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 A B S T R A C T

Time-dependent reliability analysis has proven to be an invaluable tool for assessing the safety 
levels of engineering structures subject to both randomness and time-varying factors. In this 
context, single-loop active learning Kriging methods have demonstrated a favorable trade-
off between efficiency and accuracy. However, there remains significant potential for further 
improvement, particularly in addressing computationally expensive time-dependent reliability 
problems. This paper introduces a novel single-loop Bayesian active learning method using 
Gaussian process regression (GPR) for time-dependent reliability analysis, termed ‘Integrated 
Bayesian Integration and Optimization’ (IBIO). The key idea is to integrate the Bayesian 
integration method originally developed for static reliability analysis and the Bayesian opti-
mization for solving the global optima of expensive black-box functions. First, we introduce a 
pragmatic estimator for the time-dependent failure probability. Second, a new stopping criterion 
is proposed to determine when the active learning process should be terminated. Third, three 
learning functions as three alternatives are developed to identity the best next time instant 
where to evaluate the performance function. Fourth, one new learning function is presented to 
select the best next sample for the random variables and stochastic processes given the time 
instant. Five numerical examples are presented to demonstrate the effectiveness of the proposed 
IBIO method. It is empirically shown that the method can produce accurate results with only 
a small number of performance function evaluations.

1. Introduction

Ensuring the safety of engineering structures is essential for protecting lives, preserving property, maintaining functionality, and 
supporting sustainable development. However, most engineering structures in operation are inevitably influenced by the combined 
effects of randomness and time-varying factors. For example, randomness may stem from the natural variability in material properties 
and loading conditions, while time-varying factors can result from corrosion, fatigue, and deterioration. As a result, time-dependent 
reliability analysis has proven to be an invaluable tool for evaluating the safety levels of engineering structures. Over the decades, 
numerous methods have been developed to advance this field of study. These existing methods can be broadly categorized into three 
groups: (1) out-crossing rate methods; (2) composite limit state methods; and (3) extreme value methods.

As the most classical approach, out-crossing rate methods express the time-dependent failure probability as an integral of the 
out-crossing rate (i.e., the rate at which a performance function crosses zero from safe into failure over time). This concept was 
first introduced by Rice [1], who developed what is now known as the Rice formula. Since then, various out-crossing rate methods 
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have been developed for time-dependent reliability analysis, including the PHI2 [2], PHI2+ [3], moment-based PHI2 (MPHI2) [4], 
PHI2++ [5], and many others [6–8]. However, these methods rely on the potentially unwarranted assumption that all out-crossing 
events are mutually independent, which can lead to significant errors when the events exhibit strong dependence. Furthermore, 
out-crossing rate methods often require a substantial number of performance function evaluations, rendering them computationally 
prohibitive for problems involving expensive-to-evaluate performance functions.

Alternatively, composite limit state methods discretize a time-dependent performance function into a sequence of instantaneous 
performance functions at discrete time nodes, thereby transforming a time-dependent reliability problem into a static series-system 
reliability problem. Examples of such methods include the first-order reliability method (FORM) [9–11], line sampling [12], 
importance sampling [13,14] and subset stimulation [15]. It is well known that FORM loses accuracy in moderate and highly 
nonlinear problems, while stochastic simulation methods typically require a large number of performance function evaluations to 
achieve convergence.

Like composite limit state methods, extreme value methods also transform a time-dependent reliability problem into a time-
independent counterpart. This, however, is achieved by considering the extreme value distribution (EVD) of the performance 
function with respect to time. In this context, some EVD estimation methods have been developed especially for time-dependent 
reliability analysis [16–18]. In addition, numerous active learning Kriging (or Gaussian process regression (GPR)) methods have also 
been proposed, which can be broadly categorized into: double-loop active learning Kriging methods and single-loop active learning 
Kriging methods. Double-loop active learning Kriging methods involve constructing an extreme response Kriging model in the outer 
loop, while a separate Kriging model is built in the inner loop to identify the extreme response. Representative examples in this 
category include the nested extreme response method [19], mixed efficient global optimization (EGO) method [20], parallel EGO 
method [21] and importance sampling-based double-loop Kriging method [22]. On the contrary, single-loop active learning Kriging 
methods directly construct a global response Kriging model for the performance function. A non-exhaustive list of such methods 
includes the single-loop Kriging method [23], active failure-pursuing Kriging method [24], single-loop Kriging method considering 
the first failure instant [25], real-time estimation error-guided active learning Kriging method [26], estimation variance reduction-
guided adaptive Kriging method [27], structural state classification probability reduction adaptive Kriging method [28], subdomain 
uncertainty-guided Kriging method [29] and single-loop GPR based-active learning method [30]. These single-loop methods have 
demonstrated a favorable trade-off between efficiency and accuracy in time-dependent reliability analysis. However, it is still highly 
desirable to further reduce the computational costs while maintaining accuracy, particularly for solving real-world time-dependent 
reliability problems.

To this end, this paper presents a novel single-loop Bayesian active learning method using GPR for computationally expensive 
time-dependent reliability analysis, which is termed ‘Integrated Bayesian Integration and Optimization’ (IBIO). As the name 
suggests, the proposed method combines the Bayesian integration technique, originally developed for time-independent reliability 
analysis [31], with Bayesian optimization for solving the global optima of costly black-box functions [32]. The IBIO method is 
versatile and applicable regardless of whether stochastic processes are involved. Moreover, it provides not only the time-dependent 
failure probability over a specified time interval but also the evolution of the failure probability within the interval as a byproduct. 
The main contributions can be summarized as follows. First, we introduce a pragmatic estimator for the time-dependent failure 
probability which relates not only to the posterior mean function of the GPR, but also the posterior standard deviation function. 
Second, based on the estimator, a new stopping criterion is proposed to determine when the iterative learning process should halt, 
which ensures that it is neither prematurely terminated nor continued unnecessarily. Third, three novel learning functions as three 
alternatives are proposed to identify the best next time instant where to evaluate the performance function. Fourth, one new learning 
function is presented to select the best next sample for the random variables and stochastic processes given the identified time instant 
that improves the GPR model the most.

The remainder of this paper is organized as follows. Some preliminaries are provided in Section 2. Section 3 presents the proposed 
IBIO method for time-dependent reliability analysis. Five numerical examples are investigated in Section 4 to demonstrate the 
proposed method. Finally, concluding remarks are given in Section 5.

2. Preliminaries

This section provides background information on time-dependent reliability analysis. Section 2.1 presents the formulation of the 
time-dependent reliability problem. This is followed by the discretization of stochastic processes in Section 2.2. Finally, the Monte 
Carlo Simulation (MCS) method for solving the time-dependent failure probability is discussed in Section 2.3.

2.1. Problem formulation

Let 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑1 ] ∈ 𝑿 ⊆ R𝑑1  represent a vector of 𝑑1 continuous random variables with support 𝑿 , defined on the 
probability space (𝛺𝑿 ,𝑿 ,𝑿 ), where 𝛺𝑿 is the sample space, 𝑿 is the 𝜎-algebra of measurable events and 𝑿 is the probability 
measure. Similarly, let 𝒀 (𝑡) = [𝑌1(𝑡), 𝑌2(𝑡),… , 𝑌𝑑2 (𝑡)] ∈ 𝒀 ⊆ R𝑑2  denote a vector of 𝑑2 continuous-time stochastic processes with 
support 𝒀  (𝑡 is the time parameter), defined on the probability space (𝛺𝒀 ,𝒀 ,𝒀 ). In this work, the vector of stochastic processes 
will also be expressed as 𝒀 (𝜔𝒀 , 𝑡) if desired, where 𝜔𝒀 ∈ 𝛺𝒀 , emphasizing that 𝒀  is actually a function of both 𝜔𝒀  and 𝑡. Consider the 
performance function (also known as the limit state function) 𝑔(𝑿, 𝒀 (𝑡), 𝑡), where 𝑡 ∈ [𝑡 , 𝑡 ] represents the time period of interest. 
0 𝑓
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By convention, failure occurs when 𝑔 takes a negative value at any time within [𝑡0, 𝑡𝑓 ]. The corresponding time-dependent failure 
probability is formally defined as: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) = P
{

𝑔(𝑿, 𝒀 (𝑡), 𝑡) < 0,∃𝑡 ∈ [𝑡0, 𝑡𝑓 ]
}

, (1)

where P is the probability operator, and ∃ means ‘there exists’. The so-called time-dependent reliability 𝑅(𝑡0, 𝑡𝑓 ) is the complement of 
𝑃𝑓 (𝑡0, 𝑡𝑓 ), i.e., 𝑅(𝑡0, 𝑡𝑓 ) = 1−𝑃𝑓 (𝑡0, 𝑡𝑓 ). By considering the minimum value of 𝑔(𝑿, 𝒀 (𝑡), 𝑡) over the interval [𝑡0, 𝑡𝑓 ], the time-dependent 
failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ), as defined in Eq. (1), is equivalent to: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) =P
{

min
𝑡∈[𝑡0 ,𝑡𝑓 ]

𝑔(𝑿, 𝒀 (𝑡), 𝑡) < 0
}

=∫𝑿
∫𝛺𝒀

𝐼
(

min
𝑡∈[𝑡0 ,𝑡𝑓 ]

𝑔(𝒙, 𝒚(𝜔𝒀 , 𝑡), 𝑡) < 0
)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

=∫𝑿
∫𝛺𝒀

max
𝑡∈[𝑡0 ,𝑡𝑓 ]

𝐼
(

𝑔(𝒙, 𝒚(𝜔𝒀 , 𝑡), 𝑡) < 0
)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

,

(2)

where 𝐼(⋅) is the indicator function: it returns one if its argument is true, and zero otherwise; 𝑓𝑿 (𝒙) is the joint probability density 
function (PDF) of 𝑿. The equivalence between the second and final lines of Eq. (2) is straightforward, but the second-line form is 
far more common in the literature while the final form seldom appears. We include the latter here to facilitate later developments.

2.2. Discretization of stochastic processes

For computational purposes, the stochastic processes input to the performance function need to be discretized. In this context, 
numerous well-established techniques are available in the literature, including the Karhunen–Loève (KL) expansion [33], expansion 
optimal linear estimation [34], orthogonal series expansion [35], spectral representation [36], among many others. For the proposed 
method presented in Section 3, there are in principle no limitations on the types of stochastic processes and the methods used to 
discretize them. However, for illustration purposes, we only consider a second-order (i.e., square-integrable) stochastic process 𝑌 (𝑡)
and employ the KL expansion as an example. Let 𝜇(𝑡), 𝑐(𝑡1, 𝑡2) denote the mean and covariance functions of 𝑌 (𝑡), respectively. The 
time interval [𝑡0, 𝑡𝑓 ] is first discretized into 𝑛𝑡 equally spaced time points, i.e., 𝑡0, 𝑡1,… , 𝑡𝑛𝑡−2, 𝑡𝑛𝑡−1 = 𝑡𝑓 . A truncated KL expansion of 
𝑌 (𝑡) is given by: 

𝑌 (𝑡) = 𝜇(𝑡) +
𝑝
∑

𝑗=1

√

𝜆𝑗𝜉𝑗𝜑𝑗 (𝑡), 𝑡 = 𝑡0, 𝑡1,… , 𝑡𝑛𝑡−1, (3)

where 𝜆𝑗 is the 𝑗th dominate eigenvalue of the covariance matrix 𝑪 =
[

𝑐(𝑡𝑖1 , 𝑡𝑖2 )
]

 (i.e., 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛𝑡 ) and 𝜑𝑗 (𝑡) is the 
corresponding eigenfunction; {𝜉𝑗

}𝑝
𝑗=1 is a set of 𝑝 uncorrelated standardized random variables; 𝑝 is the number of truncation terms, 

which can be determined by the approximate explained variance ratio: 

𝑝 = argmin
𝑝∈[1,2,…,𝑛𝑡]

{∑𝑝
𝑗=1 𝜆𝑖

∑𝑛𝑡
𝑗=1 𝜆𝑖

≥ 𝛿

}

, (4)

where 𝛿 ∈ (0, 1] is a user-defined threshold. A larger 𝛿 retains more of the process variance but requires more random variables to 
represent the stochastic process. Common choices in the literature are 𝛿 = 0.95 or 0.99. 

2.3. Time-dependent reliability analysis by MCS

The time-dependent failure probability defined early can be solved by using the crude MCS. The estimator of 𝑃𝑓 (𝑡0, 𝑡𝑓 ) is given 
by: 

𝑃𝑓 (𝑡0, 𝑡𝑓 ) =
1
𝑁

𝑁
∑

𝑠=1
𝐼
(

min
𝑖=0,1,…,𝑛𝑡−1

𝑔(𝒙(𝑠), �̂�(𝑠)(𝑡𝑖), 𝑡𝑖) < 0
)

, (5)

where {𝒙(𝑠)}𝑁𝑠=1 is a set of 𝑁 random samples of 𝑿; 
{

�̂�(𝑠)(𝑡𝑖)
}𝑁

𝑠=1
 is a set of 𝑁 random samples of 𝒀 (𝑡𝑖) generated, for example, by 

using the KL expansion. The associated coefficient of variation (CoV) is expressed as: 

CoV
[

𝑃𝑓 (𝑡0, 𝑡𝑓 )
]

=

√

√

√

√

1 − 𝑃𝑓 (𝑡0, 𝑡𝑓 )

(𝑁 − 1)𝑃𝑓 (𝑡0, 𝑡𝑓 )
. (6)

The crude MCS offers a robust tool for estimating the time-dependent failure probability. However, it requires a total of 𝑁 × 𝑛𝑡
evaluations of the performance function 𝑔, which can be computationally prohibitive when each evaluation is time-consuming, as 
is often the case in practice.
3 
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Fig. 1. General workflow of the proposed IBIO method.

3. Proposed IBIO method

In this section, the proposed IBIO method is introduced for time-dependent reliability analysis. Section 3.1 provides an overview 
of the method. The time-dependent failure probability estimator, stopping criterion and learning functions are presented in 
Sections 3.2–3.4, respectively. Finally, the procedure for implementing the proposed method is outlined in Section 3.5.

3.1. Overview of the proposed method

The core idea of the proposed IBIO method is to iteratively refine a GPR model of the performance function (as described 
in Appendix) until the predicted time-dependent failure probability achieves a desired level of accuracy. Starting with an initial 
set of training data, the method builds a probabilistic surrogate model for the performance function using GPR to predict the 
time-dependent failure probability. If a stopping criterion is not met, a new point is selected using a learning function, and the 
corresponding output of 𝑔 is obtained and the training data is enriched. This updated dataset is then used to refine the GPR model 
in the next iteration. The process repeats until the stopping criterion is satisfied. The general workflow of the proposed method is 
shown in Fig.  1, with some notations explained in Appendix.

3.2. Time-dependent failure probability estimator

Assuming a GPR-based prediction model 𝑔𝑛 has been constructed for the performance function 𝑔 (see Appendix), the next step is 
to evaluate the time-dependent failure probability using this model. This requires formulating an estimator for the time-dependent 
failure probability. A straightforward approach, commonly adopted in existing methods, is to use the posterior mean function, 𝑚𝑛, 
as a substitute of 𝑔 to predict the time-dependent failure probability. In this study, however, an alternative approach is proposed as 
introduced below.

According to the previous studies on time-independent reliability analysis [37–39], the posterior mean function of 𝐼 can be 
obtained as: 

𝑚𝐼𝑛 (𝒙, �̂�(𝑡𝑖), 𝑡𝑖) = 𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, �̂�(𝑡𝑖), 𝑡𝑖)

)

, 𝑖 = 0, 1,… , 𝑛𝑡 − 1, (7)

where 𝐼𝑛 denotes the posterior distribution of the indicator function 𝐼 ; 𝛷 is the cumulative distribution function of the standard 
normal variable; 𝑚𝑔𝑛  and 𝜎𝑔𝑛  are the posterior mean and standard deviation functions of 𝑔, respectively.

By replacing the indicator function 𝐼 in Eq. (2) with its posterior mean function 𝑚𝐼𝑛  in Eq. (7), we can obtain an alternative 
estimator for time-dependent failure probability: 

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) = ∫𝑿
∫𝛺𝒀

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

. (8)

It should be noted that if 𝑛𝑡 → ∞ and 𝜎𝑔𝑛 → 0, 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) theoretically approaches to 𝑃𝑓 (𝑡0, 𝑡𝑓 ).  Similar estimators have been 
developed in slightly different contexts or from different perspectives in [40,41]. Due to the analytical intractability, the estimator 
of the time-dependent failure probability, as defined in Eq. (8), necessitates numerical or analytical approximation in practice. In 
this study, we employ the MCS method due to its simplicity and robustness.
4 
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The MCS estimator of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) is given by: 

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) =
1
𝑁

𝑁
∑

𝑗=1

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙

(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖)

)

, (9)

where {𝒙(𝑗)}𝑁𝑗=1 is a set of 𝑁 random samples generated according to 𝑓𝑿 (𝒙); 
{

�̂�(𝑗)(𝑡𝑖)
}𝑁

𝑗=1
 at a given 𝑖 represents 𝑁 random samples 

of 𝒀 (𝑡𝑖). The associated variance is expressed as: 

Var
[

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
]

= 1
𝑁(𝑁 − 1)

𝑁
∑

𝑗=1

[

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙

(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙
(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖)

)

− 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )

]2

. (10)

3.3. Stopping criterion

Having obtained the time-dependent failure probability estimate, a stopping criterion is required to assess whether the estimate 
reaches a desired level of accuracy. In fact, a well-defined stopping criterion is crucial for the overall efficiency and accuracy of an 
active learning time-dependent reliability analysis method. In this study, we also propose a new stopping criterion.

If we replace the term 𝑚𝑔𝑛  in Eq. (8) with the lower and upper credible bounds of 𝑔, then we can have another two quantities: 

𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) =∫𝑿

∫𝛺𝒀

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖) − 𝑏𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

= ∫𝑿
∫𝛺𝒀

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

+ 𝑏

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

,

(11)

𝑃−
𝑓,𝑛(𝑡0, 𝑡𝑓 ) =∫𝑿

∫𝛺𝒀

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖) + 𝑏𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

= ∫𝑿
∫𝛺𝒀

𝑛𝑡−1max
𝑖=0

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

− 𝑏

)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

,

(12)

where 𝑏 > 0 is the credibility parameter corresponding to a (1 − 𝛼) × 100% credible level, i.e., 𝑏 = 𝛷−1(1 − 𝛼∕2). It is straightforward 
to prove that 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 ) < 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) < 𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) holds. Therefore, 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) can be interpreted as, respectively, an 

optimistic and a conservative estimator of the time-dependent failure probability, in contrast to the nominal estimator 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ). 
Furthermore, as 𝜎𝑔𝑛 → 0, 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 ) → 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) → 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ).

The proposed stopping criterion is defined as follows: 
𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 )

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
< 𝜖3, (13)

where 𝜖3 is a user-specified threshold. This criterion terminates the iterative process when the difference between the conservative 
failure probability estimate 𝑃+

𝑓,𝑛(𝑡0, 𝑡𝑓 ) and the optimistic estimate 𝑃−
𝑓,𝑛(𝑡0, 𝑡𝑓 ) relative to 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) falls below 𝜖3, indicating that 

further iterations provide negligible improvement to the solution. As a side note, the proposed stopping criterion can be seen as an 
extension of Stopping Criterion 3 in [31], generalizing it from time-independent to time-dependent reliability analysis. Similar to 
𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ), 𝑃+

𝑓,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−
𝑓,𝑛(𝑡0, 𝑡𝑓 ) are also evaluated using MCS in this study.

Remark 1. In a manner similar to the stopping criterion in Ineq. (13), we can also define the following two stopping criteria: 
𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 )

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
< 𝜖1, (14)

𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
< 𝜖2, (15)

where 𝜖1 and 𝜖2 are two user-specified thresholds. These criteria extend stopping criteria 1 and 2 from [31], respectively. However, 
only the criterion in Ineq. (13) is considered in this work, in order to avoid an overly lengthy paper.

3.4. Learning functions

If the stopping criterion is not satisfied, a learning function is needed to guide the selection of the optimal next point for evaluating 
the true performance function. This process further refines the GPR-based prediction model for the performance function, as well as 
the predicted time-dependent failure probability. Therefore, an effective learning function is essential for an active learning method 
in time-dependent reliability analysis. To this end, we also develop novel learning functions in this work, guided by the principle 
of considering the so-called minimum time (that is, the time at which the performance function attains its minimum) within the 
reference time interval in an average sense. Specifically, the best next point (denoted as 

{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1)), 𝑡(𝑛+1)
}

) is identified 
5 
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through a two-step procedure: (1) First, the optimal next time instant 𝑡(𝑛+1) is selected by a learning function; (2) Then, the next best 
point 

{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1))
}

 is determined by an another learning function. The first task is based on Bayesian optimization [42], 
where three commonly used learning functions are explored. The objective of this task is to determine the time instant at which the 
performance function reaches its minimum value. However, this is done in an average sense to account for the inherent randomness 
associated with 𝑿 and �̂� (𝑡). It is expected that the identified time instant will be significant for estimating the time dependent 
failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ). The second task leverages the Bayesian probabilistic integration method for time-independent reliability 
analysis [31]. The primary objective of this task is to identify a set of 𝒙 and �̂� for the fixed time instant determined in the first task, 
thereby enhancing our understanding of the performance function at that specific time and its vicinity.

In Bayesian optimization, three well-known learning functions are the lower confidence bound (upper confidence bound in the 
context of maximization), probability of improvement (PI) and expected improvement (EI) [32]. However, these notions may not 
be directly applicable in our case, as our problem is not a pure optimization task. Therefore, special treatment is required, as will 
be described below.

The lower credible bound (LCB) function of 𝑔𝑛 is given by: 

LCB
(

𝑿, �̂� (𝑡𝑖), 𝑡𝑖
)

= 𝑚𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖) − 𝑏𝜎𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖). (16)

where the credibility parameter 𝑏 trades off exploitation against exploration. This expression is actually a stochastic process. In case 
where 𝑿 = 𝒙 and �̂� (𝑡𝑖) = �̂�(𝑡𝑖), the LCB function reduces to a function with respect to only 𝑡𝑖, 𝑖 = 0, 1,… , 𝑛𝑡 −1. If the goal would be 
to find the minimum value of 𝑔(𝒙, �̂�(𝑡𝑖), 𝑡𝑖), the best next time instant 𝑡(𝑛+1) can be chosen by minimizing LCB

(

𝒙, �̂�(𝑡𝑖), 𝑡𝑖
)

. However, 
this is not the objective here. For our case, we further define the integrated LCB (ILCB) function by integrating out 𝑿 and �̂� (𝑡𝑖) from 
the LCB function: 

ILCB(𝑡𝑖) = ∫𝑿
∫𝛺𝒀

[

𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖) − 𝑏𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
]

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

. (17)

The ILCB can be approximated by MCS such that: 

ÎLCB(𝑡𝑖) =
1
𝑁

𝑁
∑

𝑗=1

[

𝑚𝑔𝑛 (𝒙
(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖) − 𝑏𝜎𝑔𝑛 (𝒙

(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖)
]

. (18)

The best next time instant can be selected by minimizing the ÎLCB such that: 

𝑡(𝑛+1) = argmin
𝑡𝑖∈[𝑡0 ,𝑡1 ,…,𝑡𝑛𝑡−1]

ÎLCB(𝑡𝑖). (19)

Alternatively, we can define the PI: 

PI
(

𝑿, �̂� (𝑡𝑖), 𝑡𝑖
)

= 𝛷

(

𝑧min − 𝑚𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

, (20)

where 𝑧min is the minimum value of 𝑍 observed so far, i.e., 𝑧min = min𝑛𝑖=1 𝑧
(𝑖). The PI function is known to be inherently exploitative. 

Taking the expectation of PI gives the integrated PI (IPI): 

IPI(𝑡𝑖) = ∫𝑿
∫𝛺𝒀

𝛷(
𝑧min − 𝑚𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
)𝑓𝑿 (𝒙)d𝒙dP

(

𝜔𝒀
)

. (21)

Similar to LCB, IPI can also be approximated by MCS, which is denoted as ÎPI. Based on ÎPI, the next best time instant is selected 
by: 

𝑡(𝑛+1) = argmax
𝑡𝑖∈[𝑡0 ,𝑡1 ,…,𝑡𝑛𝑡−1]

ÎPI(𝑡𝑖). (22)

In addition to LCB and PI, another option is the EI: 

EI
(

𝑿, �̂� (𝑡𝑖), 𝑡𝑖
)

=
(

𝑧min − 𝑚𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)
)

𝛷

(

𝑧min − 𝑚𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

+ 𝜎𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)𝜙

(

𝑧min − 𝑚𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

𝜎𝑔𝑛 (𝑿, �̂� (𝜔𝒀 , 𝑡𝑖), 𝑡𝑖)

)

,

(23)

where 𝜙 represents the PDF of the standard normal variable. The EI function can strike a balance between exploitation and 
exploration by the two additive terms. Further, we can define the integrated EI (IEI): 

IEI(𝑡𝑖) = ∫𝑿
∫𝛺𝒀

EI
(

𝒙, �̂�(𝜔𝒀 , 𝑡𝑖), 𝑡𝑖
)

𝑓𝑿 (𝒙)d𝒙dP
(

𝜔𝒀
)

. (24)

The MCS is used to approximate IEI, which is denoted as ÎEI. On this basis, the next best time instant is determined by: 

𝑡(𝑛+1) = argmax ÎEI(𝑡𝑖). (25)

𝑡𝑖∈[𝑡0 ,𝑡1 ,…,𝑡𝑛𝑡−1]

6 
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These ILCB, IPI, and IEI criteria can be interpreted as identifying the next promising time instant based on the well-established 
LCB, PI, and EI criteria, but in an average sense. While they offer three options, their performance may vary across different problems, 
which will be analyzed using four numerical examples in Section 4.

After 𝑡(𝑛+1) is obtained, a learning function needs to be defined to identify 
{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1))
}

. With the time instant fixed, this 
can be treated analogously to a time-independent reliability problem. The following learning function is then proposed: 

𝐿3(𝒙, �̂�(𝑡(𝑛+1))) =

[

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

+ 𝑏

)

−𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

− 𝑏

)]

𝑓𝑿 (𝒙)𝑓�̂� (𝑡)(�̂�(𝑡
(𝑛+1))). (26)

This function is derived from the integrand of 𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 ) − 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 ) by omitting the max operator and conditional on 𝑡𝑖 = 𝑡(𝑛+1). It 
is worth mentioning that 𝐿3 can been seen as an adaption of the third learning function proposed in [31] originally developed for 
time-independent reliability analysis. The best next point 

{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1))
}

 is identified by: 
{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1))
}

= argmax
𝑗=1,2,…,𝑁

𝐿3(𝒙(𝑗), �̂�(𝑗)(𝑡(𝑛+1))). (27)

Remark 2. For consistency, if the stopping criterion in Ineq. (14) is used, the following learning function should be used: 

𝐿1(𝒙, �̂�(𝑡(𝑛+1))) =

[

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

)

−𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

− 𝑏

)]

𝑓𝑿 (𝒙)𝑓�̂� (𝑡)(�̂�(𝑡
(𝑛+1))). (28)

If the stopping criterion in Ineq. (15) is used, the following learning function should be used: 

𝐿2(𝒙, �̂�(𝑡(𝑛+1))) =

[

𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

+ 𝑏

)

−𝛷

(

−
𝑚𝑔𝑛 (𝒙, �̂�(𝑡

(𝑛+1)), 𝑡(𝑛+1))

𝜎𝑔𝑛 (𝒙, �̂�(𝑡
(𝑛+1)), 𝑡(𝑛+1))

)]

𝑓𝑿 (𝒙)𝑓�̂� (𝑡)(�̂�(𝑡
(𝑛+1))). (29)

The functions 𝐿1 and 𝐿2 can be regarded as extensions of the first and second learning functions in [31], respectively.

3.5. Implementation procedure of the proposed method

The implementation procedure of the proposed IBIO method is summarized below, alongside a flowchart in Fig.  2.
Step 1: Discretize the time period
Discretize the time period [𝑡0, 𝑡𝑓 ] into 𝑛𝑡 equally spaced time points 𝑡𝑖 = 𝑡0 + 𝑖𝛥𝑡 for 𝑖 = 0, 1,… , 𝑛𝑡 − 1, with 𝛥𝑡 = 𝑡𝑓−𝑡0

𝑛𝑡−1
.

Step 2: Generate an initial sample pool
Generate an initial sample pool 𝑺 =

{

𝒙(𝑗), �̂�(𝑗)(𝑡𝑖), 𝑡𝑖
}

 for 𝑖 = 0, 1,… , 𝑛𝑡 − 1 and 𝑗 = 1, 2,… , 𝑁 , where 𝒙(𝑗) is sampled randomly 
according to 𝑓𝑿 (𝒙), and �̂�(𝑗)(𝑡𝑖) is generated randomly using the KL expansion.

Step 3: Form an initial training dataset
Form a small initial training dataset  = { , 𝒛}, where  =

{

 , ̂(𝒕), 𝒕
}

=
{

𝒙(𝑗), �̂�(𝑗)(𝑡𝑗 ), 𝑡𝑗
}𝑛0

𝑗=1
 and 𝒛 =

{

𝑔(𝒙(𝑗), �̂�(𝑗)(𝑡𝑗 ), 𝑡𝑗 )
}𝑛0

𝑗=1
. 

Here, 𝒕 = {

𝑡𝑗
}𝑛0
𝑗=1 is a vector of 𝑛0 equally spaced time instants over [𝑡0, 𝑡𝑓 ],  =

{

𝒙(𝑗)
}𝑛0
𝑗=1 contains 𝑛0 samples of 𝑿 generated using 

the Hammersley point set, and ̂(𝒕) =
{

�̂�(𝑗)(𝑡𝑗 )
}𝑛0

𝑗=1
 is generated by KL expansion with the Hammersley point set. Let 𝑛 = 𝑛0.

Step 4: Construct a GPR model
Construct a GPR model 𝑔𝑛 for the performance function 𝑔 using the training dataset . This is accomplished in the present study 

with the fitrgp function from the Statistics and Machine Learning Toolbox of Matlab R2024a, with a constant prior mean and an 
anisotropic Gaussian kernel for the prior covariance. The involved hyper-parameters are solved by maximizing the log-marginal 
likelihood with the quasi-Newton method.

Step 5: Calculate the three terms 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ), 𝑃+
𝑓,𝑛(𝑡0, 𝑡𝑓 )  and 𝑃−

𝑓,𝑛(𝑡0, 𝑡𝑓 )
Calculate the time-dependent failure probability estimate 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) via MCS with 𝑺, as well as 𝑃+

𝑓,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−
𝑓,𝑛(𝑡0, 𝑡𝑓 ).

Step 6: Check the stopping criterion #1
If the stopping criterion 𝑃

+
𝑓,𝑛(𝑡0 ,𝑡𝑓 )−𝑃

−
𝑓,𝑛(𝑡0 ,𝑡𝑓 )

𝑃𝑓,𝑛(𝑡0 ,𝑡𝑓 )
< 𝜖3 is satisfied twice in a row, then go to Step 8; otherwise, proceed to Step 7.

Step 7: Enrich the training dataset
First, calculate ÎLCB, ÎPI or ÎEI via MCS with 𝑺. Second, identify the best next time instant 𝑡(𝑛+1) via Eq. (19), Eq. (22) or 

Eq. (25). Third, identify the next best point 
{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1))
}

 using the learning function 𝐿3 via Eq. (27). Fourth, obtain 𝑧(𝑛+1)

by evaluating the performance function 𝑔 at 𝒖(𝑛+1) =
{

𝒙(𝑛+1), �̂�(𝑛+1)(𝑡(𝑛+1)), 𝑡(𝑛+1)
}

. Finally, enrich the existing training dataset with 
the new data, i.e.,  =  ∪

{

𝒖(𝑛+1), 𝑧(𝑛+1)
}

. Let 𝑛 = 𝑛 + 1 and go to Step 4.
Step 8: Check the stopping criterion #2
First, calculate the CoV of 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ), denoted as CoV

[

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
]

. Then, if CoV [

𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 )
]

< 𝜂 is satisfied (𝜂 is a user-specified 
threshold), proceed to Step 10; otherwise, continue to Step 9. Note that this stopping criterion ensures that the sample size of MCS 
is sufficient to maintain the sampling variability below an acceptable level for estimating the time-dependent failure probability. 

Step 9: Enrich the sample pool
First, generate an additional sample 𝑺+ like in Step 2. Then, enrich the existing sample pool with the new sample, i.e., 𝑺 = 𝑺∪𝑺+, 

and proceed to Step 5.
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Fig. 2. Flowchart of the proposed IBIO method.

Step 10: Return the time-dependent failure probability
Return 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ) as the final result of the time-dependent failure probability.

Remark 3. The proposed method is designed for the general case where the time-dependent performance function takes the form 
𝑔(𝑿, 𝒀 (𝑡), 𝑡). As a result, it is also applicable to special cases such as 𝑔(𝑿, 𝑡), 𝑔(𝒀 (𝑡)), 𝑔(𝒀 (𝑡), 𝑡) and 𝑔(𝑿, 𝒀 (𝑡)).

Remark 4. In addition to the time-dependent failure probability 𝑃𝑓,𝑛(𝑡0, 𝑡𝑓 ), the time-dependent failure probability function 𝑃𝑓,𝑛(𝑡0, 𝑡)
for 𝑡 ∈ [𝑡0, 𝑡𝑓 ] can also be obtained as a by-product of the proposed method. For example, 𝑃𝑓 (𝑡0, 𝑡𝑙) for 𝑙 = 0, 1,… , 𝑛𝑡 − 2 can be 
achieved by simply replacing 𝑛𝑡 − 1 with 𝑙 in the right-hand side of Eq. (9). 

4. Numerical examples

In this section, five numerical examples are provided to demonstrate the effectiveness of the proposed IBIO method for time-
dependent reliability analysis. The parameters of the proposed method are set as follows: 𝑁 = 105, 𝑛0 = 10, 𝛿 = 99.5%, 𝑏 = 1.25, 
𝜖3 = 10% and 𝜂 = 2%. Note that the IBIO method is further labeled as IBIO-ILCB, IBIO-IPI, and IBIO-IEI to indicate the learning 
function used to identify the optimal next time instant. For comparison, several existing methods (i.e., eSPT [43], SILK [23], 
AFPK [24] and REAL [26]) are included where applicable. To evaluate robustness, these methods, along with the proposed methods, 
are each run 20 independent times when the results are generated by us. All simulations are conducted on a MacBook Pro (14-inch, 
November 2023) equipped with an Apple M3 chip, 24 GB of RAM, and running macOS Sonoma 14.5.

4.1. Example 1: A benchmark problem

The first numerical example considers a benchmark problem adopted from [43]: 
𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑋2

1𝑋2 − 5𝑋1(1 + 𝑌 (𝑡))𝑡 +
(

𝑋2 + 1
)

𝑡2 − 20, (30)

where 𝑡 ∈ [0, 1]; 𝑋1 and 𝑋2 are two random variables, 𝑌 (𝑡) is a stochastic process, as detailed in Table  1. The time interval [0, 1] is 
discretized into 50 equally spaced time points.
8 
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Table 1
Random variables and stochastic process of Example 1.
 Symbol Distribution Mean Standard deviation Auto-correlation coefficient 
 𝑋1 Normal 3.50 0.25 –  
 𝑋2 Normal 3.50 0.25 –  
 𝑌 (𝑡) Gaussian process 0 1 exp

(

−(𝑡2 − 𝑡1)2
)  

Table 2
Time-dependent failure probability results of Example 1.
 Method 𝑁call 𝑃𝑓 (0, 1) Reference 
 Mean CoV Mean CoV  
 MCS 50 × 107 – 0.3081 0.05% –  
 eSPT 51.9 – 0.3082 1.52% [24]  
 SILK 25.7 – 0.3094 4.03% [24]  
 AFPK 24.4 – 0.3084 2.98% [24]  
 REAL 21.75 – 0.3093 3.21% [30]  
 Proposed IBIO-ILCB 13.20 3.11% 0.3089 0.35% –  
 Proposed IBIO-IPI 13.60 4.40% 0.3081 0.63% –  
 Proposed IBIO-IEI 13.25 3.35% 0.3088 0.43% –  
Note: 𝑁call = the number of calls to the 𝑔-function.

Fig. 3. Time-dependent failure probability function for Example 1.

Table  2 compares the performance of various methods for estimating the time-dependent failure probability 𝑃𝑓 (0, 1). The 
reference failure probability is adopted as 0.3081 (with a negligible CoV of 0.05%), which is given by MCS with 50×107 performance 
function evaluations. The proposed IBIO methods deliver comparable failure probability means with small CoVs (0.35%–0.63%), yet 
require on average fewer than 14 evaluations of the 𝑔 function. In contrast, other methods (i.e., eSPT, SILK, AFPK and REAL) incur 
higher computational cost in terms of 𝑔-function evaluations, and exhibit slightly larger CoVs in their failure probability estimates.

Fig.  3 depicts the statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 1], obtained through 
post-processing the proposed IBIO methods, in comparison to the reference result generated by MCS. As seen, the mean curves 
closely align with the reference, while the mean ± standard deviation (Std Dev) bands remain notably narrow.

4.2. Example 2: A simple supported beam

The second example involves a simple supported steel beam [2], as shown in Fig.  4. The beam has a length of 𝐿 = 5 m, and 
a rectangular cross section with an initial width 𝑏0 and height ℎ0. The cross section undergoes isotropic corrosion over time at a 
constant rate of 2𝑘, where 𝑘 = 3 × 10−5 m. The yield stress of the steel material is denoted as 𝑓𝑦. The beam is subjected to a live 
concentrated load 𝐹 (𝑡) at its mid-span, along with a uniform dead load 𝑞 = 78500𝑏0ℎ0. The time-dependent performance function is 
given by: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) =

(

𝑏0 − 2𝑘𝑡
) (

ℎ0 − 2𝑘𝑡
)2 𝑓𝑦

4
−
(

𝐹 (𝑡)𝐿
4

+
78500𝑏0ℎ0𝐿2

8

)

, (31)

where 𝑡 ∈ [0, 10] year; 𝑏0, ℎ0 and 𝑓𝑦 are three random variables and 𝐹 (𝑡) is a stochastic process, as described in Table  3. The time 
period [0, 10] is discretized into 300 time nodes.

The results of various methods are summarized in Table  4. The reference time-dependent failure probability obtained using MCS 
is 7.71 × 10−3, with a very small CoV of 0.51%. However, this comes at the cost of an exceptionally large computational effort, 
requiring 300×5×106 performance function evaluations. The eSPT, SILK, AFPK, and REAL methods provide reasonable mean values 
for the failure probability estimates with moderate computational effort, requiring an average of 23.20 to 59.33 𝑔-function calls. All 
9 
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Fig. 4. A simple supported beam.

Table 3
Random variables and stochastic process of Example 2.
 Symbol Distribution Mean Standard deviation Auto-correlation coefficient 
 𝑓𝑦 (MPa) Lognormal 180 18 –  
 𝑏0 (m) Lognormal 0.2 0.01 –  
 ℎ0 (m) Lognormal 0.04 0.004 –  
 𝐹 (𝑡) (N) Gaussian process 3500 700 exp

(

−9(𝑡2 − 𝑡1)2
)  

Table 4
Time-dependent failure probability results of Example 2.
 Method 𝑁call 𝑃𝑓 (0, 10) Reference 
 Mean CoV Mean CoV  
 MCS 300 × 5 × 106 – 7.71 × 10−3 0.51% –  
 eSPT 59.33 – 7.68 × 10−3 1.61% [29]  
 SILK 44.67 – 7.75 × 10−3 1.60% [29]  
 AFPK 23.20 – 7.79 × 10−3 1.60% [29]  
 REAL 32.30 9.21% 7.75 × 10−3 2.35% –  
 Proposed IBIO-ILCB 17.70 8.22% 7.67 × 10−3 2.28% –  
 Proposed IBIO-IPI 18.90 7.85% 7.65 × 10−3 3.78% –  
 Proposed IBIO-IEI 18.45 11.32% 7.70 × 10−3 5.72% –  

Fig. 5. Time-dependent failure probability function for Example 2.

IBIO methods require fewer than 19 performance function evaluations on average, outperforming other methods while providing 
reasonable failure probability estimates.

The statistical results of the time-dependent failure probability function 𝑃 (0, 𝑡) for 𝑡 ∈ [0, 10] obtained from the proposed methods 
are depicted in Fig.  5, along with the reference provided by MCS. It is shown that the mean curves agree well with the reference 
and the mean ± std dev bands are narrow.

4.3. Example 3: A cantilever tube

As shown in Fig.  6, this example considers a cantilever tube structure that has been studied extensively [40,44,45]. This structure 
is subject to three forces 𝐹1, 𝐹2 and 𝑃 , as well as a torque 𝑇 (𝑡). The yield strength of the material degrades linearly over time 
𝑠(𝑡) = 𝑠0(1 − 0.01𝑡), where 𝑠0 is the initial yield strength. The time-dependent performance function is defined as: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑠(𝑡) −
√

𝜎2 + 3𝜏2 (𝑡), (32)
𝑥 𝑧𝑥

10 
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Fig. 6. A cantilever tube subject to three forces and one torque.

Table 5
Random variables and stochastic process of Example 3.
 Symbol Distribution Mean CoV Auto-correlation coefficient 
 𝐹1 (N) Normal 1800 0.10 –  
 𝐹2 (N) Normal 1800 0.10 –  
 𝑃 (N) Lognormal 1000 0.10 –  
 ℎ (mm) Normal 5 0.019 –  
 𝑑 (mm) Normal 42 0.02 –  
 𝑠0 (MPa) Normal 500 0.10 –  
 𝑇 (𝑡) (N mm) Gaussian process 1.7 × 106 0.10 exp

(

−4(𝑡2 − 𝑡1)2
)  

Table 6
Time-dependent failure probability results of Example 3.
 Method 𝑁call 𝑃𝑓 (0, 5)

 Mean CoV Mean CoV  
 MCS 100 × 106 – 1.36 × 10−2 0.85%  
 SILK 71.00 11.30% 1.36 × 10−2 2.19%  
 REAL 13.40 26.35% 1.35 × 10−2 16.47% 
 Proposed IBIO-ILCB 20.25 21.55% 1.35 × 10−2 3.54%  
 Proposed IBIO-IPI 18.85 10.51% 1.33 × 10−2 3.31%  
 Proposed IBIO-IEI 18.30 8.14% 1.35 × 10−2 3.68%  

where 𝑡 ∈ [0, 5] year; 𝜎𝑥 and 𝜏𝑧𝑥(𝑡) are given by: 

𝜎𝑥 =
𝑃 + 𝐹1 sin 𝜃1 + 𝐹2 sin 𝜃2

𝜋
4

[

𝑑2 − (𝑑 − 2ℎ)2
]

+

(

𝐹1𝐿1 cos 𝜃1 + 𝐹2𝐿2 cos 𝜃2
)

𝑑

2 × 𝜋
64

[

𝑑4 − (𝑑 − 2ℎ)4
]

, (33)

𝜏𝑧𝑥(𝑡) =
𝑇 (𝑡)𝑑

4 × 𝜋
64

[

𝑑4 − (𝑑 − 2ℎ)4
]
, (34)

in which 𝜃1 = 5◦, 𝜃2 = 10◦, 𝐿1 = 120 mm and 𝐿2 = 60 mm; 𝐹1, 𝐹2, 𝑃 , ℎ, 𝑑 and 𝑠0 are six random variables, and 𝑇 (𝑡) is a stochastic 
process, as reported in Table  5. In this example, the time interval [0, 5] is discretized into 100 time nodes.

Table  6 summarizes the results obtained using different methods, including MCS, SILK, REAL, IBIO-ILCB, IBIO-IPI, and IBIO-
IEI. The reference failure probability provided by MCS is 1.36 × 10−2, with a CoV of 0.85%, achieved at the expense of 100 × 106

performance function calls. SIlK can produce a failure probability mean close to the reference, while a relatively small CoV of 2.19%, 
requiring an average of 71.00 𝑔-function evaluations. REAL reduces the average number of 𝑔-function evaluations to just 13.40, albeit 
with a relatively high CoV of 26.35%. However, its failure probability estimates exhibit significant variability, as indicated by a CoV 
of 16.47%, even though the mean value remains close to the reference result. Compared to SILK and REAL, all IBIO methods strike 
a more favorable balance between efficiency and accuracy. However, it is worth noting that the number of performance function 
evaluations exhibits a high CoV for IBIO-ILCB.

Fig.  7 presents the statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 5] obtained using the 
proposed IBIO methods, alongside the reference result from MCS. It is evident that the mean value curves for all IBIO methods 
closely approximate the MCS reference solution, with narrow mean ± std dev bands.
11 
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Fig. 7. Time-dependent failure probability function for Example 3.

Table 7
Random variables and stochastic process of Example 4.
 Symbol Distribution Mean CoV Auto-correlation coefficient 
 𝐸 (GPa) Normal 200 0.10 –  
 𝐴 (mm2) Normal 2000 0.10 –  
 𝑃1 , 𝑃2 ,… , 𝑃12 (kN) Lognormal 100 0.15 –  
 𝑃0(𝑡) (kN) Lognormal process 1000 0.15 exp

(

−(𝑡2 − 𝑡1)2∕50
)  

Note: The auto-correlation coefficient function for 𝑃0(𝑡) is defined for the underlying Gaussian process.

Table 8
Time-dependent failure probability results of Example 4.
 Method 𝑁call 𝑃𝑓 (0, 50) Time (s)
 Mean CoV Mean CoV Mean CoV 
 MCS 20 × 5 × 105 – 2.81 × 10−2 0.83% 34,808.19 –  
 SILK – – – – –  
 REAL – – – – –  
 Proposed IBIO-ILCB 37.40 18.91% 2.83 × 10−2 2.46% 34.73 –  
 Proposed IBIO-IPI 36.95 13.13% 2.83 × 10−2 2.65% 36.67 –  
 Proposed IBIO-IEI 36.85 11.08% 2.82 × 10−2 2.06% 34.45 –  

4.4. Example 4: A spatial truss structure

The fourth numerical example involves a 120-bar spatial truss structure under thirteen vertical concentrated loads [37], as shown 
in Fig.  8. The structure is modeled as a three-dimensional finite element model using the open-source software framework OpenSees 
(https://opensees.berkeley.edu/). The model consists of 49 nodes and 120 truss elements. It is assumed that all the elements have 
the same cross-sectional area 𝐴 and young’s modulus 𝐸. A time-varying vertical concentrated load 𝑃0(𝑡) is applied to node 0, while 
12 static vertical concentrated loads 𝑃1, 𝑃2, ⋯, 𝑃12 are applied to nodes 1 through 12. The time-dependent performance function is 
defined as: 

𝑔(𝑿, 𝑌 (𝑡)) = 𝛥 − 𝑉0(𝐸,𝐴, 𝑃0(𝑡), 𝑃1, 𝑃2,… , 𝑃12), (35)

where 𝑡 ∈ [0, 50] year; 𝑉0 denotes the vertical displacement of node 0 along the negative of 𝑧-axis; 𝛥 represents the allowable 
displacement, which is set to 100 mm; 𝐸, 𝐴, 𝑃0(𝑡), 𝑃1, 𝑃2, ⋯ and 𝑃12 are given in Table  7. The time period [0, 50] is discretized into 
20 time nodes.

Table  8 presents the results of various methods for estimating the time-dependent failure probability, 𝑃𝑓 (0, 50). The reference 
value of the failure probability is taken as 2.81 × 10−2 (with a CoV of 0.83%), which is provided by MCS with 20 × 5 × 105 model 
evaluations (taking 34,808.18 s ≈ 9.67 h). The results for both SILK and REAL are unavailable as they fail to meet their stopping 
criteria before encountering memory limitations. All the proposed IBIO methods provide reasonably accurate results for the failure 
probability, requiring only about 37 model evaluations and 34.45–36.67 s  on average. It is worth noting that the number of model 
evaluations for IBIO-ILCB exhibits slightly large variability.

Fig.  9 depicts the statistical results of the failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 50] obtained using the proposed IBIO 
methods, alongside the reference curve provided by MCS. It can be observed that: (1) the mean value curves by the proposed 
methods accord well with the reference one; (2) the mean ± std dev bands are rather narrow.
12 
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Fig. 8. A 120-bar spatial truss structure under vertical loads.

Fig. 9. Time-dependent failure probability function for Example 4.

4.5. Example 5: A rigid-frame bridge structure
As a final example, we consider a three-span rigid-frame bridge structure, which is shown in Fig.  10(a). The bridge spans a total 
length of 60 m, divided into three equal 20 m spans, and featuring a constant deck width of 6 m. The deck thickness varies linearly 13 
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Fig. 10. A rigid-frame bridge structure: (a) Schematic diagram; (b) Finite-element mesh.

Table 9
Random variables and stochastic process of Example 5.
 Symbol Distribution Mean Standard deviation Auto-correlation coefficient 
 𝐸𝑑,0 Lognormal 30 GPa 3.0 GPa –  
 𝐸𝑝,0 Lognormal 35 GPa 3.5 GPa –  
 𝑄(𝑡) Gaussian process 1000 kN/m2 150 kN/m2 exp

(

−|𝑡2 − 𝑡1|∕25
)  

from 1 m at the end supports to 2 m at the pier locations. Two rectangular piers — each 3 m wide, 6 m long, and 10 m high — are 
positioned at the 20 m and 40 m marks along the deck. A three-dimensional finite-element model is built in MATLAB’s PDE Toolbox 
(Fig.  10(b)), with fixed boundary conditions applied to the deck’s end faces and the piers’ base faces, and a uniform vertical load 𝑄(𝑡)
imposed on the deck’s top surface. The Young’s moduli of the deck and piers degrade over time following 𝐸𝑑 (𝑡) = 𝐸𝑑,0(1−𝛾 log(1+ 𝑡))
and 𝐸𝑝(𝑡) = 𝐸𝑝,0(1− 𝛾 log(1+ 𝑡)), where 𝐸𝑑,0 and 𝐸𝑝,0 are the initial Young’s modulus and 𝛾 = 0.05 is adopted in this study. Both deck 
and piers share a Poisson’s ratio of 0.20. The time-dependent performance function is defined as: 

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝛥 − 𝑉𝑚(𝐸𝑑,0, 𝐸𝑝,0, 𝑄(𝑡), 𝑡), (36)

where 𝑡 ∈ [0, 5] year; 𝑉𝑚 denotes the vertical deflection of the deck at mid-span; 𝛥 is the maximum allowable deflection, which is 
specified as 0.05 m. The involved random variables and stochastic process are listed in Table  9. The time period [0, 5] is discretized 
into 20 time nodes.

Table  10 presents the results obtained with different methods. Since a full MCS is computationally infeasible for this example, 
we adopt the mean value of the time-dependent failure probabilities from the SILK method as the reference. The reference value 
is 8.62 × 10−2 with a CoV of 0.83%, achieved at an average cost of 32.80 model evaluations and 27.95 s. The REAL exhibits large 
variability for the number of model evaluations (a CoV up to 20.90%), and also for the time-dependent failure probabilities (a CoV 
of 9.84%). Furthermore, the mean value of time-dependent failure probabilities deviates markedly from the reference. By contrast, 
all the proposed IBIO methods show reasonable variability and yield mean failure probabilities that closely match the reference. 
Note that these methods only require an average of about 16 performance function calls and 5 s to run, which is far less than SILK.

The statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 5] are shown in Fig.  11, together with 
the reference from SILK. It can be seen that the mean ± std dev bounds are quite narrow and the mean curves are close to the 
reference.
14 
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Table 10
Time-dependent failure probability results of Example 5.
 Method 𝑁call 𝑃𝑓 (0, 5) Time (s)
 Mean CoV Mean CoV Mean CoV 
 SILK 32.80 12.73% 8.62 × 10−2 0.83% 27.95 –  
 REAL 15.90 20.90% 8.26 × 10−2 9.84% 6.46 –  
 Proposed IBIO-ILCB 15.65 6.31% 8.71 × 10−2 0.79% 4.74 –  
 Proposed IBIO-IPI 15.70 5.51% 8.73 × 10−2 1.34% 4.90 –  
 Proposed IBIO-IEI 16.10 8.99% 8.73 × 10−2 1.08% 4.95 –  

Fig. 11. Time-dependent failure probability function for Example 5.

5. Concluding remarks

This paper presents a novel single-loop Bayesian active learning method for computationally expensive time-dependent reliability 
analysis, called ‘Integrated Bayesian integration and Optimization’ (IBIO). The underlying idea is to construct a computationally 
efficient Gaussian process regression model to replace the original expensive-to-evaluate performance function, leveraging a Bayesian 
active learning approach. This is achieved by ingeniously integrating the Bayesian integration for static reliability analysis and the 
Bayesian optimization for finding the global optima of expensive black-box functions. Specifically, we first introduce a pragmatic 
estimator for the time-dependent failure probability. Based on this estimator, a novel stopping criterion is then proposed to determine 
when to terminate the active learning process. Furthermore, new learning functions are also proposed to identify the promising 
point where to evaluate the true performance function next when the stopping criterion is not reached. More precisely, three 
alternative learning functions are formulated to select the best next time instant from a Bayesian optimization perspective, but in an 
average sense. In addition, another learning function, adapted from one Bayesian integration method for static reliability analysis, 
is introduced to guide the selection of the next optimal sample for random variables and stochastic processes at the identified time 
instant. The proposed method is applicable whether or not the performance function is subject to stochastic processes. Besides, it 
can provide not only the time-dependent failure probability over the reference time interval, but also the evolution of the failure 
probability over the interval as a by-product. Numerical results indicate that the proposed method can significantly reduce the 
number of performance function evaluations while maintaining high accuracy. In addition, none of the three proposed learning 
functions for selecting the optimal next time instant consistently and significantly outperforms the others.

While the proposed method exhibits considerable strengths, several avenues for future improvement remain. First, extending the 
approach to high-dimensional problems remains a significant task. Second, accurately estimating very small failure probabilities 
will likely demand more efficient techniques than crude MCS.
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Appendix. Brief introduction to Gaussian process regression

For notational simplicity, we denote the input of the performance function as 𝒖 and the corresponding output as 𝑧, i.e., 𝒖 =
[𝒙, �̂�(𝑡), 𝑡] and 𝑧 = 𝑔(𝒖). GPR places a GP prior over the performance function: 

𝑔0(𝒖) ∼ (𝑚𝑔0 (𝒖), 𝑘𝑔0 (𝒖, 𝒖
′)), (A.1)

where 𝑔0 denotes the prior distribution of 𝑔 before seeing any observations; 𝑚𝑔0  and 𝑘𝑔0  are the prior mean and covariance functions, 
respectively.

Given a dataset of 𝑛 observations,  = { , 𝒛}, where   is an 𝑛-by-(𝑑1 + 𝑑2 + 1) matrix with its 𝑖th row being 𝒖(𝑖) and 𝒛 is an 
𝑛-by-1 vector with its 𝑖th element being 𝑧(𝑖) = 𝑔(𝒖(𝑖)) for 𝑖 = 1, 2,… , 𝑛, conditioning the GP prior on this dataset yields a GP posterior 
for the performance function: 

𝑔𝑛(𝒖) ∼ (𝑚𝑔𝑛 (𝒖), 𝑘𝑔𝑛 (𝒖, 𝒖
′)), (A.2)

where 𝑔𝑛 denotes the posterior distribution of 𝑔 after seeing 𝑛 observations; 𝑚𝑔𝑛  and 𝑘𝑔𝑛  are the posterior mean and covariance 
functions respectively, which are given by: 

𝑚𝑔𝑛 (𝒖) = 𝑚𝑔0 (𝒖) + 𝒌𝑔0 (𝒖, )⊤𝑲−1
𝑔0
(𝒛 −𝒎𝑔0 ( )), (A.3)

𝑘𝑔𝑛 (𝒖, 𝒖
′) = 𝑘𝑔0 (𝒖, 𝒖

′) − 𝒌𝑔0 (𝒖, )⊤𝑲−1
𝑔0
𝒌𝑔0 ( , 𝒖′), (A.4)

where 𝒎𝑔0 ( ) is an 𝑛-by-1 vector with its 𝑖th element being 𝑚𝑔0 (𝒖
(𝑖)); 𝒌𝑔0 (𝒖, ) and 𝒌𝑔0 ( , 𝒖′) are two 𝑛-by-1 vectors with their 𝑖th 

elements being 𝑘𝑔0 (𝒖, 𝒖(𝑖)) and 𝑘𝑔0 (𝒖(𝑖), 𝒖′), respectively; 𝑲𝑔0  is an 𝑛-by-𝑛 matrix with its entry being 𝑘𝑔0 (𝒖(𝑖), 𝒖(𝑗)).
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