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Sensitivity Estimation of Stochastic Output with respect to Distribution Parameters
of Stochastic Inputs
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e Sensitivity indices focus on input distribution parameters, not inputs themselves.
e Moments and CDFs of outputs considered, offering exceedance probabilities too.
e Explicit formulas for sensitivity indices derived using moments.

e A dimensional reduction method is implemented for computing moments and parameters.
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Abstract

Computational models have become indispensable tools for decision-making across numerous
fields. Given the inherent randomness in input variables, the outputs of these models are of-
ten stochastic, making sensitivity estimation (SE) essential for understanding how variations in
inputs affect stochastic outputs. In practice, the input random variables are described by their
distribution parameters. This study introduces an SE method to assess the influence of input
distribution parameters on the moments and distributions of outputs. Sensitivity indices (SIs)
are defined based on both the first three moments and the cumulative distribution function of the
outputs, naturally providing SI for exceeding probabilities. A numerical approach is developed to
quantify these Sls as the post processing of uncertainty quantification, employing a moment-based
model to approximate the output distribution. Three examples, including nonlinear formula and
finite element model, are analyzed to demonstrate the applicability and efficiency of the proposed
SE method, highlighting its ability to provide a more comprehensive view of the relationship
between input distribution parameters and model outputs.

Keywords: Sensitivity, Stochastic output, Mean, Standard deviation, Skewness

1. Introduction

With the rapid development of computational science and simulation technology, mathematical
models have become indispensable tools for decision-making in engineering, science, economics,
and policy. In practice, these models often involve random inputs, which lead to stochastic
outputs. Understanding how uncertainties in the inputs affect the stochastic behavior of the

outputs is essential for reliable modeling and informed decision-making [1].

*E-mail: zhangxuanyi@bjut.edu.cn
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A wide spectrum of sensitivity estimation (SE) methods has been developed to investigate the
influence of input uncertainties on stochastic outputs. These methods can be broadly categorized
into two distinct paradigms based on the subject of the sensitivity analysis: sensitivity with respect
to input values versus sensitivity with respect to the distribution parameters of inputs.

The first paradigm, which is the most prevalent, defines sensitivity indices with respect to
the values of the input random variables. The variance-based SE method represents the most
established framework within this paradigm, where the total variance of the output is decom-
posed into contributions from individual inputs and their interactions |2, 3|. This framework
provides a global measure of how input variability affects output variability. Extensions have con-
nected variance-based and derivative-based methods [4, 5, 6], while variogram-based approaches
have been introduced to further bridge local and global perspectives [7]. To improve computa-
tional efficiency, surrogate-assisted strategies such as polynomial chaos expansion have been widely
adopted [8, 9, 10], and successfully applied in many engineering fields [11, 12, 13, 14]|. Despite
their popularity, variance-based methods capture only the second-order property of the output,
which is insufficient for fully describing the stochastic nature of complex systems. To address this
limitation, SE methods incorporating higher moments have been developed [15], offering more
detailed characterization of output distributions. A more general class is moment-independent
methods [16, 17, 18|, which quantify sensitivity by comparing the unconditional distribution of
the output with its conditional distributions when one or more inputs are fixed. These methods
allow for a comprehensive evaluation of how inputs shape the entire output distribution. Never-
theless, all of these approaches share a common aspect: they define sensitivity indices with respect
to input values, rather than with respect to the distribution parameters of the inputs. Since dis-
tribution parameters explicitly characterize input uncertainty and may be not known precisely
when engineering data are limited [19, 20|, neglecting them reduces the practical applicability of
these methods. It is theoretically possible to treat these distribution parameters as new random
variables and apply the above global sensitivity methods. However, this approach conflates the
problem of sensitivity to parameter values with that of second-order uncertainty analysis, lead-
ing to conceptual ambiguity. More critically, it necessitates a computationally prohibitive nested
framework, making it impractical for most engineering applications.

The second paradigm directly addresses distribution parameters, but has been largely confined

to reliability analysis. Here, sensitivity indices (SIs) are defined with respect to the failure prob-
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ability or the reliability index. Within the frameworks of first order reliability method (FORM)
and second order reliability method (SORM), sensitivities can be obtained analytically in connec-
tion with the design point [21, 22]. These approaches are highly efficient when the model is not
strongly nonlinear in the Gaussian space and has relatively low dimensionality. Simulation-based
reliability methods, including crude Monte Carlo Simulation [23], Importance Sampling [24], Line
Sampling [25], and Subset Simulation [26, 27|, provide broader applicability and the possibility of
reusing samples for sensitivity analysis. To alleviate computational cost, surrogate-assisted relia-
bility methods such as Kriging have been widely explored [28, 29, 30]. In particular, the method
of moments (MoM) has demonstrated good efficiency and accuracy for nonlinear systems and
rare-event problems [31], and corresponding SE formulations have been proposed [32, 33]. How-
ever, reliability-based methods focus only on a single point of the output distribution, typically
the cumulative distribution function at a certain threshold, while the remainder of the stochas-
tic output is ignored. Consequently, although input distribution parameters are considered, the
full stochastic behavior of the output remains uncharacterized. Crucially, none of these existing
methods provides a systematic framework for quantifying the sensitivity of the first three mo-
ments (mean, variance, and skewness) of the output distribution to the distribution parameters of
the inputs, which is essential for a complete understanding of how input uncertainties shape the
central tendency, dispersion, and asymmetry of the output.

In conclusion, existing SE methods either (i) analyze the distribution of outputs but restrict
attention to variations in input values, thereby overlooking the role of input distribution param-
eters, or (ii) incorporate distribution parameters but reduce the output distribution to a single
reliability measure. In particular, the sensitivity of the output’s moments to these parameters has
been largely unexplored. This highlights a critical gap in current methodologies: the lack of SE
approaches that systematically quantify how input distribution parameters influence the entire
output distribution, including its key moment characteristics, which is essential for comprehensive
uncertainty management in engineering practice.

To address this limitation, this study develops a novel SE method that quantifies the sen-
sitivity of output distributions with respect to the distribution parameters of inputs. Two Sls
are proposed: a local index for the entire output CDF (which generalizes traditional reliability
sensitivities and provides results for all thresholds simultaneously), and a global index for the first

three central moments of the output (which is, to our knowledge, a novel contribution offering
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direct interpretability of how distribution parameters shift, disperse, or skew the output). For
computational efficiency, approximate formulas for these indices are derived using a third-moment
normal transformation technique, leading to the so-called TMSE method. In addition, an efficient
numerical implementation is introduced as a post-processing step following general uncertainty
propagation. The remainder of this paper is organized as follows. Section 2 defines the problem
setting. Section 3 introduces the proposed Sls for moments and distributions. Section 4 presents
a moment-based approximation for practical application, while Section 5 develops a numerical
method for efficient implementation. Section 6 demonstrates the applicability of the proposed

method through three numerical examples. Finally, Section 7 concludes the paper.comm

2. Problem statement

2.1. Stochastic system

A stochastic system defines the physical relationship between the inputs X and output features
Y as follows:

Y = h(X), (1)

where Y=(¥1,Y5,...,Y,,) and X=(X1,X5,...,X,,) are the vectors of outputs and inputs for the sys-
tem; m and n are respectively the dimensions of outputs and inputs; and h(-) is the simulator,
which builds the mapping from X to Y and is usually represented as either a sophisticated code
package (e.g., finite element model) or a mathematical function (e.g., performance function).
The uncertainties of the system are first characterized by inputs, and then propagate through

the simulator into outputs as shown in Fig. 1. According to the involvements of aleatory or/and

Stochastic System

I o I

i~ Moments 0, -

Probabilistic Model

JxlX] 6)
6,

Figure 1: Schematic graph of uncertainty propagation in stochastic system
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epistemic uncertainties, components of X and Y may be either explicit constants, random variables
with fully determined uncertainty characteristics, uncertain constants, or random variables with
only vaguely determined uncertain characteristics [34|. In this study, the case when only aleatory
uncertainties involved in system parameters are considered, and the uncertain components of
X are modeled as independent random variables with deterministic distribution parameters. For
convenience, a single stochastic output of the system, denoted by Y, is investigated in the following,

while the results can be extended to multiple outputs.

2.2. Probabilistic model

From the probabilistic perspective, the inputs and outputs of a stochastic system are the
probabilistic models of X and Y. With X modeled by independent random variables, Y is also a

random variable, whose probabilistic models will be discussed in this section.

2.2.1. Probability distribution
The distribution of Y can be described by its cumulative distribution function (CDF) or
probabilistic density function (PDF). Based on Eq. (1), the CDF of Y can be computed as

follows:

Fy (4, 0x) = / T(x, ) fx (x]0x)dx, 2)

where Fy (y,0x) is the CDF of model output at Y=y; y is a real value; 0x=(0x,, Ox,,...,0x,) is
the vector of distribution parameters of X, Ox, = (61, ..., 0i;, .., emxi) is the vector of distribution
parameters of X;, 0;; is the jth distribution parameter for X;, and nx, is the total number of
parameters to describe the distribution of X;; Qx is the domain of X; I(-,-) is the indicator
function, which is equal to 1 in case h(x) < y and 0 otherwise; and fx(x|60x) is the joint PDF of
X. Based on Eq. (2), the PDF of Y, denoted by fy(y,0x), can be computed as follows:

a-FWY (ya OX)

fy(y, 0x) = By . (3)

In general, the CDF is of particular interest for specific value of Y =y. For instance, when Y
represents the load effect, 1 — Fy (y, Ox) provides the exceeding probability of the load effects for
the threshold y. Moreover, if h(-) is defined as the performance function, Fy (0,0x) corresponds
to the failure probability. Once the CDF is obtained, the corresponding PDF can be readily
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derived based on Eq. (3). Therefore, Fy(y,0x) is the subject of study in the following discussion

of sensitivity estimation.

2.2.2. Statistical moments

Central moments of Y are another perspective to describe the stochastic properties of Y,
which provide the overall description of the distribution. While incorporating higher-order mo-
ments can provide additional information, the computational efficiency decreases significantly as
more moments are included. To strike a balance between accuracy and efficiency, the first three
central moments of Y are considered, as they capture the majority of the distribution’s statistical

information [35]. These central moments can be computed from the original moments as follows:

Oy2(0x) = / E2(6x) — [E1(6x)]?, (5)
Oy3(0x) = m{ES(ax) — 351 (0x) E»(0x) + 2[E1(6x)]°}, (6)

where 6y, (0x), 0y, (0x), and 6y, (0x) are the mean, standard deviation and skewness of Y, respec-

tively; and Ej(6x) is the kth moment about the origin of Y and computed from 6x as follows:

Ey(6x) = / (R fx (|6 ) dx. (7)

3. Derivative-based sensitivity index

As discussed in Eqs. (2)-(7), the probabilistic models of Y are influenced by 6x. To quan-
tify such influence, the sensitivity of the distribution of Y with respect to fx,; (i=1,...,n and
j=1,...,nx,) will be estimated in this section. Without loss of generality, Ox can be the the vector
of central moments, original moments or other parameters of X, as long as they provide sufficient
information to define the distribution of X unambiguously. Comparison between Eqgs. (2) and (7)
shows that, Fy (y, 8x) provides estimation of the distribution for specific value of Y=y, while the
moments are an overall evaluation considering all possible values of Y. In this sense, the sensitivity
index (SI) considering Fy (y, @x) is defined as the local SI, while the one considering 6y is named

as the global SI. The local and global SIs will be analyzed in this section.
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3.1. Local sensitivity index
A straightforward method to quantify the sensitivity output distribution with respect to 0y,
involves taking the derivatives of the probabilistic models of Y with respect to x,,. Then, the

local SI of Y with respect to fx,;, denoted by LSi;(y, 0x), is defined as follows:

aFY(?J? OX)

Note that, the local SI defined in Eq. (8) is a function of y and can be interpreted as the SI for
the exceedance probability of a threshold b when y=b.
Substitution of Eq. (2) into Eq. (8) leads to the reformulation of LS;;(y, 6x) as follows:

LS, (y,0x) = / % I(x, y)may (x, 0x°) fx (x]0x ) dx, (9)

where m;;(x, 0x,) is the so-called score function, which formulated as follows:

P (S W 0

90, fx(x|0x)

When X is modeled by independent random variables, fx(x|0x) is computed as [}, fx,(X;|0x,),
where fx,(X;|0x,) is the PDF of X;. Then, m;;(x, 0x,) can be simplified as follows:
. anz(xl|0Xz) 1

mij(xﬁ OXZ) - miJ'(xi?oXi) - aex ) fX(«T‘HX) (11)

With the distribution of X known, m;;(x, @x,) can be readily defined.

3.2. Global sensitivity index

Similarly, the global SI, denoted by GS;;(6x), is proposed as the derivative of central moments
of Y with respect to 0;;. As shown in Eqs. (4)-(7), the central moments of Y are computed based
on Ox, and then are represented as a column vector Oy (0x) = (0y1(0x),0y2(0x), 0y3(0x))T.

Accordingly, GS;;(0x) is formulated as follows:

00y (0x)

. (12)

ij

There are three elements in GS;;(0x ), corresponding to the mean, standard deviation, and skew-

ness of Y. The second element of GS;;(6x) is analogous to variance-based Sls, except that it

7
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considers the distribution parameters of X rather than X itself. Based on Egs. (4)-(6) and (12),

GS,;(0x) can be expanded as follows:

_ 00y(0x) OE(0x)
GS;;(0x) = SE(6x) iy, (13)

where E(0x) =

(E1(0x), F2(0x), E3(0%))" is a column vector of original moments of Y. Based
on Egs. (4)-(6), 00y (6x)/0E(0x) is obtained as follows:

1 0 0
v < Hyl (ex) 1
889]3((;9 )) - ~ Oy,(6x) 20y, (6x) 0 - (14)
* 3{E1(0x)E3(0x) — [E2(0x)]”}  3[E1(6x) E2(6x) — Es(6x)] 1
[0y, (0x)]° 2[0y, (6x))° [0y, (0x)]

Based on Eq. (14), 00y (0x)/0E(6x) can be explicitly computed given the value of E(0x). With

first three moments considered, there are three elements in OE(0x)/00x,; and expressed as follows:

OE(0x) _ (OE\(6x) OEx(6x) OEs(6x)\" (15)
0, Mx, Mx,, O, ‘
Based on Eq. (7), 0E(6x)/00x,, (k=1, 2, 3) can be computed as follows:
OFE(6
O] [ gt Ox) fx (x10x)dx (16
90, x
where g;;1(x, 0x,) is formulated as follows:
gijk(x, 0x;) = [h(x)]" - mij (. Ox,). (17)

4. Moment-based distribution models and local sensitivity index

Direct computation of Fy (y, 0x) and LS;;(y, Ox) based on Egs. (2) and (9) requires to evaluate
a multi-dimensional integral of a function that includes the indicator function /(x,y). Influenced
by I(x,y), this integral is taken over the domain {h(x) < y}. In certain cases, such as when h(-)
is a summation of independent random variables X, the integral domain defined by I(x,y) can
be explicitly defined, allowing the multi-dimensional integral to be solved analytically (details are
provided in Appendix A). However, in most practical situations, the function h(-) is complicated,

making it impossible to explicitly determine the region where {h(x) < y}. As a result, the

8
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required integrals for Fy(y,0x) and LS;;(y,0x) cannot be computed directly. In contrast, the
moments of Y can be directly obtained based on (4)-(7), since the corresponding integrals are
defined over the entire domain of X. To address the challenges in constructing Fy (y,0x) and
estimating LS;;(y, 0x), this section discusses a moment-based approximation approach for these

two objectives.

4.1. Moment-based CDF and PDF

To take advantage of well-established theories for standard normal distribution, Fy (y, 0x) can

be defined based on the normal transformation technique as follows [35]:

Fy(y,0x) = @[T (y[6y(0x))], (18)

where @[] is the CDF of standard normal random variable; and 7'(y|0y(0x)) is the normal
transformation function, which is defined based on 6y (0x). Based on Eq. (18), fy(y,6x) can

be easily constructed as follows:

oT (y|0y (6x))

Iy (y,0x) = o[T(y|0y(0x))] 3y ;

where @[] is the PDF of standard normal distribution.

Theoretically, Egs. (18) and (19) can provide an accurate solution to Fy (y, 0x) and fy(y, 6x)
with the distribution of Y fully defined by 6y (0x). For instance, when A(-) is a sum of indepen-
dent normal random variables, the resulting distribution is also normal, which can be precisely
described using the first two moments. However, in practice, the exact distribution of Y is
generally unknown, and finite moments alone are insufficient to fully describe it. As a result, the
moment-based formulas in Egs. (18) and (19) serves as approximations of Fy (y, 0x) and fy(y, 0x),
with its accuracy depending on the statistical information contained in 0y (60x). In this study,
the first three central moments of Y are used to define T'(y|0y(60x)), as they capture most of
the relevant statistical information and have been shown to be sufficient in general cases [35].

However, higher moments may be necessary when Y exhibits strong non-Gaussian behavior.
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4.2. Moment-based local sensitivity index

Substitution of Eq. (18) into Eq. (8) leads to the reformulation of LS;;(y, 6x) as follows:

OP[T'(y|Oy (6x))] .

LS (y, 0x) = 20
JUENERSS - 20
Applying the chain rule of differentiation, LS;;(y,0x) can be computed as follows:
IT (y|6y(6x)) 06y (6x)
LS;;(y,0x) = o[T(y|0y (0 : : : 21
0.0%) = oT 10 (0] SO 000 @
Substitution Eq (19) into Eq. (21) allows to formulate LS;;(y, 6x) as follows:
LSi(y, 0x) = fv(y,0x) - NT(y, 0y (0x)) - GS;;(0x). (22)

where NT(y, 8y (0x)) is a 3 dimensional row vector defined based on the normal transformation

T(y|0y (0x)) as follows:

Oy 0T (y|6y (6x))
(yl6y(0x)) 06y (6x)

NT(y, 0y (0x)) = oT (23)

Comparison between Eqs. (12) and (22) reveals that the local sensitivity index LS;;(y, 0x) is
a function of the global sensitivity index GS;;(0x). This relationship exists because the global SI
offers an overall evaluation of the distribution of Y, but lacks the ability to describe specific values.

Therefore, LS;;(y, 0x) provides a more detailed assessment of sensitivity compared to GS;;(0x).

4.3. Third moment normal transformation based approzimation

As discussed above, the key task for determining the moment-based Fy (v, 0x), fy(y,0x) and
LS;;(y,0x) is to define the normal transformation function 7'(y|@y (6x)). In this study, the third-
moment normal transformation (TMNT) is applied [36], which is proved to be efficient while
achieving sufficient. For simplicity, in the following, 8y (0x) and 6y, (0x) and Ei(0x) (k=1, 2, 3)
will be denoted as 8y, 0y, and Ej, respectively. Based on the TMNT, T'(y|@y) is approximated

as follows:

_a;—+A7 9Y3 7& 0
T(y|0y) = a1 (24)

Ys, 9Y3 - O

10
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where

A = \/ag + dai(ar + ys), (25)
(y - ‘9Y1)

= W) 2%

Ys T (26)

where y, is the standardization of y; and a; and as are the parameters of the TMNT computed

from fy,. The applicable range for the TMNT is given as follows [35]:

—120€,02y /b1y < O3y < 40€,0ay /01y, (27)

where €, is the allowable error. For problem with [0y,| < 2, a; and ay can be calculated as

follows [37]:

V3 V3
ap = EGYS, [ 1-— %93/3 (28)
Based on Eqs. (24)-(28), 0T (y|0y)/0y can be directly obtained as follows:
8y HYZA
Substitution Eq. (29) into (19) yields fy(y, 0x):
[T (y|6y)]
Ox) = ———. 30
fy(y,60x) Oy, A (30)
Based on Eqs. (24)-(28), 0T (y|0y)/00y can be obtained as follows:
00y U Oy A’ Oy, A 06y, '
Combine Egs. (23), (29) and (31), NT(y, 8y) can be obtained as follows:
NT<y7 0Y) = (_17 —Ys, NT3(y7 0Y>> : (32>
When 60y3 =0, NT3(y, 8y) = 0; when 0y3 # 0, NT3(y, Oy ) is formulated as follows:
~ b2
NTs(y,0y) = 2= [(2 = a2)T(y[0y) — y] .- (33)

Ovs

11
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As discussed above, both the TMNT and corresponding NT(y, 6y ) can be analytically deter-
mined based on the value of 8y. Then, based on the TMNT, the moment-based CDF and PDF of
Y can be explicitly constructed using Eqgs. (18) and (30), respectively. Given the values of PDF of
Y, NT(y, 8y) and global SI, the moment-based local SI can be readily computed using Eq. (22).
To sum up, by using the TMNT and the moments of Y, the moment-based CDF and PDF of Y
as well as the moment-based local SI can be explicitly computed, with no extra model evaluation
required. This helps to improve the computational efficiency. As the sensitivity estimation method
with respect to input distribution parameters is developed based on the TMNT, it is referred to
as TMSE method.

5. Numerical method for sensitivity estimation

The fundamental step for TMSE method is to evaluate the moments of Y and global SI. Based
on Egs. (4)-(7) and (12)-(13), the moments of ¥ and global SI can be computed based on multi-
dimensional integrals over the domain of X given in Egs. (7) and (16). As the dimension of X is
generally large in practice, direct computation of these two integrals may be time-consuming or
even impossible. As an alternative, efficient dimensional reduction method for integral approxi-

mation is introduced in this section.

5.1. Dimensional reduction method for evaluating the original moments

To make a good balance between accuracy and efficiency, the original moments of Y, i.e., Ej,
is solved using the point estimate method [38] combining with bivariate dimensional reduction

method (BDRM) [39] as follows:

S B (2 ZEk =0 =2 (34)

1<p<q<n
Z Z P P ]’L qu Tp, Tq N E;’f - Z Prph[xp(rp)]ka (35>
rp=17rs=1 rp=1

where g is the vector of mean values of X; Xpq (1, 7¢) = (pt1,..., T~ (0(ry), Ox,) ..., T (0(ry), 0x,),--,
) and x,(rp) =(p1,..., T (0(rp), Ox,) ..., tn) are the evaluation points; T7'(-,-) is the inverse
normal transformation function, which can be defined using Rosenblatt transformation [40]; @ is

a [-dimensional vector of the evaluation points in standard normal space; P,, and P, are the r,th

12
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and r,th elements in 15, respectively; and P is the weight vector corresponding to . P and @ can

be computed as follows [38]:

d=v3, P- %g. (36)

where ¢ and & are vectors of the abscissa and corresponding weights in the Gauss-Hermite quadra-
ture formula, respectively. Generally, the accuracy of point estimate method can be guaranteed

with [ = 7 [38], and the evaluation points @ and corresponding weights P are given as follows [38]:

A

@t = (£3.7504, +2.3668, +1.1544,0), P = (0.0005,0.0308,0.2401, 0.4574). (37)

Based on Egs. (34) and (35), the number of model evaluations required for computing E,

denoted by Ny, is
n(n—1)

Ny = 5

(I=1)*+nl—-1)+1 (38)

It can be seen that N, is proportional to n?, which becomes extremely large for high-dimensional
problems. Thus, the proposed method may face challenges for large n. This curse of dimension-
ality arises from the applied dimension-reduction method [39], and it may be alleviated through

alternative approximation techniques.

5.2. Dimensional reduction method for estimating global SI

Comparison between Egs. (7) and (16) reveals that, 0Ey/00x,, can be integrated as the mean
value of g;;1(X, 0x,). Furthermore, the input random variables for both h(-) and g¢,;x(X, Ox,) are
X. Thus, 0E}/ d0x,, can be evaluated using the same method as for F, i.e., the point estimate

method combining with BDRM as follows:

OF - n—1)(n—2
i 3 Dy-tn=-2Y 0+ =206y, (39)
Yo 1<p<g<n p=1
l l l
qu = Z Z Prpprqgijk[qu(rm Tq), BXZ-], Dp == Z Prpgijk[xp(rp)v ze] (40)
rp=1re=1 rp=1

Eqgs.(34)-(35) and (39)-(40) show that, the evaluation points applied for evaluating E and 0E /00 x,,
are the same. Compared with the estimation of E, the only extra requirements for estimating
OE/00x,; is to compute my;(X;|0x,) as given in Eq. (10), which can be easily determined. There

is no extra model evaluation required for computing 0E/d0x,,, and thus, it can be treated as the

13



202 byproduct of determining E, which guarantees the computational efficiency.

203 5.3, Procedure of the proposed method

204 The procedure of the proposed TMSE method for sensitivity estimation of distribution of Y

with respect to fx,; is summarized in Fig. 2, which comprises three main steps as detailed below:

‘ Evaluation points and corresponding weights ‘

|

‘ Model simulation at evaluation points ‘

‘ Moment estimation i.c., E(6x) and 0y (0x) }—» TMNT ‘ CDF/PDF estimation ‘

OE (6
Compute 9 6(0,;() ‘ ‘ Compute ?};{((;;> ‘ ‘ Compute NT(y, 0y (0x)) ‘
‘ Global SI, i.e., GS;;(0x) } } Local SI, i.e., LS;;(y, 0x) ‘

|

Figure 2: Flowchart for sensitivity estimation of output distribution using the TMSE method

295

26 (1) Model evaluation.

207 e Fuvaluation points generation. First, evaluation points for each random variable are
208 transformed from 1, using inverse normal transformation technique such as Rosenblatt
200 transformation. Then, all x,,(r,,7,) and x,(r,) (1 <p < ¢ <n, r,=1,...,l and r,=1,...,
300 [) are formed with different combinations of the evaluation points.

301 o Model evaluation. With the set of evaluation points, the corresponding values of the
302 output Y are computed using the estimator h(-). It is important to note that this is the
303 only step requiring model evaluation, i.e., evaluating h(-). The values of Y obtained
304 in this step are subsequently used for distribution estimation and are reused in the
305 sensitivity estimation.
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(2) Distribution estimation.

Moment estimation of the output. Based on the values of Y at the evaluation points
and Egs. (34) and (35), the original moments of Y i.e., E, can be computed. Then, with
the aid of Eq. (4)-(6), the central moments of Y, i.e., 6y, can be obtained. The obtained

E and 6y will be applied to both distribution evaluation and sensitivity estimation.

CDF and PDF simulation. Based on 0y, the TMNT for y can be constructed using
Egs. (24)-(26). Then, CDF and PDF of Y can be directly constructed using Eqgs. (18)
and (30), respectively.

(3) Sensitivity estimation.

Estimate OE/0fx,, using the point estimate point combined with BDRM, as given in
Eqgs. (39)-(40). The values of g;;(-,-) at the evaluation points are computed based
on the values of Y obtained previously, and thus there is no extra model evaluation

required.

Compute 00y /OE. With 8y and E obtained in distribution evaluation, 06y /OE can
be directly computed using Eq. (14).

Estimate the global SI GS;;(6x) based on Eq. (13), using the results of 0E(6x)/d0x,,
and 00y (0x)/0E(0x).

Compute NT(y, 8y). With the TMNT constructed, NT(y, 8y) can be directly com-
puted using Eqgs (32) and (33).

Estimate the local SI LS;;(y,0x) with the aid of Eq. (22), based on the results of
fy(y,0x), GS;;(6x) and NT(y, Oy ).

As discussed above, the inputs for global sensitivity estimation are the moments of Y and

OE/00x,,.

The moments of Y are obtained through the dimensional reduction method described

in section 5.1. The computation of JE/dfx,, is based on the evaluation points X,,(r,,7,) and

x,(rp) (1 <p<q<n,r,=1,.,land r,=1,..., [) and corresponding model outputs, all of which are

byproducts of the distribution estimation process, as discussed in section 5.2. With these inputs

readily obtained, the global SI can be computed. There is no additional model evaluation required

in sensitivity estimation, thereby ensuring the efficiency of the method. With the moments of Y

obtained, the TMNT can be constructed, and then the CDF/PDF of Y and local SI can be
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readily obtained. In this sense, CDF/PDF and local SI can be treated as the byproducts of

moment estimation and global SI, respectively.

6. Examples

6.1. Example 1: Weighted summation of two independent random variables

The first example considers a simple function as follows:

Y = h(X) = kX + ko Xo, (41)

where X; and X, are two independent random variables; and k; = 2 and ky = —1 are the
coefficients.

To illustrate the procedure of the TSME method, detailed results are discussed for the case
when X; and X, follow lognormal distributions with fx,, = 16 and f0x,, = 12, respectively.
Additionally, the coefficient of variance (COV) of X; and X, are assumed to be 0.05 and 0.10,
respectively. Based on Fig. 2, the first step is to generate the evaluation points, which are trans-

formed from 01 and listed in Table 1. Then, the values of Y at the evaluation points can be readily

Table 1: Evaluation points in example 1

rp=1 rp=2 rp=3 rp=4 rp=> rp=06 rp="7

o X X X1 X X7 X X1 X X1 X2 X5 Xo X1 Xo

1 1095 6.78 12.57 6.78 14.19 6.78 16 6.78 17.86 6.78 20.16 6.78 23.14 6.78

2 1095 8.34 12.57 8.34 14.19 834 16 8.34 17.86 8.34 20.16 8.34 23.14 8.34

3 1095 9.99 12,57 9.99 14.19 9.99 16 9.99 17.86 9.99 20.16 9.99 23.14 9.99
x12(rp,7q) 4 1095 12 1257 12 1419 12 16 12 17.86 12 20.16 12 23.14 12
5 1095 14.10 12.57 14.10 14.19 14.10 16 14.10 17.86 14.10 20.16 14.10 23.14 14.10

6 10.95 16.89 12.57 16.89 14.19 16.89 16 16.89 17.86 16.89 20.16 16.89 23.14 16.89

7 1095 20 12.57 20.76 14.19 20.76 16 20.76 17.86 20.76 20.16 20.76 23.14 20.76

x1(7p) 1095 12 1257 9 1419 12 16 12 1786 12 20.16 12 23.14 12
x2(7p) 16 6.78 16 834 16 999 16 12 16 14.10 16 16.89 16 20.76

computed. It can be observed from Table 1 that, there are some repeated values for x,(r,) and
Xpq(Tps Tq), and the number of model evaluations is 49 by eliminating the duplicated points. The
next step is to evaluate the distribution of Y. First, with the aid of Egs. (34) and (35), the first
three moments about the origin of Y are computed as E=(20, 413.48, 8816.02). Then, based on

16



351

352

353

354

355

356

357

358

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

Eqgs. (4)-(6), the first three central moments of Y, i.e., 8y, can be transformed from E as (20,
3.6715, 0.1459). With 6y obtained, the CDF and PDF of Y can be constructed based on the
TMNT as given in Egs. (18) and (30), respectively.

The third step is to conduct sensitivity estimation. First, the values of g;;x(-,-) are computed.
The derivative of fx,(X;|0x,) with respect to Ox,; is computed using finite difference method. Note
that, as the lognormal distribution depends on two parameters, the sensitivity estimation focuses
solely on the first two moments of X. The values of 0E/90x,, are 9E/d0x,, (2, 80, 2480.5)",
OE/00x,,—(—1,—40,—1240.2)T, 9E/d0x,,—(0,12.8,792.7)T, OE/00x,,—(0,3.6,210.1)T. Based
on Eq. (14), 00y /OE is

1 0 0
%% = | —5.4473  0.1362 0o |- (42)
24.0785 —1.2285 0.0202

Substituting the values of 00¢/0Eq(0) and OE/00x,; into Eq. (13), the global sensitivity index
GS;;(6x) can be computed as GS11(0x)=(2, 0, —0.0084), G S (0x)=(—1, 0, 0.0042), GS12(0x)=(0,
1.7432, 0.2913), GS52(0x)=(0, 0.4903, —0.1776). Based on Egs. (32) and (33), NT(y, 8y ) can
be computed, and the local sensitivity index LS;;(y,0x) can then be obtained. For example,
with y=10, NT(10, 8y )=(—1,2.7237,—4.8769), LS11(10,60x) = —0.0036, LS (10,0x) = 0.0018,
LS12(10,60x) = 0.0061 and LS (y, 0x) = 0.0040.

To investigate the flexibility of the TMSE method for sensitivity estimation, several cases with
varying statistical characteristics of X; and X, are considered, as listed in Table 2. All these
distributions considered in this example are two-parametric, and the SE focuses on the first two
moments of X. Since the model for this example is relatively simple, it has analytical solution for
the output distribution. For comparison, the global SI is also computed using analytical methods
(details can be found in Appendix A.1), and the local ST is computed using finite difference method
with the CDF of y analytically constructed (details can be found in Appendix A.2). The moments
of y are compared in Table 3. As the mean and standard deviation of Y will not change with
the distribution type of X for the case of the model considered in Eq. (41), the corresponding
results are listed only for the case with N; = 1 for simplicity. It can be seen from Table 3 that,
0y estimated using the point estimate method combined with BDRM is the same as the exact
values, which illustrates the accuracy of the numerical methods. Furthermore, the distribution

types of X will influence the skewness of Y. Representative PDFs and CDFs of Y for cases with
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Table 2: Statistical information of random variables in example 1

Np =1 Np =2 Np =3 Np =4 Np =5 Np =6

Case X1 Xo X1 Xo X1 Xo X1 Xo X Xo X1 Xo

Norm. Norm. LogN. LogN. Norm. Gamma Norm. Weibull LogN. Gamma LogN. Weibull

1 ] 16 9 16 9 16 9 16 9 16 9 16 9
COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

9 I 16 12 16 12 16 12 16 12 16 12 16 12
COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

3 L 16 15 16 15 16 15 16 15 16 15 16 15
COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20

4 1] 18 9 18 9 18 9 18 9 18 9 18 9
COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 i 18 12 18 12 18 12 18 12 18 12 18 12
COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

6 L 18 15 18 15 18 15 18 15 18 15 18 15
COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15  0.20 0.15 0.20

7 L 20 9 20 9 20 9 20 9 20 9 20 9
COV 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

8 L 20 12 20 12 20 12 20 12 20 12 20 12
COV 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

9 L 20 15 20 15 20 15 20 15 20 15 20 15

COV 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20

Np denotes the index of distribution combination; Norm. denotes Normal distribution; LogN. denotes Lognor-
mal distribution; x4 denotes the mean value.

Np = 2 obtained analytically and using the TMNT as given in Eqs. (18) and (30) are compared in
Figs. 3a-3f, which show that the reference and approximated CDF /PDF of Y are coincident with
each other. This demonstrates the accuracy of the TMNT in conducting normal transformation
for the considered cases. Furthermore, with different 8x, the CDF/PDF of Y shows significant
differences, which demonstrates the necessary of conducting local sensitivity estimation.

The global S1, i.e., GS;;(0x ), obtained using analytical and the TMSE methods are compared
in Table 4. For convenience, the global SIs for the kth central moments of Y with respect to
Ox,, is denoted as G'S};. Since two-parametric distributions are considered and in view of the
model h(X) considered in Eq. (41), G'S}; and G'S}; will not change with the distribution type,
these values are listed once for all distribution types, while GS% for different distribution types

are listed separately. It can be seen from Table 4 that:

(1) For each case considered, GS{j / GSéj changes with [, which means the importance of X;
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Table 3: Central moments of model output in example 1

Case Method Oy1 Oyo Ovs

Np=1 Np=2 Np=3 Np=4 Np=5 Np=6

1 Exact 23 1.836 0 0.0639 —0.0236 0.0843 0.0758 0.1837
Approximate 23 1.836 0 0.0639 —0.0236 0.0843 0.0758 0.1837

9 Exact 20 3.672 0 0.1459 —0.0354  0.0622 0.1639 0.2615
Approximate 20 3.672 0 0.1459 —0.0354  0.0622 0.1639 0.2615

3 Exact 17 5.660 0 0.1859 —0.0596 0.0524 0.2169 0.3289
Approximate 17 5.660 0 0.1859 —0.0596 0.0524 0.2169 0.3288

4 Exact 27 2.012 0 0.0805 —0.0179 0.0640 0.0895 0.1714
Approximate 27 2.012 0 0.0805 —0.0179 0.0640 0.0895 0.1714

5 Exact 24 4.025 0 0.1748 —0.0268 0.0472 0.1885 0.2626
Approximate 24 4.025 0 0.1748 —0.0268 0.0472 0.1885 0.2626

6 Exact 21 6.177 0 0.2332 —0.0458 0.0403 0.2570 0.3432
Approximate 21 6.177 0 0.2332 —0.0458 0.0403 0.2570 0.3431

. Exact 31 2.193 0 0.0930 —0.0138 0.0494 0.1000 0.1633
Approximate 31 2.193 0 0.0930 —0.0138 0.0494 0.1000 0.1633

8 Exact 28 4.386 0 0.1969 —0.0207  0.0365 0.2075 0.2647
Approximate 28 4.386 0 0.1969 —0.0207  0.0365 0.2075 0.2647

9 Exact 25 6.708 0 0.2700 —0.0358 0.0315 0.2886 0.3559
Approximate 25 6.708 0 0.2700 —0.0358 0.0315 0.2886 0.3559

on fy, are different with different moments considered. This demonstrates the necessity of
conducting SE with respect to distribution parameters of X.

Both GS}; and GS; vary with @x, while the distribution type of X has no effect on the
values. This is a consequence of the considered model 2(X) in Eq. (41). In contrast, G'S};
is significantly influenced by both Ox and the distribution type of X.

GS}j and GS% obtained from the TMSE method match the exact values, confirming the
accuracy of the TMSE method. When analyzing the influence of 8x on the skewness of Y, the
results from both the TMSE and the exact methods are largely consistent, with only slight
discrepancies in some cases. These differences arise because the TMSE method estimates
0y based solely on Ox, whereas the exact method accounts for the entire distribution. Take
the case with X follow normal distribution as an example, the skewness of Y should be 0 by
definition and @x will has no influence on the skewness of Y. However, as the distribution
type cannot be reflected by the moments considered here, the sensitivity of the skewness of

Y with respect to @x is not zero obtained from the TMSE method as listed in Table 4.

The local SIs are computed by the TMSE and finite difference methods. For simplicity,
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Table 4: Global sensitivity indices obtained from different methods in example 1

Gs?
GSl. GS2. i2
Case 1 g vy vy
Np =1 Np =2 Np =3 Np =4 Np =5 Np =6
Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE Exact TMSE
1 1 2 2 0 0 0 0.033 —0.01  0.027 0 0.033 0 0.033 —0.01  0.027 —0.01  0.027
1 2 1 -1 -1 0 0 0 0 0.004 0.003 0.003 0.001 0.005 0.012 0.003 0.001 0.005 0.013
1 2 0 0 1.743 1.743 0 0 0.315 0.315 0.067 0.067 —0.24 —0.24 0.281 0.281 —0.03 —0.03
2 2 0 0 0.490 0.490 0 0 —0.21 —0.21 —0.09 —0.09 0.163 0.159 —0.17 —0.17  0.083 0.079
1 1 2 2 0 0 0 0.004 —0.01 —0.01 0 0.004 0.000 0.004 —0.01 —0.01 —0.01 —0.01
2 2 1 -1 -1 0 0 0 0 0.005 0.004 0.003 0.003 0.005 0.005 0.003 0.003 0.005 0.005
1 2 0 0 1.743 1.743 0 0 0.291 0.291 0.050 0.050 —0.09 —0.89 0.266 0.266 0.127 0.127
2 2 0 0 0.490 0.490 0 0 —0.18 —0.18 —0.06 —0.06 0.043 0.043 —0.14 —-0.14 —0.04 —0.04
1 1 2 2 0 0 0 0.001 —0.02 —0.02 0 0.001 0.000 0.001 —0.02 —0.02 —0.02 —0.02
3 2 1 -1 -1 0 0 0 0 0.006 0.006 0.004 0.004 0.007 0.007 0.004 0.004 0.007 0.007
1 2 0 0 1.696 1.696 0 0 0.295 0.295 0.054 0.054 —0.05 —0.05 0.268 0.268 0.167 0.167
2 2 0 0 0.530 0.530 0 0 —-0.17 —0.17 —-0.06 —0.06 0.004 0.004 —-0.14 —-0.14 —-0.07 —0.07
1 1 2 2 0 0 0 0.032 —0.01 0.026 0.000 0.032 0.000 0.032 —0.01 0.026 —0.01 0.026
4 2 1 -1 -1 0 0 0 0 0.003 0.002 0.002 0.001 0.004 0.014 0.002 0.001 0.004 0.014
1 2 0 0 1.789 1.789 0 0 0.263 0.263 0.048 0.048 —0.17 —0.17 0.239 0.239 0.021 0.021
2 2 0 0 0.447 0.447 0 0 —0.17 —-0.17 —0.07 —0.07 0.132 0.128 —0.14 —0.14 0.060 0.056
1 1 2 2 0 0 0 0.004 —0.01 —0.01 0.000 0.004 0.000 0.004 —0.01 —0.01 —0.01 —0.01
5 2 1 -1 —1 0 0 0 0 0.003 0.003 0.002 0.002 0.004 0.004 0.002 0.002 0.004 0.004
1 2 0 0 1.789 1.789 0 0 0.246 0.246 0.036 0.036 —0.06 —0.06 0.228 0.228 0.129 0.129
2 2 0 0 0.447 0.447 0 0 —0.15 —0.15 —0.05 —0.05 0.036 0.036 —0.12 —0.12 —0.04 —0.04
1 1 2 2 0 0 0 0.001 —0.02 —0.02 0 0.001 0 0.001 —0.02 —0.02 —0.01 —0.02
6 2 1 —1 -1 0 0 0 0 0.005 0.005 0.003 0.003 0.005 0.005 0.003 0.003 0.005 0.005
1 2 0 0 1.748 1.748 0 0 0.252 0.252 0.039 0.039 —0.03 —0.03 0.232 0.232 0.159 0.159
2 2 0 0 0.486 0.486 0 0 —0.15 —0.15 —0.05 —0.05 0.005 0.005 —0.12 —0.12 —0.07 —0.07
1 1 2 2 0 0 0 0.030 —0.01 0.025 0 0.030 0.000 0.030 —0.01 0.025 —0.01 0.025
7 2 1 -1 —1 0 0 0 0 0.002 0.002 0.002 0.001 0.003 0.015 0.002 0.001 0.003 0.015
1 2 0 0 1.824 1.824 0 0 0.223 0.223 0.034 0.034 —0.12 —0.12 0.206 0.206 0.048 0.048
2 2 0 0 0.410 0.410 0 0 —0.15 —0.15 —0.05 —0.05 0.107 0.102 —0.12 —0.12 0.043 0.038
1 1 2 2 0 0 0 0.004 —0.01 —0.01 0 0.004 0.000 0.004 —0.01 —0.01 —0.01 —0.01
s 2 1 —1 —1 0 0 0 0 0.003 0.002 0.002 0.002 0.003 0.003 0.002 0.002 0.003 0.004
1 2 0 0 1.824 1.824 0 0 0.212 0.212 0.026 0.026 —0.05 —0.05 0.198 0.198 0.127 0.127
2 2 0 0 0.410 0.410 0 0 —0.13 —0.13 —0.04 —0.04 0.030 0.029 —0.10 —0.10 —0.03 —0.03
1 1 2 2 0 0 0 0.001 —0.02 —0.02 0 0.001 0 0.001 —0.02 —0.02 —0.02 —0.02
9 2 1 —1 —1 0 0 0 0 0.004 0.004 0.002 0.002 0.004 0.004 0.002 0.002 0.004 0.004
1 2 0 0 1.789 1.789 0 0 0.218 0.218 0.029 0.029 —0.03 —0.03 0.203 0.203 0.149 0.150
2 2 0 0 0.447 0.447 0 0 —0.13 —0.13 —0.04 —0.04 0.005 0.005 —0.11 —0.11 —0.06 —0.06
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Figure 3: Representative Fy (y, 0x) and fy (y,0x) obtained from different methods in example 1

LS11(y,0x), LSy (y,0x), LS12(y,0x) and LS (y,0x) for the case with Np= 2 are compared

in Figs. 4a-de, while only LSi5(y, Ox) is plotted for the other cases in Figs. 4d-4i. It can be found

that:

(1)

LS;;(y, 0x) is influenced by both 8x and the distribution type, and varies non-monotonically
with y. This highlights the necessity of conducting local sensitivity estimation for specific
values of y, taking into account the distribution parameters of the input random variables.
Notably, for two-parameter distributions, when the first two moments of X are fixed, the
distribution type of X primarily affects the skewness and higher moments of Y. As a result,
the influence of the distribution type of X is relatively small in this specific case.

In all cases considered, LS;;(y,0x) obtained using the TMSE method closely align with
the accurate values derived from the difference method based on the analytical Fy (y,0x),
demonstrating the accuracy of the numerical approach developed for the TMSE method.
Additionally, given the variety of distribution types in this example, the TMSE method

exhibits considerable flexibility in estimating local sensitivity.
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----- TMSE (Case 1) ---- TMSE (Case 2) -« TMSE (Case 3) -+-:- TMSE (Case 4) ---:- TMSE (Case 5) ---- TMSE (Case 6) ----- TMSE (Case 7) - TMSE (Case 8) -+--- TMSE (Case 9)

Figure 4: LS;;(y,0x) in example 1

w2 0.2. Example 2: Safety factor of slope with multidimensional inputs
1 This example considers the safety factor of a slope as illustrated in Fig. 5, the simulator is

22 adopted from Ref. [41] as follows:

cAg + Nytang,

Y =hX)= W (sing, + acost,) + Vcost, — Tising,’ (43)
As = (H — 2)/sin(vy), (44)

N, = W(costh, — asimp,) — U — Vising, 4 Tycosb,, (45)
W = 0.5yH*{[1 — (2/H)?*cotyp, — coti)s}, (46)
U=05yw-r-2-A, V =05y r* 2% (47)
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where v = 2.6 x 10* N/m?; vy = 1.0 x 10* N/m?; ¢y = 50% ¢, = 35°% T, = 0; 6, = 0; H =
60 m; and ¢ and ¢, follow a bivariate lognormal distribution with a correlation coefficient of -0.5,
while r, z, and a are mutually independent random variables. Their statistical characteristics are

summarized in Table 5 For illustration, four cases with different COVs of X are considered.

B

Tension crack

Y Y

< Assumed water pressure
distribution

Y

Figure 5: Illustration of slope for Example 2

Table 5: Statistical information of random variables in example 2

c s r z «
Distribution Bivariate Lognormal Weibull Lognormal Weibull
Mean 140 kPa 20° 0.3435 14 m? 0.05496
Case 1 0.20 0.08 0.765 0.214 0.765
cov Case 2 0.22 0.10 0.841 0.236 0.841
Case 3 0.24 0.12 0.917 0.257 0.917
Case 4 0.26 0.14 0.994 0.279 0.994

With the model estimator known, SE can be performed using the TMSE method. The mo-
ment estimation in the TMSE method is carried out using the seven-point estimate method in
combination with BDRM. The total number of samples required for BDRM with seven evalua-
tion points is 391. Note that, the model considered in this example is strongly nonlinear, and
thus BDRM cannot provide sufficient evaluation for SE considering the skewness of Y [33], and
trivariate dimension reduction method (TDRM) is applied in computing G'S;(0x) (details can be
found in Appendix C). The total number of samples required for TDRM with 7 evaluation points
is 2551.

To investigate the influence of the number of evaluation points, BDRM and TDRM were also
conducted with 9 and 11 evaluation points. The total numbers of model evaluations for BDRM

and TDRM with 9 evaluation points are 681 and 5801, respectively, while those with 11 evaluation

points are 1051 and 11051, respectively. For comparison, distribution estimation and sensitivity
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analyses were also performed using Monte Carlo Simulation (MCS) with 10® samples (details are
provided in Appendix B), serving as a benchmark for accuracy. The moments of Y obtained by
the different methods are summarized in Table 6, where the numbers 7, 9, and 11 listed under the
BDRM and TDRM columns indicate the number of evaluation points used for each method.

The PDF obtained by using the TMNT given in Eq. (30) is compared with the histogram
obtained from MCS in Figs. 6a-6d. Figs. 6a-6d and Table 5 show that:

Table 6: Moments of model output in example 2

Mean 6y Standard deviation 0y9 Skewness Oy 3
Case
BDRM BDRM TDRM
MCS R MCS R MCS R
7 9 11 7 9 11 7 9 11
1 0.9315 0.9314 0.9314 0.9314 0.1155 0.1155 0.1155 0.1155 0.1729 0.1725 0.1726 0.1726
2 0.9321 0.9321 0.9321 0.9321 0.1266 0.1266 0.1266 0.1266 0.1598 0.1600 0.1601 0.1601
3 0.9329 0.9329 0.9329 0.9329 0.1379 0.1379 0.1379 0.1379 0.1488 0.1487 0.1488 0.1488
4 0.9338 0.9338 0.9338 0.9338 0.1495 0.1495 0.1495 0.1495 0.1378 0.1377 0.1378 0.1378

4.0 4.0 4.0 4.0

=MCS EMCS =MCS
3.5 —TMNT] 3.5 —TMNT] 3.5 —TMNT]

3.0 3.0 3.0

225 225 —~25
320 3 2.0 ; 2.0
215 215 S5
10 1.0 1.0
0.5 0.5 0.5

0.0 0.0 0.0
0.4 0.6 0.8 1.0 12 14 0.4 0.6 0.8 1.0 1.2 14 0.4 0.6 0.8 1.0 12 14 0.4 0.6 0.8 1.0 12 14

Yy y Yy Y

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 6: PDFs of model output in example 2

(1) The moments of Y computed by dimensional reduction methods are in close agreement with
those from MCS, with the difference increases with the order of moments. This is because
the higher moments are more difficult to obtain. The relative error of fy3 obtained from
TDRM with 7 evaluation points is the largest (0.23%) for case 1.

(2) The moments of Y computed using different numbers of evaluation points show close agree-
ment. Differences between results increase with higher-order moments and stronger non-
Gaussianity. The largest relative difference occurs for the skewness in case 4 when comparing
7 and 11 evaluation points, amounting to 0.074%. This demonstrates that using 7 evaluation
points provides sufficient accuracy. To balance accuracy and computational efficiency, seven

evaluation points are recommended in the proposed method.
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Figure 7: Global elasticity indexes (EIs) of model output in example 2

(3) The PDFs estimated using the TMNT-based model consistently align closely with those
obtained from MCS, demonstrating the slightly error in 6y obtained from SPEM-BDRM

can be neglected in distribution estimation.

To eliminate the influence of units for different random variables, so-called elasticity definition

is introduced [42], and the global and local elasticity indices are formulated as follows:

0,
ko ko Vi
GEij = GSZ-j —GYk, (48)
LEij(?Ja 9X> = LSij(yv ox) : ‘91‘]'7 (49)

where GEfj is the global elasticity index (EI) considering the kth central moments of Y; LE;;(y, Ox)
is the local EI. The global and local Els obtained from the TMSE method are compared with those
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from MCS in Figs. 7a-7d and 8a-8d, respectively. It can be found that:

0.5

0.0

-0.5¢

LE;;(y,0x)

0.6 1.0 1.2 1.4

0.5

0.0

0.6 0.8 1.0 1.2 1.4

Y

(b) Case 2
0.5 . .

0.0

L-05F Z-05)
) 2
l:'ﬂ:—l.() F LTf—l.O F
~ ~
-1.5¢ 1.5¢
2.0 : : : : 2.0 : : : :
0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4
Y Y
(c) Case 3 (d) Case 4
MCS (i=1, j=1) MCS (i=2, j=1) MCS (i=3, j=1) MCS (i=4, j=1) MCS (i=5, j=1)
TMSE (i=1, j=1)-- TMSE (i=2, j=1)-- TMSE (i=3, j=1)-- TMSE (i=4, j=1)-- TMSE (i=5, j=1)
—MCS (i=1, j=2) MCS (i=2, j=2) MCS (i=3, j=2) MCS (i=4, j=2) —MCS (i=5, j=2)

-~ TMSE (i=1, j=2) - - TMSE (i=2, j=2)

TMSE (i=3, j=2)

TMSE (i=4, j=2)-- TMSE (i=5, j=2)

Figure 8: Local elasticity indexes (EIs) of model output in example 2

(1) The difference in GEfj between TMSE and MCS results increases with the order &, primarily

due to the increase of error in moment estimation. For £ = 1 and 2, GEfj obtained from

the TMSE method closely matches that from MCS. As k increases, the discrepancy in

GEfj across methods grows, with the largest difference observed for GE3,. This proves the

accuracy of the TMSE method for evaluating the global SI.

The tendency of LE;;(y,0x) remains consistent across the cases considered. For a given

random variable, i.e., fixed i, the absolute value of LE;;(y,6x) is consistently larger than

that of LF;s(y, 0x), indicating that the mean of X has a greater impact on the distribution

of Y. The values of LE;;(y,60x) vary across cases. When the skewness of Y is relatively

low, as in case 1, LE;;(y,0x) obtained from the TMSE method closely match those from
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MCS. However, as the skewness of Y increases, so does the discrepancy between LE;;(y, 0x)

obtained from different methods. This difference is more pronounced compared to both the
PDF and global Els, as LE;;(y,0x) depends on the PDF, GE;;, and NT(y, 8y (6x)), as
given in Eq. (22).

6.3. Example 3: Seepage problem below a dam computed using finite element method

The third example involves the study of a steady state confined seepage below a dam as shown

in Fig. 9, which is adopted from Ref. [25]. The seepage discharge is investigated, which is computed

)
A
L | Water
hp [m]5
D[]A BDam C&l[m]?D
5 [m] ) gCutoff wall Sﬂtii gravel
15 [m]+ 11 [m] Silty sand
Impermeable layer,
A g A § )
70 [m] '50 [m] 70 [m]

Figure 9: Schematic graph of the dam in example 3

in terms of an unit width of the dam and measured in units of volume over time and distance as

follows:

Yzmm:—/igw%ﬂm, (50)
CD Yy

where CD represents the downstream side of the dam as shown in Fig 9; k,, o is the vertical
permeability of the second soil layer; and hyy is the hydraulic head, which is solved by the following

differential equation:
O?hyw

O hy

k Wi g

+k =0, i=1,2 (51)

where k,,; and ky,; represent the horizontal and vertical permeabilities of the ith soil layer,
respectively; and x and y denote horizontal and vertical coordinates, respectively. The boundary
conditions for this equation are that: (1) hy over segments AB and CD are 20+hp m and 20
m, respectively, where hp = 5.0 [m]| is the height of water; (2) there is null flow over other
boundaries. This equation is solved numerically applying the finite element (FE) method (see,
e.g. Ref [43]), where the associated model comprises 3413 nodes and 1628 quadratic triangular
elements. The permeabilities, i.e., k;,; and ky,; for ¢ = 1, 2 are considered as random variables,

with the statistical information summarized in Table 7.

27



494

495

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

Table 7: Statistical information of random variables in example 3 [25]

Silty sand Silty gravel
Horizontal kz, 1 Vertical kyy 1 Horizontal ky, 2 Vertical kyy o
Distribution Lognormal Lognormal Lognormal Lognormal
Mean 5 %1077 [m/s] 2 x1077 [m/s] 5 x1076 [m/s] 2 x1076 [m/s]
COV 0.16 0.20 0.16 0.20

In this example, the seepage flow is challenging to characterize due to the geometry of the
problem and the orthotropic properties of the soil permeability. The horizontal and vertical
permeabilities of both the silty sand and silty gravel layers jointly influence the total seepage
discharge, and changes in permeability values lead to variations in the flow paths across the soil
domain. The governing differential equation, combined with heterogeneous boundary conditions,
further contributes to the complexity of the solution, which is obtained numerically using the finite
element method. When these permeabilities are modeled as random variables, their uncertainty
propagates through the system, resulting in nontrivial output characteristics. These features make
the problem representative for evaluating the proposed sensitivity estimation method.

The distribution estimation and SE are conducted using both the TMSE method and MCS
with 10% samples. All scripts were implemented in MATLAB R2023b and executed on a computer
equipped with a 13th Gen Intel(R) Core(TM) i7-1360P @ 2.20 GHz processor. In this example, the
model A(X) is implicit and incorporates a high-dimensional finite element (FE) model, resulting
in an evaluation time of approximately 0.2 seconds per iteration. Consequently, the MCS becomes
time-intensive, requiring about 1.325 x10° seconds to complete, with parallelization employed to
enhance computational efficiency.

To further investigate the impact of numerical methods on the performance of the TMSE
method, the original moments of Y and its derivative with respect to 6;; are approximated by
point estimate method combining with both BDRM and TDRM, while the number of evaluation
points ng is set to be 7. The moments of Y calculated by various methods are summarized
in Table 8, along with the corresponding number of model evaluations nj,; required. Note that
nys needed for computing the moments of Y is identical to that required for both distribution
estimation and sensitivity estimation. The PDF of Y modeled with the aid of the TMNT based
on the moments of Y is compared with the histogram obtained from MCS in Fig. 10. It can be
found that, there is slight difference in the moments of Y obtained by different methods, while
the results of the TDRM is more accurate compared with those of the BDRM. Even though the
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differences exist in moments of Y, the PDFs of Y obtained from different methods matches closely

with the histogram obtained from MCS.

Table 8: Central moments of model outputs obtained from different methods in Example 3

MCS BDRM TDRM
Value R.E. (%) Value R.E. (%)
Oy1 (x107SL/h/m ) 1.7084 1.7084 0.0022 1.7084 0.0022
Oys (x107"L/h/m) 1.6851 1.6850 0.0075 1.6850 0.0058
Oy3 0.2839 0.2795 1.5490 0.2811 0.9576
nu 106 457 — 5641 —

R.E. denotes the relative error compared with the results of MCS.

2.5

N EMCS
/ 5: - - TMSE-BDRM
2.0 7L — TMSE-TDRM]]

fy (y,0x)(x10°)

1.2 1.4 1.6 1.8 2.0 2.2 2.4
y(x1075L/h/m)

Figure 10: PDF of model output for example 3

The global SIs and Els are compared in Figs. 11 and 12, respectively. Due to the limited

number of samples in the MCS, which are insufficient for stable estimation of G/S%, only the

ij
global SIs and Els corresponding to the mean and standard deviation of Y are shown. It is
evident that the results obtained using the TMSE method closely align with those from MCS.
There is no significant difference in the results obtained using BDRM and TDRM for TMSE
method. Notably, the sign of the global EI, GE3, derived from the TMSE method differs from
that obtained through MCS. However, the sign of G'S3, remains consistent across both methods.
This discrepancy arises for global elasticities that have associated a small global sensitivity, which

is an issue which has already been observed in a different context in [25|. However, the global

sensitivities are estimated with small errors.
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Figure 11: Global sensitivity indices from different methods for example 3
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Figure 12: Global elastisity indices from different methods for example 3
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Figure 13: Local Els of model output in example 3

The local Els are compared in Figs. 13a and 13b. These figures demonstrate that the local
Els with respect to the mean values of the random variables, i.e., LE;(y, 0x), derived using the
TMSE method are consistently in close agreement with those from MCS, for moments obtained
through both BDRM and TDRM. When considering the standard deviation of the inputs, the
local Els LE;(y,0x) obtained from the TMSE method using moments from TDRM also show
good agreement with the MCS results. However, the TMSE method combined with BDRM shows
slight deviations from the exact values. These deviations stem from errors in moment estimation,

which are amplified through the normal transformation and affect the final sensitivity evaluation.
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This suggests that, while BDRM provides sufficient accuracy for distribution and global sensitivity

estimation, it may be less effective for assessing the sensitivity of the output CDF.

7. Discussion and Conclusions

The third moment normal transformation based sensitivity estimation (TMSE) method is in-
troduced to estimate the sensitivity of model output stochastic properties with respect to input
distribution parameters. This method defines two sensitivity indices (SIs): one that considers
the first three moments and another focused on the cumulative failure probability. Practical ap-
proximation formulas for these SIs are developed with the aid of the TMNT, and a dimension
reduction numerical approach is implemented to enhance computational efficiency. The method
is demonstrated through three case studies, which include highly nonlinear models and compu-
tationally expensive FE models. Results indicate that different distribution parameters of input
random variables exert significantly varied influences on the stochastic properties of model out-
puts. Thus, sensitivity estimation with respect to these distribution parameters is essential for
a comprehensive understanding of model behavior. The numerical techniques developed for the
TMSE method are both efficient and sufficiently accurate.

While the SIs defined in the TMSE method are theoretically robust for any problem, the nu-
merical implementation has some constraints that pave the way for future research. The TMNT
model, a pseudo-normal transformation technique based on the first three moments, provides reli-
able results when these moments adequately represent the output distribution. However, it fails to
capture strong non-Gaussian behavior (the absolute skewness exceeds 2), heavy-tailed, bounded,
multimodal, or mixture models. To enhance robustness, future work can explore the use of more
flexible distribution models, such as the maximum entropy principle. The calculation of response
moments via the dimensional reduction method discussed in Sections 5.1 and 5.2 implies quadratic
scaling of computational cost with dimensionality and represents a challenge for large-scale ap-
plications. For high-dimensional problems, alternative moment estimation techniques, such as
sampling-based methods or linear-moment-based approaches, may offer improved scalability at
the expense of increased sampling effort, see e.g. Ref. [44|. A systematic comparison of these

strategies is left for future work.

31



568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

Acknowledgement

The study is partially supported by the Alexander von Humboldt Foundation for the postdoc-
toral grant of Xuan-Yi Zhang, and the Henriette Herz Scouting program (Matthias G.R. Faes).
The authors gratefully acknowledge the supports.

Appendix A. Sensitivity estimation of weighted summation of independent random
variables

Appendiz A.1. Global sensitivity estimation

Consider a model defined as a weighted summation of n independent random variables X, the

first three moments of the model output Y can be analytically computed as follows:

Oy, = kOx,, (A.1)

Oy, = /K202 , A2
2 Xg

Oy, = X , (A.3)

where k is a n-dimensional row vector of the weights for X; Ox, is the n-dimensional column vectors
of ith central moments of X; o denotes Hadamard product; and (-)*/ denotes the Hadamard power
j of the argument. As 0y can be explicitly computed from Ox as given in Eqs. (A.1)-(A.3), the
global SI can be directly obtained by taking the derivative of 8y with respect to 8x. When X

follows two-parametric distribution, dfy,/06x, (i = 1,2, 3 and j =1, 2) are formulated as follows:

Oy,

=k (A4)
o =Ko g -

gg_i et (;:; - g:% (A.6)

ggz P 99@5 o (9X2 o gz—zz + 39X3) - 3923 : ggz. (A7)

For two-parameter distributions, 060x,/06x; is deterministic and can be obtained based on the

specific formula of skewness of X.
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ssa Appendiz A.2. Local sensitivity estimation

[+

585 To estimate the local SI, the key point is to construct the CDF of Y. For A(X) = kX, the inverse

6 function of h(X) with respect to X; is monotonic, denoted as h; '(X_;,y), where X, represents

<]

7 the random vector X with X; excluded. Based on Eq. (2), when h;*(X_;, ) is monotonically

ses increasing with y, Fy(y,0x) and fy(y, Ox) can be reformulated as follows:

~+o0 +o0 Yx_iy)
Fy(y,0x) / / [/ ’ fx (xZ,OX)dx,] fx_(x,0x_,)dx_; (A.8)

—E{FX (X_“y) ax}}

+00 +o0 -1 )
v (y, 0x) / / {fx "(x—i,y), exi)%};“y)} fx_(x_;,0x_,)dx_; (A.9)

—E{fx [ X—Zuy)/k]}

s where k; is the weight of X, which is positive for Eqs. (A.8) and (A.9). Similarly, when h; *(X_;, y)
so0 is monotonically decreasing with v, i.e., k; is negative, Fy (y, 0x) and fy (y, 0x) can be reformulated

s as follows

v = [ ” a - [ / R <xz,ex>dasl] Fru (e Ox_ ) (A.10)

(x—4,y)

_1—E{FX [ (szaw OXJ}’

+o0 +o00 -1 X .
(4, 0x) / / [1— Fo(h (%0 y), exi)%y—“y)] fx (%0 0x dxi (A1)

=1-E{fx [hi'(x=y)/k]} -

s When there is only two random variables in X as investigated in example 1, the integrals required
s3 for constructing Fy (y,0x) and fy(y,0x) are single dimensional, which can be easily computed.
se - With Fy(y,0x) obtained, the local SI can be computed using the central difference method as

so5  follows:

Fy(y,0x1) — Fy(y, 0x2)
200y,

so6  where (59&_]_ is a relatively small value with respect to fx, ; 0x1 and Ox2 are the moments of X

so7 - with fx,; set to be QXU—&—(S(;XZ_]_ and HXi].—égXij, respectively.
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Appendix B. Sensitivity analysis using Monte Carlo Simulation

The definition of global ST given in Eq. (13) shows that, the key task for estimating global SI
is to compute the derivative of original moments of Y with respect to 6;;. Based on Eq. (16), such

derivative can be approximated from samples as follows:

NTYECS

> gV, (B.1)

aEk(ex) ~ 1
aeij B chs

where Ny is the total number of samples generated; and x() is the Ith sample generated. Sub-
stitute Eq. (B.1) into Eq. (13), the global SI can be readily obtained.
To estimate the local SI, CDF should be firstly estimated. Based on Eq. (2), the CDF of Y

can be approximated from the samples as follows:

1 chs

k(7™ |31,
N I()A((l)7 g//\(k‘)) — ran (y |y1-chs) (B2)

Fy (5", 0x) = Nones ’

=1

where §*) is the value of Y estimated as h(x®); rank(4®)) denotes the rank of §* within the set
V1i:N,..; and y1.n, .. is the vector of all values of Y derived from the samples, sorted in ascending

order. Combine Egs. (9) and (B.2), local SI can be estimated using MCS as follows:

. 1 .
LS5(§%, 0x) = <= mij(&}]) e 0x.) (B.3)

i,rank’
chs =1

where 2" . 1s the [th sample in the set of X;.x,,..; and X;.x,,.. is the vector of all samples of X,

i,ran.

sorted in ascending order based on the value of h(x*))

Appendix C. Moment estimation based on trivariate dimension reduction method

For strong nonlinear problem, where GG(X) shows significant nonlinearity in Gaussian space,
the trivariate dimension reduction method (TDRM) [39] is advised to be applied. In the TDRM,

the kth original moments of a performance function, i.e., Ex(8), is approximated by a summation
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s15  of some one-, two- and three-dimensional functions as follows:

SN HICHURTETD DI
m=1I>m s>l ) m=11>m (C.1)
N (n—3)2(n— 2) ZE:Z(G) B (n— 3)(ng2)(n— 1)[G(u)]k,

Bh(0) = 50 3 S P PP Gl o rl0), - r10), - (ra10), )], (C2)

rm=1r=1rs=1

616

Z Z lul’ ) Am(rmw)?”'7j3l(Tl|9)7"'an)]k7 (C3)

rm=1r=

617

= Z Prm[G(:ula"'7£m(rm’0)>"'7un)]k7 (C4)

rm=1
as where P, is the weight of the rsth evaluation point. Based on the TDRM, 0Ej(0)/00;; defined

6

=

o in Eq. (16) can be calculated as follows:

050 TS 095 S i

m=11>m s> ) m=11>m ) X (05)
. (n— 3)2(n —2) mZ:le(O) - (n— 3)(ng )(n — )gz‘jk(ﬂ)a

mls ZZZP PP gzgk,ula 7Am(rmle),“',i'z(rz|9),~~,is(rsle),-‘-,un], (C6)

rm=1r=1rs=1

Z Z P'rlgz]k My Am(rm|0)7"’7j;l(71l|0)7"'7,un]7 (07)

rm=1r=

0) = Z PngZ]k[Mlﬂv‘%m(rm|0)7HM’VL] (C8)
=1
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