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A B S T R A C T

The stochastic dynamic analysis of high-dimensional nonlinear systems is a critical concern in engineering fields,
especially when considering the reliability analysis of low-probability events. To address this challenge, the
dimension-reduced probability density evolution equation (DR-PDEE) method has recently emerged as a
promising tool. The DR-PDEE is the analytical governing equation for the probability density function (PDF)
evolution of any path-continuous stochastic process. For a single response quantity of interest in a multi-
dimensional nonlinear dynamic system, the corresponding DR-PDEE is merely a one- or two-dimensional par-
tial differential equation. After estimating the intrinsic drift coefficient (IDC) in the DR-PDEE from sample data,
this equation can be easily solved with rather high accuracy. However, if only a limited number of deterministic
analyses are affordable, there is usually no sample information for the tail estimation of the IDC, resulting in an
inaccurate PDF solution in the tail. In this work, a scheme is tailored for the DR-PDEE to further enhance its tail
accuracy. Specifically, to increase the occurrence probability of tail samples, an additional set of samples is
obtained by simply magnifying the excitation intensity of the system. Then, at each time step, samples in the
response tail from this additional set are identified. By merging these samples with samples from the original
system, a better IDC estimation in the tail is achieved. Several numerical examples are investigated to validate
the effectiveness of the proposed DR-PDEE method. Comparisons with MCS and the classical DR-PDEE method
show that the proposed scheme improves the accuracy and robustness of the PDF results in the tail.

1. Introduction

Real-world engineering systems are always subject to various sources
of randomness, either from random parameters or from stochastic ex-
citations [1–3]. To understand their behavior and reliability, the sto-
chastic dynamic analysis of high-dimensional nonlinear systems
becomes a critical topic in scientific and engineering communities.
Especially when analyzing reliability, an accurate and robust estimation
of the response statistics in the low-probability range is of significant
importance. Since the 1950s, the study of stochastic dynamic systems
has been extensively explored, leading to the development of numerous
methods, which can be briefly categorized as sample-based and

non-sample-based methods.
In the realm of non-sample-based methods, addressing different

sources of randomness has resulted in two primary directions. First, for
problems involving randomness stemming solely from system parame-
ters, methods such as random perturbation [4], stochastic collocation
[5,6], and polynomial chaos expansion [7] have been extensively
investigated. However, since these methods usually involve a further
extension of the dimensions of the original system, they often suffer from
the so-called curse of dimensionality.

Second, the field of random vibration theory has emerged to tackle
the nonlinear systems subjected to stochastic excitations, yielding a se-
ries of governing equations of the probability density function (PDF) [8].
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Among these, the Fokker–Planck–Kolmogorov (FPK) equation stands
out as one of the most extensively studied equations. Analytical solu-
tions for the FPK equation are limited to specific systems [9–11], while
numerical solutions are typically obtained through methods such as
finite element [12], finite difference [13], and path integration [14]. For
higher-dimensional systems, dimension reduction techniques have been
developed to obtain approximate solutions, including the stochastic
averaging method [15,16] and state-space-split method [17]. Yet, these
methods are constrained by the Markovian assumption and struggle to
effectively extend to complex engineering problems. Another category
of approaches involves approximating results at the moment level, such
as statistical linearization [1] and moment closure [18,19]. However,
these approaches rely on the truncation of response moments, making it
difficult to precisely characterize the PDF for strongly nonlinear
problems.

The sample-based method mainly refers to the Monte Carlo tech-
nique and its variance reduction versions. Specifically, stratified and
Latin hypercube sampling schemes [20,21], as well as many determin-
istic low-discrepancy point sets [22,23] have been developed to improve
the accuracy and robustness of Monte Carlo simulation. For PDF esti-
mation, methods include direct calculation based on sample frequencies,
kernel smoothing techniques, and distribution fitting methods such as
the maximum entropy and fractional-order moment method [24–27].
However, these approaches may struggle to capture probability tails
accurately. Specifically, for reliability analysis of low-probability events,
advanced Monte Carlo methods such as subset simulation [28,29],
importance sampling [30,31], line sampling ([32], Dang et al. [33,34]),
and directional sampling [35,36] have been developed. To further
enhance sample utilization, sequential sampling, adaptive sampling,
and surrogate models have been extensively investigated [37–39].
However, the high-dimensional nature of many engineering systems, the
multiple correlative variables involved, and their complex interactions
significantly magnify the difficulty of devising an efficient sampling
strategy [40]. Despite the progress in advanced Monte Carlo techniques,
achieving accurate and computationally feasible tail estimations of
probability distributions for stochastic dynamic engineering systems
remains a persistent challenge.

Instead of directly capturing the probability information from sam-
ples as in Monte Carlo Simulation, the recently developed dimension-
reduced probability density evolution equation (DR-PDEE) provides a
new perspective for the stochastic dynamic response analysis [41,42].
Specifically, in the DR-PDEE method, the problem of PDF determination
is divided into two parts. First, establish the equation governing the
transient PDF of the response process of interest, namely the DR-PDEE;
second, determine the intrinsic drift coefficient (IDC) in the equation.

The first part, namely the establishment of the DR-PDEE, is the
theoretical foundation. It originated from explorations into the equiva-
lence of probability density evolution method (PDEM) [43,44] and
dimension-reduced Fokker-Planck-Kolmogorov (DR-FPK) equations
[45–48]. However, it wasn’t until the past two years, with the extension
to general path-continuous stochastic processes via Kramers-Moyal
expansion [41,42], that the DR-PDEE emerged as a new equation with
remarkable vitality. This development greatly expands its applicability,
overcoming the Markovian limitations of DR-FPK equations and unify-
ing the treatment of system parameters and excitation randomness [42].
Furthermore, the DR-PDEE fundamentally overcomes the curse of
dimensionality. On the one hand, adopting a state-space description
frees the DR-PDEE from constraints related to the dimensionality and
correlations of system random variables. On the other hand, for an
arbitrarily-high-dimensional dynamic system, the DR-PDEE is always a
one- or two-dimensional partial differential equation solely involving
the response quantities of interests, facilitating the convenient solution
of the response PDFs. These advantages are evident in its successful
applications to the stochastic dynamic response analysis (Luo et al. [34,
42,49,50]) and first-passage reliability analysis [41,51,52] of
high-dimensional complex dynamic systems.

Correspondingly, the second part, estimating the IDC, is pivotal for
the numerical implementation of the DR-PDEE method. Given that
analytical solutions for IDC are only attainable for a few nonlinear sys-
tems [53], numerical estimation is generally achieved through sampling
[42,50]. Fortunately, the nature of IDC as a conditional expectation
allows for a significantly reduced sample size compared to direct PDF
estimation. Thisrepresents an intrinsic advantage over traditional Monte
Carlo methods. However, when only a limited sample computations are
feasible, almost no samples will fall into the tail range. In such cases,
estimating IDC in the tail range relies on extrapolation. This will lead to
deviations and low robustness in the tail estimation of the IDC, and
subsequently result in low accuracy in the PDF tail.

This study proposes a simple and practical strategy for the DR-PDEE
method to further enhance its tail accuracy. Specifically, by amplifying
the excitation intensity of the original system, an additional set of
samples with higher probability of falling in the response tail is ob-
tained. At each computational time step, samples in the tail range from
this set are identified and combined with another set of samples ob-
tained from the original system to estimate the IDC. The rationality of
the scheme is explained from the perspective of importance sampling.
Several numerical examples are studied to validate the effectiveness of
the proposed approach. These include a multi-dimensional linear sys-
tem, a single-degree-of-freedom (SDOF) nonlinear oscillator, a two-
degrees-of -freedom (DOF) vibro-impact oscillator, and a ten-DOF
Duffing oscillator with random parameters. Additionally, in Appendix,
a specific class of nonlinear cases whose IDCs are independent of exci-
tation intensity is provided.

This paper is organized as follows. Section 2 provides the funda-
mentals of the DR-PDEE. Section 3 introduces the proposed tail-
enhanced DR-PDEE scheme in detail. Section 4 presents the numerical
examples. Section 5 dicusses the conclusions and possible further
improvements.

2. Dimension-reduced probability density evolution equation

2.1. Theoretical formulation

This section serves as a brief background on the dimension-reduced
probability density evolution equation (DR-PDEE). More details can be
found in references [41,42].

As mentioned previously, the DR-PDEE is the governing equation for
the transient PDF of any path-continuous stochastic process. For
simplicity, consider a one-dimensional stochastic process Y(t). Its
probability density function (PDF) at time t = t́ + Δt (tʹ< t) can be given
by the PDF at time tʹ and the conditional PDF p(y, t|ý , t́ ), that is,

p(y, t)=
∫ +∞

− ∞
p(y, t|yʹ, tʹ)p(yʹ, tʹ)dyʹ (1)

Converting the above integral equation into differential form yields
the well-known Kramers-Moyal expansion [54–56]

∂p(y, t)
∂t =

∑∞

n=1

(− 1)n

n!
∂n

∂yn [αn(y, t)p(y, t)] (2)

where

αn(y, t)= lim
Δt→0

E[ΔYn(t) /Δt|Y(t)= y], for n=1, 2, ⋅ ⋅ ⋅ (3)

is the n − th order conditional derivative moment.
Further, the process Y(t) is constrained to be path-continuous by

addressing the condition [8] that for any ε > 0,

lim
Δt→0

1
Δt

∫

|y− yʹ|>ε
p(y, t|yʹ, tʹ)dy=0 (4)

If Eq. (4) is satisfied, then the path of Y(t) is a continuous function in
time with probability one. This means that for any arbitrary ε > 0, the
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integrand in Eq. (4) should be zero almost everywhere. Consequently,
for any n ≥ 3 and ε > 0, one has [41]

|αn(y, t)|= lim
Δt→0

1
Δt

∫ ∞

− ∞
|ξ|np(y+ ξ, t+Δt|y, t)dξ

= lim
Δt→0

1
Δt

∫ ε

− ε
|ξ|np(y+ ξ, t+Δt|y, t)dξ

= lim
Δt→0

1
Δt

∫ ε

− ε
|ξ|n− 2ξ2p(y+ ξ, t+Δt|y, t)dξ

≤ εn− 2 lim
Δt→0

1
Δt

∫ ε

− ε
ξ2p(y+ ξ, t+Δt|y, t)dξ.

(5)

In Eq. (5), the last term is εn− 2α2(y, t). Due to the arbitrariness of ε,
one has αn(y, t) = 0 for n ≥ 3.

Therefore, for a path-continuous process, only the first two terms are
left in the Kramers-Moyal expansion [Eq. (2)]. By denoting the first and
second order conditional derivative moments as the intrinsic drift co-
efficient a(int)(y, t) = a1(y, t), and the intrinsic diffusion coefficient
b(int)(y, t) = a2(y, t) respectively, it yields

∂p(y, t)
∂t = −

∂[a(int)(y, t)p(y, t)]
∂y +

1
2

∂2
[
b(int)(y, t)p(y, t)

]

∂y2 (6)

Eq. (6) is just the DR-PDEE for generic path-continuous processes.
For a stochastic process of higher dimension, its DR-PDEE can also be
established similarly.

Consider a response-continuous m− dimensional dynamic system
subject to random system parameters and stochastic excitation. Its state
equation can be given by

Ẋ(t)=G(X(t),Θ) + f(t) (7)

where X(t) and Ẋ(t) denote the m− dimensional response and its time-
derivative, respectively; Θ = [Θ1,Θ2, ⋅⋅⋅,Θs]T is an s− dimensional
random vector; G( ⋅) is an m− dimensional deterministic function; and
f(t) is an m− dimensional stochastic excitation.

If only the l − th dimension of the response is of interest, namely
Y(t) = Xl(t), its corresponding DR-PDEE is given by Eq. (6), and the
intrinsic drift coefficient can be given by

a(int)(y, t)=E[Ẏ(t)|Y(t)= y] (8)

Furthermore, for the majority of multi-dimensional nonlinear sys-
tems, the closed-form solution of a(int)(y, t) is not available.

As for the intrinsic diffusion coefficients, if the l− th component of
f(t) is Gaussian white noise that satisfies

E[fl(t)] =0,E[fl(t)fl(t+ τ)]=D(t)δ(τ) (9)

it follows that

b(int)(y, t)=D(t) (10)

Otherwise,

b(int)(y, t)=0 (11)

Therefore, the intrinsic diffusion coefficients can be determined
analytically.

2.2. Implementation of the DR-PDEE

In the previous section, the DR-PDEE, as well as the intrinsic diffu-
sion coefficient b(int)(y, t), has been established analytically. However,
the DR-PDEE remains unclosed due to the unresolved intrinsic drift
coefficient (IDC) a(int)(y, t). Consequently, the procedure of solving the
response PDF via the DR-PDEE involves two steps: first, estimating the
IDC, and second, solving the DR-PDEE. These two steps also introduce
potential sources of error in the DR-PDEE approach.

It is paramount to understand that the error introduced from solving
the DR-PDEE is reducible. As indicated earlier, when the excitation fl(t)

is not Gaussian white noise, the intrinsic diffusion coefficient b(int)(y, t) is
zero. Consequently, the DR-PDEE transforms into a hyperbolic partial
differential equation. When tail accuracy is critical, the numerical error
in solving such equations becomes non-trivial [2]. To circumvent this
issue for systems subject to non-white noise excitation, it is suggested to
simulate the excitation as filtered white noise using a prefilter, and then
integrate the filter equation into the original equation of motion to
construct an augmented system [49]. Subsequently, an analytically
known non-zero diffusion coefficients is introduced. Then, the DR-PDEE
can be solved with sufficiently high accuracy via numerical path
integration.

Furthermore, the estimation of the intrinsic drift coefficients
a(int)(y, t) is considered. Eq. (8) can be rewritten as

a(int)(y, t)=E[Gl(X(t),Θ)|Xl(t)=Y(t)= y] (12)

If no analytical solution is available, a common approach is to esti-
mate a(int)(y, t) from the samples of Xl(t) and of Gl(X(t),Θ). Numerical
techniques such as the locally weighted smoothing scatterplots (LoW-
eSS) [57] and the vine-copula-based estimator [42] have been proven
effective.

Based on the above discussion, the estimation of a(int)(y, t) is the key
aspect of ensuring the accuracy of the DR-PDEE solution. Generally
speaking, the more exact-analytical information of a(int)(y, t) that is
known, the higher level of accuracy that can be achieved in the esti-
mation process. Therefore, if some prior knowledge regarding the
functional form of a(int)(y, t) is accessible, parametric regression methods
such as least squares regression are preferred. However, for complex
systems in real-world engineering subject to multiple sources of
randomness, the form of a(int)(y, t) is usually unavailable. Meanwhile,
only a limited number of deterministic analyses can be affordable.
Consequently, with no sample information in the tail, the tail estimation
of a(int)(y, t) purely relies on extrapolation. This would lead to unpre-
dictable and, most probably, significant errors in the tail estimation, as
illustrated by Fig. 1.

3. Data-assisted DR-PDEE with enhanced tail accuracy

3.1. Challenges

As discussed in the previous section, the primary limitation of the
data-assisted DR-PDEE method is the lack of sample information in the

Fig. 1. Schematic of numerical estimation of a(int)(y, t) using direct Monte
Carlo samples.
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tail range. Therefore, acquiring samples in the tail is crucial for
enhancing the tail accuracy of the method. However, the procedure of
stochastic dynamic response analysis via DR-PDEE introduces additional
challenges to this task.

The first challenge is the exceedingly high dimension of random
parameters involved. To guarantee tail accuracy in solving the DR-
PDEE, the stochastic excitation of the system is always considered as,
or transferred into, Gaussian white noise. Consequently, the dimension
of the random parameters involved should be theoretically infinite. Even
with a discrete time interpretation, the random parameters are still of
extremely high dimension, because at least one new random variable is
introduced at every time increment. Moreover, the random variables
introduced from the Gaussian white noise are independent and identi-
cally distributed. This means these dimensions are equally important,
and thus dimension reduction schemes can hardly be applied.

The second difficulty is unique for the stochastic response analysis
via DR-PDEE. In the current numerical procedure, the intrinsic drift
coefficients need to be estimated separately at every time step. This is
particularly crucial in cases of non-stationary excitation when time-
varying response statistics are important. However, due to the stochas-
tic oscillating nature of the samples, those falling in the tail region al-
ways vary at different time instances. Consequently, it is difficult to
establish a criterion, as in adaptive sampling schemes, to determine
which sample is preferred. It should be noted that this issue does not
arise in first-passage reliability analyses, where only the extreme value
of the entire response process matters.

Given the aforementioned reasons, most of the established adaptive
sampling techniques become infeasible for the problem considered in
this work. Therefore, a tailored scheme needs to be devised specifically
for the DR-PDEE approach.

3.2. Initial conceptualization: amplifying excitation

In this section, a scheme to further enhance the tail accuracy of the
DR-PDEE method is proposed. The main concept of this development
centers around directly obtaining samples by amplifying the system’s
excitation. This scheme stems from a straightforward concept: for the
majority of dynamic systems, higher excitation intensity corresponds to
larger response amplitudes, thereby increasing the likelihood of
obtaining samples in the tail.

However, what is the impact of directly amplifying the excitation
intensity on the intrinsic drift coefficient (IDC), or more specifically, on
the tail of the IDC? This issue can be analyzed from two perspectives.
First, from the standpoint of physical systems, one can obtain analytical
insights into the IDC. This enables an assessment of how variations in
excitation intensity affect the analytical form of IDC. However, since
analytical solutions are available for only a very few systems, it is
challenging to generalize the conclusions obtained from this perspective
to general systems. The other perspective focuses on the sample space,
where the impact of amplifying excitation intensity on the probability
measure of input randomness can be examined. This allows for an
analysis of how these changes influence the estimation of IDC based on
the samples for general systems. The following discussion will explore
these two perspectives in detail.

3.2.1. Physical/analytical perspective
Amplifying the excitation intensity of the system leads to a new

system, hereafter referred to as the amplified system for simplicity. If the
system is linear and involves no random system parameters, it can be
easily proved that the IDC of the amplified system and the original
system are the same. For any of such systems, it is already known that its
IDC is a linear function [58,59]. That is,

a(int)(y, t)=E[Ẏ(t)|Y(t)=y] =k(t)y (13)

If the intensity of the excitation is amplified α times, then the

response is also amplified by α. Denote the response of the amplified
system as Y(t). There is

a(int)(y, t)=E[Ẏ(t)|Y(t)= y] =E
[

αẎ(t)|Y(t)= 1
α y

]

=αk(t) yα
= k(t)y= a(int)(y, t)

(14)

If the system is nonlinear, there are also a few special cases, whose
IDCs remain identical before and after amplifying the excitation in-
tensity, including but not limited to the special category of energy
equipartition system given in the Appendix, and the vibro-impact
oscillator given in the third numerical example.

However, for most linear systems with random parameters, as well as
nonlinear systems, the IDCs typically change with the white noise in-
tensity. This is evident in the second numerical example, where an
analytical solution for the IDC is available. The analytical solution
clearly involves the excitation intensity in its expression, and therefore
the IDC varies with change in excitation intensity. Nevertheless, it is also
observed that the IDCs corresponding to different excitation intensities
converge in the tail. Although currently it is not possible to analytically
prove this conclusion for more general systems due to the lack of
analytical solutions, no system has yet been found where the available
analytical solution contradicts this conclusion. This suggests the feasi-
bility of estimating the tail of IDC using samples from the amplified
system.

3.2.2. Sample space perspective
It is possible togain general insights on the influence of amplifying

excitation intensity from the sample estimation perspective, and the
concept of importance sampling can be employed.

For clarity, assume only one dimension of the system Xl(t) is of
concern. Its corresponding drift is denoted as Gl(t). For the considered
system, the value of its responses is completely determined by the value
of all random sources involved, denoted by random parameters Θ. For a
given value of Θ = θ, the value of Xl(t) and Gl(t) will be accordingly
given by deterministic functions as xl = Hxl (θ, t), and gl = Hgl (θ, t). For
simplicity, t will be omitted later. Then, the IDCcan be given as

E(Gl|Xl= xl)=
∫

glp(gl|xl)dgl =
∫

gl
p(gl, xl)
p(xl)

dgl

=

∫

gl
∫
p(gl, xl, θ)dθ
∫
p(xl, θ)dθ

dgl

=

∫

gl

∫
δ
[
xl − Hxl (θ)

]
δ
[
gl − Hgl (θ)

]
pΘ(θ)dθ

∫
δ
[
xl − Hxl (θ)

]
pΘ(θ)dθ

dgl

=

∫
δ
[
xl − Hxl (θ)

]
Hgl (θ)pΘ(θ)dθ

∫
δ
[
xl − Hxl (θ)

]
pΘ(θ)dθ

=

∫
p(xl, θ)Hgl (θ)dθ
∫
p(xl, θ)dθ

(15)

Eq. (15) is an analytical equation. However, theIDC cannot be
directly calculated using Eq. (15), and it is usually estimated from
samples. Using Monte Carlo samples, the estimation can be given as

E(Gl|Xl= xl)=
∫
p(xl, θ)Hgl (θ)dθ
∫
p(xl, θ)dθ

=

∑N

q=1
p(q)(xl)⋅g(q)l

∑N

q=1
p(q)(xl)

(16)

where N is the number of samples, p(q)( ⋅) is the approximated weighting
function of sample θ(q). Notice that p(q)(xl) analytically involves a Dirac-
delta function, i.e.

∫

Ω(q)δ
[
xl − Hxl (θ)

]
pΘ(θ)dθ, where Ω(q) is the associ-

ated probability space of θ(q). This means analytically, p(q)(xl) is
extremely localized. However, in numerical estimation schemes, the
form of p(q)(xl) is given empirically with some relaxation.

For the samples from the amplified system, the distributions of the
excitation-related random parameters are changed. According to the
importance sampling concept, the estimation of theIDC should be given
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as

E(Gl|Xl = xl)=

∑N

q=1
p(q)(xl)⋅

p(q)0 (θ)

p̃
(q)

(θ)
⋅g(q)l

∑N

q=1
p(q)(xl)⋅

p(q)0 (θ)

p̃
(q)

(θ)

(17)

where p(q)0 (θ) and p̃(q)(θ) are respectively the probability density at θ(q)

with respect to the stochastic excitation of the original system and the
amplified system.

Notice that the excitation is Gaussian white noise, and is analytically
infinite dimensional. The computation of the ratio p(q)0 (θ)/ p̃(q)(θ) is very
tricky. A polar coordinate transformation may facilitate the computa-
tion. An n− dimensional independent standard normal vector U can be
transferred intoU = RA, where R = ‖U‖ is the radius, A = U /‖U‖ is the
random directional unit vector. R and A are independent [60]. A is
uniformly distributed on a (n − 1)-dimensional unit hypersphere, with
the joint PDF given as

fA(a)=
Γ(n/2)
2πn/2 (18)

where Γ( ⋅) is the Gamma function. Since the sum of the squares of n
independent standard normal random variables follows a chi-square
distribution with n degrees of freedom, the distribution of R is given
by a so-called “chi distribution” expressed as

fR(r)=
2 exp(− r2/2)rn− 1

2n/2Γ(n/2)
(19)

As the dimension n tends to infinity, the distribution of R becomes a
normal distribution with mean of

̅̅̅
n

√
and variance of 0.5 [61].

Then, consider the stationary Gaussian white noise input in a dis-
cretized form. At each time step, a new normal distributed increment
dW will be introduced with zero mean and variance of Ddt, where D is
the white noise intensity. Then, the mean and variance of radius for the
input normal vector θ can be derived as

μR = lim
n→∞
dt→0

̅̅̅̅̅̅̅̅̅̅̅̅
Ddt⋅n

√
= E

[ ∫ T

0
(dW)

2
]

= DT (20)

and

σ2R= lim
n→∞
dt→0

(Ddt)×0.5=0 (21)

This means, for Gaussian white noise excitation input, the radius is
analytically a deterministic constant DT. By altering the input intensity
by a factor α, no change will be made on the directional vectorA, but the
radius changes into αDT. Consequently, the ratio p(q)0 (θ)/p̃(q)(θ) becomes
zero for all the samples from the amplified system.

However, the estimation of conditional mean given by Eq. (17) is

based on the local relative weight, namely, p(q)(xl)⋅
p(q)0 (θ)

p̃
(q)

(θ)
, of each sample.

Supposing one has obtained some samples from both the amplified
system and the original system. For samples that fall within the peak
region and therefore mixed with the samples from the original system,
the importance ratio p(q)0 (θ)/p̃(q)(θ) should be zero. Whereas, in the tail
region, only samples from the amplified systems can be found. Then, for
all these samples, their original PDF function value can be considered
equal, i.e.

p(i)0 (θ)
p(j)0 (θ)

=
fR(ri)
fR(rj)

=
fR(αDT)
fR(αDT)

=1 (22)

Further, since they are all basic Monte Carlo samples selected
randomly and evenly based on the amplified excitation, similarly one
has

p̃(i)(θ)
p̃(j)(θ)

=1 (23)

Therefore,

p(i)0 (θ)
p̃(i)(θ)

=
p(j)0 (θ)
p̃(j)(θ)

(24)

And the importance ratio p(q)0 (θ)/p̃(q)(θ) can be taken as 1 for all these
amplified samples in the tail region.

This leads to the following conclusion: in the general cases, using
samples from the amplified system for the estimation of the peak of IDC
is not feasible. However, it is reasonable to use the amplified samples
that fall in the tail region for the tail estimation of the IDC.

3.3. Proposed scheme

Based on the above discussion, to ensure accurate estimation of
intrinsic drift coefficients in both peak and tail regions, the following
strategy is suggested. The main idea is to use samples from the original
system for estimation in the peak range, while supplementing them with
samples from the amplified system for estimation in the tail range. In
more detail, the procedures can be summarized as the following four
steps.

1) Obtain N0 samples from the original system. The accuracy in the
peak range is completely determined by the N0 samples.

2) Acquire Na samples from the amplified system with the excitation
intensity amplified by factor α. At this stage, Na = N0 is taken for all
examples, and the selection of excitation amplification factors relies
on preliminary tests using 50 samples each from the original and
amplified systems. An initial amplification factor (e.g. 2) is tested,
aiming for 20%–40% of amplified samples in the effective tail range,
and adjusted as needed.

3) At each time step, apply a weighting function w(i), i = 1,2, ⋅⋅⋅,Na to
the second set of samples.

4) Combine the N0 samples from the original system with the Na
weighted samples from the amplified system, and numerically esti-
mate the intrinsic drift coefficients. Herein LoWeSS [57] is suggested
for the numerical estimation.

The weighting function w(i) is

w(i) =H

⎛

⎝ ‖ỹ(i) − y‖
max

k=1,2,⋅⋅⋅,N0
‖y(k) − y‖

− ρ

⎞

⎠ (25)

where H ( ⋅) denotes the Heaviside function; ỹ(i) denotes the i − th
sample value of the dimensions of interests from the amplified system;
y(k) denotes the k − th sample value of the dimensions of interests from
the original system; y denotes the mean value of the samples from the
original system; ‖ ⋅‖ is the symbol of Euclidean norm; and ρ is a constant
value. A schematic figure of the weight function is shown in Fig. 2. For
the numerical examples in this work, ρ is taken as 1. Notice that because
of the sparsity of samples in the tail region, according to the numerical
tests of the authors, a variation between 1 and 1.1 of ρ has almost no
impact on the final results.

A flow chart of the proposed procedure is shown in Fig. 3. In the
following section, the validity of the proposed scheme will be demon-
strated by numerical examples.

4. Numerical examples

4.1. 20-Dimensional Ornstein–Uhlenbeck process

To illustrate the analytical consistency of the IDC before and after
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amplifying the excitation for linear systems, a 20-dimensional Orn-
stein–Uhlenbeck process is investigated, where the state equation can be
given as

Ẋ(t)=KX(t) + bξ(t) (26)

where K is a 20× 20 matrix given by

K=

⎡

⎢
⎢
⎣

− 0.2 0.04
0.04 − 0.2 ⋱

⋱ ⋱ 0.04
0.04 − 0.2

⎤

⎥
⎥
⎦ (27)

b is a 20× 1 vector given by b = [1, ⋅⋅⋅,1]T, and ξ(t) is a stationary
Gaussian white noise with intensity E[ξ(t)ξ(t + τ)] = Dδ(τ). The original
excitation intensity is taken as D = 0.2. As comparison, two amplified
excitation intensities, i.e. D = 0.4, and D = 0.8, are considered for the
estimation of the IDC for the data-assisted DR-PDEE. The last dimension
is the dimension of interest, i.e. Y = X20.

For the DR-PDEE scheme, 200 samples are used for the estimation of
IDC. In the deterministic analysis of systems with different input in-
tensities, the excitations vary only in the excitation intensity. That
means, the input samples of the excitations are proportional. It is already
known that, for the current example, the IDC is linear. That is,

a(int)(y, t)= k(int)(t)⋅y (28)

Therefore, linear least squares regression is employed for the nu-
merical estimation of IDC. As shown in Fig. 4, the numerically estimated
IDCs from samples corresponding to different input intensities are
exactly the same. They are all in good agreement with the analytical
solution given in Ref. [59]. This is consistent with the previous
conclusion that for linear systems with no random parameters involved,
the IDCs for different excitation intensities are the same.

Fig. 5 shows the results of the comparison of PDFs at t = 10 solved
from the DR-PDEE with these numerically estimated IDCs, and the
analytical solution. Since the estimated IDCs are exactly the same, the
corresponding PDF solutions are identical. They are all in very good
agreement with the analytical PDF solution, with only a slight difference
in the extreme tail.

4.2. Two-dimensional system with analytical solution

To better showcase the effects of the proposed scheme, a specifically
selected single-degree-of-freedom (SDOF) nonlinear system, which is a
two-dimensional (2D) system in state space, is first studied. This system
is reduced to a one-dimensional (1D) system, whose steady state
intrinsic drift coefficient is analytically known and nonlinear. Its equa-
tion of motion can be given by
⎧
⎨

⎩

Ẋ(t) = V(t)

V̇(t) = − c
(
1
2
V(t)2 +

k
2
X(t)2

)

V(t) − kX(t) + ξ(t)
(29)

where c and k are constants, and ξ(t) is the Gaussian white noise exci-
tation with intensity E[ξ(t)ξ(t + τ)] = D0δ(τ). The steady state analytical
solution of the response PDF is given as [62]

pS(x, v)=C1 exp
[

−
c
4D0

(
v4 +2kx2v2 + k2x4

)
]

(30)

where C1 is a normalization constant. If reduce the system into 1D with
respect to V, the analytical steady state solution of intrinsic drift co-
efficients can be given as

a(int)S (v)=

∫
(

− c
(
1
2v

2 + k
2x

2
)

v+ kx
)

ps(x, v)dx
∫
ps(x, v)dx

(31)

From Eq. (31) it can be seen that the steady-state analytical IDC is
dependent on the white noise intensity.

In this example, the following parameters are selected: k = 0.02, c =
0.02, and D0 = 1. For the tail-enhanced DR-PDEE, the amplified exci-
tation intensity is taken as D̃ = 4. A comparison of the analytical steady-
state IDC of the original system with D0 = 1 and the amplified system
with D̃ = 4 is given in Fig. 6. As evident, these two IDCs are not identical,
although they are very close to each other. By substituting these two
analytical IDCs into the DR-PDEE and solving it, the obtained PDF re-
sults are compared with the steady-state analytical solution, as depicted
in Fig. 4. Using the IDC from the amplified system leads to incorrect
results, but the distinction in the PDF tail is almost negligible compared
to the apparent error in the peak range. Conversely, the DR-PDEE so-
lution using the analytical IDC from the original system is almost
completely consistent with the analytical solution, even in the extreme
tail. This suggests that the numerical error in solving the DR-PDEE is
negligible (see Fig. 7).

After verifying the DR-PDEE using the analytical IDC, the data-
assisted DR-PDEE schemes are studied. The proposed tail-enhanced
DR-PDEE solution is obtained, and compared with the classical DR-
PDEE solution and the analytical solution. For classical DR-PDEE,
1000 samples are used, and for the proposed tail-enhanced DR-PDEE
scheme, 500 samples from the original system together with 500 sam-
ples from the amplified system are used for each simulation.

In order to assess the robustness of the proposedmethod, 20 repeated

Fig. 2. Schematic of the weighting function w(i) in the proposed scheme.

Fig. 3. Flow chart of the proposed scheme.
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simulations are conducted for each DR-PDEE scheme. The obtained
mean estimation results and the boundaries are compared with corre-
sponding analytical solution. Figs. 8 and 9 show the results of the
intrinsic drift coefficients and the PDF results respectively. Herein, the
boundaries in these figures are the maximum and minimum values ob-
tained from the 20 trials of simulation.

It can be seen that though the classical DR-PDEE already has

considerable accuracy, the proposed tail-enhanced DR-PDEE shows
much higher accuracy and reduced variability in the tail. However, in
the peak range, the variation of the solutions obtained by the tail-
enhanced DR-PDEE is slightly larger than that of the classical DR-
PDEE. This can be easily understood, as when the total number of the
samples is identical for the two schemes, fewer samples fall in the peak
range for the proposed scheme. In practical application of the tail-
enhanced DR-PDEE scheme, it is important to carefully determine the
allocation of the sample sizes for the two groups, to ensure a balance
between peak and tail accuracy.

4.3. Two-DOF vibro-impact oscillator

Further, consider a two-DOF vibro-impact oscillator subject to
Gaussian white noise. Its equation of motion is given by
⎧
⎨

⎩

m1Ẍ1(t) + c1Ẋ1(t) + k1X1(t) + k2[X1(t) − X2(t)] = ξ1(t)
m2Ẍ2(t) + c2Ẋ2(t) + k2[X2(t) − X1(t)] + F2[X2(t)] = ξ2(t)

(32)

where m1 = m2 = 1, c1 = 0.4, c2 = 0.2, k1 = k2 = 0.5, and F2[X2(t)]
denotes the impact force from a two-sided barrier. That is,

F2(x2)=

⎧
⎨

⎩

− BL(− x2 − δL)3/2, x2 ≤ − δL
0, − δL < x2 < δR
BR(x2 − δR)3/2, x2 ≥ δR

(33)

in which BL = BR = 100, and δL = δR = 0.5. In Eq. (32), ξ1 and ξ2 are
Gaussian white noises with intensity D1 = 0.01 and D2 = 0.005 respec-
tively. The steady-state joint PDF of [x, v] = [x1, v1, x2, v2] can be given by

Fig. 4. Comparison of IDCs estimated by samples from different input intensity and the analytical solution.

Fig. 5. Comparison of the PDF solutions at t = 10 via DR-PDEE using IDCs from various excitation intensity and the analytical solution.

Fig. 6. Comparison of the analytical steady-state IDCs a(int)S (v) of the original
system with D0 = 1 and the amplified system with D̃ = 4
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ps(x, v)=C0 exp
{

− 2γ
[
m1v21
2

+
m2v22
2

+
k1x21
2

+
k2(x1 − x2)2

2
+G2(x2)

]}

(34)

where

G2(x2)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
5
BL(− x2 − δL)5/2, x2 ≤ − δL

0, − δL < x2 < δR
2
5
BR(x2 − δR)5/2, x2 ≥ δR

(35)

The displacement and velocity of the second DOF are considered in
this example. The DR-PDEE of the joint PDF of [X2,V2] can be cast as

∂pX2V2 (x2, v2, t)
∂t = −

∂
[
v2pX2V2 (x2, v2, t)

]

∂x2
−

∂
[
a(int)V2 (x2, v2, t)pX2V2 (x2, v2, t)

]

∂v2

+
D2
2

∂2pX2V2 (x2, v2, t)
∂v22

(36)

where the analytical steady state solution of the intrinsic drift co-
efficients can be derived as [53].

Fig. 7. Comparison of the steady state PDFs of V via DR-PDEE using the analytical steady-state IDCs respectively from original system and amplified system, and
analytical solution.

Fig. 8. Comparison of the steady state intrinsic drift coefficients via classical
DR-PDEE, proposed tail-enhanced DR-PDEE and analytical solution.

Fig. 9. Comparison of the steady state PDFs of V via classical DR-PDEE, proposed tail-enhanced DR-PDEE and analytical solution.
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a(int)V2 ,S(x2, v2)=
1
m2

[

− c2v2 −
1

1/k1 + 1/k2
x2 − F2(x2)

]

(37)

It can be seen from Eq. (37) that for this nonlinear case, a(int)V2 ,S(x2, v2) is
independent of the white noise intensity. Further, since the system is
energy-equipartitioned [53], and the nonlinearity is only on the
displacement term, the intrinsic drift coefficients are set as
ã(int)V2 (x2, v2, t) = − c2

m2
v2 + g(x2, t) in the following data-based estimation.

In both the classical and proposed tail-enhanced DR-PDEE scheme,
400 samples are used for the estimation. Specifically, for the proposed
scheme, 200 samples from the amplified system and 200 samples from
the original system are employed, where the amplified excitation in-
tensity is taken as D̃2 = 9D2. 20 repeated simulations are conducted for
the classical and proposed DR-PDEE scheme. Themean solutions, as well
as the maximum and minimum boundaries of the 20 simulations are
obtained.

Figs. 10 and 11 depict the time-varying solution of the standard
deviation and kurtosis of X2 and V2 obtained from the classical DR-PDEE
and the proposed tail-enhanced DR-PDEE respectively. The results are
also compared with the corresponding analytical steady-state solutions.
It can be seen that both of the classical and tail-enhanced DR-PDEE well
capture the second and fourth order moments of the responses, while the
proposed scheme yields slightly better results for the kurtosis
estimation.

Figs. 12 and 13 show the steady-state PDF results of X2 and V2.
Similar to the previous example, compared with the classical DR-PDEE,
the tail-enhanced DR-PDEE exhibits much higher accuracy and smaller
variation in the tail range, while showing slightly larger variation in the
peak range.

4.4. 10-DOF Duffing Oscillator with random parameters

Consider a 10-DOF Duffing oscillator with random stiffness. Its
equation of motion is given by

MẌ(t)+CẊ(t) + f [X(t),Θ] = Bξ(t) (38)

In this equation, X(t), Ẋ(t), and Ẍ(t) respectively denote the
displacement, velocity, and acceleration. M = diag[3,3, 3, 3,2, 2,2, 2,
1.5, 1.5] × 105 is the diagonal mass matrix. C = a0M+ a1K(Θ) is the
linear damping matrix dependent on the random stiffness matrix, where

K(Θ)=

⎡

⎢
⎢
⎢
⎢
⎣

θ1k1 + θ2k2 − θ2k2
− θ2k2 θ2k2 + θ3k3 − θ3k3

⋱ ⋱ ⋱
− θ9k9 θ9k9 + θ10k10 − θ10k10

− θ10k10 θ10k10

⎤

⎥
⎥
⎥
⎥
⎦

(39)
(
a0
a1

)

=
2ζ

ω1 + ω3

{
ω1ω3
1

}

(40)

[k1,k2, ⋅ ⋅ ⋅,k10] = [5,5,5,5,4,4,4,4,3,3] × 107, [θ1, θ2, ⋅ ⋅ ⋅, θ10] are 10
independent identically distributed log-normal random variables with
unit mean and coefficient of variation equal to 0.15, ω1 and ω3 are

respectively the square root of the first and third minimum eigenvalue of
M− 1K(Θ), and ζ = 0.05 is the damping ratio. The restoring force is

f [X(t)]=
[
f *1 − f

*
2 , f

*
2 − f

*
3 , ⋅ ⋅ ⋅ , f *n− 1 − f

*
n , f

*
n
]

(41)

where

f*j = kj
[

X̂j +
ε

σ2s
X̂
3
j

]

, for j=1, ⋅ ⋅ ⋅, n (42)

X̂j is the j − th element of the inter-story drift vector X̂ =

[X1,X2 − X1, ⋅⋅⋅,Xn − Xn− 1]T, ε is a dimensionless constant, and σ2s is the
steady-state variance of X1 for the corresponding linear system by
setting ε = 0. ξ(t) is a one-dimensional stationary Gaussian white noise
with correlation function Rξ(τ) = D0δ(τ), D0 = 0.2, and B = [1,1, ⋅⋅⋅,1]T.
In this case, σ2s = 0.0036 is obtained fromMonte Carlo simulation (MCS)
with 104 samples. ε = 0.72 is taken, and therefore ε

σ2s
= 200.

Assume the displacement of the first DOF X1(t) is the quantity of
interest. Since there is no excitation term in that dimension, the velocity
of the first DOF V1(t) is introduced to construct a two-dimensional sys-
tem for the DR-PDEE analysis. For the proposed scheme, the amplified
excitation intensity is taken as D̃ = 0.4. Similarly, 20 repeated simula-
tions are conducted for the classical and proposed DR-PDEE scheme. For
classical DR-PDEE method, 400 samples are used, and for the proposed
tail-enhanced DR-PDEE scheme, 200 samples from the original system
and 200 samples from the amplified system are used for each simulation.
The obtained results are compared with MCS with 106 samples for
verification.

The time-varying standard deviation and kurtosis of X1(t) are shown
in Fig. 14, where the boundaries are defined as

b± = μ(f) ± σ(f) (43)

where f denotes the function of concern, μ( ⋅) denotes the mean value,
and σ( ⋅) denotes the standard deviation. Fig. 15 shows the comparison
of the steady state PDFs and CDFs of X1(t). To avoid negative values, the
boundaries are defined as

b± = exp{μ[ln(f)]± σ[ln(f)]} (44)

Both of the classical and proposed tail-enhanced DR-PDEE scheme
obtain good estimation with respect to the time-varying standard devi-
ation and kurtosis. Better results are obtained in the CDF tail when using
the proposed scheme, though the improvement is not as prominent as
the previous two examples, since the classical DR-PDEE already has
considerable tail accuracy.

5. Concluding remarks

An easy-to-implement scheme has been proposed to enhance the tail
accuracy of the dimension-reduced probability density evolution equa-
tion (DR-PDEE) method for stochastic dynamic response analysis of
complex multi-dimensional nonlinear systems. The key idea is to obtain
samples in the tail range by amplifying the excitation intensity. These
samples are then weighted and combined with samples from the original
system for a better estimation of the intrinsic drift coefficients in the DR-

Fig. 10. Comparison of the analytical steady-state standard deviation and time-varying solutions via classical DR-PDEE and proposed tail-enhanced DR-PDEE.
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PDEE. The tail accuracy of the DR-PDEE method has been significantly
improved, as illustrated by several numerical examples.

Although the rationality of the proposed scheme has been elucidated
from an importance sampling point of view, a more rigorous proof from
the perspective of system physics is still desired. Though several linear
and nonlinear systems have been studied, more investigations, such as
hysteretic systems, still need to be conducted.

Further, in the practical application of the proposed tail-enhanced
DR-PDEE scheme, the selection of the excitation amplifying factor and
the number of excitation-amplified samples can be flexible and opti-
mized. It is possible to combine the samples from various excitation-
amplified systems with different excitation amplifying factors. To ach-
ieve the balance between the peak and tail accuracy, optimization
schemes can be developed and employed for the allocation of samples,

Fig. 11. Comparison of the analytical steady-state kurtosis and time-varying solutions via classical DR-PDEE and proposed tail-enhanced DR-PDEE.

Fig. 12. Comparison of the steady state PDFs of X2 via classical DR-PDEE, proposed tail-enhanced DR-PDEE and the analytical solution.

Fig. 13. Comparison of the steady state PDFs of V2 via classical DR-PDEE, proposed tail-enhanced DR-PDEE and the analytical solution.

Fig. 14. Comparison of the standard deviation and kurtosis of X1(t) via classical DR-PDEE, proposed tail-enhanced DR-PDEE and MCS.
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which is beyond the scope of the current contribution and needs to be
further investigated.

Finally, the proposed method is expected to further improve the
accuracy of the DR-PDEE method in the reliability and extreme value
analysis of complex nonlinear systems.
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Appendix. A special category of nonlinear systems with IDC independent of excitation intensity

Consider an n− DOF dynamic system given by

MẌ(t)+CẊ(t) + f [X(t)] = ξ(t) (45)

In this equation,M is a diagonal mass matrix. C is a diagonal damping matrix which satisfies C = γD, where γ > 0 is a constant. D is the diagonal
intensity matrix of the Gaussian white noise excitation ξ(t). That is, E[ξ(t)] = 0, and E[ξ(t)ξ(t + τ)] = Dδ(τ). The restoring force f [X(t)] satisfies

fi(X)=
∂U(X)

∂Xi
(46)

where U(X) is the potential of the system. With all these assumptions, the system is an energy equipartition system [11,53].
Further, consider Xl(t) and Vl(t) as the response quantity of interest. If the potential U(X) of the system can be transferred into

U(X) = g1(Xl) + g2(Y) (47)

where Y = h(X) is a multi-dimension function with respect to the system response, and each component of Y are all independent of Xl. g1( ⋅) and g2( ⋅)
are deterministic function irrelevant with the excitation intensity. Then the steady-state intrinsic drift coefficient (IDC) with respect to Xl(t) and Vl(t)
can be given as

a(int)s (xl, vl)=

⎡

⎢
⎣

vl

−
cl
ml
vl −

1
ml

∂g1(xl)
∂xl

⎤

⎥
⎦ (48)

which is independent with the intensity of the excitation. Thus, varying the excitation intensity will not change the IDC in the DR-PDEE.
This can be easily proven. The second term of a(int)s (xl, vl) can be derived as

Fig. 15. Comparison of the steady state PDFs and CDFs of X1(t) via classical DR-PDEE, proposed tail-enhanced DR-PDEE and MCS.
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a(int)s,2 (xl, vl)

= −
1
ml
E[clVl+ Fl(X)|Xl = xl,Vl = vl]

= −
1
ml
clvl −

1
ml
E
[

∂U(X)
∂Xl

⃒
⃒
⃒
⃒Xl = xl

]

= −
1
ml
clvl −

1
ml
E
[

∂U(Xl,Y)
∂Xl

⃒
⃒
⃒
⃒Xl= xl

]

= −
1
ml
clvl −

1
ml

∂g1(xl)
∂xl

.

(49)

An easy-to-illustrate example of this type of system is the MDOF tandem Duffing Oscillator in Sun and Chen [53]. In this system, the potential
energy is

U(x) =
1
2
k1x21 +

1
4

α1k1x41 +
∑n

i=2

[
1
2
ki(xi − xi− 1)2+

1
4

αiki(xi − xi− 1)4
]

(50)

where ki and αi (i = 1,⋅⋅⋅,n) are system parameter with respect to the restoring fore. Note that the steady state response PDF of an energy equipartition
system can be given as [9,63]

pX,V,s(x, v)=C0 exp[ − 2γH(x, v)] (51)

where C0 is a normalization constant,H(x, v) = T(v) + U(x) denotes the Hamiltonian, i.e. the sum of the kinetic energy T(v) and potential energyU(x),
and

T(v)=
∑n

i=1

1
2
miV2i (52)

Substituting the potential energy in Eq. (50) into Eq. (51), it can be readily found that the relative displacements of each dimension X1,X2 − X1,⋅ ⋅ ⋅ ,
Xn − Xn− 1, and the absolute velocities of each dimension V1,V2, ⋅⋅⋅,Vn are independent. In this case, suppose the displacement and velocity of the first
DOF are dimensions of interests. Therefore, Xl = X1, and Y = [X2 − X1, ⋅⋅⋅,Xn − Xn− 1]T. The corresponding intrinsic drift coefficient is [53]

a(int)s (x1, v1)=

⎡

⎢
⎣

v1

−
c1
m1
v1 −

1
ml

(
k1x1 + α1k1x31

)

⎤

⎥
⎦ (53)

with no excitation-related term involved in this closed-form solution.

Data availability

No data was used for the research described in the article.
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