF, even in the low-probability range. The proposed
method is capable of providing the upper bounds of the posterior CoV
functions of the response CDF and CCDF, as presented in Figs. 6(c) and
6(d) respectively. As can be observed, the mean curves are situated
behind the threshold value 𝜖 = 0.20, and the mean ± std dev bands
are notably narrow. Fig. 7 depicts the by-product PDF generated by
the proposed method, which is compared to the histogram produced by
MCS. It is noteworthy that the proposed method is able to accurately
capture the bi-modal shape. Table 2 indicates that the proposed method
necessitates fewer 𝑔-function evaluations on average and exhibits a
slightly smaller CoV than the AL-GP method.
9 
Fig. 7. Response PDF for Example 2.

5.3. Example 3: A nonlinear oscillator

The third numerical example involves a single-degree-of-freedom
nonlinear oscillator under a rectangular pulse load [44], as shown in
Fig. 8. The response function is defined in terms of the performance
function of the oscillator:

𝑌 = 𝑔(𝑿) = 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑘1 + 𝑘2

sin

(

𝑡1
2

√

𝑘1 + 𝑘2
𝑚

)

|

|

|

|

|

|

, (47)

where 𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1 and 𝑡1 are six independent random variables, as
listed in Table 3.
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Fig. 8. A nonlinear oscillator under a rectangular pulse load.

Table 3
Input random variables for Example 3.

Variable Distribution Mean Std Dev

𝑚 Normal 1.0 0.05
𝑘1 Normal 1.0 0.10
𝑘2 Normal 0.2 0.01
𝑟 Normal 0.5 0.05
𝐹1 Normal 1.0 0.20
𝑡1 Normal 1.0 0.20

Table 4
Comparison of the number of 𝑔 function calls for Example 3.

Method 𝑁call

Mean CoV

Proposed method 10 + 14.75 = 24.75 8.68%
AL-GP 12 + 21.60 = 33.60 7.87%

To provide the reference results for the response CDF, CCDF and
PDF, MCS with 107 samples is conducted. For the AL-GP method, the
range of interest and the stopping criterion are set to [−0.65, 1.65] and
𝜖 = 0.10 respectively. Figs. 9(a) and 9(b) demonstrate that both the
AL-GP method and the proposed method are capable of generating
CDF/CCDF mean curves that are in close alignment with the reference
curves, as well as mean ± std dev bounds that are notably narrow. The
upper bounds of the posterior CoV functions for the response CDF and
CCDF are presented statistically in Figs. 9(c) and 9(d) respectively, as
a result of the proposed method. Fig. 10 shows the statistical results of
the response PDF, produced by the proposed method as a by-product.
It can be observed that the PDF mean curve aligns closely with the
histogram produced by MCS, and the mean ± std dev band is relatively
narrow. Table 4 compares the required number of 𝑔-function calls.
The proposed method, on average, necessitates a reduced number of
𝑔-function evaluations, while exhibiting a marginally greater CoV than
the AL-GP method.

5.4. Example 4: A space truss structure

The fourth numerical example consists of a 52-bar space truss
structure, as shown in Fig. 11. This structure is modeled as a three-
dimensional finite element model using the open source software
OpenSees. The model consists of 21 nodes and 52 truss elements. All
elements have the same cross-sectional area 𝐴 and Young’s modulus 𝐸.
Concentrated vertical loads along the negative 𝑧-axis, denoted 𝑃0 - 𝑃12,
are applied to nodes 0–12. Of interest is the vertical displacement of
node 0:

𝑌 = 𝑔(𝐴, 𝐸 , 𝑃0, 𝑃1,… , 𝑃12), (48)

where 𝐴, 𝐸, 𝑃0, 𝑃1, ⋯, 𝑃12 are treated as 15 independent random
variables, as described in Table 5.

The reference solutions for the response CDF, CCDF and PDF are
provided by MCS with 106 samples. Figs. 12(a) and 12(b) shows that
the proposed method can produce an almost unbiased CDF/CCDF mean
10 
Table 5
Input random variables for Example 4.

Variable Distribution Mean CoV

𝐴 Normal 2 × 103 mm2 0.10
𝐸 Normal 2.06 × 105 MPa 0.10
𝑃0 Log-normal 2 × 102 kN 0.20
𝑃1 , 𝑃2 ,… , 𝑃12 Log-normal 1 × 102 kN 0.15

Table 6
Basic random variables for Example 5.

Variable Distribution Parameter 1 Parameter 2
ℎ𝐷 (m) Uniform 7 10
𝑘𝑥𝑥,1 (10−7 m∕s) Log-normal 5 0.20
𝑘𝑦𝑦,1 (10−7 m∕s) Log-normal 2 0.20
𝑘𝑥𝑥,2 (10−6 m∕s) Log-normal 5 0.20
𝑘𝑦𝑦,2 (10−6 m∕s) Log-normal 2 0.20

Note: For a uniform distribution, parameter 1 and parameter 2 are the lower and upper
bounds, respectively; otherwise, parameter 1 and parameter 2 are the mean and CoV,
respectively.

and a narrow mean ± std dev band. In addition, the proposed method
can also provide the local error measures, i.e. the upper bounds on
the posterior CoV of the response CDF and CCDF, where the mean
curves and mean ± std dev bands are plotted in Figs. 12(c) and 12(d),
respectively. The response PDF can be obtained as a by-product for the
proposed method, the statistical results of which are shown in Fig. 13.
Again, the results are very favorable. Note that the proposed method
only requires an average of 10 + 29.50 = 39.50 𝑔-function evaluations
(with a CoV of 9.16%).

5.5. Example 5: A seepage problem

The last numerical example investigates the steady-state confined
seepage under an impervious dam (adopted from [45]), as shown in
Fig. 14. The dam rests on an impermeable rock layer, above which
are two permeable soil layers: a 15 m layer of silty sand and a 5 m
layer of silty gravel. The horizontal and vertical permeabilities of the
𝑖th layer are given as 𝑘𝑥𝑥,𝑖 and 𝑘𝑦𝑦,𝑖, respectively. A water column of
height ℎ𝐷 m is retained at the upstream of the dam. The hydraulic head
ℎ𝑊 over the impermeable layer is ℎ𝑊 = ℎ𝐷 + 20 m. At the bottom
of the dam, a cut-off wall is installed to prevent excessive seepage.
It is assumed that water flows only from segment AB to segment CD
through the two permeable layers, with no flow occurring along any
other boundary of the system. We consider ℎ𝐷, 𝑘𝑥𝑥,1, 𝑘𝑦𝑦,1, 𝑘𝑥𝑥,2 and
𝑘𝑦𝑦,2 as five independent random variables, as listed in Table 6. The
hydraulic head ℎ𝑊 is governed by the following partial differential
equation:

𝑘𝑥𝑥,𝑖
𝜕2ℎ𝑊
𝜕 𝑥2 + 𝑘𝑦𝑦,𝑖

𝜕2ℎ𝑊
𝜕 𝑦2 = 0, 𝑖 = 1, 2, (49)

where 𝑥 and 𝑦 are the horizontal and vertical coordinates, respectively.
The boundary conditions for this equation include the hydraulic head
across segments AB and CD, with zero flow across the remaining bound-
aries, as previously described. Eq. (49) is solved using the finite element
method with 3413 nodes and 1628 quadratic triangular elements, as
shown in Fig. 14. For illustrative purposes, the hydraulic head solved
by fixing the random variables at their mean values is shown in Fig. 15.
Once the hydraulic head is solved, the quantity of interest, i.e. the
seepage flow 𝑞 on the downstream side of the dam, can be calculated:

𝑞 = −∫CD
𝑘𝑦𝑦,2

𝜕 ℎ𝑊
𝜕 𝑦 𝑑 𝑥, (50)

which is measured in units of volume over time over distance. The flow
𝑞 is a function of the five basic random variables, so it is a random
variable as well.
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Fig. 9. Response CDF and CCDF for Example 3.
Fig. 10. Response PDF for Example 3.

The reference results for the response CDF, CCDF, and PDF of 𝑞 are
generated by MCS with 106 runs. The CDF and CCDF related results
from the proposed BAL method are shown in Fig. 16. It can be seen
from Figs. 16(a) and 16(b) that the proposed method produces CDF
and CCDF mean curves that are close to the corresponding reference
solutions, with very narrow mean ± std dev bands. Our method can
also provide the upper bounds on the posterior CoV of the CDF and
11 
CCDF, whose statistical results are depicted in Figs. 16(c) and 16(d). In
addition, the response PDF can be obtained as a by-product, as shown in
Fig. 17, with the mean curve close to the reference result and a narrow
mean ± std dev band. Remarkably, the proposed method only needs on
average 10 + 24.65 = 34.65 model evaluations (with a CoV of 8.44%).

6. Concluding remarks

This paper presents a Bayesian active learning perspective using
Gaussian process (GP) regression on estimating the response probabil-
ity distributions of expensive computer simulators in the presence of
randomness. First, the estimation of response probability distributions
is conceptually interpreted as a Bayesian inference problem, in contrast
to frequentist inference. This conceptual Bayesian idea has several
important advantages, for example, quantifying numerical error as a
source of epistemic uncertainty, incorporating prior knowledge and
enabling the reduction of numerical error in an active learning way.
By virtue of the well-established GP regression, a practical Bayesian
approach is then developed for estimating the response probability
distributions. In this context, a GP prior is assigned over the computer
simulator, conditioning this GP prior on several computer simulator
evaluations gives rise to a GP posterior for the computer simulator. We
derive the posterior statistics of the response cumulative distribution
function (CDF), complementary CDF (CCDF) and probability density
function (PDF) in semi-analytical form, and provide the numerical
solution scheme. At last, a Bayesian active learning method is pro-
posed for response probability distribution estimation, where two key
components for active learning are devised by making use of the
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posterior statistics. Five numerical examples are studied to demonstrate
he performance of the proposed Bayesian active learning method. The

results show that our method can produce the response CDF and CCDF
with quantified uncertainty using only a small number of calls to the
computer simulator. Additionally, the method provides the response
PDF as a by-product without numerically differentiating the response
CDF.

The findings of this study can be used as a starting point for a
umber of future studies. In particular, two possible research directions
re suggested here. One is to develop a Bayesian active learning scheme

that can operate directly on the response PDF, which remains chal-
lenging. The other is to develop a strategy that can identify multiple
informative points from the learning function, thus allowing parallel
computation.
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Fig. 12. Response CDF and CCDF for Example 4.
Fig. 13. Response PDF for Example 4.
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Fig. 14. Schematic representation of the confined seepage under an impermeable dam.

Fig. 15. Hydraulic head solved by fixing the random variables at their mean values.

Fig. 16. Response CDF and CCDF for Example 5.
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Fig. 17. Response PDF for Example 5.
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