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Abstract17

Computational models have become indispensable tools for decision-making across numerous18

fields. Given the inherent randomness in input variables, the outputs of these models are of-19

ten stochastic, making sensitivity estimation (SE) essential for understanding how variations in20

inputs affect stochastic outputs. In practice, the input random variables are described by their21

distribution parameters. This study introduces an SE method to assess the influence of input22

distribution parameters on the moments and distributions of outputs. Sensitivity indices (SIs)23

are defined based on both the first three moments and the cumulative distribution function of the24

outputs, naturally providing SI for exceeding probabilities. A numerical approach is developed to25

quantify these SIs as the post processing of uncertainty quantification, employing a moment-based26

model to approximate the output distribution. Three examples, including nonlinear formula and27

finite element model, are analyzed to demonstrate the applicability and efficiency of the proposed28

SE method, highlighting its ability to provide a more comprehensive view of the relationship29

between input distribution parameters and model outputs.30

Keywords: Sensitivity, Stochastic output, Mean, Standard deviation, Skewness31

1. Introduction32

With the rapid development of computational science and simulation technology, mathematical33

models have become indispensable tools for decision-making in engineering, science, economics,34

and policy. In practice, these models often involve random inputs, which lead to stochastic35

outputs. Understanding how uncertainties in the inputs affect the stochastic behavior of the36

outputs is essential for reliable modeling and informed decision-making [1].37
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A wide spectrum of sensitivity estimation (SE) methods has been developed to investigate the 

influence of input uncertainties on stochastic outputs. These methods can be broadly categorized 

into two distinct paradigms based on the subject of the sensitivity analysis: sensitivity with respect 

to input values versus sensitivity with respect to the distribution parameters of inputs.

66

67

The first paradigm, which is the most prevalent, defines sensitivity indices with respect to 

the values of the input random variables. The variance-based SE method represents the most 

established framework within this paradigm, where the total variance of the output is decom-

posed into contributions from individual inputs and their interactions [2, 3]. This framework 

provides a global measure of how input variability affects output variability. Extensions have con-

nected variance-based and derivative-based methods [4, 5, 6], while variogram-based approaches 

have been introduced to further bridge local and global perspectives [7]. To improve computa-

tional efficiency, surrogate-assisted strategies such as polynomial chaos expansion have been widely 

adopted [8, 9, 10], and successfully applied in many engineering fields [11, 12, 13, 14]. Despite 

their popularity, variance-based methods capture only the second-order property of the output,

which is insufficient for fully describing the stochastic nature of complex systems. To address this 

limitation, SE methods incorporating higher moments have been developed [15], offering more 

detailed characterization of output distributions. A more general class is moment-independent 

methods [16, 17, 18], which quantify sensitivity by comparing the unconditional distribution of 

the output with its conditional distributions when one or more inputs are fixed. These methods 

allow for a comprehensive evaluation of how inputs shape the entire output distribution. Never-

theless, all of these approaches share a common aspect: they define sensitivity indices with respect 

to input values, rather than with respect to the distribution parameters of the inputs. Since dis-

tribution parameters explicitly characterize input uncertainty and may be not known precisely 

when engineering data are limited [19, 20], neglecting them reduces the practical applicability of 

these methods. It is theoretically possible to treat these distribution parameters as new random 

variables and apply the above global sensitivity methods. However, this approach conflates the 

problem of sensitivity to parameter values with that of second-order uncertainty analysis, lead-

ing to conceptual ambiguity. More critically, it necessitates a computationally prohibitive nested 

framework, making it impractical for most engineering applications.

The second paradigm directly addresses distribution parameters, but has been largely confined

to reliability analysis. Here, sensitivity indices (SIs) are defined with respect to the failure prob-68
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ability or the reliability index. Within the frameworks of first order reliability method (FORM)

and second order reliability method (SORM), sensitivities can be obtained analytically in connec-

tion with the design point [21, 22]. These approaches are highly efficient when the model is not 

strongly nonlinear in the Gaussian space and has relatively low dimensionality. Simulation-based 

reliability methods, including crude Monte Carlo Simulation [23], Importance Sampling [24], Line 

Sampling [25], and Subset Simulation [26, 27], provide broader applicability and the possibility of 

reusing samples for sensitivity analysis. To alleviate computational cost, surrogate-assisted relia-

bility methods such as Kriging have been widely explored [28, 29, 30]. In particular, the method 

of moments (MoM) has demonstrated good efficiency and accuracy for nonlinear systems and 

rare-event problems [31], and corresponding SE formulations have been proposed [32, 33]. How-

ever, reliability-based methods focus only on a single point of the output distribution, typically 

the cumulative distribution function at a certain threshold, while the remainder of the stochas-

tic output is ignored. Consequently, although input distribution parameters are considered, the 

full stochastic behavior of the output remains uncharacterized. Crucially, none of these existing 

methods provides a systematic framework for quantifying the sensitivity of the first three mo-

ments (mean, variance, and skewness) of the output distribution to the distribution parameters of 

the inputs, which is essential for a complete understanding of how input uncertainties shape the 

central tendency, dispersion, and asymmetry of the output.
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In conclusion, existing SE methods either (i) analyze the distribution of outputs but restrict 

attention to variations in input values, thereby overlooking the role of input distribution param-

eters, or (ii) incorporate distribution parameters but reduce the output distribution to a single 

reliability measure. In particular, the sensitivity of the output’s moments to these parameters has 

been largely unexplored. This highlights a critical gap in current methodologies: the lack of SE 

approaches that systematically quantify how input distribution parameters influence the entire 

output distribution, including its key moment characteristics, which is essential for comprehensive 

uncertainty management in engineering practice.

To address this limitation, this study develops a novel SE method that quantifies the sen-

sitivity of output distributions with respect to the distribution parameters of inputs. Two SIs 

are proposed: a local index for the entire output CDF (which generalizes traditional reliability 

sensitivities and provides results for all thresholds simultaneously), and a global index for the first 

three central moments of the output (which is, to our knowledge, a novel contribution offering99
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direct interpretability of how distribution parameters shift, disperse, or skew the output). For 

computational efficiency, approximate formulas for these indices are derived using a third-moment 

normal transformation technique, leading to the so-called TMSE method. In addition, an efficient 

numerical implementation is introduced as a post-processing step following general uncertainty 

propagation. The remainder of this paper is organized as follows. Section 2 defines the problem 

setting. Section 3 introduces the proposed SIs for moments and distributions. Section 4 presents 

a moment-based approximation for practical application, while Section 5 develops a numerical 

method for efficient implementation. Section 6 demonstrates the applicability of the proposed 

method through three numerical examples. Finally, Section 7 concludes the paper.comm108

2. Problem statement109

2.1. Stochastic system110

A stochastic system defines the physical relationship between the inputs X and output features111

Y as follows:112

Y = h(X), (1)

where Y=(Y1,Y2,...,Ym) and X=(X1,X2,...,Xn) are the vectors of outputs and inputs for the sys-113

tem; m and n are respectively the dimensions of outputs and inputs; and h(·) is the simulator,114

which builds the mapping from X to Y and is usually represented as either a sophisticated code115

package (e.g., finite element model) or a mathematical function (e.g., performance function).116

The uncertainties of the system are first characterized by inputs, and then propagate through117

the simulator into outputs as shown in Fig. 1. According to the involvements of aleatory or/and

h(·)X=(X1, X2,...,Xn) Y=(Y1, Y2,...,Ym)
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Figure 1: Schematic graph of uncertainty propagation in stochastic system
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epistemic uncertainties, components of X and Y may be either explicit constants, random variables119

with fully determined uncertainty characteristics, uncertain constants, or random variables with120

only vaguely determined uncertain characteristics [34]. In this study, the case when only aleatory121

uncertainties involved in system parameters are considered, and the uncertain components of122

X are modeled as independent random variables with deterministic distribution parameters. For123

convenience, a single stochastic output of the system, denoted by Y, is investigated in the following,124

while the results can be extended to multiple outputs.125

2.2. Probabilistic model126

From the probabilistic perspective, the inputs and outputs of a stochastic system are the127

probabilistic models of X and Y. With X modeled by independent random variables, Y is also a128

random variable, whose probabilistic models will be discussed in this section.129

2.2.1. Probability distribution130

The distribution of Y can be described by its cumulative distribution function (CDF) or131

probabilistic density function (PDF). Based on Eq. (1), the CDF of Y can be computed as132

follows:133

FY (y,θX) =

∫
ΩX

I(x, y)fX(x|θX)dx, (2)

where FY (y,θX) is the CDF of model output at Y =y ; y is a real value; θX=(θX1 , θX2 ,...,θXn) is134

the vector of distribution parameters of X, θXi
= (θi1, ..., θij, ..., θinXi

) is the vector of distribution135

parameters of Xi, θij is the j th distribution parameter for Xi, and nXi
is the total number of136

parameters to describe the distribution of Xi; ΩX is the domain of X; I(·, ·) is the indicator137

function, which is equal to 1 in case h(x) ≤ y and 0 otherwise; and fX(x|θX) is the joint PDF of138

X. Based on Eq. (2), the PDF of Y, denoted by fY (y,θX), can be computed as follows:139

fY (y,θX) =
∂FY (y,θX)

∂y
. (3)

In general, the CDF is of particular interest for specific value of Y =y. For instance, when Y140

represents the load effect, 1− FY (y,θX) provides the exceeding probability of the load effects for141

the threshold y. Moreover, if h(·) is defined as the performance function, FY (0,θX) corresponds142

to the failure probability. Once the CDF is obtained, the corresponding PDF can be readily143
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derived based on Eq. (3). Therefore, FY (y,θX) is the subject of study in the following discussion144

of sensitivity estimation.145

2.2.2. Statistical moments146

Central moments of Y are another perspective to describe the stochastic properties of Y,147

which provide the overall description of the distribution. While incorporating higher-order mo-148

ments can provide additional information, the computational efficiency decreases significantly as149

more moments are included. To strike a balance between accuracy and efficiency, the first three150

central moments of Y are considered, as they capture the majority of the distribution’s statistical151

information [35]. These central moments can be computed from the original moments as follows:152

θY 1(θX) = E1(θX), (4)

θY 2(θX) =
√
E2(θX)− [E1(θX)]2, (5)

θY 3(θX) =
1

[θY2(θX)]3
{E3(θX)− 3E1(θX)E2(θX) + 2[E1(θX)]

3}, (6)

where θY1(θX), θY2(θX), and θY3(θX) are the mean, standard deviation and skewness of Y, respec-153

tively; and Ek(θX) is the kth moment about the origin of Y and computed from θX as follows:154

Ek(θX) =

∫
ΩX

[h(x)]kfX(x|θX)dx. (7)

3. Derivative-based sensitivity index155

As discussed in Eqs. (2)-(7), the probabilistic models of Y are influenced by θX. To quan-156

tify such influence, the sensitivity of the distribution of Y with respect to θXij
(i=1,...,n and157

j=1,...,nXi
) will be estimated in this section. Without loss of generality, θX can be the the vector158

of central moments, original moments or other parameters of X, as long as they provide sufficient159

information to define the distribution of X unambiguously. Comparison between Eqs. (2) and (7)160

shows that, FY (y,θX) provides estimation of the distribution for specific value of Y =y, while the161

moments are an overall evaluation considering all possible values of Y. In this sense, the sensitivity162

index (SI) considering FY (y,θX) is defined as the local SI, while the one considering θY is named163

as the global SI. The local and global SIs will be analyzed in this section.164
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3.1. Local sensitivity index

A straightforward method to quantify the sensitivity output distribution with respect to θXij

involves taking the derivatives of the probabilistic models of Y with respect to θXij
. Then, the

local SI of Y with respect to θXij
, denoted by LSij(y,θX), is defined as follows:

165

166

167

168

LSij(y,θX) =
∂FY (y,θX)

∂θXij

. (8)

Note that, the local SI defined in Eq. (8) is a function of y and can be interpreted as the SI for

the exceedance probability of a threshold b when y=b.

Substitution of Eq. (2) into Eq. (8) leads to the reformulation of LSij(y,θX) as follows:

169

170

171

(9)LSij(y,θX) =

∫
Ω

X I(x, y)mij(x,θX
i)fX(x|θX)dx,

where mij(x,θXi
) is the so-called score function, which formulated as follows:172

mij(x,θXi
) =

∂fX(x|θX)

∂θXij

· 1

fX(x|θX)
.

When X is modeled by independent random variables, fX(x|θX) is computed as
∏n

i=1

(10)

fXi
(Xi|θXi

),

where fXi
(Xi|θXi

) is the PDF of Xi. Then, mij(x,θXi
) can be simplified as follows:

173

174

mij(x,θXi
) = mij(xi,θXi

) =
∂fXi

(xi|θXi
)

∂θXij

· 1

fXi
(xi|θXi

)
. (11)

With the distribution of X known, mij(x,θXi
) can be readily defined.

3.2. Global sensitivity index

Similarly, the global SI, denoted by GSij(θX), is proposed as the derivative of central moments

of Y with respect to θij. As shown in Eqs. (4)-(7), the central moments of Y are computed based

on θX, and then are represented as a column vector θY (θX) = (θY 1(θX), θY 2(θX), θY 3(θX))
T .

Accordingly, GSij(θX) is formulated as follows:

175

176

177

178

179

180

GSij(θX) =
∂θY (θX)

∂θXij

. (12)

181

182

There are three elements in GSij(θX), corresponding to the mean, standard deviation, and skew-

ness of Y. The second element of GSij(θX) is analogous to variance-based SIs, except that it
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considers the distribution parameters of X rather than X itself. Based on Eqs. (4)-(6) and (12),183

GSij(θX) can be expanded as follows:184

GSij(θX) =
∂θY (θX)

∂E(θX)
· ∂E(θX)

∂θXij

, (13)

where E(θX) = (E1(θX), E2(θX), E3(θX))
T is a column vector of original moments of Y. Based185

on Eqs. (4)-(6), ∂θY (θX)/∂E(θX) is obtained as follows:186

∂θY (θX)

∂E(θX)
=


1 0 0

−θY1(θX)

θY2(θX)

1

2θY2(θX)
0

3{E1(θX)E3(θX)− [E2(θX)]
2}

[θY2(θX)]5
3[E1(θX)E2(θX)− E3(θX)]

2[θY2(θX)]5
1

[θY2(θX)]3

 . (14)

Based on Eq. (14), ∂θY (θX)/∂E(θX) can be explicitly computed given the value of E(θX). With187

first three moments considered, there are three elements in ∂E(θX)/∂θXij
and expressed as follows:188

∂E(θX)

∂θXij

=

(
∂E1(θX)

∂θXij

,
∂E2(θX)

∂θXij

,
∂E3(θX)

∂θXij

)T

. (15)

Based on Eq. (7), ∂Ek(θX)/∂θXij
(k=1, 2, 3) can be computed as follows:189

∂Ek(θX)

∂θXij

=

∫
Ωx

gijk(x,θXi
)fX(x|θX)dx, (16)

where gijk(x,θXi
) is formulated as follows:190

gijk(x,θXi
) = [h(x)]k ·mij(xi,θXi

). (17)

4. Moment-based distribution models and local sensitivity index191

Direct computation of FY (y,θX) and LSij(y,θX) based on Eqs. (2) and (9) requires to evaluate192

a multi-dimensional integral of a function that includes the indicator function I(x, y). Influenced193

by I(x, y), this integral is taken over the domain {h(x) ≤ y}. In certain cases, such as when h(·)194

is a summation of independent random variables X, the integral domain defined by I(x, y) can195

be explicitly defined, allowing the multi-dimensional integral to be solved analytically (details are196

provided in Appendix A). However, in most practical situations, the function h(·) is complicated,197

making it impossible to explicitly determine the region where {h(x) ≤ y}. As a result, the198
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required integrals for FY (y,θX) and LSij(y,θX) cannot be computed directly. In contrast, the199

moments of Y can be directly obtained based on (4)-(7), since the corresponding integrals are200

defined over the entire domain of X. To address the challenges in constructing FY (y,θX) and201

estimating LSij(y,θX), this section discusses a moment-based approximation approach for these202

two objectives.203

4.1. Moment-based CDF and PDF204

To take advantage of well-established theories for standard normal distribution, FY (y,θX) can205

be defined based on the normal transformation technique as follows [35]:206

FY (y,θX) ∼= Φ[T (y|θY (θX))], (18)

where Φ[·] is the CDF of standard normal random variable; and T (y|θY (θX)) is the normal207

transformation function, which is defined based on θY (θX). Based on Eq. (18), fY (y,θX) can208

be easily constructed as follows:209

fY (y,θX) ∼= φ[T (y|θY (θX))]
∂T (y|θY (θX))

∂y
, (19)

where φ[·] is the PDF of standard normal distribution.210

Theoretically, Eqs. (18) and (19) can provide an accurate solution to FY (y,θX) and fY (y,θX)211

with the distribution of Y fully defined by θY (θX). For instance, when h(·) is a sum of indepen-212

dent normal random variables, the resulting distribution is also normal, which can be precisely213

described using the first two moments. However, in practice, the exact distribution of Y is214

generally unknown, and finite moments alone are insufficient to fully describe it. As a result, the215

moment-based formulas in Eqs. (18) and (19) serves as approximations of FY (y,θX) and fY (y,θX),216

with its accuracy depending on the statistical information contained in θY (θX). In this study,217

the first three central moments of Y are used to define T (y|θY (θX)), as they capture most of218

the relevant statistical information and have been shown to be sufficient in general cases [35].219

However, higher moments may be necessary when Y exhibits strong non-Gaussian behavior.220
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4.2. Moment-based local sensitivity index221

Substitution of Eq. (18) into Eq. (8) leads to the reformulation of LSij(y,θX) as follows:222

LSij(y,θX) ∼=
∂Φ[T (y|θY (θX))]

∂θXij

. (20)

Applying the chain rule of differentiation, LSij(y,θX) can be computed as follows:223

LSij(y,θX) ∼= φ[T (y|θY (θX))] ·
∂T (y|θY (θX))

∂θY (θX)
· ∂θY (θX)

∂θXij

. (21)

Substitution Eq (19) into Eq. (21) allows to formulate LSij(y,θX) as follows:224

LSij(y,θX) ∼= fY (y,θX) ·NT(y,θY (θX)) ·GSij(θX). (22)

where NT(y,θY (θX)) is a 3 dimensional row vector defined based on the normal transformation225

T (y|θY (θX)) as follows:226

NT(y,θY (θX)) =
∂y

∂T (y|θY (θX))
· ∂T (y|θY (θX))

∂θY (θX)
. (23)

Comparison between Eqs. (12) and (22) reveals that the local sensitivity index LSij(y,θX) is227

a function of the global sensitivity index GSij(θX). This relationship exists because the global SI228

offers an overall evaluation of the distribution of Y, but lacks the ability to describe specific values.229

Therefore, LSij(y,θX) provides a more detailed assessment of sensitivity compared to GSij(θX).230

4.3. Third moment normal transformation based approximation231

As discussed above, the key task for determining the moment-based FY (y,θX), fY (y,θX) and232

LSij(y,θX) is to define the normal transformation function T (y|θY (θX)). In this study, the third-233

moment normal transformation (TMNT) is applied [36], which is proved to be efficient while234

achieving sufficient. For simplicity, in the following, θY (θX) and θYk
(θX) and Ek(θX) (k=1, 2, 3)235

will be denoted as θY , θYk
and Ek, respectively. Based on the TMNT, T (y|θY ) is approximated236

as follows:237

T (y|θY ) ∼=


−a2 +∆

2a1
, θY3 ̸= 0

ys, θY3 = 0

(24)
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where238

∆ =
√
a22 + 4a1(a1 + ys),

ys =
(y − θY1)

θY2

,

(25)

(26)

where ys is the standardization of y ; and a1 and a2 are the parameters of the TMNT computed 

from θY3 . The applicable range for the TMNT is given as follows [35]:

239

240

−120ϵaθ2Y /θ1Y ≤ θ3Y ≤ 40ϵaθ2Y /θ1Y , (27)

where ϵa is the allowable error. For problem with |θY3| ≤ 2, a1 and a2 can be calculated as 

follows [37]:

241

242

a1 =

√
3

10
θY3 , a2 = 1−

√
3

50
θY
2
3
. (28)

Based on Eqs. (24)-(28), ∂T (y|θY )/∂y can be directly obtained as follows:243

∂T (y|θY ) ∼=
1

θY2∆
. (29)

∂y

Substitution Eq. (29) into (19) yields fY (y,θX):244

fY (y,θX) ∼=
φ[T (y|θY )]

θY2∆
. (30)

Based on Eqs. (24)-(28), ∂T (y|θY )/∂θY can be obtained as follows:245

∂T (y|θY )

∂θY
=∼

(
− 1

θY2∆
, − ys

θY2∆
,

∂T (y|θY )

̸

∂θY3

)
. (31)

Combine Eqs. (23), (29) and (31), NT(y,θY ) can be obtained as follows:246

NT(y,θY ) ∼= (−1, −ys, NT3(y,θY )) . (32)

When θY 3 = 0, NT3(y,θY ) = 0; when θY 3 = 0, NT3(y,θY ) is formulated as follows:247

NT3(y,θY ) ∼=
θY 2

θY 3

[(2− a2)T (y|θY )− ys] . (33)

11



As discussed above, both the TMNT and corresponding NT(y,θY ) can be analytically deter-248

mined based on the value of θY . Then, based on the TMNT, the moment-based CDF and PDF of249

Y can be explicitly constructed using Eqs. (18) and (30), respectively. Given the values of PDF of250

Y, NT(y,θY ) and global SI, the moment-based local SI can be readily computed using Eq. (22).251

To sum up, by using the TMNT and the moments of Y, the moment-based CDF and PDF of Y252

as well as the moment-based local SI can be explicitly computed, with no extra model evaluation253

required. This helps to improve the computational efficiency. As the sensitivity estimation method254

with respect to input distribution parameters is developed based on the TMNT, it is referred to255

as TMSE method.256

5. Numerical method for sensitivity estimation257

The fundamental step for TMSE method is to evaluate the moments of Y and global SI. Based258

on Eqs. (4)-(7) and (12)-(13), the moments of Y and global SI can be computed based on multi-259

dimensional integrals over the domain of X given in Eqs. (7) and (16). As the dimension of X is260

generally large in practice, direct computation of these two integrals may be time-consuming or261

even impossible. As an alternative, efficient dimensional reduction method for integral approxi-262

mation is introduced in this section.263

5.1. Dimensional reduction method for evaluating the original moments264

To make a good balance between accuracy and efficiency, the original moments of Y, i.e., Ek,265

is solved using the point estimate method [38] combining with bivariate dimensional reduction266

method (BDRM) [39] as follows:267

Ek
∼=

∑
1≤p<q≤n

Ek
pq − (n− 2)

n∑
p=1

Ek
p +

(n− 1)(n− 2)

2
[h(µ)]k, (34)

Ek
pq =

l∑
rp=1

l∑
rq=1

PrpPrqh[xpq(rp, rq)]
k, Ek

p =
l∑

rp=1

Prph[xp(rp)]
k, (35)

where µ is the vector of mean values of X; xpq(rp, rq)=(µ1,..., T−1(û(rp),θXp) ,..., T−1(û(rq),θXq),...,268

µn) and xp(rp) =(µ1,..., T−1(û(rp),θXp) ,..., µn) are the evaluation points; T−1(·, ·) is the inverse269

normal transformation function, which can be defined using Rosenblatt transformation [40]; û is270

a l -dimensional vector of the evaluation points in standard normal space; Prp and Prq are the rpth271
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and rqth elements in P̂, respectively; and P̂ is the weight vector corresponding to û. P̂ and û can272

be computed as follows [38]:273

û =
√
2ζ, P̂ =

1

π
ξ. (36)

where ζ and ξ are vectors of the abscissa and corresponding weights in the Gauss-Hermite quadra-274

ture formula, respectively. Generally, the accuracy of point estimate method can be guaranteed275

with l = 7 [38], and the evaluation points u ˆˆ and corresponding weights P are given as follows [38]:276

û = (±3.7504,±2.3668,±1.1544, 0), P̂ = (0.0005, 0.0308, 0.2401, 0.4574). (37)

Based on Eqs. (34) and (35), the number of model evaluations required for computing E,277

denoted by NM , is278

NM =
n(n− 1)

2
(l − 1)2 + n(l − 1) + 1 (38)

It can be seen that NM is proportional to n2, which becomes extremely large for high-dimensional279

problems. Thus, the proposed method may face challenges for large n. This curse of dimension-280

ality arises from the applied dimension-reduction method [39], and it may be alleviated through281

alternative approximation techniques.282

5.2. Dimensional reduction method for estimating global SI283

Comparison between Eqs. (7) and (16) reveals that, ∂Ek/∂θXij
can be integrated as the mean284

value of gijk(X,θXi
). Furthermore, the input random variables for both h(·) and gijk(X,θXi

) are285

X. Thus, ∂Ek/∂θXij
can be evaluated using the same method as for Ek, i.e., the point estimate286

method combining with BDRM as follows:287

∂Ek

∂θij
∼=

∑
1≤p<q≤n

Dpq − (n− 2)
n∑

p=1

Dp +
(n− 1)(n− 2)

2
gijk(µ,θXi

), (39)

Dpq =
l∑

rp=1

l∑
rq=1

PrpPrqgijk[xpq(rp, rq),θXi
], Dp =

l∑
rp=1

Prpgijk[xp(rp),θXi
]. (40)

Eqs.(34)-(35) and (39)-(40) show that, the evaluation points applied for evaluatingE and ∂E/∂θXij
288

are the same. Compared with the estimation of E, the only extra requirements for estimating289

∂E/∂θXij
is to compute mij(Xi|θXi

) as given in Eq. (10), which can be easily determined. There290

is no extra model evaluation required for computing ∂E/∂θXij
, and thus, it can be treated as the291
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byproduct of determining E, which guarantees the computational efficiency.292

5.3. Procedure of the proposed method293

The procedure of the proposed TMSE method for sensitivity estimation of distribution of Y294

with respect to θXij
is summarized in Fig. 2, which comprises three main steps as detailed below:

Start

Evaluation points and corresponding weights

Model simulation at evaluation points

Moment estimation i.e., E(θX) and θY(θX) TMNT CDF/PDF estimation

Compute
∂θY(θX)

∂E(θX)
Compute

∂E(θX)

∂θij

Global SI, i.e., GSij(θX)

Compute NT(y,θY (θX))

Local SI, i.e., LSij(y,θX)

End

Model evaluation

Distribution estimation

Sensitivity estimation

1

Figure 2: Flowchart for sensitivity estimation of output distribution using the TMSE method

295

(1) Model evaluation.296

• Evaluation points generation. First, evaluation points for each random variable are297

transformed from û, using inverse normal transformation technique such as Rosenblatt298

transformation. Then, all xpq(rp, rq) and xp(rp) (1 ≤ p < q ≤ n, rp=1,...,l and rq=1,...,299

l) are formed with different combinations of the evaluation points.300

• Model evaluation. With the set of evaluation points, the corresponding values of the301

output Y are computed using the estimator h(·). It is important to note that this is the302

only step requiring model evaluation, i.e., evaluating h(·). The values of Y obtained303

in this step are subsequently used for distribution estimation and are reused in the304

sensitivity estimation.305
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(2) Distribution estimation.306

• Moment estimation of the output. Based on the values of Y at the evaluation points307

and Eqs. (34) and (35), the original moments of Y, i.e., E, can be computed. Then, with308

the aid of Eq. (4)-(6), the central moments of Y, i.e., θY , can be obtained. The obtained309

E and θY will be applied to both distribution evaluation and sensitivity estimation.310

• CDF and PDF simulation. Based on θY , the TMNT for y can be constructed using311

Eqs. (24)-(26). Then, CDF and PDF of Y can be directly constructed using Eqs. (18)312

and (30), respectively.313

(3) Sensitivity estimation.314

• Estimate ∂E/∂θXij
using the point estimate point combined with BDRM, as given in315

Eqs. (39)-(40). The values of gijk(·, ·) at the evaluation points are computed based316

on the values of Y obtained previously, and thus there is no extra model evaluation317

required.318

• Compute ∂θY /∂E. With θY and E obtained in distribution evaluation, ∂θY /∂E can319

be directly computed using Eq. (14).320

• Estimate the global SI GSij(θX) based on Eq. (13), using the results of ∂E(θX)/∂θXij
321

and ∂θY (θX)/∂E(θX).322

• Compute NT(y,θY ). With the TMNT constructed, NT(y,θY ) can be directly com-323

puted using Eqs (32) and (33).324

• Estimate the local SI LSij(y,θX) with the aid of Eq. (22), based on the results of325

fY (y,θX), GSij(θX) and NT(y,θY ).326

As discussed above, the inputs for global sensitivity estimation are the moments of Y and327

∂E/∂θXij
. The moments of Y are obtained through the dimensional reduction method described328

in section 5.1. The computation of ∂E/∂θXij
is based on the evaluation points xpq(rp, rq) and329

xp(rp) (1 ≤ p < q ≤ n, rp=1,...,l and rq=1,..., l) and corresponding model outputs, all of which are330

byproducts of the distribution estimation process, as discussed in section 5.2. With these inputs331

readily obtained, the global SI can be computed. There is no additional model evaluation required332

in sensitivity estimation, thereby ensuring the efficiency of the method. With the moments of Y333

obtained, the TMNT can be constructed, and then the CDF/PDF of Y and local SI can be334
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readily obtained. In this sense, CDF/PDF and local SI can be treated as the byproducts of335

moment estimation and global SI, respectively.336

6. Examples337

6.1. Example 1: Weighted summation of two independent random variables338

The first example considers a simple function as follows:339

Y = h(X) = k1X1 + k2X2, (41)

where X1 and X2 are two independent random variables; and k1 = 2 and k2 = −1 are the340

coefficients.341

To illustrate the procedure of the TSME method, detailed results are discussed for the case342

when X1 and X2 follow lognormal distributions with θX11 = 16 and θX21 = 12, respectively.343

Additionally, the coefficient of variance (COV) of X1 and X2 are assumed to be 0.05 and 0.10,344

respectively. Based on Fig. 2, the first step is to generate the evaluation points, which are trans-345

formed from û and listed in Table 1. Then, the values of Y at the evaluation points can be readily

Table 1: Evaluation points in example 1

rq
rp=1 rp=2 rp=3 rp=4 rp=5 rp=6 rp=7

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

x12(rp, rq)

1 10.95 6.78 12.57 6.78 14.19 6.78 16 6.78 17.86 6.78 20.16 6.78 23.14 6.78
2 10.95 8.34 12.57 8.34 14.19 8.34 16 8.34 17.86 8.34 20.16 8.34 23.14 8.34
3 10.95 9.99 12.57 9.99 14.19 9.99 16 9.99 17.86 9.99 20.16 9.99 23.14 9.99
4 10.95 12 12.57 12 14.19 12 16 12 17.86 12 20.16 12 23.14 12
5 10.95 14.10 12.57 14.10 14.19 14.10 16 14.10 17.86 14.10 20.16 14.10 23.14 14.10
6 10.95 16.89 12.57 16.89 14.19 16.89 16 16.89 17.86 16.89 20.16 16.89 23.14 16.89
7 10.95 20 12.57 20.76 14.19 20.76 16 20.76 17.86 20.76 20.16 20.76 23.14 20.76

x1(rp) 10.95 12 12.57 9 14.19 12 16 12 17.86 12 20.16 12 23.14 12
x2(rp) 16 6.78 16 8.34 16 9.99 16 12 16 14.10 16 16.89 16 20.76

346

computed. It can be observed from Table 1 that, there are some repeated values for xp(rp) and347

xpq(rp, rq), and the number of model evaluations is 49 by eliminating the duplicated points. The348

next step is to evaluate the distribution of Y. First, with the aid of Eqs. (34) and (35), the first349

three moments about the origin of Y are computed as E=(20, 413.48, 8816.02). Then, based on350
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Eqs. (4)-(6), the first three central moments of Y, i.e., θY , can be transformed from E as (20,351

3.6715, 0.1459). With θY obtained, the CDF and PDF of Y can be constructed based on the352

TMNT as given in Eqs. (18) and (30), respectively.353

The third step is to conduct sensitivity estimation. First, the values of gijk(·, ·) are computed.354

The derivative of fXi
(Xi|θXi

) with respect to θXij
is computed using finite difference method. Note355

that, as the lognormal distribution depends on two parameters, the sensitivity estimation focuses356

solely on the first two moments of X. The values of ∂E/∂θXij
are ∂E/∂θX11=(2, 80, 2480.5)T ,357

∂E/∂θX21=(−1,−40,−1240.2)T , ∂E/∂θX12=(0, 12.8, 792.7)T , ∂E/∂θX12=(0, 3.6, 210.1)T . Based358

on Eq. (14), ∂θY /∂E is359

∂θY

∂E
=


1 0 0

−5.4473 0.1362 0

24.0785 −1.2285 0.0202

 . (42)

Substituting the values of ∂θG/∂EG(θ) and ∂E/∂θXij
into Eq. (13), the global sensitivity index360

GSij(θX) can be computed asGS11(θX)=(2, 0, −0.0084), GS21(θX)=(−1, 0, 0.0042), GS12(θX)=(0,361

1.7432, 0.2913), GS22(θX)=(0, 0.4903, −0.1776). Based on Eqs. (32) and (33), NT(y,θY ) can362

be computed, and the local sensitivity index LSij(y,θX) can then be obtained. For example,363

with y=10, NT(10,θY )=(−1, 2.7237,−4.8769), LS11(10,θX) = −0.0036, LS21(10,θX) = 0.0018,364

LS12(10,θX) = 0.0061 and LS22(y,θX) = 0.0040.365

To investigate the flexibility of the TMSE method for sensitivity estimation, several cases with366

varying statistical characteristics of X1 and X2 are considered, as listed in Table 2. All these367

distributions considered in this example are two-parametric, and the SE focuses on the first two368

moments of X. Since the model for this example is relatively simple, it has analytical solution for369

the output distribution. For comparison, the global SI is also computed using analytical methods370

(details can be found in Appendix A.1), and the local SI is computed using finite difference method371

with the CDF of y analytically constructed (details can be found in Appendix A.2). The moments372

of y are compared in Table 3. As the mean and standard deviation of Y will not change with373

the distribution type of X for the case of the model considered in Eq. (41), the corresponding374

results are listed only for the case with N1 = 1 for simplicity. It can be seen from Table 3 that,375

θY estimated using the point estimate method combined with BDRM is the same as the exact376

values, which illustrates the accuracy of the numerical methods. Furthermore, the distribution377

types of X will influence the skewness of Y. Representative PDFs and CDFs of Y for cases with378
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Table 2: Statistical information of random variables in example 1

Case
ND = 1 ND = 2 ND = 3 ND = 4 ND = 5 ND = 6

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

Norm. Norm. LogN. LogN. Norm. Gamma Norm. Weibull LogN. Gamma LogN. Weibull

1
µ 16 9 16 9 16 9 16 9 16 9 16 9

COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

2
µ 16 12 16 12 16 12 16 12 16 12 16 12

COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

3
µ 16 15 16 15 16 15 16 15 16 15 16 15

COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20

4
µ 18 9 18 9 18 9 18 9 18 9 18 9

COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5
µ 18 12 18 12 18 12 18 12 18 12 18 12

COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

6
µ 18 15 18 15 18 15 18 15 18 15 18 15

COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20

7
µ 20 9 20 9 20 9 20 9 20 9 20 9

COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

8
µ 20 12 20 12 20 12 20 12 20 12 20 12

COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

9
µ 20 15 20 15 20 15 20 15 20 15 20 15

COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20

ND denotes the index of distribution combination; Norm. denotes Normal distribution; LogN. denotes Lognor-
mal distribution; µ denotes the mean value.

ND = 2 obtained analytically and using the TMNT as given in Eqs. (18) and (30) are compared in379

Figs. 3a-3f, which show that the reference and approximated CDF/PDF of Y are coincident with380

each other. This demonstrates the accuracy of the TMNT in conducting normal transformation381

for the considered cases. Furthermore, with different θX, the CDF/PDF of Y shows significant382

differences, which demonstrates the necessary of conducting local sensitivity estimation.383

The global SI, i.e., GSij(θX), obtained using analytical and the TMSE methods are compared384

in Table 4. For convenience, the global SIs for the kth central moments of Y with respect to385

θXij
is denoted as GSk

ij. Since two-parametric distributions are considered and in view of the386

model h(X) considered in Eq. (41), GS1
ij and GS2

ij will not change with the distribution type,387

these values are listed once for all distribution types, while GS3
ij for different distribution types388

are listed separately. It can be seen from Table 4 that:389

(1) For each case considered, GSl
1j/GS

l
2j changes with l, which means the importance of Xi390
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Table 3: Central moments of model output in example 1

Case Method θY 1 θY 2
θY 3

ND=1 ND=2 ND=3 ND=4 ND=5 ND=6

1
Exact 23 1.836 0 0.0639 −0.0236 0.0843 0.0758 0.1837

Approximate 23 1.836 0 0.0639 −0.0236 0.0843 0.0758 0.1837

2
Exact 20 3.672 0 0.1459 −0.0354 0.0622 0.1639 0.2615

Approximate 20 3.672 0 0.1459 −0.0354 0.0622 0.1639 0.2615

3
Exact 17 5.660 0 0.1859 −0.0596 0.0524 0.2169 0.3289

Approximate 17 5.660 0 0.1859 −0.0596 0.0524 0.2169 0.3288

4
Exact 27 2.012 0 0.0805 −0.0179 0.0640 0.0895 0.1714

Approximate 27 2.012 0 0.0805 −0.0179 0.0640 0.0895 0.1714

5
Exact 24 4.025 0 0.1748 −0.0268 0.0472 0.1885 0.2626

Approximate 24 4.025 0 0.1748 −0.0268 0.0472 0.1885 0.2626

6
Exact 21 6.177 0 0.2332 −0.0458 0.0403 0.2570 0.3432

Approximate 21 6.177 0 0.2332 −0.0458 0.0403 0.2570 0.3431

7
Exact 31 2.193 0 0.0930 −0.0138 0.0494 0.1000 0.1633

Approximate 31 2.193 0 0.0930 −0.0138 0.0494 0.1000 0.1633

8
Exact 28 4.386 0 0.1969 −0.0207 0.0365 0.2075 0.2647

Approximate 28 4.386 0 0.1969 −0.0207 0.0365 0.2075 0.2647

9
Exact 25 6.708 0 0.2700 −0.0358 0.0315 0.2886 0.3559

Approximate 25 6.708 0 0.2700 −0.0358 0.0315 0.2886 0.3559

on θY l are different with different moments considered. This demonstrates the necessity of391

conducting SE with respect to distribution parameters of X.392

(2) Both GS1
ij and GS2

ij vary with θX, while the distribution type of X has no effect on the393

values. This is a consequence of the considered model h(X) in Eq. (41). In contrast, GS3
ij394

is significantly influenced by both θX and the distribution type of X.395

(3) GS1
ij and GS2

ij obtained from the TMSE method match the exact values, confirming the396

accuracy of the TMSE method. When analyzing the influence of θX on the skewness of Y, the397

results from both the TMSE and the exact methods are largely consistent, with only slight398

discrepancies in some cases. These differences arise because the TMSE method estimates399

θY based solely on θX, whereas the exact method accounts for the entire distribution. Take400

the case with X follow normal distribution as an example, the skewness of Y should be 0 by401

definition and θX will has no influence on the skewness of Y. However, as the distribution402

type cannot be reflected by the moments considered here, the sensitivity of the skewness of403

Y with respect to θX is not zero obtained from the TMSE method as listed in Table 4.404

The local SIs are computed by the TMSE and finite difference methods. For simplicity,405
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Table 4: Global sensitivity indices obtained from different methods in example 1

Case i j
GS1

ij GS2
ij

GS3
i2

ND = 1 ND = 2 ND = 3 ND = 4 ND = 5 ND = 6

Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE

1

1 1 2 2 0 0 0 0.033 −0.01 0.027 0 0.033 0 0.033 −0.01 0.027 −0.01 0.027
2 1 −1 −1 0 0 0 0 0.004 0.003 0.003 0.001 0.005 0.012 0.003 0.001 0.005 0.013
1 2 0 0 1.743 1.743 0 0 0.315 0.315 0.067 0.067 −0.24 −0.24 0.281 0.281 −0.03 −0.03
2 2 0 0 0.490 0.490 0 0 −0.21 −0.21 −0.09 −0.09 0.163 0.159 −0.17 −0.17 0.083 0.079

2

1 1 2 2 0 0 0 0.004 −0.01 −0.01 0 0.004 0.000 0.004 −0.01 −0.01 −0.01 −0.01
2 1 −1 −1 0 0 0 0 0.005 0.004 0.003 0.003 0.005 0.005 0.003 0.003 0.005 0.005
1 2 0 0 1.743 1.743 0 0 0.291 0.291 0.050 0.050 −0.09 −0.89 0.266 0.266 0.127 0.127
2 2 0 0 0.490 0.490 0 0 −0.18 −0.18 −0.06 −0.06 0.043 0.043 −0.14 −0.14 −0.04 −0.04

3

1 1 2 2 0 0 0 0.001 −0.02 −0.02 0 0.001 0.000 0.001 −0.02 −0.02 −0.02 −0.02
2 1 −1 −1 0 0 0 0 0.006 0.006 0.004 0.004 0.007 0.007 0.004 0.004 0.007 0.007
1 2 0 0 1.696 1.696 0 0 0.295 0.295 0.054 0.054 −0.05 −0.05 0.268 0.268 0.167 0.167
2 2 0 0 0.530 0.530 0 0 −0.17 −0.17 −0.06 −0.06 0.004 0.004 −0.14 −0.14 −0.07 −0.07

4

1 1 2 2 0 0 0 0.032 −0.01 0.026 0.000 0.032 0.000 0.032 −0.01 0.026 −0.01 0.026
2 1 −1 −1 0 0 0 0 0.003 0.002 0.002 0.001 0.004 0.014 0.002 0.001 0.004 0.014
1 2 0 0 1.789 1.789 0 0 0.263 0.263 0.048 0.048 −0.17 −0.17 0.239 0.239 0.021 0.021
2 2 0 0 0.447 0.447 0 0 −0.17 −0.17 −0.07 −0.07 0.132 0.128 −0.14 −0.14 0.060 0.056

5

1 1 2 2 0 0 0 0.004 −0.01 −0.01 0.000 0.004 0.000 0.004 −0.01 −0.01 −0.01 −0.01
2 1 −1 −1 0 0 0 0 0.003 0.003 0.002 0.002 0.004 0.004 0.002 0.002 0.004 0.004
1 2 0 0 1.789 1.789 0 0 0.246 0.246 0.036 0.036 −0.06 −0.06 0.228 0.228 0.129 0.129
2 2 0 0 0.447 0.447 0 0 −0.15 −0.15 −0.05 −0.05 0.036 0.036 −0.12 −0.12 −0.04 −0.04

6

1 1 2 2 0 0 0 0.001 −0.02 −0.02 0 0.001 0 0.001 −0.02 −0.02 −0.01 −0.02
2 1 −1 −1 0 0 0 0 0.005 0.005 0.003 0.003 0.005 0.005 0.003 0.003 0.005 0.005
1 2 0 0 1.748 1.748 0 0 0.252 0.252 0.039 0.039 −0.03 −0.03 0.232 0.232 0.159 0.159
2 2 0 0 0.486 0.486 0 0 −0.15 −0.15 −0.05 −0.05 0.005 0.005 −0.12 −0.12 −0.07 −0.07

7

1 1 2 2 0 0 0 0.030 −0.01 0.025 0 0.030 0.000 0.030 −0.01 0.025 −0.01 0.025
2 1 −1 −1 0 0 0 0 0.002 0.002 0.002 0.001 0.003 0.015 0.002 0.001 0.003 0.015
1 2 0 0 1.824 1.824 0 0 0.223 0.223 0.034 0.034 −0.12 −0.12 0.206 0.206 0.048 0.048
2 2 0 0 0.410 0.410 0 0 −0.15 −0.15 −0.05 −0.05 0.107 0.102 −0.12 −0.12 0.043 0.038

8

1 1 2 2 0 0 0 0.004 −0.01 −0.01 0 0.004 0.000 0.004 −0.01 −0.01 −0.01 −0.01
2 1 −1 −1 0 0 0 0 0.003 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.003 0.004
1 2 0 0 1.824 1.824 0 0 0.212 0.212 0.026 0.026 −0.05 −0.05 0.198 0.198 0.127 0.127
2 2 0 0 0.410 0.410 0 0 −0.13 −0.13 −0.04 −0.04 0.030 0.029 −0.10 −0.10 −0.03 −0.03

9

1 1 2 2 0 0 0 0.001 −0.02 −0.02 0 0.001 0 0.001 −0.02 −0.02 −0.02 −0.02
2 1 −1 −1 0 0 0 0 0.004 0.004 0.002 0.002 0.004 0.004 0.002 0.002 0.004 0.004
1 2 0 0 1.789 1.789 0 0 0.218 0.218 0.029 0.029 −0.03 −0.03 0.203 0.203 0.149 0.150
2 2 0 0 0.447 0.447 0 0 −0.13 −0.13 −0.04 −0.04 0.005 0.005 −0.11 −0.11 −0.06 −0.06
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Figure 3: Representative FY (y,θX) and fY (y,θX) obtained from different methods in example 1

LS11(y,θX), LS21(y,θX), LS12(y,θX) and LS22(y,θX) for the case with ND= 2 are compared406

in Figs. 4a-4e, while only LS12(y,θX) is plotted for the other cases in Figs. 4d-4i. It can be found407

that:408

(1) LSij(y,θX) is influenced by both θX and the distribution type, and varies non-monotonically409

with y. This highlights the necessity of conducting local sensitivity estimation for specific410

values of y, taking into account the distribution parameters of the input random variables.411

Notably, for two-parameter distributions, when the first two moments of X are fixed, the412

distribution type of X primarily affects the skewness and higher moments of Y. As a result,413

the influence of the distribution type of X is relatively small in this specific case.414

(2) In all cases considered, LSij(y,θX) obtained using the TMSE method closely align with415

the accurate values derived from the difference method based on the analytical FY (y,θX),416

demonstrating the accuracy of the numerical approach developed for the TMSE method.417

Additionally, given the variety of distribution types in this example, the TMSE method418

exhibits considerable flexibility in estimating local sensitivity.419
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(a) LS11(y,θX) with ND=2
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(b) LS21(y,θX) with ND=2
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(c) LS22(y,θX) with ND=2
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(d) LS12(y,θX) with ND=1
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(e) LS12(y,θX) with ND=2
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(f) LS12(y,θX) with ND=3
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(g) LS12(y,θX) with ND=4
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(h) LS12(y,θX) with ND=5
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(i) LS12(y,θX) with ND=6

0 6 12 18 24 30 36 42 48

y

-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

L
S

22
(y

;3
X
)

Exact (Case 1)

TMSE (Case 1)

Exact (Case 2)

TMSE (Case 2)

Exact (Case 3)

TMSE (Case 3)

Exact (Case 4)

TMSE (Case 4)

Exact (Case 5)

TMSE (Case 5)

Exact (Case 6)

TMSE (Case 6)

Exact (Case 7)

TMSE (Case 7)

Exact (Case 8)

TMSE (Case 8)

Exact (Case 9)

TMSE (Case 9)

Figure 4: LSij(y,θX) in example 1

6.2. Example 2: Safety factor of slope with multidimensional inputs420

This example considers the safety factor of a slope as illustrated in Fig. 5, the simulator is421

adopted from Ref. [41] as follows:422

Y = h(X) =
cAs +Nstanϕs

W (sinψp + αcosψp) + V cosψp − Tssinθs
, (43)

As = (H − z)/sin(ψp), (44)

Ns = W (cosψp − αsinψp)− U − V sinψp + Tscosθs, (45)

W = 0.5γH2{[1− (z/H)2]cotψp − cotψf}, (46)

U = 0.5γW · r · z · As, V = 0.5γW · r2 · z2, (47)
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423

424

425

where γ = 2.6 × 104 N/m3; γW = 1.0 × 104 N/m3; ψf = 50◦; ψp = 35◦; Ts = 0; θs = 0; H =

60 m; and c and ϕs follow a bivariate lognormal distribution with a correlation coefficient of -0.5,

while r, z, and α are mutually independent random variables. Their statistical characteristics are 

summarized in Table 5 For illustration, four cases with different COVs of X are considered.426

Figure 5: Illustration of slope for Example 2

Table 5: Statistical information of random variables in example 2

c ϕs r z α

Distribution Bivariate Lognormal Weibull Lognormal Weibull
Mean 140 kPa 20◦ 0.3435 14 m2 0.05496

COV

Case 1 0.20 0.08 0.765 0.214 0.765
Case 2 0.22 0.10 0.841 0.236 0.841
Case 3 0.24 0.12 0.917 0.257 0.917
Case 4 0.26 0.14 0.994 0.279 0.994

With the model estimator known, SE can be performed using the TMSE method. The mo-427

ment estimation in the TMSE method is carried out using the seven-point estimate method in428

combination with BDRM. The total number of samples required for BDRM with seven evalua-429

tion points is 391. Note that, the model considered in this example is strongly nonlinear, and430

thus BDRM cannot provide sufficient evaluation for SE considering the skewness of Y [33], and431

trivariate dimension reduction method (TDRM) is applied in computing GS3
ij(θX) (details can be432

found in Appendix C). The total number of samples required for TDRM with 7 evaluation points433

is 2551.434

To investigate the influence of the number of evaluation points, BDRM and TDRM were also435

conducted with 9 and 11 evaluation points. The total numbers of model evaluations for BDRM436

and TDRM with 9 evaluation points are 681 and 5801, respectively, while those with 11 evaluation437

points are 1051 and 11051, respectively. For comparison, distribution estimation and sensitivity438

23



analyses were also performed using Monte Carlo Simulation (MCS) with 108 samples (details are

provided in Appendix B), serving as a benchmark for accuracy. The moments of Y obtained by

the different methods are summarized in Table 6, where the numbers 7, 9, and 11 listed under the

BDRM and TDRM columns indicate the number of evaluation points used for each method.

439

440

441

442

443 The PDF obtained by using the TMNT given in Eq. (30) is compared with the histogram

obtained from MCS in Figs. 6a-6d. Figs. 6a-6d and Table 5 show that:

Table 6: Moments of model output in example 2

Case
Mean θY 1 Standard deviation θY 2 Skewness θY 3

MCS
BDRM

MCS
BDRM

MCS
TDRM

7 9 11 7 9 11 7 9 11

1 0.9315 0.9314 0.9314 0.9314 0.1155 0.1155 0.1155 0.1155 0.1729 0.1725 0.1726 0.1726 

2 0.9321 0.9321 0.9321 0.9321 0.1266 0.1266 0.1266 0.1266 0.1598 0.1600 0.1601 0.1601 

3 0.9329 0.9329 0.9329 0.9329 0.1379 0.1379 0.1379 0.1379 0.1488 0.1487 0.1488 0.1488 

4 0.9338 0.9338 0.9338 0.9338 0.1495 0.1495 0.1495 0.1495 0.1378 0.1377 0.1378 0.1378
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(d) Case 4

Figure 6: PDFs of model output in example 2

444

(1) The moments of Y computed by dimensional reduction methods are in close agreement with

ment. Differences between results increase with higher-order moments and stronger non-

Gaussianity. The largest relative difference occurs for the skewness in case 4 when comparing 

7 and 11 evaluation points, amounting to 0.074%. This demonstrates that using 7 evaluation 

points provides sufficient accuracy. To balance accuracy and computational efficiency, seven 

those from MCS, with the difference increases with the order of moments. This is because

the higher moments are more difficult to obtain. The relative error of θY 3 obtained from

TDRM with 7 evaluation points is the largest (0.23%) for case 1.

(2) The moments of Y computed using different numbers of evaluation points show close agree-

evaluation points are recommended in the proposed method.

445

446

447

448

449

450

451

452

453

454
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(d) Case 4

(3) The PDFs estimated using the TMNT-based model consistently align closely with those455

obtained from MCS, demonstrating the slightly error in θY

Figure 7: Global elasticity indexes (EIs) of model output in example 2

obtained from SPEM-BDRM456

can be neglected in distribution estimation.457

To eliminate the influence of units for different random variables, so-called elasticity definition458

is introduced [42], and the global and local elasticity indices are formulated as follows:459

GEk
ij = GSk

ij ·
θij
θY k

, (48)

460

LEij(y,θX) = LSij(y,θX) · θij, (49)

whereGEk
ij is the global elasticity index (EI) considering the kth central moments of Y ; LEij(y,θX)461

is the local EI. The global and local EIs obtained from the TMSE method are compared with those462
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from MCS in Figs. 7a-7d and 8a-8d, respectively. It can be found that:
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463

(1) The difference in GEk
ij between TMSE and MCS results increases with the order k

Figure 8: Local elasticity indexes (EIs) of model output in example 2

, primarily464

due to the increase of error in moment estimation. For k = 1 and 2, GEk
ij obtained from465

the TMSE method closely matches that from MCS. As k increases, the discrepancy in466

GEk
ij across methods grows, with the largest difference observed for GE3

22. This proves the467

accuracy of the TMSE method for evaluating the global SI.468

(2) The tendency of LEij(y,θX) remains consistent across the cases considered. For a given469

random variable, i.e., fixed i, the absolute value of LEi1(y,θX) is consistently larger than470

that of LEi2(y,θX), indicating that the mean of X has a greater impact on the distribution471

of Y. The values of LEij(y,θX) vary across cases. When the skewness of Y is relatively472

low, as in case 1, LEij(y,θX) obtained from the TMSE method closely match those from473
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MCS. However, as the skewness of Y increases, so does the discrepancy between LEij(y,θX)474

obtained from different methods. This difference is more pronounced compared to both the475

PDF and global EIs, as LEij(y,θX) depends on the PDF, GEij, and NT(y,θY (θX)), as476

given in Eq. (22).477

6.3. Example 3: Seepage problem below a dam computed using finite element method478

The third example involves the study of a steady state confined seepage below a dam as shown479

in Fig. 9, which is adopted from Ref. [25]. The seepage discharge is investigated, which is computed

M.A. Valdebenito et al. Reliability Engineering and System Safety 171 (2018) 99–111 

Fig. 11. Evolution of the coefficient of variation ( 𝛿) of the probability sensitivity estimate with respect to the number of lines applying LS (A1: first approach; A2: second approach) –

Example 2. 

Fig. 12. Schematic representation of Example 3. 

reported in the literature for estimating failure probabilities using LS, 
see e.g. [49] . 

7.4. Example 3 

The final example involves the study of a steady state confined seep- 
age below a dam. Fig. 12 illustrates the elevation of the dam. The water 
height h D and permeabilities of the soil layers are modeled as random 

variables. The failure event involves the seepage discharge below the 
dam exceeding a threshold level of 30 [L/h/m]. The objective is estimat- 
ing the probability of occurrence of this event as well as its sensitivity 
with respect to variations in the expected values of the soil permeabili- 
ties. 

The dam rests over a soil composed of two permeable layers and one 
impermeable layer. A cutoff wall is included in the bottom of the dam 

for preventing excessive seepage (see Fig. 12 ). The upstream side of the 
dam retains a water column of height h D [m], where h D is modeled as a 
random variable with uniform distribution between 7 [m] and 10 [m]. 
Thus, the hydraulic head h W 

over segment AB in Fig. 12 is equal to 
ℎ 𝑊 

= 20 + ℎ 𝐷 [m], where the elevation head is measured with respect 
to the impermeable soil layer. The water flows through two permeable 
soil layers towards the downstream side of the dam (segment CD of 
Fig. 12 ), where the hydraulic head is equal to 20 [m]. It is assumed 
that there is no water flow on any of the boundaries of the problem ex- 
cept for the aforementioned segments AB and CD. The first layer of soil 
is composed of silty sand, while the second layer is composed of silty 

gravel. The permeability is modeled as anisotropic and the uncertainty 
on its magnitude is characterized through lognormal random variables. 
The expected value and standard deviation of the vertical and horizon- 
tal permeabilities of the i th soil layer ( k xx, i and k xx, i , respectively) are 
shown in Table 4 . It should be noted that the coefficient of variation 
associated with each permeability is equal to 100%, reflecting that a 
high degree of uncertainty can be encountered when estimating these 
parameters in the context of engineering applications (see, e.g. [13] ). 

The governing partial differential equation associated with the hy- 
draulic head of a seepage problem is (see, e.g. [23] ): 

𝑘 𝑥𝑥,𝑖 
𝜕 2 ℎ 𝑊 

𝜕𝑥 2 
+ 𝑘 𝑦𝑦,𝑖 

𝜕 2 ℎ 𝑊 

𝜕𝑦 2 
= 0 , 𝑖 = 1 , 2 (21) 

where x and y denote horizontal and vertical coordinates, respectively. 
The boundary conditions for this equation are the hydraulic head over 
segments AB and CD and null flow over the other boundaries, as already 
described above. This equation is solved numerically applying the finite 
element (FE) method (see, e.g. [6] ). In particular, a FE mesh comprising 
3413 nodes and 1628 quadratic triangular elements is considered. Once 
the hydraulic head has been computed, the seepage q can be calculated, 
e.g. at the downstream side of the dam. 

𝑞 = − ∫CD 

𝑘 𝑦𝑦, 2 
𝜕ℎ 𝑊 

𝜕𝑦 
𝑑𝑥 (22) 

It should be noted that q is measured in units of volume over time over 
distance, i.e. the seepage discharge is calculated in terms of a unit width 
of the dam. 

Before calculating the failure probability and its sensitivity, it is of 
interest visualizing the characteristics of the water flow through the soil 
in terms of equipotentials and streamlines [22,23,28] . Equipotentials are 
curves that indicate the locus of points that share the same value of hy- 
draulic head. Streamlines illustrate the path followed by water through 
the soil. The area between streamlines is called a streamtube and repre- 
sents a fraction of the total seepage discharge q . Fig. 13 illustrates the 
equipotentials and streamlines for the problem under study, considering 
expected values for the permeabilities and a water height ℎ 𝐷 = 10 [m]. 
This Figure includes a total of three streamtubes, each containing one 
third of the total seepage discharge 𝑞 0 = 12 . 5 [L/h/m]. It should be noted 
that the streamlines present a sudden change of slope at the vertical co- 
ordinate 𝑦 = 15 [m]; this is caused by the different permeability values 
of each soil layer. Moreover, note that the streamtube between stream- 
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Figure 9: Schematic graph of the dam in example 3

480

in terms of an unit width of the dam and measured in units of volume over time and distance as481

follows:482

Y = h(X) = −
∫

CD
kyy,2

∂hW
∂y

dx, (50)

where CD represents the downstream side of the dam as shown in Fig 9; kyy,2 is the vertical483

permeability of the second soil layer; and hW is the hydraulic head, which is solved by the following484

differential equation:485

kxx,i
∂2hW
∂x2

+ kyy,i
∂2hW
∂y2

= 0, i = 1, 2 (51)

where kxx,i and kyy,i represent the horizontal and vertical permeabilities of the ith soil layer,486

respectively; and x and y denote horizontal and vertical coordinates, respectively. The boundary487

conditions for this equation are that: (1) hW over segments AB and CD are 20+hD m and 20488

m, respectively, where hD = 5.0 [m] is the height of water; (2) there is null flow over other489

boundaries. This equation is solved numerically applying the finite element (FE) method (see,490

e.g. Ref [43]), where the associated model comprises 3413 nodes and 1628 quadratic triangular491

elements. The permeabilities, i.e., kxx,i and kyy,i for i = 1, 2 are considered as random variables,492

with the statistical information summarized in Table 7.493
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Table 7: Statistical information of random variables in example 3 [25]

Silty sand Silty gravel
Horizontal kxx,1 Vertical kyy,1 Horizontal kxx,2 Vertical kyy,2

Distribution Lognormal Lognormal Lognormal Lognormal
Mean 5 ×10−7 [m/s] 2 ×10−7 [m/s] 5 ×10−6 [m/s] 2 ×10−6 [m/s]
COV 0.16 0.20 0.16 0.20

In this example, the seepage flow is challenging to characterize due to the geometry of the494

problem and the orthotropic properties of the soil permeability. The horizontal and vertical495

permeabilities of both the silty sand and silty gravel layers jointly influence the total seepage496

discharge, and changes in permeability values lead to variations in the flow paths across the soil497

domain. The governing differential equation, combined with heterogeneous boundary conditions,498

further contributes to the complexity of the solution, which is obtained numerically using the finite499

element method. When these permeabilities are modeled as random variables, their uncertainty500

propagates through the system, resulting in nontrivial output characteristics. These features make501

the problem representative for evaluating the proposed sensitivity estimation method.502

The distribution estimation and SE are conducted using both the TMSE method and MCS503

with 106 samples. All scripts were implemented in MATLAB R2023b and executed on a computer504

equipped with a 13th Gen Intel(R) Core(TM) i7-1360P @ 2.20 GHz processor. In this example, the505

model h(X) is implicit and incorporates a high-dimensional finite element (FE) model, resulting506

in an evaluation time of approximately 0.2 seconds per iteration. Consequently, the MCS becomes507

time-intensive, requiring about 1.325 ×105 seconds to complete, with parallelization employed to508

enhance computational efficiency.509

To further investigate the impact of numerical methods on the performance of the TMSE510

method, the original moments of Y and its derivative with respect to θij are approximated by511

point estimate method combining with both BDRM and TDRM, while the number of evaluation512

points nE is set to be 7. The moments of Y calculated by various methods are summarized513

in Table 8, along with the corresponding number of model evaluations nM required. Note that514

nM needed for computing the moments of Y is identical to that required for both distribution515

estimation and sensitivity estimation. The PDF of Y modeled with the aid of the TMNT based516

on the moments of Y is compared with the histogram obtained from MCS in Fig. 10. It can be517

found that, there is slight difference in the moments of Y obtained by different methods, while518

the results of the TDRM is more accurate compared with those of the BDRM. Even though the519
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differences exist in moments of Y, the PDFs of Y obtained from different methods matches closely520

with the histogram obtained from MCS.

Table 8: Central moments of model outputs obtained from different methods in Example 3

MCS BDRM TDRM
Value R.E. (%) Value R.E. (%)

θY 1 (×10−6L/h/m ) 1.7084 1.7084 0.0022 1.7084 0.0022
θY 2 (×10−7L/h/m ) 1.6851 1.6850 0.0075 1.6850 0.0058

θY 3 0.2839 0.2795 1.5490 0.2811 0.9576
nM 106 457 — 5641 —

R.E. denotes the relative error compared with the results of MCS.
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Figure 10: PDF of model output for example 3

521

The global SIs and EIs are compared in Figs. 11 and 12, respectively. Due to the limited522

number of samples in the MCS, which are insufficient for stable estimation of GS3
ij, only the523

global SIs and EIs corresponding to the mean and standard deviation of Y are shown. It is524

evident that the results obtained using the TMSE method closely align with those from MCS.525

There is no significant difference in the results obtained using BDRM and TDRM for TMSE526

method. Notably, the sign of the global EI, GE2
32 derived from the TMSE method differs from527

that obtained through MCS. However, the sign of GS2
32 remains consistent across both methods.528

This discrepancy arises for global elasticities that have associated a small global sensitivity, which529

is an issue which has already been observed in a different context in [25]. However, the global530

sensitivities are estimated with small errors.531
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Figure 11: Global sensitivity indices from different methods for example 3
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Figure 13: Local EIs of model output in example 3

The local EIs are compared in Figs. 13a and 13b. These figures demonstrate that the local532

EIs with respect to the mean values of the random variables, i.e., LEi1(y,θX), derived using the533

TMSE method are consistently in close agreement with those from MCS, for moments obtained534

through both BDRM and TDRM. When considering the standard deviation of the inputs, the535

local EIs LEi2(y,θX) obtained from the TMSE method using moments from TDRM also show536

good agreement with the MCS results. However, the TMSE method combined with BDRM shows537

slight deviations from the exact values. These deviations stem from errors in moment estimation,538

which are amplified through the normal transformation and affect the final sensitivity evaluation.539
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This suggests that, while BDRM provides sufficient accuracy for distribution and global sensitivity540

estimation, it may be less effective for assessing the sensitivity of the output CDF.541

7. Discussion and Conclusions542

The third moment normal transformation based sensitivity estimation (TMSE) method is in-543

troduced to estimate the sensitivity of model output stochastic properties with respect to input544

distribution parameters. This method defines two sensitivity indices (SIs): one that considers545

the first three moments and another focused on the cumulative failure probability. Practical ap-546

proximation formulas for these SIs are developed with the aid of the TMNT, and a dimension547

reduction numerical approach is implemented to enhance computational efficiency. The method548

is demonstrated through three case studies, which include highly nonlinear models and compu-549

tationally expensive FE models. Results indicate that different distribution parameters of input550

random variables exert significantly varied influences on the stochastic properties of model out-551

puts. Thus, sensitivity estimation with respect to these distribution parameters is essential for552

a comprehensive understanding of model behavior. The numerical techniques developed for the553

TMSE method are both efficient and sufficiently accurate.554

555

556

557

558

559

560

561

562

563

564

565

566

While the SIs defined in the TMSE method are theoretically robust for any problem, the nu-

merical implementation has some constraints that pave the way for future research. The TMNT 

model, a pseudo-normal transformation technique based on the first three moments, provides reli-

able results when these moments adequately represent the output distribution. However, it fails to 

capture strong non-Gaussian behavior (the absolute skewness exceeds 2), heavy-tailed, bounded,

multimodal, or mixture models. To enhance robustness, future work can explore the use of more 

flexible distribution models, such as the maximum entropy principle. The calculation of response 

moments via the dimensional reduction method discussed in Sections 5.1 and 5.2 implies quadratic 

scaling of computational cost with dimensionality and represents a challenge for large-scale ap-

plications. For high-dimensional problems, alternative moment estimation techniques, such as 

sampling-based methods or linear-moment-based approaches, may offer improved scalability at 

the expense of increased sampling effort, see e.g. Ref. [44]. A systematic comparison of these 

strategies is left for future work.567
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Appendix A. Sensitivity estimation of weighted summation of independent random572

variables573

Appendix A.1. Global sensitivity estimation574

Consider a model defined as a weighted summation of n independent random variables X, the575

first three moments of the model output Y can be analytically computed as follows:576

θY1 = kθX1 , (A.1)

θY2 =
√

k◦2θ◦2
X2
, (A.2)

θY3 =
k◦3(θX3 ◦ θ◦3

X2
)

θ3Y2

, (A.3)

where k is a n-dimensional row vector of the weights for X; θXi
is the n-dimensional column vectors577

of ith central moments of X; ◦ denotes Hadamard product; and (·)◦j denotes the Hadamard power578

j of the argument. As θY can be explicitly computed from θX as given in Eqs. (A.1)-(A.3), the579

global SI can be directly obtained by taking the derivative of θY with respect to θX. When X580

follows two-parametric distribution, ∂θYi
/∂θXj

(i = 1, 2, 3 and j =1, 2) are formulated as follows:581

∂θY1

∂θX1

= k, (A.4)

∂θY2

∂θX2

= k◦2 ◦ θX2

θY2

, (A.5)

∂θY3

∂θX1

= k◦3 ◦
θ◦3
X2

θ3Y2

◦ ∂θX3

∂θX1

, (A.6)

∂θY3

∂θX2

= k◦3 ◦
θ◦2
X2

θ3Y2

◦
(
θX2 ◦

∂θX3

∂θX2

+ 3θX3

)
− 3θY3

θY2

· ∂θY2

∂θX2

. (A.7)

For two-parameter distributions, ∂θX3/∂θXj
is deterministic and can be obtained based on the582

specific formula of skewness of X.583
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Appendix A.2. Local sensitivity estimation584

To estimate the local SI, the key point is to construct the CDF of Y. For h(X) = kX, the inverse585

function of h(X) with respect to Xi is monotonic, denoted as h−1
i (X−i, y), where Xi represents586

the random vector X with Xi excluded. Based on Eq. (2), when h−1
i (X−i, y) is monotonically587

increasing with y, FY (y,θX) and fY (y,θX) can be reformulated as follows:588

FY (y,θX) =

∫ +∞

−∞
· · ·

∫ +∞

−∞

[∫ h−1
i (x−i,y)

−∞
fXi

(xi,θXi
) dxi

]
fX−i

(x−i,θX−i
)dx−i (A.8)

= E
{
FXi

[
h−1
i (x−i, y),θXi

]}
,

fY (y,θX) =

∫ +∞

−∞
· · ·

∫ +∞

−∞

[
fXi

(h−1
i (x−i, y),θXi

)
∂h−1

i (x−i, y)

∂y

]
fX−i

(x−i,θX−i
)dx−i (A.9)

= E
{
fXi

[
h−1
i (x−i, y)/ki

]}
,

where ki is the weight of Xi, which is positive for Eqs. (A.8) and (A.9). Similarly, when h−1
i (X−i, y)589

is monotonically decreasing with y, i.e., ki is negative, FY (y,θX) and fY (y,θX) can be reformulated590

as follows591

FY (y,θX) =

∫ +∞

−∞
· · ·

∫ +∞

−∞

[∫ +∞

h−1
i (x−i,y)

fXi
(xi,θXi

) dxi

]
fX−i

(x−i,θX−i
)dx−i (A.10)

= 1− E
{
FXi

[
h−1
i (x−i, y),θXi

]}
,

fY (y,θX) =

∫ +∞

−∞
· · ·

∫ +∞

−∞

[
1− fXi

(h−1
i (x−i, y),θXi

)
∂h−1

i (x−i, y)

∂y

]
fX−i

(x−i,θX−i
)dx−i (A.11)

= 1− E
{
fXi

[
h−1
i (x−i, y)/ki

]}
.

When there is only two random variables in X as investigated in example 1, the integrals required592

for constructing FY (y,θX) and fY (y,θX) are single dimensional, which can be easily computed.593

With FY (y,θX) obtained, the local SI can be computed using the central difference method as594

follows:595

LSij(y,θX) =
FY (y,θX1)− FY (y,θX2)

2δθXij

(A.12)

where δθXij
is a relatively small value with respect to θXij

; θX1 and θX2 are the moments of X596

with θXij
set to be θXij

+δθXij
and θXij

-δθXij
, respectively.597
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Appendix B. Sensitivity analysis using Monte Carlo Simulation598

The definition of global SI given in Eq. (13) shows that, the key task for estimating global SI599

is to compute the derivative of original moments of Y with respect to θij. Based on Eq. (16), such600

derivative can be approximated from samples as follows:601

∂Ek(θX)

∂θij
∼=

1

Nmcs

Nmcs∑
l=1

gijk[x̂
(l)], (B.1)

where Nmcs is the total number of samples generated; and x̂(l) is the lth sample generated. Sub-602

stitute Eq. (B.1) into Eq. (13), the global SI can be readily obtained.603

To estimate the local SI, CDF should be firstly estimated. Based on Eq. (2), the CDF of Y604

can be approximated from the samples as follows:605

FY (ŷ
(k),θX) =

1

Nmcs

Nmcs∑
l=1

I(x̂(l), ŷ(k)) =
rank(ŷ(k)|ŷ1:Nmcs)

Nmcs

, (B.2)

where ŷ(k) is the value of Y estimated as h(x̂(k)); rank(ŷ(k)) denotes the rank of ŷ(k) within the set606

ŷ1:Nmcs ; and ŷ1:Nmcs is the vector of all values of Y derived from the samples, sorted in ascending607

order. Combine Eqs. (9) and (B.2), local SI can be estimated using MCS as follows:608

LSij(ŷ
(k),θX) =

1

Nmcs

k∑
l=1

mij(x̂
(l)
i,rank,θXi

) (B.3)

where x̂(l)i,rank is the lth sample in the set of x̂1:Nmcs ; and x̂1:Nmcs is the vector of all samples of X,609

sorted in ascending order based on the value of h(x̂(k))610

Appendix C. Moment estimation based on trivariate dimension reduction method611

For strong nonlinear problem, where G(X) shows significant nonlinearity in Gaussian space,612

the trivariate dimension reduction method (TDRM) [39] is advised to be applied. In the TDRM,613

the kth original moments of a performance function, i.e., Ek(θ), is approximated by a summation614
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of some one-, two- and three-dimensional functions as follows:615

Ek(θ) ∼=
n−2∑
m=1

n−1∑
l>m

n∑
s>l

Ek
mls(θ)− (n− 3)

n−1∑
m=1

n∑
l>m

Ek
ml(θ)

+
(n− 3)(n− 2)

2

n∑
m=1

Ek
m(θ)−

(n− 3)(n− 2)(n− 1)

6
[G(µ)]k,

(C.1)

Ek
mls(θ) =

q∑
rm=1

q∑
rl=1

q∑
rs=1

PrmPrlPrs [G(µ1, ··· , x̂m(rm|θ), ··· , x̂l(rl|θ), ··· , x̂s(rs|θ), ··· , µn)]
k, (C.2)

616

Ek
ml(θ) =

q∑
rm=1

q∑
rl=1

PrmPrl [G(µ1, ··· , x̂m(rm|θ), ··· , x̂l(rl|θ), ··· , µn)]
k, (C.3)

617

Ek
m(θ) =

q∑
rm=1

Prm [G(µ1, ··· , x̂m(rm|θ), ··· , µn)]
k, (C.4)

where Prs is the weight of the rsth evaluation point. Based on the TDRM, ∂Ek(θ)/∂θij defined618

in Eq. (16) can be calculated as follows:619

∂Ek(θ)

∂θij
∼=

n−2∑
m=1

n−1∑
l>m

n∑
s>l

Dmls(θ)− (n− 3)
n−1∑
m=1

n∑
l>m

Dml(θ)

+
(n− 3)(n− 2)

2

n∑
m=1

Dm(θ)−
(n− 3)(n− 2)(n− 1)

6
gijk(µ),

(C.5)

Dmls(θ) =

q∑
rm=1

q∑
rl=1

q∑
rs=1

PrmPrlPrsgijk[µ1, ··· , x̂m(rm|θ), ··· , x̂l(rl|θ), ··· , x̂s(rs|θ), ··· , µn], (C.6)

Dml(θ) =

q∑
rm=1

q∑
rl=1

PrmPrlgijk[µ1, ··· , x̂m(rm|θ), ··· , x̂l(rl|θ), ··· , µn], (C.7)

Dm(θ) =

q∑
rm=1

Prmgijk[µ1, ··· , x̂m(rm|θ), ··· , µn]. (C.8)
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