

¹ Highlights

² **Sensitivity Estimation of Stochastic Output with respect to Distribution Parameters**
³ **of Stochastic Inputs**

⁴ Xuan-Yi Zhang, Yan-Gang Zhao, Marcos A. Valdebenito, Matthias G.R. Faes

⁵ • Sensitivity indices focus on input distribution parameters, not inputs themselves.

⁶ • Moments and CDFs of outputs considered, offering exceedance probabilities too.

⁷ • Explicit formulas for sensitivity indices derived using moments.

⁸ • A dimensional reduction method is implemented for computing moments and parameters.

Sensitivity Estimation of Stochastic Output with respect to Distribution Parameters of Stochastic Inputs

Xuan-Yi Zhang^{a,b,*}, Yan-Gang Zhao^a, Marcos A. Valdebenito^b, Matthias G.R. Faes^{b,c}

^aNational Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing 100124, China

^bChair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany

Shanghai 200092, China

Abstract

18 Computational models have become indispensable tools for decision-making across numerous
19 fields. Given the inherent randomness in input variables, the outputs of these models are of-
20 ten stochastic, making sensitivity estimation (SE) essential for understanding how variations in
21 inputs affect stochastic outputs. In practice, the input random variables are described by their
22 distribution parameters. This study introduces an SE method to assess the influence of input
23 distribution parameters on the moments and distributions of outputs. Sensitivity indices (SIs)
24 are defined based on both the first three moments and the cumulative distribution function of the
25 outputs, naturally providing SI for exceeding probabilities. A numerical approach is developed to
26 quantify these SIs as the post processing of uncertainty quantification, employing a moment-based
27 model to approximate the output distribution. Three examples, including nonlinear formula and
28 finite element model, are analyzed to demonstrate the applicability and efficiency of the proposed
29 SE method, highlighting its ability to provide a more comprehensive view of the relationship
30 between input distribution parameters and model outputs.

Keywords: Sensitivity, Stochastic output, Mean, Standard deviation, Skewness

32 1. Introduction

With the rapid development of computational science and simulation technology, mathematical models have become indispensable tools for decision-making in engineering, science, economics, and policy. In practice, these models often involve random inputs, which lead to stochastic outputs. Understanding how uncertainties in the inputs affect the stochastic behavior of the outputs is essential for reliable modeling and informed decision-making [1].

*E-mail: zhangxuanyi@bjut.edu.cn

38 A wide spectrum of sensitivity estimation (SE) methods has been developed to investigate the
39 influence of input uncertainties on stochastic outputs. These methods can be broadly categorized
40 into two distinct paradigms based on the subject of the sensitivity analysis: sensitivity with respect
41 to input values versus sensitivity with respect to the distribution parameters of inputs.

42 The first paradigm, which is the most prevalent, defines sensitivity indices with respect to
43 the values of the input random variables. The variance-based SE method represents the most
44 established framework within this paradigm, where the total variance of the output is decom-
45 posed into contributions from individual inputs and their interactions [2, 3]. This framework
46 provides a global measure of how input variability affects output variability. Extensions have con-
47 nected variance-based and derivative-based methods [4, 5, 6], while variogram-based approaches
48 have been introduced to further bridge local and global perspectives [7]. To improve computa-
49 tional efficiency, surrogate-assisted strategies such as polynomial chaos expansion have been widely
50 adopted [8, 9, 10], and successfully applied in many engineering fields [11, 12, 13, 14]. Despite
51 their popularity, variance-based methods capture only the second-order property of the output,
52 which is insufficient for fully describing the stochastic nature of complex systems. To address this
53 limitation, SE methods incorporating higher moments have been developed [15], offering more
54 detailed characterization of output distributions. A more general class is moment-independent
55 methods [16, 17, 18], which quantify sensitivity by comparing the unconditional distribution of
56 the output with its conditional distributions when one or more inputs are fixed. These methods
57 allow for a comprehensive evaluation of how inputs shape the entire output distribution. Never-
58 theless, all of these approaches share a common aspect: they define sensitivity indices with respect
59 to input values, rather than with respect to the distribution parameters of the inputs. Since dis-
60 tribution parameters explicitly characterize input uncertainty and may be not known precisely
61 when engineering data are limited [19, 20], neglecting them reduces the practical applicability of
62 these methods. It is theoretically possible to treat these distribution parameters as new random
63 variables and apply the above global sensitivity methods. However, this approach conflates the
64 problem of *sensitivity to parameter values* with that of *second-order uncertainty analysis*, lead-
65 ing to conceptual ambiguity. More critically, it necessitates a computationally prohibitive nested
66 framework, making it impractical for most engineering applications.

67 The second paradigm directly addresses distribution parameters, but has been largely confined
68 to reliability analysis. Here, sensitivity indices (SIs) are defined with respect to the failure prob-

ability or the reliability index. Within the frameworks of first order reliability method (FORM) and second order reliability method (SORM), sensitivities can be obtained analytically in connection with the design point [21, 22]. These approaches are highly efficient when the model is not strongly nonlinear in the Gaussian space and has relatively low dimensionality. Simulation-based reliability methods, including crude Monte Carlo Simulation [23], Importance Sampling [24], Line Sampling [25], and Subset Simulation [26, 27], provide broader applicability and the possibility of reusing samples for sensitivity analysis. To alleviate computational cost, surrogate-assisted reliability methods such as Kriging have been widely explored [28, 29, 30]. In particular, the method of moments (MoM) has demonstrated good efficiency and accuracy for nonlinear systems and rare-event problems [31], and corresponding SE formulations have been proposed [32, 33]. However, reliability-based methods focus only on a single point of the output distribution, typically the cumulative distribution function at a certain threshold, while the remainder of the stochastic output is ignored. Consequently, although input distribution parameters are considered, the full stochastic behavior of the output remains uncharacterized. Crucially, none of these existing methods provides a systematic framework for quantifying the sensitivity of the first three moments (mean, variance, and skewness) of the output distribution to the distribution parameters of the inputs, which is essential for a complete understanding of how input uncertainties shape the central tendency, dispersion, and asymmetry of the output.

In conclusion, existing SE methods either (i) analyze the distribution of outputs but restrict attention to variations in input values, thereby overlooking the role of input distribution parameters, or (ii) incorporate distribution parameters but reduce the output distribution to a single reliability measure. In particular, the sensitivity of the output's moments to these parameters has been largely unexplored. This highlights a critical gap in current methodologies: the lack of SE approaches that systematically quantify how input distribution parameters influence the entire output distribution, including its key moment characteristics, which is essential for comprehensive uncertainty management in engineering practice.

To address this limitation, this study develops a novel SE method that quantifies the sensitivity of output distributions with respect to the distribution parameters of inputs. Two SIs are proposed: a local index for the entire output CDF (which generalizes traditional reliability sensitivities and provides results for all thresholds simultaneously), and a global index for the first three central moments of the output (which is, to our knowledge, a novel contribution offering

100 direct interpretability of how distribution parameters shift, disperse, or skew the output). For
 101 computational efficiency, approximate formulas for these indices are derived using a third-moment
 102 normal transformation technique, leading to the so-called TMSE method. In addition, an efficient
 103 numerical implementation is introduced as a post-processing step following general uncertainty
 104 propagation. The remainder of this paper is organized as follows. Section 2 defines the problem
 105 setting. Section 3 introduces the proposed SIs for moments and distributions. Section 4 presents
 106 a moment-based approximation for practical application, while Section 5 develops a numerical
 107 method for efficient implementation. Section 6 demonstrates the applicability of the proposed
 108 method through three numerical examples. Finally, Section 7 concludes the paper.comm

109 **2. Problem statement**

110 **2.1. Stochastic system**

111 A stochastic system defines the physical relationship between the inputs \mathbf{X} and output features
 112 \mathbf{Y} as follows:

$$\mathbf{Y} = h(\mathbf{X}), \quad (1)$$

113 where $\mathbf{Y} = (Y_1, Y_2, \dots, Y_m)$ and $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are the vectors of outputs and inputs for the sys-
 114 tem; m and n are respectively the dimensions of outputs and inputs; and $h(\cdot)$ is the simulator,
 115 which builds the mapping from \mathbf{X} to \mathbf{Y} and is usually represented as either a sophisticated code
 116 package (e.g., finite element model) or a mathematical function (e.g., performance function).

117 The uncertainties of the system are first characterized by inputs, and then propagate through
 the simulator into outputs as shown in Fig. 1. According to the involvements of aleatory or/and

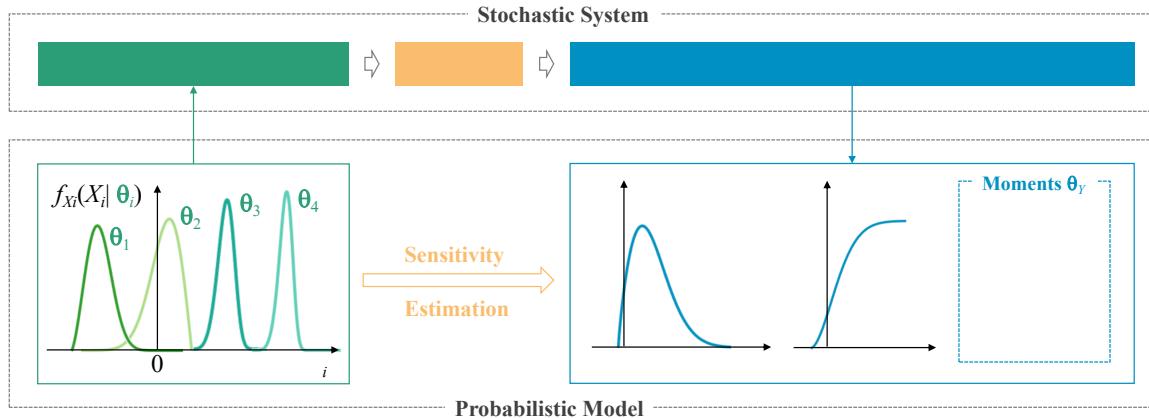


Figure 1: Schematic graph of uncertainty propagation in stochastic system

119 epistemic uncertainties, components of \mathbf{X} and \mathbf{Y} may be either explicit constants, random variables
 120 with fully determined uncertainty characteristics, uncertain constants, or random variables with
 121 only vaguely determined uncertain characteristics [34]. In this study, the case when only aleatory
 122 uncertainties involved in system parameters are considered, and the uncertain components of
 123 \mathbf{X} are modeled as independent random variables with deterministic distribution parameters. For
 124 convenience, a single stochastic output of the system, denoted by Y , is investigated in the following,
 125 while the results can be extended to multiple outputs.

126 *2.2. Probabilistic model*

127 From the probabilistic perspective, the inputs and outputs of a stochastic system are the
 128 probabilistic models of \mathbf{X} and Y . With \mathbf{X} modeled by independent random variables, Y is also a
 129 random variable, whose probabilistic models will be discussed in this section.

130 *2.2.1. Probability distribution*

131 The distribution of Y can be described by its cumulative distribution function (CDF) or
 132 probabilistic density function (PDF). Based on Eq. (1), the CDF of Y can be computed as
 133 follows:

$$F_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) = \int_{\Omega_{\mathbf{X}}} I(\mathbf{x}, y) f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}}) d\mathbf{x}, \quad (2)$$

134 where $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ is the CDF of model output at $Y=y$; y is a real value; $\boldsymbol{\theta}_{\mathbf{X}}=(\boldsymbol{\theta}_{X_1}, \boldsymbol{\theta}_{X_2}, \dots, \boldsymbol{\theta}_{X_n})$ is
 135 the vector of distribution parameters of \mathbf{X} , $\boldsymbol{\theta}_{X_i} = (\theta_{i1}, \dots, \theta_{ij}, \dots, \theta_{in_{X_i}})$ is the vector of distribution
 136 parameters of X_i , θ_{ij} is the j th distribution parameter for X_i , and n_{X_i} is the total number of
 137 parameters to describe the distribution of X_i ; $\Omega_{\mathbf{X}}$ is the domain of \mathbf{X} ; $I(\cdot, \cdot)$ is the indicator
 138 function, which is equal to 1 in case $h(\mathbf{x}) \leq y$ and 0 otherwise; and $f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}})$ is the joint PDF of
 139 \mathbf{X} . Based on Eq. (2), the PDF of Y , denoted by $f_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$, can be computed as follows:

$$f_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) = \frac{\partial F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})}{\partial y}. \quad (3)$$

140 In general, the CDF is of particular interest for specific value of $Y=y$. For instance, when Y
 141 represents the load effect, $1 - F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ provides the exceeding probability of the load effects for
 142 the threshold y . Moreover, if $h(\cdot)$ is defined as the performance function, $F_Y(0, \boldsymbol{\theta}_{\mathbf{X}})$ corresponds
 143 to the failure probability. Once the CDF is obtained, the corresponding PDF can be readily

¹⁴⁴ derived based on Eq. (3). Therefore, $F_Y(y, \boldsymbol{\theta}_X)$ is the subject of study in the following discussion
¹⁴⁵ of sensitivity estimation.

¹⁴⁶ *2.2.2. Statistical moments*

¹⁴⁷ Central moments of Y are another perspective to describe the stochastic properties of Y ,
¹⁴⁸ which provide the overall description of the distribution. While incorporating higher-order moments
¹⁴⁹ can provide additional information, the computational efficiency decreases significantly as
¹⁵⁰ more moments are included. To strike a balance between accuracy and efficiency, the first three
¹⁵¹ central moments of Y are considered, as they capture the majority of the distribution's statistical
¹⁵² information [35]. These central moments can be computed from the original moments as follows:

$$\theta_{Y1}(\boldsymbol{\theta}_X) = E_1(\boldsymbol{\theta}_X), \quad (4)$$

$$\theta_{Y2}(\boldsymbol{\theta}_X) = \sqrt{E_2(\boldsymbol{\theta}_X) - [E_1(\boldsymbol{\theta}_X)]^2}, \quad (5)$$

$$\theta_{Y3}(\boldsymbol{\theta}_X) = \frac{1}{[\theta_{Y2}(\boldsymbol{\theta}_X)]^3} \{E_3(\boldsymbol{\theta}_X) - 3E_1(\boldsymbol{\theta}_X)E_2(\boldsymbol{\theta}_X) + 2[E_1(\boldsymbol{\theta}_X)]^3\}, \quad (6)$$

¹⁵³ where $\theta_{Y1}(\boldsymbol{\theta}_X)$, $\theta_{Y2}(\boldsymbol{\theta}_X)$, and $\theta_{Y3}(\boldsymbol{\theta}_X)$ are the mean, standard deviation and skewness of Y , respec-
¹⁵⁴ tively; and $E_k(\boldsymbol{\theta}_X)$ is the k th moment about the origin of Y and computed from $\boldsymbol{\theta}_X$ as follows:

$$E_k(\boldsymbol{\theta}_X) = \int_{\Omega_X} [h(\mathbf{x})]^k f_X(\mathbf{x}|\boldsymbol{\theta}_X) d\mathbf{x}. \quad (7)$$

¹⁵⁵ **3. Derivative-based sensitivity index**

¹⁵⁶ As discussed in Eqs. (2)-(7), the probabilistic models of Y are influenced by $\boldsymbol{\theta}_X$. To quan-
¹⁵⁷ tify such influence, the sensitivity of the distribution of Y with respect to $\theta_{X_{ij}}$ ($i=1,\dots,n$ and
¹⁵⁸ $j=1,\dots,n_{X_i}$) will be estimated in this section. Without loss of generality, $\boldsymbol{\theta}_X$ can be the the vector
¹⁵⁹ of central moments, original moments or other parameters of \mathbf{X} , as long as they provide sufficient
¹⁶⁰ information to define the distribution of \mathbf{X} unambiguously. Comparison between Eqs. (2) and (7)
¹⁶¹ shows that, $F_Y(y, \boldsymbol{\theta}_X)$ provides estimation of the distribution for specific value of $Y=y$, while the
¹⁶² moments are an overall evaluation considering all possible values of Y . In this sense, the sensitivity
¹⁶³ index (SI) considering $F_Y(y, \boldsymbol{\theta}_X)$ is defined as the local SI, while the one considering $\boldsymbol{\theta}_Y$ is named
¹⁶⁴ as the global SI. The local and global SIs will be analyzed in this section.

165 3.1. Local sensitivity index

166 A straightforward method to quantify the sensitivity output distribution with respect to $\theta_{X_{ij}}$
 167 involves taking the derivatives of the probabilistic models of Y with respect to $\theta_{X_{ij}}$. Then, the
 168 local SI of Y with respect to $\theta_{X_{ij}}$, denoted by $LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}})$, is defined as follows:

$$LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}}) = \frac{\partial F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}}. \quad (8)$$

169 Note that, the local SI defined in Eq. (8) is a function of y and can be interpreted as the SI for
 170 the exceedance probability of a threshold b when $y=b$.

171 Substitution of Eq. (2) into Eq. (8) leads to the reformulation of $LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}})$ as follows:

$$LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}}) = \int_{\Omega}^{\mathbf{x}} I(\mathbf{x}, y) m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X^i}) f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}}) d\mathbf{x}, \quad (9)$$

172 where $m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X_i})$ is the so-called score function, which formulated as follows:

$$m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X_i}) = \frac{\partial f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}} \cdot \frac{1}{f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}})}. \quad (10)$$

173 When \mathbf{X} is modeled by independent random variables, $f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}})$ is computed as $\prod_{i=1}^n f_{X_i}(X_i | \boldsymbol{\theta}_{X_i})$,
 174 where $f_{X_i}(X_i | \boldsymbol{\theta}_{X_i})$ is the PDF of X_i . Then, $m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X_i})$ can be simplified as follows:

$$m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X_i}) = m_{ij}(x_i, \boldsymbol{\theta}_{X_i}) = \frac{\partial f_{X_i}(x_i | \boldsymbol{\theta}_{X_i})}{\partial \theta_{X_{ij}}} \cdot \frac{1}{f_{X_i}(x_i | \boldsymbol{\theta}_{X_i})}. \quad (11)$$

175 With the distribution of \mathbf{X} known, $m_{ij}(\mathbf{x}, \boldsymbol{\theta}_{X_i})$ can be readily defined.

176 3.2. Global sensitivity index

177 Similarly, the global SI, denoted by $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$, is proposed as the derivative of central moments
 178 of Y with respect to θ_{ij} . As shown in Eqs. (4)-(7), the central moments of Y are computed based
 179 on $\boldsymbol{\theta}_{\mathbf{X}}$, and then are represented as a column vector $\boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}}) = (\theta_{Y1}(\boldsymbol{\theta}_{\mathbf{X}}), \theta_{Y2}(\boldsymbol{\theta}_{\mathbf{X}}), \theta_{Y3}(\boldsymbol{\theta}_{\mathbf{X}}))^T$.
 180 Accordingly, $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$ is formulated as follows:

$$\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}}) = \frac{\partial \boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}}. \quad (12)$$

181 There are three elements in $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$, corresponding to the mean, standard deviation, and skew-
 182 ness of Y . The second element of $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$ is analogous to variance-based SIs, except that it

183 considers the distribution parameters of \mathbf{X} rather than \mathbf{X} itself. Based on Eqs. (4)-(6) and (12),
184 $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$ can be expanded as follows:

$$\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}}) = \frac{\partial \boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})} \cdot \frac{\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}}, \quad (13)$$

185 where $\mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}}) = (E_1(\boldsymbol{\theta}_{\mathbf{X}}), E_2(\boldsymbol{\theta}_{\mathbf{X}}), E_3(\boldsymbol{\theta}_{\mathbf{X}}))^T$ is a column vector of original moments of Y . Based
186 on Eqs. (4)-(6), $\partial \boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}})/\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})$ is obtained as follows:

$$\frac{\partial \boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\theta_{Y_1}(\boldsymbol{\theta}_{\mathbf{X}})}{\theta_{Y_2}(\boldsymbol{\theta}_{\mathbf{X}})} & \frac{1}{2\theta_{Y_2}(\boldsymbol{\theta}_{\mathbf{X}})} & 0 \\ \frac{3\{E_1(\boldsymbol{\theta}_{\mathbf{X}})E_3(\boldsymbol{\theta}_{\mathbf{X}}) - [E_2(\boldsymbol{\theta}_{\mathbf{X}})]^2\}}{[\theta_{Y_2}(\boldsymbol{\theta}_{\mathbf{X}})]^5} & \frac{3[E_1(\boldsymbol{\theta}_{\mathbf{X}})E_2(\boldsymbol{\theta}_{\mathbf{X}}) - E_3(\boldsymbol{\theta}_{\mathbf{X}})]}{2[\theta_{Y_2}(\boldsymbol{\theta}_{\mathbf{X}})]^5} & \frac{1}{[\theta_{Y_2}(\boldsymbol{\theta}_{\mathbf{X}})]^3} \end{pmatrix}. \quad (14)$$

187 Based on Eq. (14), $\partial \boldsymbol{\theta}_Y(\boldsymbol{\theta}_{\mathbf{X}})/\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})$ can be explicitly computed given the value of $\mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})$. With
188 first three moments considered, there are three elements in $\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})/\partial \theta_{X_{ij}}$ and expressed as follows:

$$\frac{\partial \mathbf{E}(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}} = \left(\frac{\partial E_1(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}}, \quad \frac{\partial E_2(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}}, \quad \frac{\partial E_3(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}} \right)^T. \quad (15)$$

189 Based on Eq. (7), $\partial E_k(\boldsymbol{\theta}_{\mathbf{X}})/\partial \theta_{X_{ij}}$ ($k=1, 2, 3$) can be computed as follows:

$$\frac{\partial E_k(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{X_{ij}}} = \int_{\Omega_{\mathbf{x}}} g_{ijk}(\mathbf{x}, \boldsymbol{\theta}_{X_i}) f_{\mathbf{x}}(\mathbf{x} | \boldsymbol{\theta}_{\mathbf{X}}) d\mathbf{x}, \quad (16)$$

190 where $g_{ijk}(\mathbf{x}, \boldsymbol{\theta}_{X_i})$ is formulated as follows:

$$g_{ijk}(\mathbf{x}, \boldsymbol{\theta}_{X_i}) = [h(\mathbf{x})]^k \cdot m_{ij}(x_i, \boldsymbol{\theta}_{X_i}). \quad (17)$$

191 4. Moment-based distribution models and local sensitivity index

192 Direct computation of $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ and $LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}})$ based on Eqs. (2) and (9) requires to evaluate
193 a multi-dimensional integral of a function that includes the indicator function $I(\mathbf{x}, y)$. Influenced
194 by $I(\mathbf{x}, y)$, this integral is taken over the domain $\{h(\mathbf{x}) \leq y\}$. In certain cases, such as when $h(\cdot)$
195 is a summation of independent random variables \mathbf{X} , the integral domain defined by $I(\mathbf{x}, y)$ can
196 be explicitly defined, allowing the multi-dimensional integral to be solved analytically (details are
197 provided in Appendix A). However, in most practical situations, the function $h(\cdot)$ is complicated,
198 making it impossible to explicitly determine the region where $\{h(\mathbf{x}) \leq y\}$. As a result, the

199 required integrals for $F_Y(y, \boldsymbol{\theta}_X)$ and $LS_{ij}(y, \boldsymbol{\theta}_X)$ cannot be computed directly. In contrast, the
 200 moments of Y can be directly obtained based on (4)-(7), since the corresponding integrals are
 201 defined over the entire domain of \mathbf{X} . To address the challenges in constructing $F_Y(y, \boldsymbol{\theta}_X)$ and
 202 estimating $LS_{ij}(y, \boldsymbol{\theta}_X)$, this section discusses a moment-based approximation approach for these
 203 two objectives.

204 *4.1. Moment-based CDF and PDF*

205 To take advantage of well-established theories for standard normal distribution, $F_Y(y, \boldsymbol{\theta}_X)$ can
 206 be defined based on the normal transformation technique as follows [35]:

$$F_Y(y, \boldsymbol{\theta}_X) \cong \Phi[T(y|\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X))], \quad (18)$$

207 where $\Phi[\cdot]$ is the CDF of standard normal random variable; and $T(y|\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X))$ is the normal
 208 transformation function, which is defined based on $\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X)$. Based on Eq. (18), $f_Y(y, \boldsymbol{\theta}_X)$ can
 209 be easily constructed as follows:

$$f_Y(y, \boldsymbol{\theta}_X) \cong \varphi[T(y|\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X))] \frac{\partial T(y|\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X))}{\partial y}, \quad (19)$$

210 where $\varphi[\cdot]$ is the PDF of standard normal distribution.

211 Theoretically, Eqs. (18) and (19) can provide an accurate solution to $F_Y(y, \boldsymbol{\theta}_X)$ and $f_Y(y, \boldsymbol{\theta}_X)$
 212 with the distribution of Y fully defined by $\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X)$. For instance, when $h(\cdot)$ is a sum of indepen-
 213 dent normal random variables, the resulting distribution is also normal, which can be precisely
 214 described using the first two moments. However, in practice, the exact distribution of Y is
 215 generally unknown, and finite moments alone are insufficient to fully describe it. As a result, the
 216 moment-based formulas in Eqs. (18) and (19) serve as approximations of $F_Y(y, \boldsymbol{\theta}_X)$ and $f_Y(y, \boldsymbol{\theta}_X)$,
 217 with its accuracy depending on the statistical information contained in $\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X)$. In this study,
 218 the first three central moments of Y are used to define $T(y|\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X))$, as they capture most of
 219 the relevant statistical information and have been shown to be sufficient in general cases [35].
 220 However, higher moments may be necessary when Y exhibits strong non-Gaussian behavior.

221 4.2. Moment-based local sensitivity index

222 Substitution of Eq. (18) into Eq. (8) leads to the reformulation of $LS_{ij}(y, \theta_{\mathbf{X}})$ as follows:

$$LS_{ij}(y, \theta_{\mathbf{X}}) \cong \frac{\partial \Phi[T(y|\theta_Y(\theta_{\mathbf{X}}))]}{\partial \theta_{X_{ij}}}. \quad (20)$$

223 Applying the chain rule of differentiation, $LS_{ij}(y, \theta_{\mathbf{X}})$ can be computed as follows:

$$LS_{ij}(y, \theta_{\mathbf{X}}) \cong \varphi[T(y|\theta_Y(\theta_{\mathbf{X}}))] \cdot \frac{\partial T(y|\theta_Y(\theta_{\mathbf{X}}))}{\partial \theta_Y(\theta_{\mathbf{X}})} \cdot \frac{\partial \theta_Y(\theta_{\mathbf{X}})}{\partial \theta_{X_{ij}}}. \quad (21)$$

224 Substitution Eq (19) into Eq. (21) allows to formulate $LS_{ij}(y, \theta_{\mathbf{X}})$ as follows:

$$LS_{ij}(y, \theta_{\mathbf{X}}) \cong f_Y(y, \theta_{\mathbf{X}}) \cdot \mathbf{NT}(y, \theta_Y(\theta_{\mathbf{X}})) \cdot \mathbf{GS}_{ij}(\theta_{\mathbf{X}}). \quad (22)$$

225 where $\mathbf{NT}(y, \theta_Y(\theta_{\mathbf{X}}))$ is a 3 dimensional row vector defined based on the normal transformation
226 $T(y|\theta_Y(\theta_{\mathbf{X}}))$ as follows:

$$\mathbf{NT}(y, \theta_Y(\theta_{\mathbf{X}})) = \frac{\partial y}{\partial T(y|\theta_Y(\theta_{\mathbf{X}}))} \cdot \frac{\partial T(y|\theta_Y(\theta_{\mathbf{X}}))}{\partial \theta_Y(\theta_{\mathbf{X}})}. \quad (23)$$

227 Comparison between Eqs. (12) and (22) reveals that the local sensitivity index $LS_{ij}(y, \theta_{\mathbf{X}})$ is
228 a function of the global sensitivity index $\mathbf{GS}_{ij}(\theta_{\mathbf{X}})$. This relationship exists because the global SI
229 offers an overall evaluation of the distribution of Y , but lacks the ability to describe specific values.
230 Therefore, $LS_{ij}(y, \theta_{\mathbf{X}})$ provides a more detailed assessment of sensitivity compared to $\mathbf{GS}_{ij}(\theta_{\mathbf{X}})$.

231 4.3. Third moment normal transformation based approximation

232 As discussed above, the key task for determining the moment-based $F_Y(y, \theta_{\mathbf{X}})$, $f_Y(y, \theta_{\mathbf{X}})$ and
233 $LS_{ij}(y, \theta_{\mathbf{X}})$ is to define the normal transformation function $T(y|\theta_Y(\theta_{\mathbf{X}}))$. In this study, the third-
234 moment normal transformation (TMNT) is applied [36], which is proved to be efficient while
235 achieving sufficient. For simplicity, in the following, $\theta_Y(\theta_{\mathbf{X}})$ and $\theta_{Y_k}(\theta_{\mathbf{X}})$ and $E_k(\theta_{\mathbf{X}})$ ($k=1, 2, 3$)
236 will be denoted as θ_Y , θ_{Y_k} and E_k , respectively. Based on the TMNT, $T(y|\theta_Y)$ is approximated
237 as follows:

$$T(y|\theta_Y) \cong \begin{cases} \frac{-a_2 + \Delta}{2a_1}, & \theta_{Y_3} \neq 0 \\ y_s, & \theta_{Y_3} = 0 \end{cases} \quad (24)$$

238 where

$$\Delta = \sqrt{a_2^2 + 4a_1(a_1 + y_s)}, \quad (25)$$

$$y_s = \frac{(y - \theta_{Y_1})}{\theta_{Y_2}}, \quad (26)$$

239 where y_s is the standardization of y ; and a_1 and a_2 are the parameters of the TMNT computed
240 from θ_{Y_3} . The applicable range for the TMNT is given as follows [35]:

$$-120\epsilon_a\theta_{2Y}/\theta_{1Y} \leq \theta_{3Y} \leq 40\epsilon_a\theta_{2Y}/\theta_{1Y}, \quad (27)$$

241 where ϵ_a is the allowable error. For problem with $|\theta_{Y_3}| \leq 2$, a_1 and a_2 can be calculated as
242 follows [37]:

$$a_1 = \frac{\sqrt{3}}{10}\theta_{Y_3}, \quad a_2 = 1 - \frac{\sqrt{3}}{50}\theta_{Y_3}^2. \quad (28)$$

243 Based on Eqs. (24)-(28), $\partial T(y|\boldsymbol{\theta}_Y)/\partial y$ can be directly obtained as follows:

$$\frac{\partial T(y|\boldsymbol{\theta}_Y)}{\partial y} \cong \frac{1}{\theta_{Y_2}\Delta}. \quad (29)$$

244 Substitution Eq. (29) into (19) yields $f_Y(y, \boldsymbol{\theta}_X)$:

$$f_Y(y, \boldsymbol{\theta}_X) \cong \frac{\varphi[T(y|\boldsymbol{\theta}_Y)]}{\theta_{Y_2}\Delta}. \quad (30)$$

245 Based on Eqs. (24)-(28), $\partial T(y|\boldsymbol{\theta}_Y)/\partial \boldsymbol{\theta}_Y$ can be obtained as follows:

$$\frac{\partial T(y|\boldsymbol{\theta}_Y)}{\partial \boldsymbol{\theta}_Y} \cong \left(-\frac{1}{\theta_{Y_2}\Delta}, \quad -\frac{y_s}{\theta_{Y_2}\Delta}, \quad \frac{\partial T(y|\boldsymbol{\theta}_Y)}{\partial \theta_{Y_3}} \right). \quad (31)$$

246 Combine Eqs. (23), (29) and (31), $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$ can be obtained as follows:

$$\mathbf{NT}(y, \boldsymbol{\theta}_Y) \cong (-1, \quad -y_s, \quad NT_3(y, \boldsymbol{\theta}_Y)). \quad (32)$$

247 When $\theta_{Y_3} = 0$, $NT_3(y, \boldsymbol{\theta}_Y) = 0$; when $\theta_{Y_3} \neq 0$, $NT_3(y, \boldsymbol{\theta}_Y)$ is formulated as follows:

$$NT_3(y, \boldsymbol{\theta}_Y) \cong \frac{\theta_{Y_2}}{\theta_{Y_3}} [(2 - a_2)T(y|\boldsymbol{\theta}_Y) - y_s]. \quad (33)$$

248 As discussed above, both the TMNT and corresponding $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$ can be analytically deter-
 249 mined based on the value of $\boldsymbol{\theta}_Y$. Then, based on the TMNT, the moment-based CDF and PDF of
 250 Y can be explicitly constructed using Eqs. (18) and (30), respectively. Given the values of PDF of
 251 Y , $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$ and global SI, the moment-based local SI can be readily computed using Eq. (22).
 252 To sum up, by using the TMNT and the moments of Y , the moment-based CDF and PDF of Y
 253 as well as the moment-based local SI can be explicitly computed, with no extra model evaluation
 254 required. This helps to improve the computational efficiency. As the sensitivity estimation method
 255 with respect to input distribution parameters is developed based on the TMNT, it is referred to
 256 as TMSE method.

257 5. Numerical method for sensitivity estimation

258 The fundamental step for TMSE method is to evaluate the moments of Y and global SI. Based
 259 on Eqs. (4)-(7) and (12)-(13), the moments of Y and global SI can be computed based on multi-
 260 dimensional integrals over the domain of \mathbf{X} given in Eqs. (7) and (16). As the dimension of \mathbf{X} is
 261 generally large in practice, direct computation of these two integrals may be time-consuming or
 262 even impossible. As an alternative, efficient dimensional reduction method for integral approxi-
 263 mation is introduced in this section.

264 5.1. Dimensional reduction method for evaluating the original moments

265 To make a good balance between accuracy and efficiency, the original moments of Y , i.e., E_k ,
 266 is solved using the point estimate method [38] combining with bivariate dimensional reduction
 267 method (BDRM) [39] as follows:

$$E_k \cong \sum_{1 \leq p < q \leq n} E_{pq}^k - (n-2) \sum_{p=1}^n E_p^k + \frac{(n-1)(n-2)}{2} [h(\boldsymbol{\mu})]^k, \quad (34)$$

$$E_{pq}^k = \sum_{r_p=1}^l \sum_{r_q=1}^l P_{r_p} P_{r_q} h[\mathbf{x}_{pq}(r_p, r_q)]^k, \quad E_p^k = \sum_{r_p=1}^l P_{r_p} h[\mathbf{x}_p(r_p)]^k, \quad (35)$$

268 where $\boldsymbol{\mu}$ is the vector of mean values of \mathbf{X} ; $\mathbf{x}_{pq}(r_p, r_q) = (\mu_1, \dots, T^{-1}(\hat{\mathbf{u}}(r_p), \boldsymbol{\theta}_{X_p}), \dots, T^{-1}(\hat{\mathbf{u}}(r_q), \boldsymbol{\theta}_{X_q}), \dots,$
 269 $\mu_n)$ and $\mathbf{x}_p(r_p) = (\mu_1, \dots, T^{-1}(\hat{\mathbf{u}}(r_p), \boldsymbol{\theta}_{X_p}), \dots, \mu_n)$ are the evaluation points; $T^{-1}(\cdot, \cdot)$ is the inverse
 270 normal transformation function, which can be defined using Rosenblatt transformation [40]; $\hat{\mathbf{u}}$ is
 271 a l -dimensional vector of the evaluation points in standard normal space; P_{r_p} and P_{r_q} are the r_p th

272 and r_q th elements in $\hat{\mathbf{P}}$, respectively; and $\hat{\mathbf{P}}$ is the weight vector corresponding to $\hat{\mathbf{u}}$. $\hat{\mathbf{P}}$ and $\hat{\mathbf{u}}$ can
273 be computed as follows [38]:

$$\hat{\mathbf{u}} = \sqrt{2}\boldsymbol{\zeta}, \quad \hat{\mathbf{P}} = \frac{1}{\pi}\boldsymbol{\xi}. \quad (36)$$

274 where $\boldsymbol{\zeta}$ and $\boldsymbol{\xi}$ are vectors of the abscissa and corresponding weights in the Gauss-Hermite quadra-
275 ture formula, respectively. Generally, the accuracy of point estimate method can be guaranteed
276 with $l = 7$ [38], and the evaluation points $\hat{\mathbf{u}}$ and corresponding weights $\hat{\mathbf{P}}$ are given as follows [38]:

$$\hat{\mathbf{u}} = (\pm 3.7504, \pm 2.3668, \pm 1.1544, 0), \quad \hat{\mathbf{P}} = (0.0005, 0.0308, 0.2401, 0.4574). \quad (37)$$

277 Based on Eqs. (34) and (35), the number of model evaluations required for computing \mathbf{E} ,
278 denoted by N_M , is

$$N_M = \frac{n(n-1)}{2}(l-1)^2 + n(l-1) + 1 \quad (38)$$

279 It can be seen that N_M is proportional to n^2 , which becomes extremely large for high-dimensional
280 problems. Thus, the proposed method may face challenges for large n . This curse of dimension-
281 ality arises from the applied dimension-reduction method [39], and it may be alleviated through
282 alternative approximation techniques.

283 *5.2. Dimensional reduction method for estimating global SI*

284 Comparison between Eqs. (7) and (16) reveals that, $\partial E_k / \partial \theta_{X_{ij}}$ can be integrated as the mean
285 value of $g_{ijk}(\mathbf{X}, \boldsymbol{\theta}_{X_i})$. Furthermore, the input random variables for both $h(\cdot)$ and $g_{ijk}(\mathbf{X}, \boldsymbol{\theta}_{X_i})$ are
286 \mathbf{X} . Thus, $\partial E_k / \partial \theta_{X_{ij}}$ can be evaluated using the same method as for E_k , i.e., the point estimate
287 method combining with BDRM as follows:

$$\frac{\partial E_k}{\partial \theta_{ij}} \cong \sum_{1 \leq p < q \leq n} D_{pq} - (n-2) \sum_{p=1}^n D_p + \frac{(n-1)(n-2)}{2} g_{ijk}(\boldsymbol{\mu}, \boldsymbol{\theta}_{X_i}), \quad (39)$$

$$D_{pq} = \sum_{r_p=1}^l \sum_{r_q=1}^l P_{r_p} P_{r_q} g_{ijk}[\mathbf{x}_{pq}(r_p, r_q), \boldsymbol{\theta}_{X_i}], \quad D_p = \sum_{r_p=1}^l P_{r_p} g_{ijk}[\mathbf{x}_p(r_p), \boldsymbol{\theta}_{X_i}]. \quad (40)$$

288 Eqs.(34)-(35) and (39)-(40) show that, the evaluation points applied for evaluating \mathbf{E} and $\partial \mathbf{E} / \partial \theta_{X_{ij}}$
289 are the same. Compared with the estimation of \mathbf{E} , the only extra requirements for estimating
290 $\partial \mathbf{E} / \partial \theta_{X_{ij}}$ is to compute $m_{ij}(X_i | \boldsymbol{\theta}_{X_i})$ as given in Eq. (10), which can be easily determined. There
291 is no extra model evaluation required for computing $\partial \mathbf{E} / \partial \theta_{X_{ij}}$, and thus, it can be treated as the

292 byproduct of determining \mathbf{E} , which guarantees the computational efficiency.

293 *5.3. Procedure of the proposed method*

294 The procedure of the proposed TMSE method for sensitivity estimation of distribution of Y with respect to $\theta_{X_{ij}}$ is summarized in Fig. 2, which comprises three main steps as detailed below:

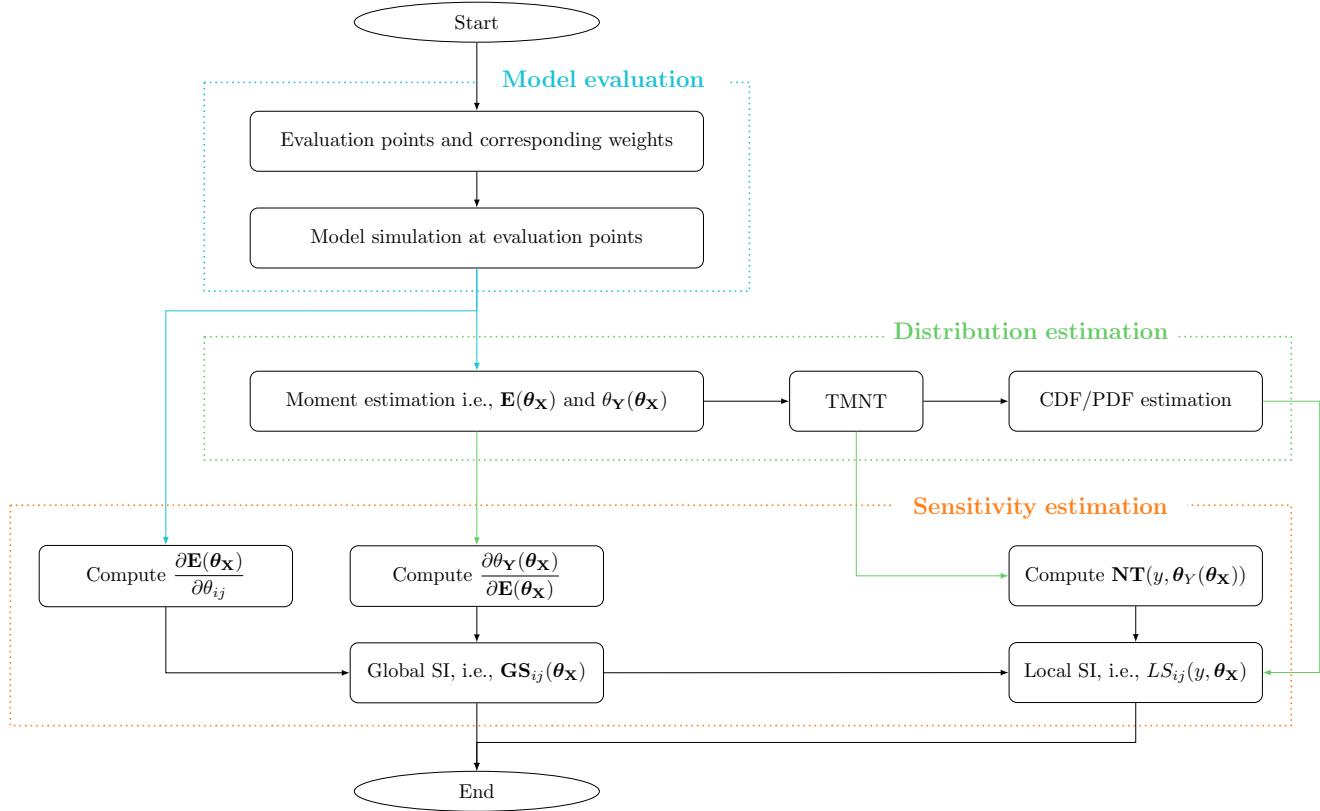


Figure 2: Flowchart for sensitivity estimation of output distribution using the TMSE method

295

296 (1) **Model evaluation.**

297 • *Evaluation points generation.* First, evaluation points for each random variable are
 298 transformed from $\hat{\mathbf{u}}$, using inverse normal transformation technique such as Rosenblatt
 299 transformation. Then, all $\mathbf{x}_{pq}(r_p, r_q)$ and $\mathbf{x}_p(r_p)$ ($1 \leq p < q \leq n$, $r_p=1, \dots, l$ and $r_q=1, \dots,$
 300 l) are formed with different combinations of the evaluation points.

301 • *Model evaluation.* With the set of evaluation points, the corresponding values of the
 302 output Y are computed using the estimator $h(\cdot)$. It is important to note that this is the
 303 only step requiring model evaluation, i.e., evaluating $h(\cdot)$. The values of Y obtained
 304 in this step are subsequently used for distribution estimation and are reused in the
 305 sensitivity estimation.

306 (2) Distribution estimation.

307

- 308 • *Moment estimation of the output.* Based on the values of Y at the evaluation points
309 and Eqs. (34) and (35), the original moments of Y , i.e., \mathbf{E} , can be computed. Then, with
310 the aid of Eq. (4)-(6), the central moments of Y , i.e., $\boldsymbol{\theta}_Y$, can be obtained. The obtained
311 \mathbf{E} and $\boldsymbol{\theta}_Y$ will be applied to both distribution evaluation and sensitivity estimation.
- 312 • *CDF and PDF simulation.* Based on $\boldsymbol{\theta}_Y$, the TMNT for y can be constructed using
313 Eqs. (24)-(26). Then, CDF and PDF of Y can be directly constructed using Eqs. (18)
314 and (30), respectively.

314 (3) Sensitivity estimation.

315

- 316 • Estimate $\partial\mathbf{E}/\partial\theta_{X_{ij}}$ using the point estimate point combined with BDRM, as given in
317 Eqs. (39)-(40). The values of $g_{ijk}(\cdot, \cdot)$ at the evaluation points are computed based
318 on the values of Y obtained previously, and thus there is no extra model evaluation
319 required.
- 320 • Compute $\partial\boldsymbol{\theta}_Y/\partial\mathbf{E}$. With $\boldsymbol{\theta}_Y$ and \mathbf{E} obtained in distribution evaluation, $\partial\boldsymbol{\theta}_Y/\partial\mathbf{E}$ can
321 be directly computed using Eq. (14).
- 322 • Estimate the global SI $\mathbf{GS}_{ij}(\boldsymbol{\theta}_X)$ based on Eq. (13), using the results of $\partial\mathbf{E}(\boldsymbol{\theta}_X)/\partial\theta_{X_{ij}}$
323 and $\partial\boldsymbol{\theta}_Y(\boldsymbol{\theta}_X)/\partial\mathbf{E}(\boldsymbol{\theta}_X)$.
- 324 • Compute $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$. With the TMNT constructed, $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$ can be directly com-
325 puted using Eqs (32) and (33).
- 326 • Estimate the local SI $LS_{ij}(y, \boldsymbol{\theta}_X)$ with the aid of Eq. (22), based on the results of
327 $f_Y(y, \boldsymbol{\theta}_X)$, $\mathbf{GS}_{ij}(\boldsymbol{\theta}_X)$ and $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$.

327 As discussed above, the inputs for global sensitivity estimation are the moments of Y and
328 $\partial\mathbf{E}/\partial\theta_{X_{ij}}$. The moments of Y are obtained through the dimensional reduction method described
329 in section 5.1. The computation of $\partial\mathbf{E}/\partial\theta_{X_{ij}}$ is based on the evaluation points $\mathbf{x}_{pq}(r_p, r_q)$ and
330 $\mathbf{x}_p(r_p)$ ($1 \leq p < q \leq n$, $r_p=1, \dots, l$ and $r_q=1, \dots, l$) and corresponding model outputs, all of which are
331 byproducts of the distribution estimation process, as discussed in section 5.2. With these inputs
332 readily obtained, the global SI can be computed. There is no additional model evaluation required
333 in sensitivity estimation, thereby ensuring the efficiency of the method. With the moments of Y
334 obtained, the TMNT can be constructed, and then the CDF/PDF of Y and local SI can be

335 readily obtained. In this sense, CDF/PDF and local SI can be treated as the byproducts of
 336 moment estimation and global SI, respectively.

337 **6. Examples**

338 *6.1. Example 1: Weighted summation of two independent random variables*

339 The first example considers a simple function as follows:

$$Y = h(\mathbf{X}) = k_1 X_1 + k_2 X_2, \quad (41)$$

340 where X_1 and X_2 are two independent random variables; and $k_1 = 2$ and $k_2 = -1$ are the
 341 coefficients.

342 To illustrate the procedure of the TSME method, detailed results are discussed for the case
 343 when X_1 and X_2 follow lognormal distributions with $\theta_{X_{11}} = 16$ and $\theta_{X_{21}} = 12$, respectively.
 344 Additionally, the coefficient of variance (COV) of X_1 and X_2 are assumed to be 0.05 and 0.10,
 345 respectively. Based on Fig. 2, the first step is to generate the evaluation points, which are trans-
 formed from $\hat{\mathbf{u}}$ and listed in Table 1. Then, the values of Y at the evaluation points can be readily

Table 1: Evaluation points in example 1

r_q	$r_p=1$		$r_p=2$		$r_p=3$		$r_p=4$		$r_p=5$		$r_p=6$		$r_p=7$		
	X_1	X_2													
1	10.95	6.78	12.57	6.78	14.19	6.78	16	6.78	17.86	6.78	20.16	6.78	23.14	6.78	
2	10.95	8.34	12.57	8.34	14.19	8.34	16	8.34	17.86	8.34	20.16	8.34	23.14	8.34	
3	10.95	9.99	12.57	9.99	14.19	9.99	16	9.99	17.86	9.99	20.16	9.99	23.14	9.99	
$\mathbf{x}_{12}(r_p, r_q)$	4	10.95	12	12.57	12	14.19	12	16	12	17.86	12	20.16	12	23.14	12
	5	10.95	14.10	12.57	14.10	14.19	14.10	16	14.10	17.86	14.10	20.16	14.10	23.14	14.10
	6	10.95	16.89	12.57	16.89	14.19	16.89	16	16.89	17.86	16.89	20.16	16.89	23.14	16.89
	7	10.95	20	12.57	20.76	14.19	20.76	16	20.76	17.86	20.76	20.16	20.76	23.14	20.76
$\mathbf{x}_1(r_p)$		10.95	12	12.57	9	14.19	12	16	12	17.86	12	20.16	12	23.14	12
$\mathbf{x}_2(r_p)$		16	6.78	16	8.34	16	9.99	16	12	16	14.10	16	16.89	16	20.76

346
 347 computed. It can be observed from Table 1 that, there are some repeated values for $\mathbf{x}_p(r_p)$ and
 348 $\mathbf{x}_{pq}(r_p, r_q)$, and the number of model evaluations is 49 by eliminating the duplicated points. The
 349 next step is to evaluate the distribution of Y . First, with the aid of Eqs. (34) and (35), the first
 350 three moments about the origin of Y are computed as $\mathbf{E}=(20, 413.48, 8816.02)$. Then, based on

351 Eqs. (4)-(6), the first three central moments of Y , i.e., $\boldsymbol{\theta}_Y$, can be transformed from \mathbf{E} as (20,
 352 3.6715, 0.1459). With $\boldsymbol{\theta}_Y$ obtained, the CDF and PDF of Y can be constructed based on the
 353 TMNT as given in Eqs. (18) and (30), respectively.

354 The third step is to conduct sensitivity estimation. First, the values of $g_{ijk}(\cdot, \cdot)$ are computed.
 355 The derivative of $f_{X_i}(X_i | \boldsymbol{\theta}_{X_i})$ with respect to $\boldsymbol{\theta}_{X_{ij}}$ is computed using finite difference method. Note
 356 that, as the lognormal distribution depends on two parameters, the sensitivity estimation focuses
 357 solely on the first two moments of \mathbf{X} . The values of $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{ij}}$ are $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{11}} = (2, 80, 2480.5)^T$,
 358 $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{21}} = (-1, -40, -1240.2)^T$, $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{12}} = (0, 12.8, 792.7)^T$, $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{12}} = (0, 3.6, 210.1)^T$. Based
 359 on Eq. (14), $\partial \boldsymbol{\theta}_Y / \partial \mathbf{E}$ is

$$\frac{\partial \boldsymbol{\theta}_Y}{\partial \mathbf{E}} = \begin{pmatrix} 1 & 0 & 0 \\ -5.4473 & 0.1362 & 0 \\ 24.0785 & -1.2285 & 0.0202 \end{pmatrix}. \quad (42)$$

360 Substituting the values of $\partial \boldsymbol{\theta}_G / \partial \mathbf{E}_G(\boldsymbol{\theta})$ and $\partial \mathbf{E} / \partial \boldsymbol{\theta}_{X_{ij}}$ into Eq. (13), the global sensitivity index
 361 $\mathbf{GS}_{ij}(\boldsymbol{\theta}_{\mathbf{X}})$ can be computed as $GS_{11}(\boldsymbol{\theta}_{\mathbf{X}}) = (2, 0, -0.0084)$, $GS_{21}(\boldsymbol{\theta}_{\mathbf{X}}) = (-1, 0, 0.0042)$, $GS_{12}(\boldsymbol{\theta}_{\mathbf{X}}) = (0,$
 362 $1.7432, 0.2913)$, $GS_{22}(\boldsymbol{\theta}_{\mathbf{X}}) = (0, 0.4903, -0.1776)$. Based on Eqs. (32) and (33), $\mathbf{NT}(y, \boldsymbol{\theta}_Y)$ can
 363 be computed, and the local sensitivity index $LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}})$ can then be obtained. For example,
 364 with $y=10$, $\mathbf{NT}(10, \boldsymbol{\theta}_Y) = (-1, 2.7237, -4.8769)$, $LS_{11}(10, \boldsymbol{\theta}_{\mathbf{X}}) = -0.0036$, $LS_{21}(10, \boldsymbol{\theta}_{\mathbf{X}}) = 0.0018$,
 365 $LS_{12}(10, \boldsymbol{\theta}_{\mathbf{X}}) = 0.0061$ and $LS_{22}(y, \boldsymbol{\theta}_{\mathbf{X}}) = 0.0040$.

366 To investigate the flexibility of the TMSE method for sensitivity estimation, several cases with
 367 varying statistical characteristics of X_1 and X_2 are considered, as listed in Table 2. All these
 368 distributions considered in this example are two-parametric, and the SE focuses on the first two
 369 moments of \mathbf{X} . Since the model for this example is relatively simple, it has analytical solution for
 370 the output distribution. For comparison, the global SI is also computed using analytical methods
 371 (details can be found in Appendix A.1), and the local SI is computed using finite difference method
 372 with the CDF of y analytically constructed (details can be found in Appendix A.2). The moments
 373 of y are compared in Table 3. As the mean and standard deviation of Y will not change with
 374 the distribution type of \mathbf{X} for the case of the model considered in Eq. (41), the corresponding
 375 results are listed only for the case with $N_1 = 1$ for simplicity. It can be seen from Table 3 that,
 376 $\boldsymbol{\theta}_Y$ estimated using the point estimate method combined with BDRM is the same as the exact
 377 values, which illustrates the accuracy of the numerical methods. Furthermore, the distribution
 378 types of \mathbf{X} will influence the skewness of Y . Representative PDFs and CDFs of Y for cases with

Table 2: Statistical information of random variables in example 1

Case	$N_D = 1$		$N_D = 2$		$N_D = 3$		$N_D = 4$		$N_D = 5$		$N_D = 6$		
	X_1	X_2	X_1	X_2	X_1	X_2	X_1	X_2	X_1	X_2	X_1	X_2	
	Norm.	Norm.	LogN.	LogN.	Norm.	Gamma	Norm.	Weibull	LogN.	Gamma	LogN.	Weibull	
1	μ	16	9	16	9	16	9	16	9	16	9	16	9
	COV	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10
2	μ	16	12	16	12	16	12	16	12	16	12	16	12
	COV	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15
3	μ	16	15	16	15	16	15	16	15	16	15	16	15
	COV	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20
4	μ	18	9	18	9	18	9	18	9	18	9	18	9
	COV	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10
5	μ	18	12	18	12	18	12	18	12	18	12	18	12
	COV	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15
6	μ	18	15	18	15	18	15	18	15	18	15	18	15
	COV	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20
7	μ	20	9	20	9	20	9	20	9	20	9	20	9
	COV	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10	0.05	0.10
8	μ	20	12	20	12	20	12	20	12	20	12	20	12
	COV	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15	0.10	0.15
9	μ	20	15	20	15	20	15	20	15	20	15	20	15
	COV	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20	0.15	0.20

N_D denotes the index of distribution combination; Norm. denotes Normal distribution; LogN. denotes Lognormal distribution; μ denotes the mean value.

379 $N_D = 2$ obtained analytically and using the TMNT as given in Eqs. (18) and (30) are compared in
 380 Figs. 3a-3f, which show that the reference and approximated CDF/PDF of Y are coincident with
 381 each other. This demonstrates the accuracy of the TMNT in conducting normal transformation
 382 for the considered cases. Furthermore, with different $\theta_{\mathbf{X}}$, the CDF/PDF of Y shows significant
 383 differences, which demonstrates the necessary of conducting local sensitivity estimation.

384 The global SI, i.e., $\mathbf{GS}_{ij}(\theta_{\mathbf{X}})$, obtained using analytical and the TMSE methods are compared
 385 in Table 4. For convenience, the global SIs for the k th central moments of Y with respect to
 386 $\theta_{X_{ij}}$ is denoted as GS_{ij}^k . Since two-parametric distributions are considered and in view of the
 387 model $h(\mathbf{X})$ considered in Eq. (41), GS_{ij}^1 and GS_{ij}^2 will not change with the distribution type,
 388 these values are listed once for all distribution types, while GS_{ij}^3 for different distribution types
 389 are listed separately. It can be seen from Table 4 that:

390 (1) For each case considered, GS_{1j}^l/GS_{2j}^l changes with l , which means the importance of X_i

Table 3: Central moments of model output in example 1

Case	Method	θ_{Y1}	θ_{Y2}	θ_{Y3}					
				$N_D=1$	$N_D=2$	$N_D=3$	$N_D=4$	$N_D=5$	$N_D=6$
1	Exact	23	1.836	0	0.0639	-0.0236	0.0843	0.0758	0.1837
	Approximate	23	1.836	0	0.0639	-0.0236	0.0843	0.0758	0.1837
2	Exact	20	3.672	0	0.1459	-0.0354	0.0622	0.1639	0.2615
	Approximate	20	3.672	0	0.1459	-0.0354	0.0622	0.1639	0.2615
3	Exact	17	5.660	0	0.1859	-0.0596	0.0524	0.2169	0.3289
	Approximate	17	5.660	0	0.1859	-0.0596	0.0524	0.2169	0.3288
4	Exact	27	2.012	0	0.0805	-0.0179	0.0640	0.0895	0.1714
	Approximate	27	2.012	0	0.0805	-0.0179	0.0640	0.0895	0.1714
5	Exact	24	4.025	0	0.1748	-0.0268	0.0472	0.1885	0.2626
	Approximate	24	4.025	0	0.1748	-0.0268	0.0472	0.1885	0.2626
6	Exact	21	6.177	0	0.2332	-0.0458	0.0403	0.2570	0.3432
	Approximate	21	6.177	0	0.2332	-0.0458	0.0403	0.2570	0.3431
7	Exact	31	2.193	0	0.0930	-0.0138	0.0494	0.1000	0.1633
	Approximate	31	2.193	0	0.0930	-0.0138	0.0494	0.1000	0.1633
8	Exact	28	4.386	0	0.1969	-0.0207	0.0365	0.2075	0.2647
	Approximate	28	4.386	0	0.1969	-0.0207	0.0365	0.2075	0.2647
9	Exact	25	6.708	0	0.2700	-0.0358	0.0315	0.2886	0.3559
	Approximate	25	6.708	0	0.2700	-0.0358	0.0315	0.2886	0.3559

on θ_{Yl} are different with different moments considered. This demonstrates the necessity of conducting SE with respect to distribution parameters of \mathbf{X} .

(2) Both GS_{ij}^1 and GS_{ij}^2 vary with $\theta_{\mathbf{X}}$, while the distribution type of \mathbf{X} has no effect on the values. This is a consequence of the considered model $h(\mathbf{X})$ in Eq. (41). In contrast, GS_{ij}^3 is significantly influenced by both $\theta_{\mathbf{X}}$ and the distribution type of \mathbf{X} .

(3) GS_{ij}^1 and GS_{ij}^2 obtained from the TMSE method match the exact values, confirming the accuracy of the TMSE method. When analyzing the influence of $\theta_{\mathbf{X}}$ on the skewness of Y , the results from both the TMSE and the exact methods are largely consistent, with only slight discrepancies in some cases. These differences arise because the TMSE method estimates θ_Y based solely on $\theta_{\mathbf{X}}$, whereas the exact method accounts for the entire distribution. Take the case with \mathbf{X} follow normal distribution as an example, the skewness of Y should be 0 by definition and $\theta_{\mathbf{X}}$ will has no influence on the skewness of Y . However, as the distribution type cannot be reflected by the moments considered here, the sensitivity of the skewness of Y with respect to $\theta_{\mathbf{X}}$ is not zero obtained from the TMSE method as listed in Table 4.

The local SIs are computed by the TMSE and finite difference methods. For simplicity,

Table 4: Global sensitivity indices obtained from different methods in example 1

Case	i	j	GS_{ij}^1		GS_{ij}^2		GS_{ij}^3											
							$N_D = 1$		$N_D = 2$		$N_D = 3$		$N_D = 4$		$N_D = 5$		$N_D = 6$	
			Exact	TMSE	Exact	TMSE	Exact	TMSE	Exact	TMSE	Exact	TMSE	Exact	TMSE	Exact	TMSE	Exact	TMSE
1	1	2	2	0	0	0	0.033	-0.01	0.027	0	0.033	0	0.033	-0.01	0.027	-0.01	0.027	
	2	1	-1	-1	0	0	0	0.004	0.003	0.003	0.001	0.005	0.012	0.003	0.001	0.005	0.013	
2	1	2	0	0	1.743	1.743	0	0	0.315	0.315	0.067	0.067	-0.24	-0.24	0.281	0.281	-0.03	-0.03
	2	2	0	0	0.490	0.490	0	0	-0.21	-0.21	-0.09	-0.09	0.163	0.159	-0.17	-0.17	0.083	0.079
2	1	1	2	2	0	0	0	0.004	-0.01	-0.01	0	0.004	0.000	0.004	-0.01	-0.01	-0.01	-0.01
	2	1	-1	-1	0	0	0	0.005	0.004	0.003	0.003	0.005	0.005	0.003	0.003	0.005	0.005	
2	1	2	0	0	1.743	1.743	0	0	0.291	0.291	0.050	0.050	-0.09	-0.89	0.266	0.266	0.127	0.127
	2	2	0	0	0.490	0.490	0	0	-0.18	-0.18	-0.06	-0.06	0.043	0.043	-0.14	-0.14	-0.04	-0.04
3	1	1	2	2	0	0	0	0.001	-0.02	-0.02	0	0.001	0.000	0.001	-0.02	-0.02	-0.02	-0.02
	2	1	-1	-1	0	0	0	0	0.006	0.006	0.004	0.004	0.007	0.007	0.004	0.004	0.007	0.007
3	1	2	0	0	1.696	1.696	0	0	0.295	0.295	0.054	0.054	-0.05	-0.05	0.268	0.268	0.167	0.167
	2	2	0	0	0.530	0.530	0	0	-0.17	-0.17	-0.06	-0.06	0.004	0.004	-0.14	-0.14	-0.07	-0.07
4	1	1	2	2	0	0	0	0.032	-0.01	0.026	0.000	0.032	0.000	0.032	-0.01	0.026	-0.01	0.026
	2	1	-1	-1	0	0	0	0	0.003	0.002	0.002	0.001	0.004	0.014	0.002	0.001	0.004	0.014
4	1	2	0	0	1.789	1.789	0	0	0.263	0.263	0.048	0.048	-0.17	-0.17	0.239	0.239	0.021	0.021
	2	2	0	0	0.447	0.447	0	0	-0.17	-0.17	-0.07	-0.07	0.132	0.128	-0.14	-0.14	0.060	0.056
5	1	1	2	2	0	0	0	0.004	-0.01	-0.01	0.000	0.004	0.000	0.004	-0.01	-0.01	-0.01	-0.01
	2	1	-1	-1	0	0	0	0	0.003	0.003	0.002	0.002	0.004	0.004	0.002	0.002	0.004	0.004
5	1	2	0	0	1.789	1.789	0	0	0.246	0.246	0.036	0.036	-0.06	-0.06	0.228	0.228	0.129	0.129
	2	2	0	0	0.447	0.447	0	0	-0.15	-0.15	-0.05	-0.05	0.036	0.036	-0.12	-0.12	-0.04	-0.04
6	1	1	2	2	0	0	0	0.001	-0.02	-0.02	0	0.001	0	0.001	-0.02	-0.02	-0.01	-0.02
	2	1	-1	-1	0	0	0	0	0.005	0.005	0.003	0.003	0.005	0.005	0.003	0.003	0.005	0.005
6	1	2	0	0	1.748	1.748	0	0	0.252	0.252	0.039	0.039	-0.03	-0.03	0.232	0.232	0.159	0.159
	2	2	0	0	0.486	0.486	0	0	-0.15	-0.15	-0.05	-0.05	0.005	0.005	-0.12	-0.12	-0.07	-0.07
7	1	1	2	2	0	0	0	0.030	-0.01	0.025	0	0.030	0.000	0.030	-0.01	0.025	-0.01	0.025
	2	1	-1	-1	0	0	0	0	0.002	0.002	0.002	0.001	0.003	0.015	0.002	0.001	0.003	0.015
7	1	2	0	0	1.824	1.824	0	0	0.223	0.223	0.034	0.034	-0.12	-0.12	0.206	0.206	0.048	0.048
	2	2	0	0	0.410	0.410	0	0	-0.15	-0.15	-0.05	-0.05	0.107	0.102	-0.12	-0.12	0.043	0.038
8	1	1	2	2	0	0	0	0.004	-0.01	-0.01	0	0.004	0.000	0.004	-0.01	-0.01	-0.01	-0.01
	2	1	-1	-1	0	0	0	0	0.003	0.002	0.002	0.002	0.003	0.003	0.002	0.002	0.003	0.004
8	1	2	0	0	1.824	1.824	0	0	0.212	0.212	0.026	0.026	-0.05	-0.05	0.198	0.198	0.127	0.127
	2	2	0	0	0.410	0.410	0	0	-0.13	-0.13	-0.04	-0.04	0.030	0.029	-0.10	-0.10	-0.03	-0.03
9	1	1	2	2	0	0	0	0.001	-0.02	-0.02	0	0.001	0	0.001	-0.02	-0.02	-0.02	-0.02
	2	1	-1	-1	0	0	0	0	0.004	0.004	0.002	0.002	0.004	0.004	0.002	0.002	0.004	0.004
9	1	2	0	0	1.789	1.789	0	0	0.218	0.218	0.029	0.029	-0.03	-0.03	0.203	0.203	0.149	0.150
	2	2	0	0	0.447	0.447	0	0	-0.13	-0.13	-0.04	-0.04	0.005	0.005	-0.11	-0.11	-0.06	-0.06

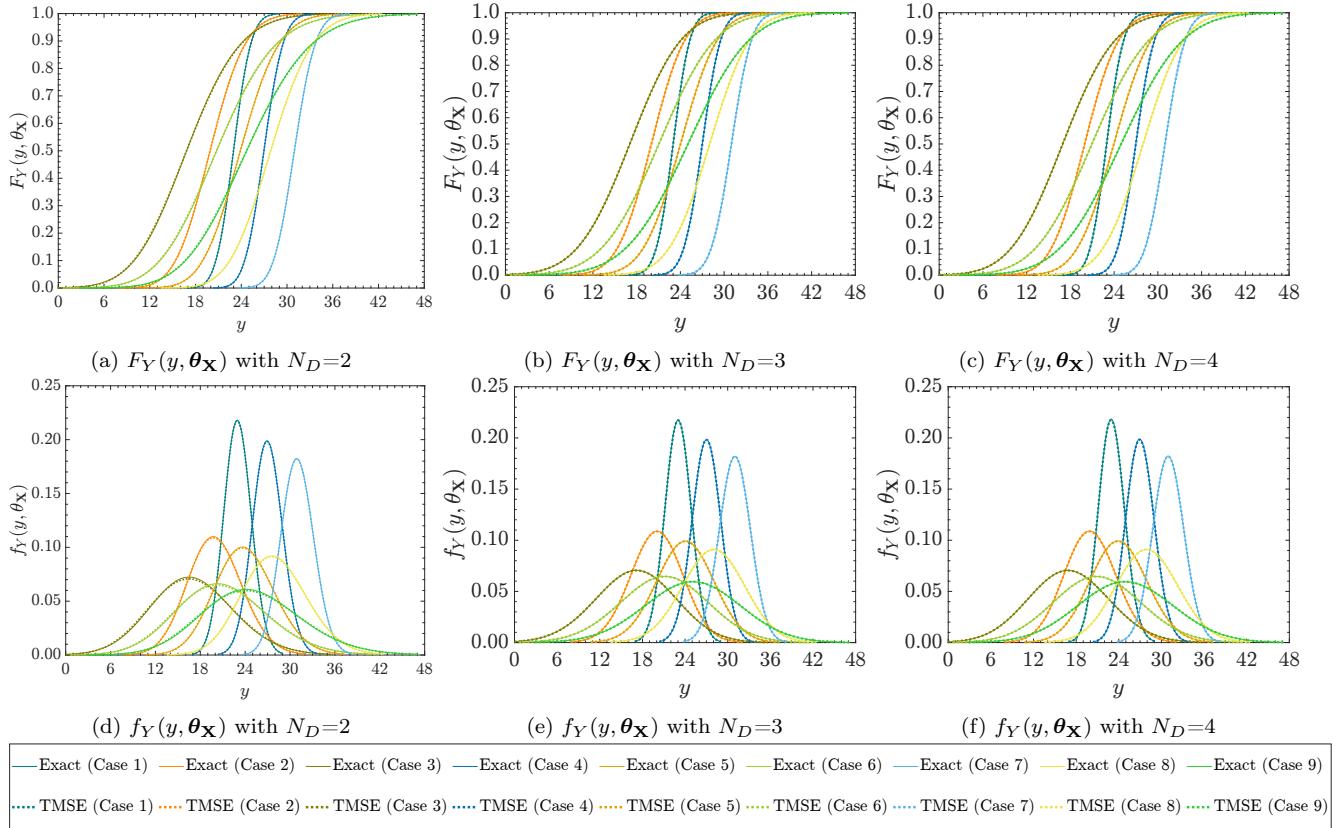


Figure 3: Representative $F_Y(y, \theta_X)$ and $f_Y(y, \theta_X)$ obtained from different methods in example 1

406 $LS_{11}(y, \theta_X)$, $LS_{21}(y, \theta_X)$, $LS_{12}(y, \theta_X)$ and $LS_{22}(y, \theta_X)$ for the case with $N_D = 2$ are compared
 407 in Figs. 4a-4e, while only $LS_{12}(y, \theta_X)$ is plotted for the other cases in Figs. 4d-4i. It can be found
 408 that:

409 (1) $LS_{ij}(y, \theta_X)$ is influenced by both θ_X and the distribution type, and varies non-monotonically
 410 with y . This highlights the necessity of conducting local sensitivity estimation for specific
 411 values of y , taking into account the distribution parameters of the input random variables.
 412 Notably, for two-parameter distributions, when the first two moments of \mathbf{X} are fixed, the
 413 distribution type of \mathbf{X} primarily affects the skewness and higher moments of Y . As a result,
 414 the influence of the distribution type of \mathbf{X} is relatively small in this specific case.
 415 (2) In all cases considered, $LS_{ij}(y, \theta_X)$ obtained using the TMSE method closely align with
 416 the accurate values derived from the difference method based on the analytical $F_Y(y, \theta_X)$,
 417 demonstrating the accuracy of the numerical approach developed for the TMSE method.
 418 Additionally, given the variety of distribution types in this example, the TMSE method
 419 exhibits considerable flexibility in estimating local sensitivity.

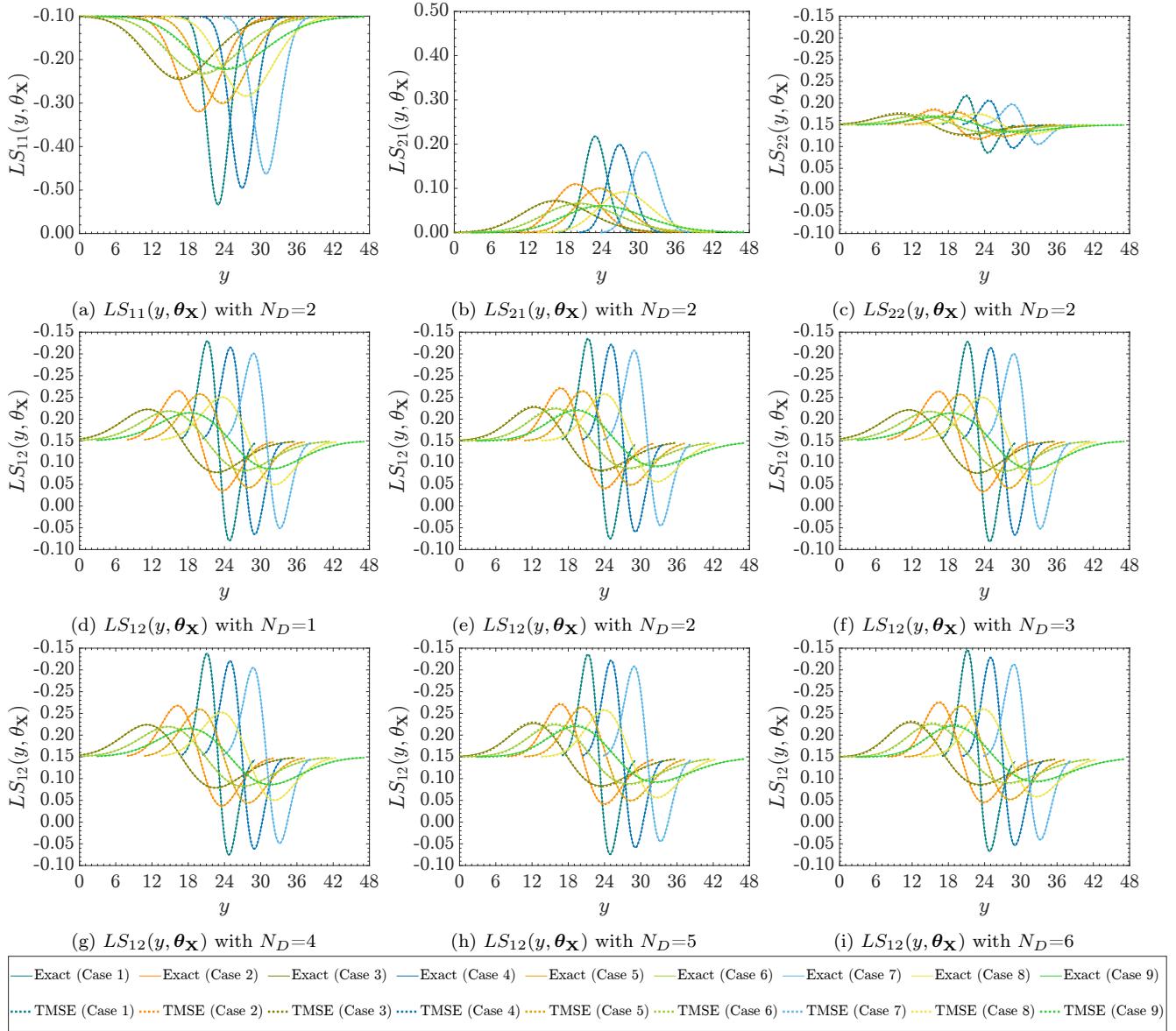


Figure 4: $LS_{ij}(y, \theta_X)$ in example 1

420 6.2. Example 2: Safety factor of slope with multidimensional inputs

421 This example considers the safety factor of a slope as illustrated in Fig. 5, the simulator is
422 adopted from Ref. [41] as follows:

$$Y = h(\mathbf{X}) = \frac{cA_s + N_s \tan\phi_s}{W(\sin\psi_p + \alpha\cos\psi_p) + V\cos\psi_p - T_s\sin\theta_s}, \quad (43)$$

$$A_s = (H - z)/\sin(\psi_p), \quad (44)$$

$$N_s = W(\cos\psi_p - \alpha\sin\psi_p) - U - V\sin\psi_p + T_s\cos\theta_s, \quad (45)$$

$$W = 0.5\gamma H^2 \{[1 - (z/H)^2]\cot\psi_p - \cot\psi_f\}, \quad (46)$$

$$U = 0.5\gamma_W \cdot r \cdot z \cdot A_s, \quad V = 0.5\gamma_W \cdot r^2 \cdot z^2, \quad (47)$$

423 where $\gamma = 2.6 \times 10^4$ N/m³; $\gamma_W = 1.0 \times 10^4$ N/m³; $\psi_f = 50^\circ$; $\psi_p = 35^\circ$; $T_s = 0$; $\theta_s = 0$; $H =$
 424 60 m; and c and ϕ_s follow a bivariate lognormal distribution with a correlation coefficient of -0.5,
 425 while r , z , and α are mutually independent random variables. Their statistical characteristics are
 426 summarized in Table 5 For illustration, four cases with different COVs of \mathbf{X} are considered.

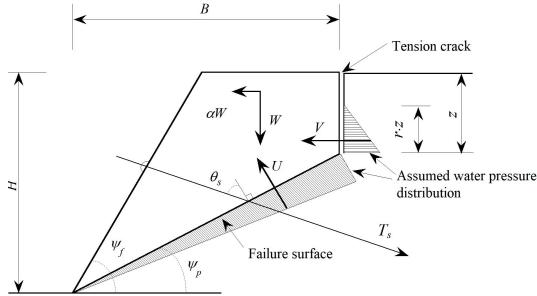


Figure 5: Illustration of slope for Example 2

Table 5: Statistical information of random variables in example 2

	c	ϕ_s	r	z	α
Distribution		Bivariate Lognormal	Weibull	Lognormal	Weibull
Mean	140 kPa	20°	0.3435	14 m ²	0.05496
Case 1	0.20	0.08	0.765	0.214	0.765
COV	Case 2	0.22	0.10	0.841	0.841
	Case 3	0.24	0.12	0.917	0.917
	Case 4	0.26	0.14	0.994	0.994

With the model estimator known, SE can be performed using the TMSE method. The moment estimation in the TMSE method is carried out using the seven-point estimate method in combination with BDRM. The total number of samples required for BDRM with seven evaluation points is 391. Note that, the model considered in this example is strongly nonlinear, and thus BDRM cannot provide sufficient evaluation for SE considering the skewness of Y [33], and trivariate dimension reduction method (TDRM) is applied in computing $GS_{ij}^3(\theta_X)$ (details can be found in Appendix C). The total number of samples required for TDRM with 7 evaluation points is 2551.

435 To investigate the influence of the number of evaluation points, BDRM and TDRM were also
436 conducted with 9 and 11 evaluation points. The total numbers of model evaluations for BDRM
437 and TDRM with 9 evaluation points are 681 and 5801, respectively, while those with 11 evaluation
438 points are 1051 and 11051, respectively. For comparison, distribution estimation and sensitivity

439 analyses were also performed using Monte Carlo Simulation (MCS) with 10^8 samples (details are
 440 provided in Appendix B), serving as a benchmark for accuracy. The moments of Y obtained by
 441 the different methods are summarized in Table 6, where the numbers 7, 9, and 11 listed under the
 442 BDRM and TDRM columns indicate the number of evaluation points used for each method.

443 The PDF obtained by using the TMNT given in Eq. (30) is compared with the histogram
 obtained from MCS in Figs. 6a-6d. Figs. 6a-6d and Table 5 show that:

Table 6: Moments of model output in example 2

Case	Mean θ_{Y_1}			Standard deviation θ_{Y_2}			Skewness θ_{Y_3}		
	MCS	BDRM		MCS	BDRM		MCS	TDRM	
		7	9		7	9		7	9
1	0.9315	0.9314	0.9314	0.9314	0.1155	0.1155	0.1155	0.1729	0.1725
2	0.9321	0.9321	0.9321	0.9321	0.1266	0.1266	0.1266	0.1598	0.1600
3	0.9329	0.9329	0.9329	0.9329	0.1379	0.1379	0.1379	0.1488	0.1487
4	0.9338	0.9338	0.9338	0.9338	0.1495	0.1495	0.1495	0.1378	0.1377

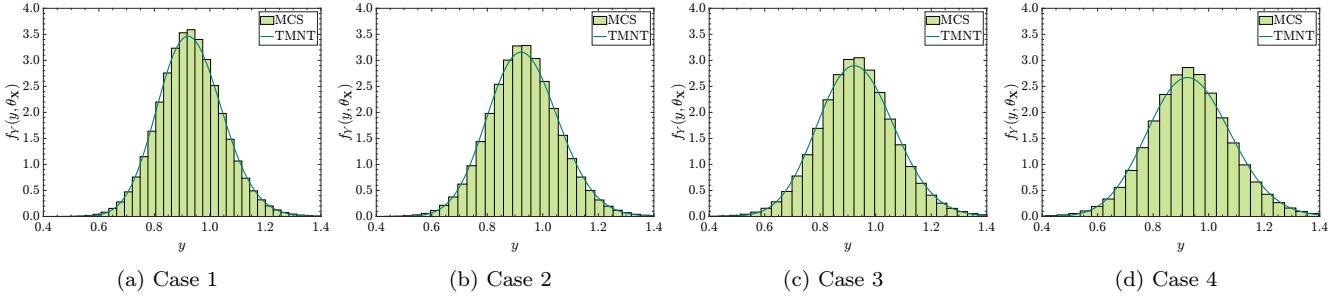


Figure 6: PDFs of model output in example 2

444

445 (1) The moments of Y computed by dimensional reduction methods are in close agreement with
 446 those from MCS, with the difference increases with the order of moments. This is because
 447 the higher moments are more difficult to obtain. The relative error of θ_{Y_3} obtained from
 448 TDRM with 7 evaluation points is the largest (0.23%) for case 1.

449 (2) The moments of Y computed using different numbers of evaluation points show close agree-
 450 ment. Differences between results increase with higher-order moments and stronger non-
 451 Gaussianity. The largest relative difference occurs for the skewness in case 4 when comparing
 452 7 and 11 evaluation points, amounting to 0.074%. This demonstrates that using 7 evaluation
 453 points provides sufficient accuracy. To balance accuracy and computational efficiency, seven
 454 evaluation points are recommended in the proposed method.

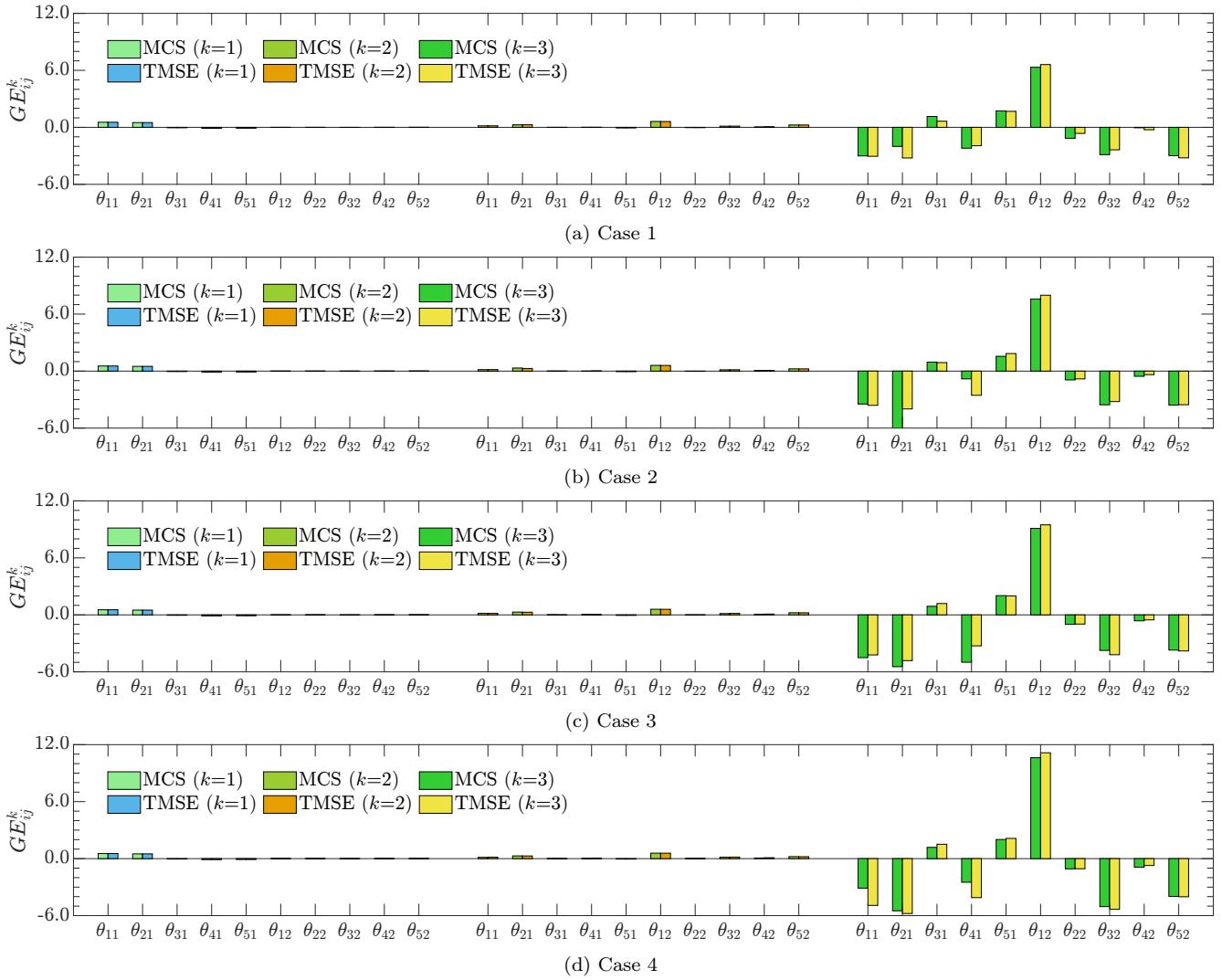


Figure 7: Global elasticity indexes (EIs) of model output in example 2

455 (3) The PDFs estimated using the TMNT-based model consistently align closely with those
 456 obtained from MCS, demonstrating the slightly error in θ_Y obtained from SPEM-BDRM
 457 can be neglected in distribution estimation.

458 To eliminate the influence of units for different random variables, so-called elasticity definition
 459 is introduced [42], and the global and local elasticity indices are formulated as follows:

$$GE_{ij}^k = GS_{ij}^k \cdot \frac{\theta_{ij}}{\theta_{Yk}}, \quad (48)$$

$$LE_{ij}(y, \theta_X) = LS_{ij}(y, \theta_X) \cdot \theta_{ij}, \quad (49)$$

461 where GE_{ij}^k is the global elasticity index (EI) considering the k th central moments of Y ; $LE_{ij}(y, \theta_X)$
 462 is the local EI. The global and local EIs obtained from the TMSE method are compared with those

from MCS in Figs. 7a-7d and 8a-8d, respectively. It can be found that:

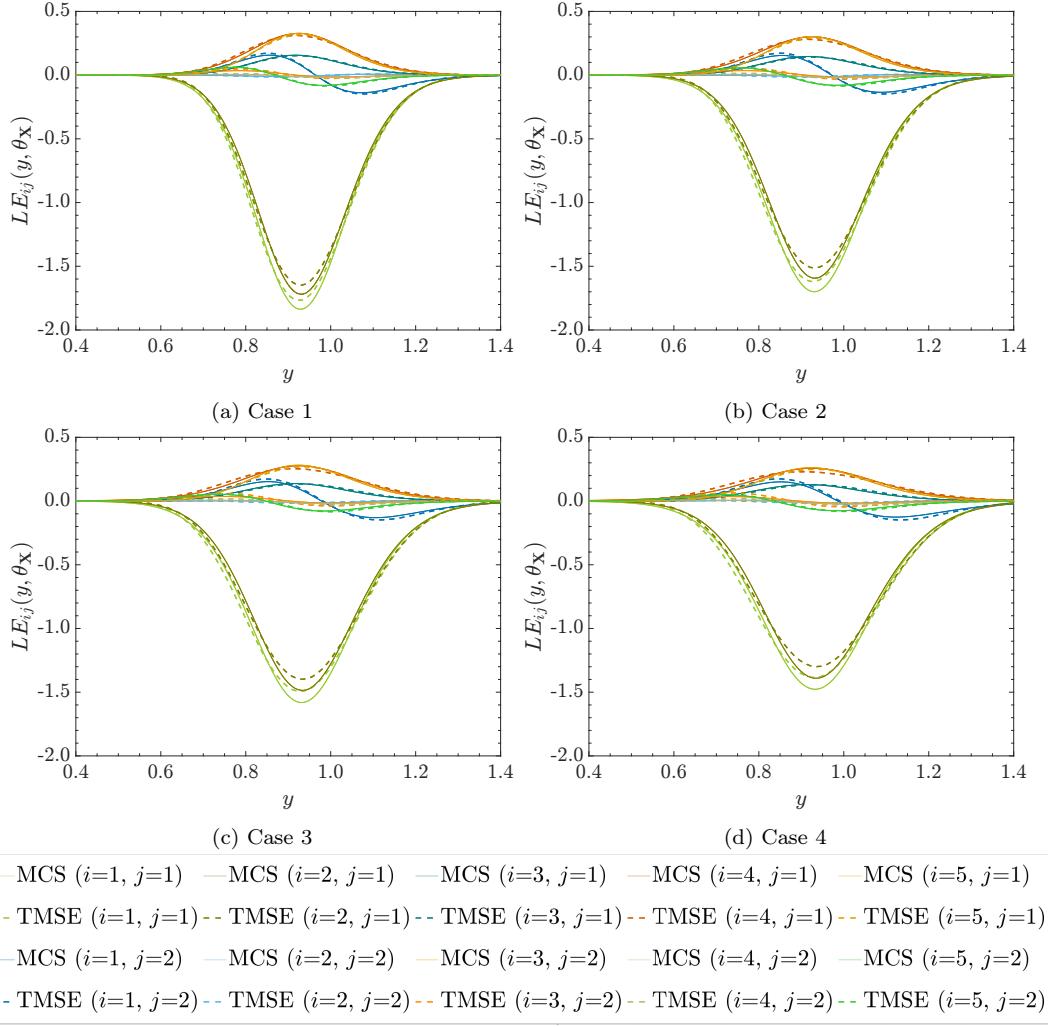


Figure 8: Local elasticity indexes (EIs) of model output in example 2

463

464 (1) The difference in GE_{ij}^k between TMSE and MCS results increases with the order k , primarily
 465 due to the increase of error in moment estimation. For $k = 1$ and 2 , GE_{ij}^k obtained from
 466 the TMSE method closely matches that from MCS. As k increases, the discrepancy in
 467 GE_{ij}^k across methods grows, with the largest difference observed for GE_{22}^3 . This proves the
 468 accuracy of the TMSE method for evaluating the global SI.

469 (2) The tendency of $LE_{ij}(y, \theta_X)$ remains consistent across the cases considered. For a given
 470 random variable, i.e., fixed i , the absolute value of $LE_{i1}(y, \theta_X)$ is consistently larger than
 471 that of $LE_{i2}(y, \theta_X)$, indicating that the mean of \mathbf{X} has a greater impact on the distribution
 472 of Y . The values of $LE_{ij}(y, \theta_X)$ vary across cases. When the skewness of Y is relatively
 473 low, as in case 1, $LE_{ij}(y, \theta_X)$ obtained from the TMSE method closely match those from

474 MCS. However, as the skewness of Y increases, so does the discrepancy between $LE_{ij}(y, \theta_X)$
 475 obtained from different methods. This difference is more pronounced compared to both the
 476 PDF and global EIs, as $LE_{ij}(y, \theta_X)$ depends on the PDF, \mathbf{GE}_{ij} , and $\mathbf{NT}(y, \theta_Y(\theta_X))$, as
 477 given in Eq. (22).

478 6.3. Example 3: Seepage problem below a dam computed using finite element method

479 The third example involves the study of a steady state confined seepage below a dam as shown
 in Fig. 9, which is adopted from Ref. [25]. The seepage discharge is investigated, which is computed

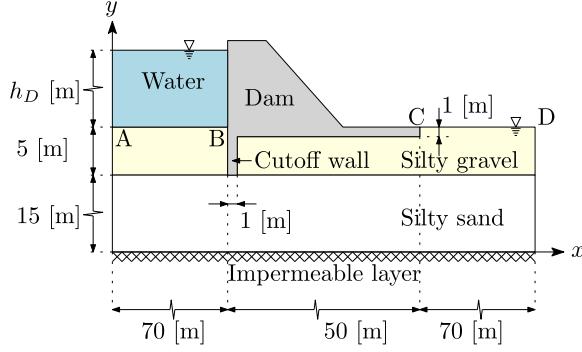


Figure 9: Schematic graph of the dam in example 3

480 in terms of an unit width of the dam and measured in units of volume over time and distance as
 481 follows:

$$482 Y = h(\mathbf{X}) = - \int_{CD} k_{yy,2} \frac{\partial h_W}{\partial y} dx, \quad (50)$$

483 where CD represents the downstream side of the dam as shown in Fig 9; $k_{yy,2}$ is the vertical
 484 permeability of the second soil layer; and h_W is the hydraulic head, which is solved by the following
 485 differential equation:

$$486 k_{xx,i} \frac{\partial^2 h_W}{\partial x^2} + k_{yy,i} \frac{\partial^2 h_W}{\partial y^2} = 0, \quad i = 1, 2 \quad (51)$$

487 where $k_{xx,i}$ and $k_{yy,i}$ represent the horizontal and vertical permeabilities of the i th soil layer,
 488 respectively; and x and y denote horizontal and vertical coordinates, respectively. The boundary
 489 conditions for this equation are that: (1) h_W over segments AB and CD are $20+h_D$ m and 20
 490 m, respectively, where $h_D = 5.0$ [m] is the height of water; (2) there is null flow over other
 491 boundaries. This equation is solved numerically applying the finite element (FE) method (see,
 492 e.g. Ref [43]), where the associated model comprises 3413 nodes and 1628 quadratic triangular
 493 elements. The permeabilities, i.e., $k_{xx,i}$ and $k_{yy,i}$ for $i = 1, 2$ are considered as random variables,
 with the statistical information summarized in Table 7.

Table 7: Statistical information of random variables in example 3 [25]

	Silty sand		Silty gravel	
	Horizontal $k_{xx,1}$	Vertical $k_{yy,1}$	Horizontal $k_{xx,2}$	Vertical $k_{yy,2}$
Distribution	Lognormal	Lognormal	Lognormal	Lognormal
Mean	5×10^{-7} [m/s]	2×10^{-7} [m/s]	5×10^{-6} [m/s]	2×10^{-6} [m/s]
COV	0.16	0.20	0.16	0.20

494 In this example, the seepage flow is challenging to characterize due to the geometry of the
 495 problem and the orthotropic properties of the soil permeability. The horizontal and vertical
 496 permeabilities of both the silty sand and silty gravel layers jointly influence the total seepage
 497 discharge, and changes in permeability values lead to variations in the flow paths across the soil
 498 domain. The governing differential equation, combined with heterogeneous boundary conditions,
 499 further contributes to the complexity of the solution, which is obtained numerically using the finite
 500 element method. When these permeabilities are modeled as random variables, their uncertainty
 501 propagates through the system, resulting in nontrivial output characteristics. These features make
 502 the problem representative for evaluating the proposed sensitivity estimation method.

503 The distribution estimation and SE are conducted using both the TMSE method and MCS
 504 with 10^6 samples. All scripts were implemented in MATLAB R2023b and executed on a computer
 505 equipped with a 13th Gen Intel(R) Core(TM) i7-1360P @ 2.20 GHz processor. In this example, the
 506 model $h(\mathbf{X})$ is implicit and incorporates a high-dimensional finite element (FE) model, resulting
 507 in an evaluation time of approximately 0.2 seconds per iteration. Consequently, the MCS becomes
 508 time-intensive, requiring about 1.325×10^5 seconds to complete, with parallelization employed to
 509 enhance computational efficiency.

510 To further investigate the impact of numerical methods on the performance of the TMSE
 511 method, the original moments of Y and its derivative with respect to θ_{ij} are approximated by
 512 point estimate method combining with both BDRM and TDRM, while the number of evaluation
 513 points n_E is set to be 7. The moments of Y calculated by various methods are summarized
 514 in Table 8, along with the corresponding number of model evaluations n_M required. Note that
 515 n_M needed for computing the moments of Y is identical to that required for both distribution
 516 estimation and sensitivity estimation. The PDF of Y modeled with the aid of the TMNT based
 517 on the moments of Y is compared with the histogram obtained from MCS in Fig. 10. It can be
 518 found that, there is slight difference in the moments of Y obtained by different methods, while
 519 the results of the TDRM is more accurate compared with those of the BDRM. Even though the

520 differences exist in moments of Y , the PDFs of Y obtained from different methods matches closely with the histogram obtained from MCS.

Table 8: Central moments of model outputs obtained from different methods in Example 3

MCS	BDRM		TDRM	
	Value	R.E. (%)	Value	R.E. (%)
$\theta_{Y1} (\times 10^{-6} L/h/m)$	1.7084	1.7084	0.0022	1.7084
$\theta_{Y2} (\times 10^{-7} L/h/m)$	1.6851	1.6850	0.0075	1.6850
θ_{Y3}	0.2839	0.2795	1.5490	0.2811
n_M	10^6	457	—	5641

R.E. denotes the relative error compared with the results of MCS.

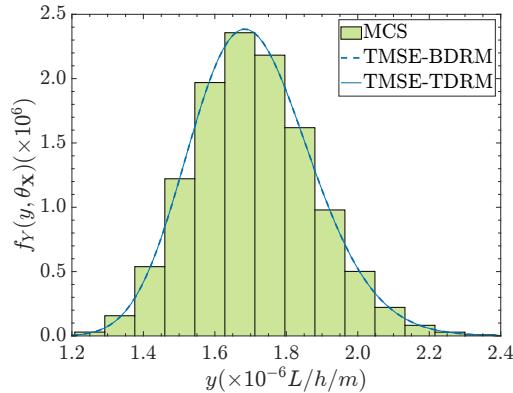


Figure 10: PDF of model output for example 3

521
522 The global SIs and EIIs are compared in Figs. 11 and 12, respectively. Due to the limited
523 number of samples in the MCS, which are insufficient for stable estimation of GS_{ij}^3 , only the
524 global SIs and EIIs corresponding to the mean and standard deviation of Y are shown. It is
525 evident that the results obtained using the TMSE method closely align with those from MCS.
526 There is no significant difference in the results obtained using BDRM and TDRM for TMSE
527 method. Notably, the sign of the global EI, GE_{32}^2 derived from the TMSE method differs from
528 that obtained through MCS. However, the sign of GS_{32}^2 remains consistent across both methods.
529 This discrepancy arises for global elasticities that have associated a small global sensitivity, which
530 is an issue which has already been observed in a different context in [25]. However, the global
531 sensitivities are estimated with small errors.

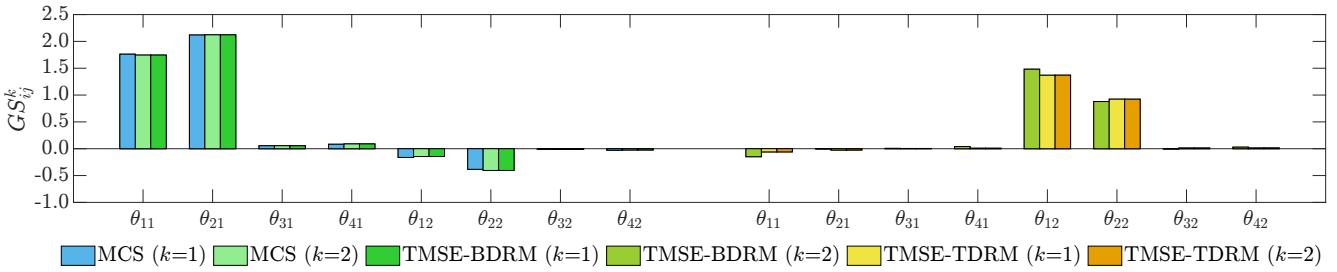


Figure 11: Global sensitivity indices from different methods for example 3

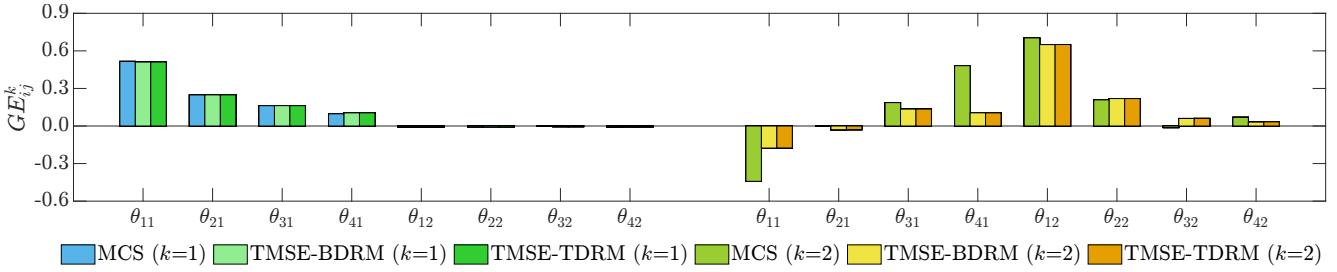


Figure 12: Global elasticity indices from different methods for example 3

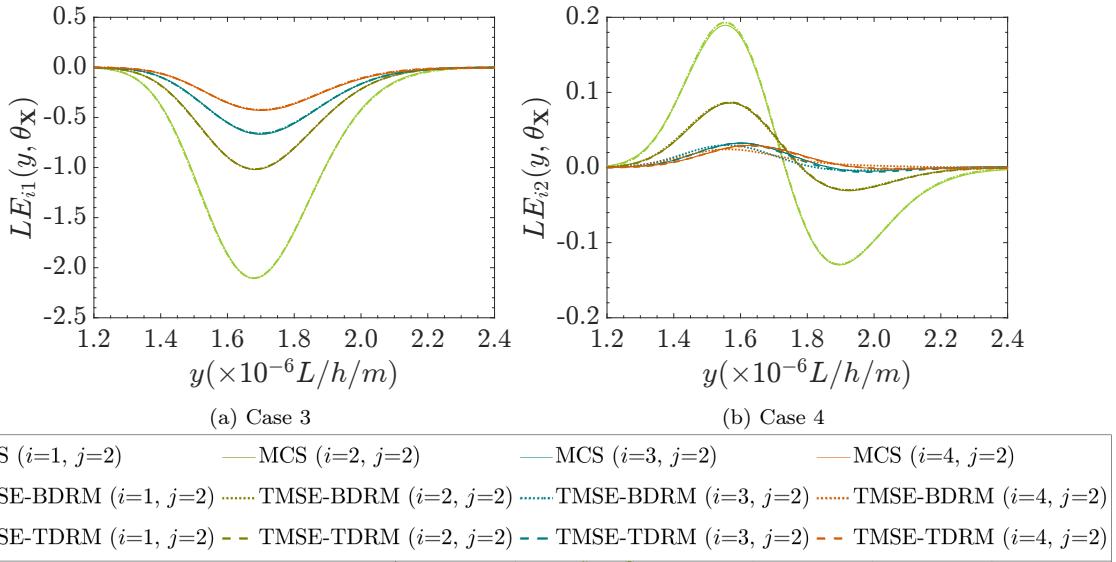


Figure 13: Local EIIs of model output in example 3

532 The local EIIs are compared in Figs. 13a and 13b. These figures demonstrate that the local
 533 EIIs with respect to the mean values of the random variables, i.e., $LE_{i1}(y, \theta_X)$, derived using the
 534 TMSE method are consistently in close agreement with those from MCS, for moments obtained
 535 through both BDRM and TDRM. When considering the standard deviation of the inputs, the
 536 local EIIs $LE_{i2}(y, \theta_X)$ obtained from the TMSE method using moments from TDRM also show
 537 good agreement with the MCS results. However, the TMSE method combined with BDRM shows
 538 slight deviations from the exact values. These deviations stem from errors in moment estimation,
 539 which are amplified through the normal transformation and affect the final sensitivity evaluation.

540 This suggests that, while BDRM provides sufficient accuracy for distribution and global sensitivity
541 estimation, it may be less effective for assessing the sensitivity of the output CDF.

542 7. Discussion and Conclusions

543 The third moment normal transformation based sensitivity estimation (TMSE) method is in-
544 troduced to estimate the sensitivity of model output stochastic properties with respect to input
545 distribution parameters. This method defines two sensitivity indices (SIs): one that considers
546 the first three moments and another focused on the cumulative failure probability. Practical ap-
547 proximation formulas for these SIs are developed with the aid of the TMNT, and a dimension
548 reduction numerical approach is implemented to enhance computational efficiency. The method
549 is demonstrated through three case studies, which include highly nonlinear models and compu-
550 tationally expensive FE models. Results indicate that different distribution parameters of input
551 random variables exert significantly varied influences on the stochastic properties of model out-
552 puts. Thus, sensitivity estimation with respect to these distribution parameters is essential for
553 a comprehensive understanding of model behavior. The numerical techniques developed for the
554 TMSE method are both efficient and sufficiently accurate.

555 While the SIs defined in the TMSE method are theoretically robust for any problem, the nu-
556 matical implementation has some constraints that pave the way for future research. The TMNT
557 model, a pseudo-normal transformation technique based on the first three moments, provides reli-
558 able results when these moments adequately represent the output distribution. However, it fails to
559 capture strong non-Gaussian behavior (the absolute skewness exceeds 2), heavy-tailed, bounded,
560 multimodal, or mixture models. To enhance robustness, future work can explore the use of more
561 flexible distribution models, such as the maximum entropy principle. The calculation of response
562 moments via the dimensional reduction method discussed in Sections 5.1 and 5.2 implies quadratic
563 scaling of computational cost with dimensionality and represents a challenge for large-scale ap-
564 plications. For high-dimensional problems, alternative moment estimation techniques, such as
565 sampling-based methods or linear-moment-based approaches, may offer improved scalability at
566 the expense of increased sampling effort, see e.g. Ref. [44]. A systematic comparison of these
567 strategies is left for future work.

568 **Acknowledgement**

569 The study is partially supported by the Alexander von Humboldt Foundation for the postdoc-
 570 toral grant of Xuan-Yi Zhang, and the Henriette Herz Scouting program (Matthias G.R. Faes).
 571 The authors gratefully acknowledge the supports.

572 **Appendix A. Sensitivity estimation of weighted summation of independent random
 573 variables**

574 *Appendix A.1. Global sensitivity estimation*

575 Consider a model defined as a weighted summation of n independent random variables \mathbf{X} , the
 576 first three moments of the model output Y can be analytically computed as follows:

$$\theta_{Y_1} = \mathbf{k}\boldsymbol{\theta}_{\mathbf{X}_1}, \quad (\text{A.1})$$

$$\theta_{Y_2} = \sqrt{\mathbf{k}^{\circ 2}\boldsymbol{\theta}_{\mathbf{X}_2}^{\circ 2}}, \quad (\text{A.2})$$

$$\theta_{Y_3} = \frac{\mathbf{k}^{\circ 3}(\boldsymbol{\theta}_{\mathbf{X}_3} \circ \boldsymbol{\theta}_{\mathbf{X}_2}^{\circ 3})}{\theta_{Y_2}^3}, \quad (\text{A.3})$$

577 where \mathbf{k} is a n -dimensional row vector of the weights for \mathbf{X} ; $\boldsymbol{\theta}_{\mathbf{X}_i}$ is the n -dimensional column vectors
 578 of i th central moments of \mathbf{X} ; \circ denotes Hadamard product; and $(\cdot)^{\circ j}$ denotes the Hadamard power
 579 j of the argument. As $\boldsymbol{\theta}_Y$ can be explicitly computed from $\boldsymbol{\theta}_{\mathbf{X}}$ as given in Eqs. (A.1)-(A.3), the
 580 global SI can be directly obtained by taking the derivative of $\boldsymbol{\theta}_Y$ with respect to $\boldsymbol{\theta}_{\mathbf{X}}$. When \mathbf{X}
 581 follows two-parametric distribution, $\partial\theta_{Y_i}/\partial\boldsymbol{\theta}_{\mathbf{X}_j}$ ($i = 1, 2, 3$ and $j = 1, 2$) are formulated as follows:

$$\frac{\partial\theta_{Y_1}}{\partial\boldsymbol{\theta}_{\mathbf{X}_1}} = \mathbf{k}, \quad (\text{A.4})$$

$$\frac{\partial\theta_{Y_2}}{\partial\boldsymbol{\theta}_{\mathbf{X}_2}} = \mathbf{k}^{\circ 2} \circ \frac{\boldsymbol{\theta}_{\mathbf{X}_2}}{\theta_{Y_2}}, \quad (\text{A.5})$$

$$\frac{\partial\theta_{Y_3}}{\partial\boldsymbol{\theta}_{\mathbf{X}_1}} = \mathbf{k}^{\circ 3} \circ \frac{\boldsymbol{\theta}_{\mathbf{X}_2}^{\circ 3}}{\theta_{Y_2}^3} \circ \frac{\partial\boldsymbol{\theta}_{\mathbf{X}_3}}{\partial\boldsymbol{\theta}_{\mathbf{X}_1}}, \quad (\text{A.6})$$

$$\frac{\partial\theta_{Y_3}}{\partial\boldsymbol{\theta}_{\mathbf{X}_2}} = \mathbf{k}^{\circ 3} \circ \frac{\boldsymbol{\theta}_{\mathbf{X}_2}^{\circ 2}}{\theta_{Y_2}^3} \circ \left(\boldsymbol{\theta}_{\mathbf{X}_2} \circ \frac{\partial\boldsymbol{\theta}_{\mathbf{X}_3}}{\partial\boldsymbol{\theta}_{\mathbf{X}_2}} + 3\boldsymbol{\theta}_{\mathbf{X}_3} \right) - \frac{3\theta_{Y_3}}{\theta_{Y_2}} \cdot \frac{\partial\theta_{Y_2}}{\partial\boldsymbol{\theta}_{\mathbf{X}_2}}. \quad (\text{A.7})$$

582 For two-parameter distributions, $\partial\boldsymbol{\theta}_{\mathbf{X}_3}/\partial\boldsymbol{\theta}_{\mathbf{X}_j}$ is deterministic and can be obtained based on the
 583 specific formula of skewness of \mathbf{X} .

584 *Appendix A.2. Local sensitivity estimation*

585 To estimate the local SI, the key point is to construct the CDF of Y . For $h(\mathbf{X}) = \mathbf{kX}$, the inverse
 586 function of $h(\mathbf{X})$ with respect to X_i is monotonic, denoted as $h_i^{-1}(\mathbf{x}_{-i}, y)$, where \mathbf{x}_{-i} represents
 587 the random vector \mathbf{X} with X_i excluded. Based on Eq. (2), when $h_i^{-1}(\mathbf{x}_{-i}, y)$ is monotonically
 588 increasing with y , $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ and $f_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ can be reformulated as follows:

$$F_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{h_i^{-1}(\mathbf{x}_{-i}, y)} f_{X_i}(x_i, \boldsymbol{\theta}_{X_i}) dx_i \right] f_{\mathbf{x}_{-i}}(\mathbf{x}_{-i}, \boldsymbol{\theta}_{\mathbf{x}_{-i}}) d\mathbf{x}_{-i} \quad (\text{A.8})$$

$$\begin{aligned} f_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) &= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \left[f_{X_i}(h_i^{-1}(\mathbf{x}_{-i}, y), \boldsymbol{\theta}_{X_i}) \frac{\partial h_i^{-1}(\mathbf{x}_{-i}, y)}{\partial y} \right] f_{\mathbf{x}_{-i}}(\mathbf{x}_{-i}, \boldsymbol{\theta}_{\mathbf{x}_{-i}}) d\mathbf{x}_{-i} \quad (\text{A.9}) \\ &= E \{ f_{X_i} [h_i^{-1}(\mathbf{x}_{-i}, y)/k_i] \}, \end{aligned}$$

589 where k_i is the weight of X_i , which is positive for Eqs. (A.8) and (A.9). Similarly, when $h_i^{-1}(\mathbf{x}_{-i}, y)$
 590 is monotonically decreasing with y , i.e., k_i is negative, $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ and $f_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ can be reformulated
 591 as follows

$$F_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \left[\int_{h_i^{-1}(\mathbf{x}_{-i}, y)}^{+\infty} f_{X_i}(x_i, \boldsymbol{\theta}_{X_i}) dx_i \right] f_{\mathbf{x}_{-i}}(\mathbf{x}_{-i}, \boldsymbol{\theta}_{\mathbf{x}_{-i}}) d\mathbf{x}_{-i} \quad (\text{A.10})$$

$$\begin{aligned} f_Y(y, \boldsymbol{\theta}_{\mathbf{X}}) &= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \left[1 - f_{X_i}(h_i^{-1}(\mathbf{x}_{-i}, y), \boldsymbol{\theta}_{X_i}) \frac{\partial h_i^{-1}(\mathbf{x}_{-i}, y)}{\partial y} \right] f_{\mathbf{x}_{-i}}(\mathbf{x}_{-i}, \boldsymbol{\theta}_{\mathbf{x}_{-i}}) d\mathbf{x}_{-i} \quad (\text{A.11}) \\ &= 1 - E \{ f_{X_i} [h_i^{-1}(\mathbf{x}_{-i}, y)/k_i] \}. \end{aligned}$$

592 When there is only two random variables in \mathbf{X} as investigated in example 1, the integrals required
 593 for constructing $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ and $f_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ are single dimensional, which can be easily computed.
 594 With $F_Y(y, \boldsymbol{\theta}_{\mathbf{X}})$ obtained, the local SI can be computed using the central difference method as
 595 follows:

$$LS_{ij}(y, \boldsymbol{\theta}_{\mathbf{X}}) = \frac{F_Y(y, \boldsymbol{\theta}_{\mathbf{X}^1}) - F_Y(y, \boldsymbol{\theta}_{\mathbf{X}^2})}{2\delta_{\theta_{X_{ij}}}} \quad (\text{A.12})$$

596 where $\delta_{\theta_{X_{ij}}}$ is a relatively small value with respect to $\theta_{X_{ij}}$; $\boldsymbol{\theta}_{\mathbf{X}^1}$ and $\boldsymbol{\theta}_{\mathbf{X}^2}$ are the moments of \mathbf{X}
 597 with $\theta_{X_{ij}}$ set to be $\theta_{X_{ij}} + \delta_{\theta_{X_{ij}}}$ and $\theta_{X_{ij}} - \delta_{\theta_{X_{ij}}}$, respectively.

598 **Appendix B. Sensitivity analysis using Monte Carlo Simulation**

599 The definition of global SI given in Eq. (13) shows that, the key task for estimating global SI
600 is to compute the derivative of original moments of Y with respect to θ_{ij} . Based on Eq. (16), such
601 derivative can be approximated from samples as follows:

$$\frac{\partial E_k(\boldsymbol{\theta}_{\mathbf{X}})}{\partial \theta_{ij}} \cong \frac{1}{N_{mcs}} \sum_{l=1}^{N_{mcs}} g_{ijk}[\hat{\mathbf{x}}^{(l)}], \quad (\text{B.1})$$

602 where N_{mcs} is the total number of samples generated; and $\hat{\mathbf{x}}^{(l)}$ is the l th sample generated. Sub-
603 stitute Eq. (B.1) into Eq. (13), the global SI can be readily obtained.

604 To estimate the local SI, CDF should be firstly estimated. Based on Eq. (2), the CDF of Y
605 can be approximated from the samples as follows:

$$F_Y(\hat{y}^{(k)}, \boldsymbol{\theta}_{\mathbf{X}}) = \frac{1}{N_{mcs}} \sum_{l=1}^{N_{mcs}} I(\hat{\mathbf{x}}^{(l)}, \hat{y}^{(k)}) = \frac{\text{rank}(\hat{y}^{(k)} | \hat{\mathbf{y}}_{1:N_{mcs}})}{N_{mcs}}, \quad (\text{B.2})$$

606 where $\hat{y}^{(k)}$ is the value of Y estimated as $h(\hat{\mathbf{x}}^{(k)})$; $\text{rank}(\hat{y}^{(k)})$ denotes the rank of $\hat{y}^{(k)}$ within the set
607 $\hat{\mathbf{y}}_{1:N_{mcs}}$; and $\hat{\mathbf{y}}_{1:N_{mcs}}$ is the vector of all values of Y derived from the samples, sorted in ascending
608 order. Combine Eqs. (9) and (B.2), local SI can be estimated using MCS as follows:

$$LS_{ij}(\hat{y}^{(k)}, \boldsymbol{\theta}_{\mathbf{X}}) = \frac{1}{N_{mcs}} \sum_{l=1}^k m_{ij}(\hat{x}_{i,rank}^{(l)}, \boldsymbol{\theta}_{X_i}) \quad (\text{B.3})$$

609 where $\hat{x}_{i,rank}^{(l)}$ is the l th sample in the set of $\hat{\mathbf{x}}_{1:N_{mcs}}$; and $\hat{\mathbf{x}}_{1:N_{mcs}}$ is the vector of all samples of \mathbf{X} ,
610 sorted in ascending order based on the value of $h(\hat{\mathbf{x}}^{(k)})$

611 **Appendix C. Moment estimation based on trivariate dimension reduction method**

612 For strong nonlinear problem, where $G(\mathbf{X})$ shows significant nonlinearity in Gaussian space,
613 the trivariate dimension reduction method (TDRM) [39] is advised to be applied. In the TDRM,
614 the k th original moments of a performance function, i.e., $E_k(\boldsymbol{\theta})$, is approximated by a summation

615 of some one-, two- and three-dimensional functions as follows:

$$E_k(\boldsymbol{\theta}) \cong \sum_{m=1}^{n-2} \sum_{l>m}^{n-1} \sum_{s>l}^n E_{mls}^k(\boldsymbol{\theta}) - (n-3) \sum_{m=1}^{n-1} \sum_{l>m}^n E_{ml}^k(\boldsymbol{\theta}) \\ + \frac{(n-3)(n-2)}{2} \sum_{m=1}^n E_m^k(\boldsymbol{\theta}) - \frac{(n-3)(n-2)(n-1)}{6} [G(\boldsymbol{\mu})]^k, \quad (\text{C.1})$$

$$E_{mls}^k(\boldsymbol{\theta}) = \sum_{r_m=1}^q \sum_{r_l=1}^q \sum_{r_s=1}^q P_{r_m} P_{r_l} P_{r_s} [G(\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \hat{x}_l(r_l|\boldsymbol{\theta}), \dots, \hat{x}_s(r_s|\boldsymbol{\theta}), \dots, \mu_n)]^k, \quad (\text{C.2})$$

616

$$E_{ml}^k(\boldsymbol{\theta}) = \sum_{r_m=1}^q \sum_{r_l=1}^q P_{r_m} P_{r_l} [G(\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \hat{x}_l(r_l|\boldsymbol{\theta}), \dots, \mu_n)]^k, \quad (\text{C.3})$$

617

$$E_m^k(\boldsymbol{\theta}) = \sum_{r_m=1}^q P_{r_m} [G(\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \mu_n)]^k, \quad (\text{C.4})$$

618 where P_{r_s} is the weight of the r_s th evaluation point. Based on the TDRM, $\partial E_k(\boldsymbol{\theta})/\partial \theta_{ij}$ defined
619 in Eq. (16) can be calculated as follows:

$$\frac{\partial E_k(\boldsymbol{\theta})}{\partial \theta_{ij}} \cong \sum_{m=1}^{n-2} \sum_{l>m}^{n-1} \sum_{s>l}^n D_{mls}(\boldsymbol{\theta}) - (n-3) \sum_{m=1}^{n-1} \sum_{l>m}^n D_{ml}(\boldsymbol{\theta}) \\ + \frac{(n-3)(n-2)}{2} \sum_{m=1}^n D_m(\boldsymbol{\theta}) - \frac{(n-3)(n-2)(n-1)}{6} g_{ijk}(\boldsymbol{\mu}), \quad (\text{C.5})$$

$$D_{mls}(\boldsymbol{\theta}) = \sum_{r_m=1}^q \sum_{r_l=1}^q \sum_{r_s=1}^q P_{r_m} P_{r_l} P_{r_s} g_{ijk}[\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \hat{x}_l(r_l|\boldsymbol{\theta}), \dots, \hat{x}_s(r_s|\boldsymbol{\theta}), \dots, \mu_n], \quad (\text{C.6})$$

$$D_{ml}(\boldsymbol{\theta}) = \sum_{r_m=1}^q \sum_{r_l=1}^q P_{r_m} P_{r_l} g_{ijk}[\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \hat{x}_l(r_l|\boldsymbol{\theta}), \dots, \mu_n], \quad (\text{C.7})$$

$$D_m(\boldsymbol{\theta}) = \sum_{r_m=1}^q P_{r_m} g_{ijk}[\mu_1, \dots, \hat{x}_m(r_m|\boldsymbol{\theta}), \dots, \mu_n]. \quad (\text{C.8})$$

620 References

621 [1] S. Razavi, A. Jakeman, A. Saltelli, C. Prieur, B. Iooss, E. Borgonovo, E. Plischke, S. L.
622 Piano, T. Iwanaga, W. Becker, et al., The future of sensitivity analysis: an essential discipline
623 for systems modeling and policy support, Environmental Modelling & Software 137 (2021)
624 104954.

625 [2] I. Sobol', Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput.
626 Exp. 1 (1993) 407.

627 [3] Z. Wan, S. Wang, Z. Wu, X. Wang, Dimension-independent single-loop Monte Carlo simula-
628 tion method for estimate of Sobol' indices in variance-based sensitivity analysis, *Reliability*
629 *Engineering & System Safety* 263 (2025) 111236.

630 [4] I. Papaioannou, D. Straub, Variance-based reliability sensitivity analysis and the form α -
631 factors, *Reliability Engineering & System Safety* 210 (2021) 107496.

632 [5] I. Papaioannou, D. Straub, FORM-based global reliability sensitivity analysis of systems with
633 multiple failure modes, *Reliability Engineering & System Safety* 260 (2025) 110974.

634 [6] X. Guan, The moment quadrature method for global sensitivity analysis, *Reliability Engi-
635 neering & System Safety* 265 (PartA) (2026) 111460.

636 [7] W. Becker, Metafunctions for benchmarking in sensitivity analysis, *Reliability Engineering
637 & System Safety* 204 (2020) 107189.

638 [8] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, *Reliability Engi-
639 neering & System Safety* 93 (7) (2008) 964–979.

640 [9] T. A. Mara, W. E. Becker, Polynomial chaos expansion for sensitivity analysis of model
641 output with dependent inputs, *Reliability Engineering & System Safety* 214 (2021) 107795.

642 [10] X. Shang, L. Wang, H. Fang, L. Lu, Z. Zhang, Active learning of ensemble polynomial chaos
643 expansion method for global sensitivity analysis, *Reliability Engineering & System Safety* 249
644 (2024) 110226.

645 [11] K. Cheng, Z. Lu, C. Ling, S. Zhou, Surrogate-assisted global sensitivity analysis: an overview,
646 *Structural and Multidisciplinary Optimization* 61 (2020) 1187–1213.

647 [12] Q. Shao, A. Younes, M. Fahs, T. A. Mara, Bayesian sparse polynomial chaos expansion for
648 global sensitivity analysis, *Computer Methods in Applied Mechanics and Engineering* 318
649 (2017) 474–496.

650 [13] Y. Shang, M. Nogal, R. Teixeira, A. R. M. Wolfert, Extreme-oriented sensitivity analysis using
651 sparse polynomial chaos expansion. application to train–track–bridge systems, *Reliability
652 Engineering & System Safety* 243 (2024) 109818.

653 [14] X. Wu, Z. Lu, Efficient global reliability sensitivity method by combining dimensional reduc-
654 tion integral with stochastic collocation, *Reliability Engineering & System Safety* 260 (2025)
655 110993.

656 [15] A. Dell'Oca, M. Riva, A. Guadagnini, Moment-based metrics for global sensitivity analysis
657 of hydrological systems, *Hydrology and Earth System Sciences* 21 (12) (2017) 6219–6234.

658 [16] E. Borgonovo, A new uncertainty importance measure, *Reliability Engineering & System
659 Safety* 92 (6) (2007) 771–784.

660 [17] F. Pianosi, T. Wagener, Distribution-based sensitivity analysis from a generic input-output
661 sample, *Environmental Modelling & Software* 108 (2018) 197–207.

662 [18] W. Yun, Z. Lu, X. Jiang, An efficient method for moment-independent global sensitivity
663 analysis by dimensional reduction technique and principle of maximum entropy, *Reliability
664 Engineering & System Safety* 187 (2019) 174–182.

665 [19] P. P. Li, Y. G. Zhao, C. Dang, M. Broggi, M. A. Valdebenito, M. G. Faes, An efficient
666 bayesian updating framework for characterizing the posterior failure probability, *Mechanical
667 Systems and Signal Processing* 222 (2025) 111768.

668 [20] M. A. Valdebenito, X. Yuan, M. G. Faes, Augmented first-order reliability method for esti-
669 mating fuzzy failure probabilities, *Structural Safety* 105 (2023) 102380.

670 [21] P. Bjerager, S. Krenk, Parametric sensitivity in first order reliability theory, *Journal of Engi-
671 neering Mechanics* 115 (7) (1989) 1577–1582.

672 [22] I. Enevoldsen, J. D. Sørensen, Reliability-based optimization of series systems of parallel
673 systems, *Journal of Structural Engineering* 119 (4) (1993) 1069–1084.

674 [23] N. Metropolis, S. Ulam, The Monte Carlo method, *Journal of the American statistical association* 44 (247) (1949) 335–341.

676 [24] R. Melchers, Importance sampling in structural systems, *Structural Safety* 6 (1) (1989) 3–10.

677 [25] M. A. Valdebenito, H. A. Jensen, H. Hernández, L. Mehrez, Sensitivity estimation of failure
678 probability applying line sampling, *Reliability Engineering & System Safety* 171 (2018) 99–
679 111.

680 [26] S.-K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset
681 simulation, *Probabilistic Engineering Mechanics* 16 (4) (2001) 263–277.

682 [27] S.-K. Au, E. Patelli, Rare event simulation in finite-infinite dimensional space, *Reliability
683 Engineering & System Safety* 148 (2016) 67–77.

684 [28] V. Dubourg, B. Sudret, Meta-model-based importance sampling for reliability sensitivity
685 analysis, *Structural Safety* 49 (2014) 27–36.

686 [29] L. G. Zhang, Z. Z. Lu, L. Cheng, Z. C. Tang, Emulator model–based analytical solution for
687 reliability sensitivity analysis, *Journal of Engineering Mechanics* 141 (8) (2015) 04015016.

688 [30] D. W. Jia, Z. Y. Wu, An improved adaptive kriging model for importance sampling reliability
689 and reliability global sensitivity analysis, *Structural Safety* 107 (2024) 102427.

690 [31] Y. G. Zhao, T. Ono, Moment methods for structural reliability, *Structural Safety* 23 (1)
691 (2001) 47–75.

692 [32] Z. Z. Lu, J. Song, S. F. Song, Z. F. Yue, J. Wang, Reliability sensitivity by method of
693 moments, *Applied Mathematical Modelling* 34 (10) (2010) 2860–2871.

694 [33] X. Y. Zhang, M. A. Valdebenito, Y. G. Zhao, M. G. Faes, Probability sensitivity estimation
695 with respect to distribution parameters via the method of moments, *ASCE-ASME Journal
696 of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering* 11 (4) (2025)
697 04025081.

698 [34] M. G. Faes, M. Daub, S. Marelli, E. Patelli, M. Beer, Engineering analysis with probability
699 boxes: A review on computational methods, *Structural Safety* 93 (2021) 102092.

700 [35] Y. G. Zhao, Z. H. Lu, *Structural reliability: approaches from perspectives of statistical
701 moments*, John Wiley & Sons, 2021.

702 [36] Y. G. Zhao, T. Ono, Third-moment standardization for structural reliability analy-
703 sis, *Journal of Structural Engineering* 126 (2000) 724–732. doi:10.1061/(ASCE)0733-
704 9445(2000)126:6(724).

705 [37] Q. Qin, X. Y. Zhang, Z. H. Lu, Y. G. Zhao, Simplified third-order normal transformation and
706 its application in structural reliability analysis, *Engineering Mechanics* 37 (12) (2020) 78–86,
707 113. doi:10.6052/j.issn.1000-4750.2020.01.0015 (in Chinese).

708 [38] Y. G. Zhao, T. Ono, New point estimates for probability moments, *Journal of Engineering
709 Mechanics* 126 (4) (2000) 433–436.

710 [39] H. Xu, S. Rahman, A generalized dimension-reduction method for multidimensional integra-
711 tion in stochastic mechanics, *International Journal for Numerical Methods in Engineering*
712 61 (12) (2004) 1992–2019.

713 [40] M. Hohenbichler, R. Rackwitz, Non-normal dependent vectors in structural safety, *Journal
714 of the Engineering Mechanics Division* 107 (6) (1981) 1227–1238.

715 [41] Z. H. Lu, C. H. Cai, Y. G. Zhao, Structural reliability analysis including correlated random
716 variables based on third-moment transformation, *Journal of Structural Engineering* 143 (8)

717 (2017) 04017067.

718 [42] M. Lemaire, Structural reliability, John Wiley & Sons, 2013.

719 [43] K. J. Bathe, Finite element procedures, Klaus-Jurgen Bathe, 2006.

720 [44] C. H. Acevedo, M. A. Valdebenito, I. V. González, H. A. Jensen, M. G. Faes, Variance-
721 reduced estimation of third-order statistics using control variates with splitting, Reliability
722 Engineering & System Safety 267 (2026) 111859.