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A B S T R A C T

Time-dependent reliability analysis has received increasing attention for assessing the per-
formance and safety of engineered components and systems subject to both random and
time-varying dynamic factors. However, many existing methods may prove insufficient when
applied to real-world problems, particularly in terms of applicability, efficiency and accuracy.
This paper presents a novel time-dependent reliability analysis method called ‘single-loop
Gaussian process regression based-active learning’ (SL-GPR-AL). In this method, a GPR model
is trained as a global response surrogate model for the time-dependent performance function
in an active learning fashion. A new stopping criterion is proposed to assess the convergence
of the GPR model in estimating the time-dependent failure probability. Additionally, two new
learning functions are introduced to identify the best next point for further refining the GPR
model if the stopping criterion is not met. Finally, the well-trained GPR model in conjunction
with Monte Carlo simulation provides the time-dependent failure probability over a specified
time interval, along with the time-dependent failure probability function as a byproduct. Four
numerical examples are analyzed to demonstrate the performance of the proposed method. The
results indicate that our approach provides an alternative, efficient and accurate means for
computationally expensive time-dependent reliability analysis.

. Introduction

Reliability analysis aims to assess the likelihood that a component or system will perform its intended function without failure
or a specified time period under given conditions, while taking into account various uncertainties. This makes it a critical aspect of
odern engineering and applied sciences, particularly in assessing the performance and safety of components or systems. Depending

n whether time-varying dynamic characteristics are considered, reliability analysis can be divided into time-independent (or time-
nvariant) reliability analysis and time-dependent (or time-variant) reliability analysis. In the former, the reliability of a component
r system is assumed to be constant over time by ignoring time-dependent factors. In contrast, time-dependent reliability analysis
ccounts for the variation in reliability over time, considering factors such as corrosion, fatigue, deterioration, and environmental
onditions that can affect the likelihood of failure as the component or system ages. In many real-world situations, the performance
f a component or system changes over time, making time-dependent reliability analysis a more realistic approach. However, time-
ependent reliability analysis is intuitively much more computationally involved than the time-independent one due to the additional
onsideration of the time scale. The existing methods for time-dependent reliability analysis can be broadly classified into three
ategories: (1) out-crossing rate methods, (2) composite limit state methods, and (3) extreme value methods. A brief overview of
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each is provided below, with more comprehensive discussions available in [1,2].
Out-crossing rate methods estimate the time-dependent failure probability by calculating the rate at which a component or system

rosses a predefined failure threshold — transitioning from a safe state to a failure state — over a given time interval. Assuming
ll out-crossing events are statistically independent, Rice [3] first proposed what is now known as Rice formula, which expresses

the time-dependent failure probability as an integral of the out-crossing rate over the time interval of interest. Since then, great
efforts have been made to obtain the out-crossing rate, e.g., PHI2 [4], PHI2+ [5], moment-based PHI2 (MPHI2) [6], PHI2++ [7],
analytical solutions [8,9], to name just a few. However, the independence assumption underlying these methods is often difficult to
justify in practice, causing significant errors when the out-crossings are strongly dependent. To address this limitation, methods that
account for statistical dependence between crossing events, such as joint out-crossing rates [10] and Markov process model [11],
have been developed. Although considered the classical approach in time-dependent reliability analysis, out-crossing rate methods
still face challenges in practical engineering applications.

Unlike out-crossing rate methods, composite limit state methods transform a time-dependent reliability problem into a con-
entional time-independent series-system reliability problem. Specifically, these methods discretize the original time-dependent

performance function into a series of instantaneous performance functions evaluated at discrete time nodes. By doing so, the time-
dependent failure probability can be obtained by analyzing the failure probability of the series system. Examples of composite limit
tate methods include the first-order reliability method (FORM) [12–15], importance sampling [16,17], subset simulation [18–20],

and line sampling [21,22]. These FORM-based methods can become computationally demanding when the number of time nodes
is large and naturally inherit limitations of FORM. On the other hand, most stochastic simulation-based methods can offer better
accuracy and broader applicability compared to FORM, but at the cost of a large number of performance function evaluations.

As an alternative approach to time-dependent reliability analysis, extreme value methods transform the time-dependent problem
nto a time-independent one. More precisely, the time-dependent failure probability is equivalent to the probability that the extreme

value distribution of the performance function’s response is below (or above) the failure threshold over the time interval of interest.
This transformation allows time-dependent reliability analysis to be effectively addressed using well-established time-invariant
reliability analysis methods, as demonstrated in studies such as [23–25]. In addition, active learning Kriging methods have gained
increasing attention for time-dependent reliability analysis. These methods can be categorized into double-loop and single-loop
schemes. In the double-loop scheme, a Kriging model is constructed for the extreme value response of the performance function in the
outer loop, while the inner loop identifies the extreme value for each time trajectory using another Kriging model, both potentially
implemented in an active learning manner. Typical examples include the nested extreme response surface approach [26,27], mixed
efficient global optimization (EGO) method [28], active learning Kriging (AK) coupled with importance sampling (AK-co-IS) and
AK coupled with subset simulation (AK-co-SS) [29], parallel EGO method [30], double-loop Kriging combined with importance
ampling (DLK-IS) method [31], etc. As a more straightforward alternative, the single-loop scheme directly builds a global Kriging
odel for the performance function using active learning. Notable examples include the single-loop Kriging (SILK) method [32],

equivalent stochastic process transformation (eSPT) method [33], active failure-pursuing Kriging (AFPK) method [34], real-time
estimation error-guided active learning Kriging (REAL) method [35], and several others [36–42]. Compared to the double-loop
scheme, the single-loop approach typically requires fewer evaluations of the actual performance function. However, it still has
certain limitations, particularly in key components of active learning methods, such as the surrogate model, the reliability analysis
lgorithm, the stopping criterion, and the learning function. Each of these aspects presents opportunities for further improvement.

To partially address the research gap identified above, this work introduces a new single-loop Gaussian process regression-based
active learning (SL-GPR-AL) method for computationally expensive time-dependent reliability analysis. This method is versatile, as:
(1) it can be applied to performance functions, regardless of whether they are subject to stochastic processes, and (2) it provides
both the time-dependent failure probability over a given time interval and insights into the evolution of the failure probability
as a byproduct. The main contributions of this work can be summarized as follows. First, a new stopping criterion is introduced
as a key element of active learning, providing a measure of convergence for the GPR model. Second, two new learning functions
are developed—another critical component of active learning—that guide the selection of the most informative points for further
refining the GPR model when the stopping criterion is not met.

The rest of this paper is structured as follows. Section 2 provides some background information on this study. The proposed
L-GPR-AL method is introduced in Section 3. Four numerical examples are investigated in Section 4 to demonstrate the proposed
ethod. Some concluding remarks are given in Section 5.

2. Preliminaries

This section presents the basic concepts and notations that are essential for understanding and developing the main results
of this paper. First, we define the time-dependent failure probabilities that are of interest in time-dependent reliability analysis
n Section 2.1. Then, we introduce the discretization of stochastic processes in Section 2.2. Finally, we describe the SL-GPR for

time-dependent failure probability analysis in Section 2.3 that underpins our main development.

2.1. Definition of time-dependent failure probabilities

In general, time-dependent reliability analysis problems can be abstracted in several different forms. In the following, we will
consider a relatively general case. Let 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑1 ] ∈ 𝒳 ⊆ R𝑑1 denote a vector of 𝑑1 random variables with support

and 𝒀 (𝜏) = [𝑌 (𝜏), 𝑌 (𝜏),… , 𝑌 (𝜏)] ∈ 𝒴 ⊆ R𝑑2 denote a vector of 𝑑 stochastic processes with support 𝒴 . The so-called
1 2 𝑑2 2
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performance function (also known as the limit state function) can be written as 𝑔(𝑿, 𝒀 (𝜏), 𝜏), where 𝜏 ∈ [𝑡0, 𝑡𝑓 ] represents the
emporal parameter (𝑡0 and 𝑡𝑓 denote the initial and final times, respectively). It is assumed that the performance function 𝑔 can
e evaluated instantaneously for any given (𝒙, 𝒚(𝜏), 𝜏). The underlying component or system is considered to have failed if the
erformance function takes a negative value at any time within the considered time interval (i.e., the first-passage failure). Therefore,
he time-dependent failure probability of interest is mathematically defined as:

𝑃𝑓 (𝑡0, 𝑡𝑓 ) = P
{

𝑔(𝑿, 𝒀 (𝜏), 𝜏) < 0,∃𝜏 ∈ [𝑡0, 𝑡𝑓 ]
}

, (1)

where P is the probability operator; ∃ means ‘there exists’. In addition to 𝑃𝑓 (𝑡0, 𝑡𝑓 ), one may also be interested in the failure
robability function indexed by 𝑡 ∈ [𝑡0, 𝑡𝑓 ]:

𝑃𝑓 (𝑡0, 𝑡) = P
{

𝑔(𝑿, 𝒀 (𝜏), 𝜏) < 0,∃𝜏 ∈ [𝑡0, 𝑡]
}

, (2)

which reflects how the failure probability varies with time over the reference period [𝑡0, 𝑡𝑓 ]. It is noted that 𝑃𝑓 (𝑡0, 𝑡𝑓 ) is the final value
f 𝑃𝑓 (𝑡0, 𝑡), i.e., 𝑃𝑓 (𝑡0, 𝑡𝑓 ) = 𝑃𝑓 (𝑡0, 𝑡 = 𝑡𝑓 ). This implies that 𝑃𝑓 (𝑡0, 𝑡𝑓 ) can be obtained straightforwardly once 𝑃𝑓 (𝑡0, 𝑡) is available.
n practice, however, deriving an analytical solution of 𝑃𝑓 (𝑡0, 𝑡) is usually intractable, even for 𝑃𝑓 (𝑡0, 𝑡𝑓 ). Therefore, efficient and
ccurate approximation or numerical methods are relevant for solving 𝑃𝑓 (𝑡0, 𝑡𝑓 ) and 𝑃𝑓 (𝑡0, 𝑡). Intuitively, the latter would require
ore computational effort. For numerical purposes, the time interval [𝑡0, 𝑡𝑓 ] needs to be discretized. In this study, we discretize

𝑡0, 𝑡𝑓 ] into equally spaced 𝑛𝑡 time points, i.e., 𝑡0, 𝑡1, 𝑡2,… , 𝑡𝑛𝑡−2, 𝑡𝑓 , where 𝑡𝑘 = 𝑡0 + 𝜅 𝛥𝑡 and 𝛥𝑡 = 𝑡𝑓−𝑡0
𝑛𝑡−1

for 𝜅 = 0, 1,… , 𝑛𝑡 − 1.

2.2. Discretization of stochastic processes

In addition to time discretization, it is often also necessary to discretize the stochastic processes 𝒀 (𝜏). This involves approximating
 stochastic process with a finite set of random variables. For this purpose, many techniques are available in the literature, such

as Karhunen–Loève (K–L) expansion [43], expansion optimal linear estimation [44], spectral representation method [45] and
tochastic harmonic function representation [46], etc. In this study, the K–L expansion is used as an illustrative example. Consider
 second-order stochastic process 𝑌 (𝜏), where the subscript is omitted. It can be approximated using the K–L expansion:

𝑌 (𝜏) = 𝜇𝑌 (𝜏) +
𝑛K L
∑

𝑟=1

√

𝜆𝑟𝜉𝑟𝜑𝑟(𝜏), (3)

where 𝜇𝑌 (𝜏) is the mean function of 𝑌 (𝜏); 𝑛K L is the number of truncation terms; 𝜆𝑟 and 𝜑𝑟(𝜏) are the 𝑟th dominated eigenvalue
and the corresponding eigenvector of the covariance matrix 𝑪 with its (𝑖, 𝑗)-th entry being [𝑪]𝑖+1,𝑗+1 = 𝜎𝑌 (𝑡𝑖)𝜎𝑌 (𝑡𝑗 )𝜌𝑌 (𝑡𝑖, 𝑡𝑗 ),
𝑖 = 0, 1,… , 𝑛𝑡 − 1, 𝑗 = 0, 1,… , 𝑛𝑡 − 1; 𝜎𝑌 (𝜏) is the standard deviation function of 𝑌 (𝜏); 𝜌𝑌 (𝑡1, 𝑡2) is the auto-correlation coefficient
unction of 𝑌 (𝜏);

{

𝜉𝑗
}𝑛K L
𝑗=1 is a set of 𝑛K L uncorrelated standardized random variables. If 𝑌 (𝜏) is Gaussian, then

{

𝜉𝑗
}𝑛K L
𝑗=1 are independent

standard Gaussian random variables. The number of truncation terms 𝑛K L can be determined by the explained variance ratio:
∑𝑛K L

𝑟=1 𝜆𝑗
∑𝑛𝑡

𝑟=1 𝜆𝑗
≥ 𝛿K L, (4)

where 𝛿K L is a user-specified threshold. Note that other suitable stochastic process discretization techniques can also be applied to
he proposed method presented in Section 3.

2.3. SL-GPR for time-dependent failure probability analysis

GPR [47] is a powerful non-parametric Bayesian approach to regression. It has been widely used in machine learning and many
other fields because of its flexibility and inherent ability to quantify uncertainty over predictions. For these reasons, we use the GPR
technique as a probabilistic global surrogate model for time-dependent reliability analysis in this study, as briefly described below.
More details about the GPR can be found in the cited reference.

Before observing any data, it is assumed that our prior beliefs about the performance function 𝑔 can be expressed by a Gaussian
process (GP) prior:

𝑔̂0(𝒙, 𝒚̂(𝜏), 𝜏) ∼ (𝑚0(𝒙, 𝒚̂(𝜏), 𝜏), 𝑘0(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙′, 𝒚̂′(𝜏′), 𝜏′)), (5)

where 𝑔̂0(𝒙, 𝒚̂(𝜏), 𝜏) denotes the prior distribution of 𝑔(𝒙, 𝒚̂(𝜏), 𝜏); 𝑚0(𝒙, 𝒚̂(𝜏), 𝜏) and 𝑘0(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙′, 𝒚̂′(𝜏′), 𝜏′) are the prior mean and
covariance functions, respectively. The prior mean function specifies the expected value of 𝑔, while the prior covariance function
determines the smoothness and other properties of 𝑔 before any data are observed.

After observing data  = { ,} (where  =
{

 , ̂(𝝉), 𝝉
}

=
{

𝒙(𝑖), 𝒚̂(𝑖)(𝜏(𝑖)), 𝜏(𝑖)
}𝑛

𝑖=1
and  =

{

𝑔(𝒙(𝑖), 𝒚̂(𝑖)(𝜏(𝑖)), 𝜏(𝑖)
}𝑛

𝑖=1
),

conditioning the GP prior on  gives a GP posterior for 𝑔:

𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏) ∼ (𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏), 𝑘𝑛(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙′, 𝒚̂′(𝜏′), 𝜏′)), (6)

where 𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏) denotes the posterior distribution of 𝑔; 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) and 𝑘𝑛(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙′, 𝒚̂′(𝜏′), 𝜏′) are the posterior mean and
covariance functions respectively, which are readily available in analytic form:

𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) = 𝑚0(𝒙, 𝒚̂(𝜏), 𝜏) + 𝒌0(𝒙, 𝒚̂(𝜏), 𝜏 , )⊤𝑲−1
0 ( −𝒎0( )), (7)

′ ′ ′ ′ ′ ′ ′ ′ ⊤ −1 ′ ′ ′ ′
𝑘𝑛(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙 , 𝒚̂ (𝜏 ), 𝜏 ) = 𝑘0(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙 , 𝒚̂ (𝜏 ), 𝜏 ) − 𝒌0(𝒙, 𝒚̂(𝜏), 𝜏 , ) 𝑲0 𝒌0(  ,𝒙 , 𝒚̂ (𝜏 ), 𝜏 ), (8)
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where 𝒎0( ) is an 𝑛-by-1 mean vector with its 𝑖th element being 𝑚0(
(𝑖)); 𝒌0(𝒙, 𝒚̂(𝜏), 𝜏 , ) is an 𝑛-by-1 covariance vector

ith its 𝑖th element being 𝑘0(𝒙, 𝒚̂(𝜏), 𝜏 , (𝑖)); 𝒌0(  ,𝒙′, 𝒚̂′(𝜏′), 𝜏′) is also an 𝑛-by-1 covariance vector with its 𝑖th element being
0(

(𝑖),𝒙′, 𝒚̂′(𝜏′), 𝜏′); 𝑲0 is an 𝑛-by-𝑛 covariance matrix with its (𝑖, 𝑗)-th entry being
[

𝑲0
]

𝑖,𝑗 = 𝑘0(
(𝑖), (𝑗)). The GP posterior provides

ot only a mean prediction 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏), but also a measure of uncertainty in the prediction for the 𝑔-function value at an unseen
oint (𝒙, 𝒚̂(𝜏), 𝜏), given by the posterior variance 𝜎2𝑛 (𝒙, 𝒚̂(𝜏), 𝜏) = 𝑘𝑛(𝒙, 𝒚̂(𝜏), 𝜏 ,𝒙, 𝒚̂(𝜏), 𝜏).

The time-dependent failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ) can be estimated from the posterior mean prediction via Monte Carlo simulation
MCS):

𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) = 1
𝑁

𝑁
∑

𝑗=1
𝐼(

𝑛𝑡−1
min
𝑘=0

𝑚𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝑘), 𝑡𝑘) < 0), (9)

where 𝑁 is the number of samples;
{

𝒙(𝑗)
}𝑁
𝑗=1 is a set of 𝑁 random samples of 𝑿;

{

𝒚̂(𝑗)(𝑡𝑘)
}𝑁

𝑗=1
is a set of 𝑁 random samples of 𝑌 (𝑡𝑘),

which can be generated using the K–L expansion; 𝐼(⋅) is the indicator function: it returns one if its argument is true, zero otherwise.
The associated coefficient of variation (CoV) is given by:

𝐶 𝑜𝑉 𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) =
√

√

√

√

1 − 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 )
(𝑁 − 1)𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 )

. (10)

Similarly, the time-dependent failure probability function 𝑃𝑓 (𝑡0, 𝑡) can also be evaluated in a pointwise manner:

𝑃𝑓 ,𝑛(𝑡0, 𝑡𝜅 ) = 1
𝑁

𝑁
∑

𝑗=1
𝐼(

𝜅
min
𝑞=0

𝑚𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝑞), 𝑡𝑞) < 0), 𝜅 = 0, 1,… , 𝑛𝑡 − 1. (11)

The corresponding CoVs can be expressed as:

𝐶 𝑜𝑉 𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝜅 ) =
√

√

√

√

1 − 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝜅 )
(𝑁 − 1)𝑃𝑓 ,𝑛(𝑡0, 𝑡𝜅 )

, 𝜅 = 0, 1,… , 𝑛𝑡 − 1. (12)

Note that the above SL-GPR model can predict the time-dependent failure probability 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) as well as 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝜅 ) using
CS, given the data . Consequently, the number of data points and the locations of  can significantly affect the performance

e.g., accuracy and efficiency) of the SL-GPR method. This concern motivates the development reported in the following section.

3. Proposed SL-GPR-AL method

In this section, we present the proposed SL-GPR-AL method for time-dependent reliability analysis. In Section 3.1, an overview of
he proposed method is given. This is followed by the stopping criterion and learning functions in Sections 3.2 and 3.3, respectively.

The procedure for implementing the proposed method is summarized in Section 3.4.

3.1. Overview of the proposed method

As the name suggests, the key idea behind the proposed SL-GPR-AL method is to integrate AL with SL-GPR (as explained in
Section 2.3) for time-dependent reliability analysis. It starts with a small initial set of training data consisting 𝑛 = 𝑛0 input–output
pairs of the 𝑔-function, i.e.,  = { ,}, which is used to build a GPR model 𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏). Time-dependent failure probabilities
̂𝑓 ,𝑛(𝑡0, 𝑡𝜅 ) are then calculated using this model. The method checks whether a stopping criterion is met, such as achieving a desired
ccuracy. If not, the method identifies the best next point 𝒖(𝑛+1) for improving the prediction of the GPR via a learning function,
valuates the corresponding 𝑔-function output 𝑧(𝑛+1), updates the training data via  =  ∪

{

𝒖(𝑛+1), 𝑧(𝑛+1)}. The iterative process
epeats until the stopping criterion is satisfied. The general workflow of the proposed method is shown in Fig. 1. Note that in this

study our main focus is on the time-dependent failure probability 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) rather than the failure probability function 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑘),
but the latter can be obtained as a byproduct.

3.2. Stopping criterion and its numerical treatment

A key ingredient in the proposed SL-GPR-AL method is the stopping criterion, which determines the condition under which the
iterative process should be terminated. In general, a stopping criterion can be designed based on several considerations, such as
convergence, iteration limits, error tolerance, resource constraints, and a combination thereof. In this study, we are mainly concerned
with developing a convergence-based stopping criterion.

Recall that the predictive model given by the SL-GPR model conditional on data  is a GP, i.e., 𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏). The posterior mean
function 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) is used as a surrogate for the true 𝑔-function to predict the time-dependent failure probability:

𝑃 (𝑡 , 𝑡 ) = P
{

𝑚 (𝑿, 𝒀̂ (𝜏), 𝜏) < 0,∃𝜏 ∈ [𝑡 , 𝑡 ]
}

= P
{

min 𝑚 (𝑿, 𝒀̂ (𝜏), 𝜏) < 0
}

. (13)
𝑓 ,𝑛 0 𝑓 𝑛 0 𝑓 𝜏∈[𝑡0 ,𝑡𝑓 ]
𝑛
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Fig. 1. General workflow of the proposed SL-GPR-AL method.

By appealing to the credible bounds
[

𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) − 𝑏𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏), 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) + 𝑏𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏)
]

of 𝑔̂𝑛 (where 𝑏 > 0 is the credibility
oefficient), the following two quantities can be defined:

𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) =P

{

𝑚𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) − 𝑏𝜎𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) < 0,∃𝜏 ∈ [𝑡0, 𝑡𝑓 ]
}

=P
{

min
𝜏∈[𝑡0 ,𝑡𝑓 ]

𝑚𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) − 𝑏𝜎𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) < 0
}

,
(14)

𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) =P

{

𝑚𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) + 𝑏𝜎𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) < 0,∃𝜏 ∈ [𝑡0, 𝑡𝑓 ]
}

=P
{

min
𝜏∈[𝑡0 ,𝑡𝑓 ]

𝑚𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) + 𝑏𝜎𝑛(𝑿, 𝒀̂ (𝜏), 𝜏) < 0
}

,
(15)

where 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) can be interpreted as the time-dependent failure probabilities by replacing the true 𝑔-function with
the lower and upper credible bounds of 𝑔̂𝑛, respectively. The difference between 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) measures our epistemic

uncertainty about 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ), as the time-dependent failure probability estimate. Theoretically speaking, 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) converges
towards the true time-dependent failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ) when 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) → 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) (or 𝑃+

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) → 𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )).

The stopping criterion proposed in this study takes the form:
|𝑃+

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) − 𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )|

𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 )
< 𝜖 , (16)

where 𝜖 is a user-prescribed threshold. This criterion indicates that the iteration will stop when the absolute difference between
+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) relative to 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) falls below the threshold 𝜖. A smaller 𝜖 may lead to a more accuracy estimate of
the time-dependent failure probability, albeit at the cost of an increased number of 𝑔-function evaluations, and vice versa. The
proposed stopping criterion can be seen as an extension of the stopping criterion [48] from time-independent reliability analysis to
time-dependent reliability analysis. In the latter context, a similar but slightly different stopping criterion can be found in [49].

In the practical implementation of the proposed stopping criterion, the three terms 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ), 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) have to
e calculated numerically. Similar to the first term (as outlined in Section 2.3), the last two terms are also calculated using MCS.
he estimators of 𝑃+

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) are given by:

𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) =

1
𝑁

𝑁
∑

𝑗=1
𝐼(

𝑛𝑡−1
min
𝜅=0

𝑚𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝜅 ), 𝑡𝜅 ) − 𝑏𝜎𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝑘), 𝑡𝜅 ) < 0), (17)

𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) =

1
𝑁

𝑁
∑

𝑗=1
𝐼(

𝑛𝑡−1
min
𝜅=0

𝑚𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝜅 ), 𝑡𝜅 ) + 𝑏𝜎𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝜅 ), 𝑡𝜅 ) < 0). (18)

The associated CoVs of 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) are expressed as:

𝐶 𝑜𝑉 𝑃+
𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) =

√

√

√

√

√

1 − 𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )

(𝑁 − 1)𝑃+
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )

, (19)

𝐶 𝑜𝑉 𝑃−
𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) =

√

√

√

√

√

1 − 𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )

(𝑁 − 1)𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 )

. (20)

Remark 1. An alternative stopping criterion can be defined as
|𝑃+

𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )−𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )|
𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) < 𝜖 or

|𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )−𝑃−
𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )|

𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) < 𝜖. However, these
lternatives are not further explored in this study.

3.3. Learning functions and the best next point selection

Another critical component of the proposed SL-GPR-AL method is the learning function (often referred to as the acquisition
unction or query strategy), which guides the selection of the most informative point at which to evaluate the true 𝑔 function when

the stopping criterion is not met. It therefore directly affects the performance of the resulting method. In this study, a new query
strategy is developed.
5 
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Remember that the SL-GPR model, conditional on the data , yields a GP posterior 𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏), which is used to estimate the
time-dependent failure probability 𝑃𝑓 (𝑡0, 𝑡𝑓 ). At each point (𝒙, 𝒚̂(𝜏), 𝜏), the predictive distribution of 𝑔 follows a Gaussian distribution
 (𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏), 𝜎2𝑛 (𝒙, 𝒚̂(𝜏), 𝜏)). For predicting the time-dependent failure probability, it might be more important to accurately predict
the sign of the performance function than its exact values. If we use the posterior mean function to predict the sign of 𝑔, there is a
chance that the sign is predicted incorrectly. The associated probability of misjudgment (PoM) is given by [50]:

𝑃 𝑜𝑀(𝒙, 𝒚̂(𝜏), 𝜏) = 𝛷
(

−
|𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏)|
𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏)

)

. (21)

The PoM function quantifies the likelihood that the predicted sign of the true performance function 𝑔 is wrong, considering the
current uncertainty in the model’s prediction. Furthermore, we can also define a weighted PoM (WPoM) function such that:

𝑊 𝑃 𝑜𝑀(𝒙, 𝒚̂(𝜏), 𝜏) = 𝛷
(

−
|𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏)|
𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏)

)

𝑓𝑿 (𝒙)𝑓𝒀̂ (𝜏)(𝒚̂(𝜏)), (22)

where 𝑓𝑿 (𝒙) is the joint probability density function (PDF) of 𝑿; 𝑓𝒀̂ (𝜏)(𝒚̂(𝜏)) is the joint PDF of 𝒀̂ (𝜏) at the time instant 𝜏. The WPoM
function takes into account both the uncertainty in the model’s predictions and the likelihood of specific input scenarios. It can
be seen as a direct extension of the learning function (see, e.g., [51,52]) developed in the context of time-independent reliability
nalysis. Additionally, we can define an integrated PoM (IPoM) function:

𝐼 𝑃 𝑜𝑀(𝜏) = ∫𝒴 (𝜏) ∫𝒳
𝛷
(

−
|𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏)|
𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏)

)

𝑓𝑿 (𝒙)𝑓𝒀̂ (𝜏)(𝒚̂(𝜏))d𝒙d𝒚̂(𝜏), (23)

where 𝒴 (𝜏) denotes the support of 𝒀̂ (𝜏) at the time instant 𝜏. The IPoM function quantifies the overall risk of making incorrect sign
predictions across all possible input scenarios at a specific time instant.

After defining these learning functions, the next best point
(

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝜏(𝑛+1)), 𝜏(𝑛+1)
)

at which to evaluate the 𝑔 function can
be identified following a two-step procedure. In the first step, the best next time 𝜏(𝑛+1) is selected by maximizing the estimated IPoM
unction:

𝜏(𝑛+1) = argmax
𝜏∈[𝑡0 ,𝑡𝑓 ]

𝐼 𝑃 𝑜𝑀(𝜏), (24)

where 𝐼 𝑃 𝑜𝑀(𝜏) is obtained by applying MCS:

𝐼 𝑃 𝑜𝑀(𝜏) = 1
𝑁

𝑁
∑

𝑗=1
𝛷

(

−
|𝑚𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝜏), 𝜏)|
𝜎𝑛(𝒙(𝑗), 𝒚̂(𝑗)(𝜏), 𝜏)

)

. (25)

In the second step, we identify the best next point
(

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝜏(𝑛+1))
)

by maximizing the WPoM function conditional on 𝜏 = 𝜏(𝑛+1):
(

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝜏(𝑛+1))
)

= argmax
𝒙∈{𝒙(𝑗)}𝑁𝑗=1 ,𝒚̂(𝑛+1)(𝜏(𝑛+1))∈

{

𝒚̂(𝑗)(𝜏(𝑛+1))
}𝑁

𝑗=1

𝑊 𝑃 𝑜𝑀(𝒙, 𝒚̂(𝜏(𝑛+1)), 𝜏(𝑛+1)). (26)

3.4. Implementation procedure of the proposed method

The procedure for implementing the proposed SL-GPR-AL method for time-dependent reliability analysis is summarized below,
long with a flowchart shown in Fig. 2.
Step 1: Discretize the time period of interest
Discretize the time period of interest

[

𝑡0, 𝑡𝑓
]

into equally spaced 𝑛𝑡 time points, i.e., 𝑡0, 𝑡1, 𝑡2,… , 𝑡𝑛𝑡−2, 𝑡𝑓 , where 𝑡𝜅 = 𝑡0 + 𝜅 𝛥𝑡 and
𝛥𝑡 = 𝑡𝑓−𝑡0

𝑛𝑡−1
for 𝜅 = 0, 1,… , 𝑛𝑡 − 1.

Step 2: Generate an initial sample pool
Generate an initial sample pool  =

{

𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝜅 ), 𝑡𝜅
}𝑁 ,𝑛𝑡−1
𝑗=1,𝜅=0

, where
{

𝒙(𝑗)
}𝑁
𝑗=1 is an 𝑁-by-𝑑1 matrix consisting of a random sample

of 𝑿 generated according to 𝑓𝑿 (𝒙) and
{

𝒚̂(𝑗)(𝑡𝜅 )
}𝑁

𝑗=1
is an 𝑁-by-𝑑2 matrix consisting of a random sample of 𝒀 (𝜏) at 𝜏 = 𝑡𝜅 generated

using K–L expansion.
Step 3: Generate an initial training dataset
Generate an initial training dataset  = { ,}, where  =

{

 , ̂(𝝉), 𝝉
}

=
{

𝒙(𝑖), 𝒚̂(𝑖)(𝜏(𝑖)), 𝜏(𝑖)
}𝑛0

𝑖=1
and  =

{

𝑔(𝒙(𝑖), 𝒚̂(𝑖)(𝜏(𝑖)), 𝜏 (𝑖))}𝑛0
𝑖=1.

In this study, 𝝉 =
{

𝜏(𝑖)
}𝑛0
𝑖=1 are 𝑛0 evenly distributed time nodes over [𝑡0, 𝑡𝑓 ]. Furthermore,  =

{

𝒙(𝑖)
}𝑛0
𝑖=1 are drawn from 𝑓𝑿 (𝒙) using

Hammersley sequence, and ̂(𝝉) =
{

𝒚̂(𝑖)(𝜏(𝑖))
}𝑛0

𝑖=1
are drawn from 𝑓𝒀̂ (𝜏)(𝒚̂(𝜏)) using K–L expansion in conjunction with Hammersley

sequence. Let 𝑛 = 𝑛 .
0
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Fig. 2. Flowchart of the proposed SL-GPR-AL method.

Step 4: Build a GPR model
Build a GPR model 𝑔̂𝑛(𝒙, 𝒚̂(𝜏), 𝜏) based on the data . In this study, we use the fitrgp function available in the Statistics and

Machine Learning Toolbox of Matlab R2024a, with a constant prior mean and a squared exponential kernel with a separate length
scale for each dimension as the prior covariance.

Step 5: Calculate the time-dependent failure probability
Calculate the time-dependent failure probability 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) using 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) through MCS with .
Step 6: Check the stopping criterion 1
First, calculate 𝑃+

𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) and 𝑃−
𝑓 ,𝑛(𝑡0, 𝑡𝑓 ) using 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) and 𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏) via MCS with . If |𝑃+

𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )−𝑃−
𝑓 ,𝑛(𝑡0 ,𝑡𝑓 )|

𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) < 𝜖 is satisfied
wice in a row, then go to Step 8; otherwise, go to Step 7.
Step 7: Enrich the training dataset
First, calculate 𝐼 𝑃 𝑜𝑀(𝜏) using 𝑚𝑛(𝒙, 𝒚̂(𝜏), 𝜏) and 𝜎𝑛(𝒙, 𝒚̂(𝜏), 𝜏) via MCS with . Second, identify the best next time instant 𝜏(𝑛+1)

y Eq. (24). Third, identify
(

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝜏(𝑛+1))
)

by Eq. (26). Fourth, obtain 𝑧(𝑛+1) = 𝑔
(

𝒙(𝑛+1), 𝒚̂(𝑛+1)(𝜏(𝑛+1)), 𝜏(𝑛+1)
)

. At last, enrich
he current training dataset with the new data. Let 𝑛 = 𝑛 + 1 and go to Step 4.
Step 8: Check the stopping criterion 2
First, calculate the CoV of 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ), i.e., 𝐶 𝑜𝑉 𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ). If 𝐶 𝑜𝑉 𝑃𝑓 ,𝑛(𝑡0 ,𝑡𝑓 ) < 𝛿 is reached (𝛿 is a user-specified threshold), proceed

o Step 10; otherwise, go to Step 9.
Step 9: Enrich the sample pool
Similar to Step 2, generate an another sample set + =

{

𝒙(𝑗), 𝒚̂(𝑗)(𝑡𝜅 ), 𝑡𝜅
}

, 𝑗 = 1, 2,… , 𝑁 , 𝜅 = 0, 1,… , 𝑛𝑡 − 1. Then, enrich the
current sample pool with + and proceed to Step 5.

Step 10: Return the time-dependent failure probability
Return the current time-dependent failure probability 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ).

Remark 2. In addition to 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ), the time-dependent failure probabilities 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝜅 ) for 𝜅 = 0, 1,… , 𝑛𝑡 − 2 can also be obtained
through post-processing. Therefore, they are merely by-products and not guaranteed to be as accurate as 𝑃𝑓 ,𝑛(𝑡0, 𝑡𝑓 ). To ensure their
accuracy, at least the stopping criteria would need to be modified, which is beyond the scope of this study.
7 
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Table 1
Random variables and stochastic process of Example 1.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

𝑋1 Normal 3.50 0.25 –
𝑋2 Normal 3.50 0.25 –
𝑌 (𝑡) Gaussian process 0 1 exp

(

−(𝑡2 − 𝑡1)2
)

Table 2
Time-dependent failure probability results of Example 1.

Method 𝑁call 𝑃𝑓 𝛿𝑃𝑓
Reference

MCS 50 × 107 0.3082 0.05% –
eSPT 51.9 0.3082 1.52% [34]
SILK 26.25 0.3076 1.09% –
AFPK 24.4 0.3084 2.98% [34]
REAL 21.75 0.3093 3.21% –
SLK-UC 17.3 0.3071 2.38% [42]
Proposed SL-GPR-AL 14.25 0.3096 0.63% –

Note: 𝑁call = the number (for MCS) or average number (for other methods) of calls to the 𝑔-function; 𝑃𝑓 = the
estimate (for MCS) or the mean value (for other methods) of the time-dependent failure probability; 𝛿𝑃𝑓

= the
CoV estimate of the time-dependent failure probability.

Remark 3. Note that the input dimension in the proposed method is 𝑑1 + 𝑑2 + 1, which means that each input stochastic process is
nly counted as a single dimension rather than 𝑛K L dimensions.

Remark 4. The proposed SL-GPR-AL method can be applied not only to the performance function of the form 𝑔(𝑿, 𝒀 (𝜏), 𝜏), but also
to 𝑔(𝑿, 𝜏), 𝑔(𝒀 (𝜏)), 𝑔(𝒀 (𝜏), 𝜏) and 𝑔(𝑿, 𝒀 (𝜏)). The latter cases are actually special cases of the former and can also be encountered in
time-dependent reliability analysis.

4. Numerical examples

Four numerical examples are presented in this section to demonstrate the performance of the proposed SL-GPR-AL method for
ime-dependent reliability analysis. Unless otherwise specified, the following parameters are used: 𝑛0 = 10, 𝑁 = 105, 𝛿K L = 0.995,
= 1.5, 𝜖 = 10% and 𝛿 = 2%. For comparison, several existing active learning methods are also considered including eSPT [33],

SILK [32], AFPK [34], REAL [35], VARAK [40], SLK-UC and SLK-UC-SS [42]. The reference solutions for the time-dependent failure
probability and failure probability function are obtained using Monte Carlo Simulation (MCS). For those active learning methods

here results are generated by us, 20 independent runs are conducted, and the statistical results are reported.

4.1. Example 1: A mathematical example

The first example considers a mathematical function taken from [53]:

𝑔(𝑿, 𝑌 (𝑡), 𝑡) = 𝑋2
1𝑋2 − 5𝑋1(1 + 𝑌 (𝑡))𝑡 +

(

𝑋2 + 1) 𝑡2 − 20, (27)

where 𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 1]; 𝑋1, 𝑋2 and 𝑌 (𝑡) are given in Table 1. The time interval [0, 1] is discretized into 50 time nodes.
Table 2 shows the results of several methods (i.e., MCS, eSPT, SILK, AFPK, REAL and SL-GPR-AL) with respect to the time-

dependent failure probability 𝑃𝑓 (0, 1). The reference probability of failure is taken as 0.3082 (with a CoV of 0.05%), which is given
by MCS with 50 × 107 runs. All six other methods can produce failure probability mean values very close to the reference result, but
the proposed SL-GPR-AL method achieves the smallest CoV (i.e., 0.63%). Furthermore, our method requires on average the smallest
number of 𝑔 function calls. Note that the number of initial training data is set to be 10 in the proposed method. This means that,
on average, only 4.25 additional 𝑔-function evaluations are required by the proposed method in the active learning phase.

In addition to providing the failure probability estimate 𝑃𝑓 (0, 1), the proposed method can also generate the failure probability
function 𝑃𝑓 (0, 𝑡), 𝑡 ∈ [0, 1] as a byproduct. The statistical results of 𝑃𝑓 (0, 𝑡) are shown in Fig. 3. As can be seen, the mean curve is
closed to the reference given by MCS, while the mean ± standard deviation (Std Dev) bound is very narrow.

4.2. Example 2: A simple supported beam

As shown in Fig. 4, the second example involves a simple supported corroded steel beam under uniform and concentrated
loading [4]. The beam has a length of 𝐿 = 5 m and its cross-section is a rectangle with initial width 𝑏0 and height ℎ0. It is assumed that
he cross-sectional dimensions corrode isotropically in time at a rate of 2𝑘 with 𝑘 = 3 × 10−5 m∕year. The yield stress of the material
s denoted by 𝑓𝑦. The beam is subjected to a uniform dead load 𝑞 = 78500𝑏0ℎ0 (N∕m) and a dynamic live load 𝐹 (𝑡) at midspan.
 failure event occurs when the applied bending moment at midspan exceeds the ultimate bending moment. The corresponding
8 
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Fig. 3. Time-dependent failure probability function of Example 1.

Fig. 4. A simple supported beam structure.

Table 3
Random variables and stochastic process of Example 2.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

𝑓𝑦 (MPa) Lognormal 180 18 –
𝑏0 (m) Lognormal 0.2 0.01 –
ℎ0 (m) Lognormal 0.04 0.004 –
𝐹 (𝑡) (N) Gaussian process 3500 700 exp

(

−9(𝑡2 − 𝑡1)2
)

Table 4
Time-dependent failure probability results of Example 2.

Method 𝑁call 𝑃𝑓 𝛿𝑃𝑓
Reference

MCS 200 × 5 × 106 7.74 × 10−3 0.51% –
SILK 41.85 7.70 × 10−3 1.79% –
REAL 29.35 7.68 × 10−3 3.31% –
SLK-UC-SS 29.4 7.48 × 10−3 4.08% [42]
Proposed SL-GPR-AL 19.10 7.72 × 10−3 2.34% –

performance function is given by:

𝑔(𝑿, 𝑌 (𝑡), 𝑡) =
(

𝑏0 − 2𝑘𝑡) (ℎ0 − 2𝑘𝑡)2 𝑓𝑦
4

−
(

𝐹 (𝑡)𝐿
4

+
78500𝑏0ℎ0𝐿2

8

)

, (28)
where 𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 10] year s; 𝑏0, ℎ0, 𝑓𝑦 and 𝐹 (𝑡) are three random variables and one stochastic process respectively, as described
in Table 3. The time range of interest is discretized into 200 nodes.

The results associated with 𝑃𝑓 (0, 10) of different methods are given in Table 4. The failure probability generated by MCS is
7.74 × 10−3 (with a CoV of 0.51%), which is adopted as a reference solution. Except SLK-UC-SS, all three other methods (i.e., SILK,
REAL and SL-GPR-AL) can produce failure probability means that are very close to the reference value with small CoVs. Notably,
the proposed SL-GPR-AL method requires, on average, only 19.10 performance function evaluations, which is far fewer than the
other three methods.

The statistical results of the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 10] obtained by the proposed method
are shown in Fig. 5, together with the reference curve from MCS. It can be seen that the mean curve agrees well with the reference
9 
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Fig. 5. Time-dependent failure probability function of Example 2.

Fig. 6. A hydrokinetic turbine blade: (a) Cross section at the root of the turbine blade; (b) River flow loading on the turbine blade.

one from MCS, and the mean ± standard deviation band is quite narrow.

4.3. Example 3: A hydrokinetic turbine blade

As a third example, we consider a hydrokinetic turbine blade under a time-varying river flow load, depicted in Fig. 6. This device
can convert the kinetic energy of flowing water into electrical energy. The simplified cross section at the root of the turbine blade
is shown in Fig. 6(a). The width of the blade is 𝑙1, and its height is described by ℎ1 and ℎ2. As shown in Fig. 6(b), the blade is
subject to a river flow loading 𝑣(𝑡). If the bending strain at the root exceeds the allowable strain 𝜖allow, the blade is considered to
have failed. The associated performance function is defined as:

𝑔(𝑿, 𝑌 (𝑡)) = 𝜖allow −
𝑀f lapℎ1

𝐸 𝐼 , (29)

where 𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 12] mont hs; 𝑀f lap = 1
2𝜌𝑣

2(𝑡)𝐶m is the bending moment at the root of the blade with the water density
𝜌 = 1 × 103 k g∕m3 and the coefficient of moment 𝐶m = 0.3422; 𝐸 = 14 GPa is the Young’s modulus; 𝐼 = 2

3 𝑙1(ℎ
3
1 −ℎ32) is the moment of

nertia at the root of the blade. The random variables ℎ1, ℎ2, 𝑙1, 𝜖allow and stochastic process 𝑣(𝑡) are detailed in Table 5. The time
period is discretized into 200 time nodes.

The time-dependent failure probability analysis results of several different methods regarding 𝑃𝑓 (0, 12) are listed in Table 6. The
eference failure probability is 2.76 × 10−3 (with a CoV of 0.85%), obtained via MCS with 200 × 5 × 106 runs. The four methods—

eSPT, SILK, REAL and VARAK—produce fairly good failure probability results. The proposed method also yields a good failure
probability mean, albeit with a slightly larger but acceptable CoV. Remarkably, the proposed method requires an average of only
15.65 performance function evaluations, which is significantly fewer than the other three methods.
10 
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Table 5
Random variables and stochastic process of Example 3.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

ℎ1 (m) Normal 0.025 0.00025 –
ℎ2 (m) Normal 0.019 0.00019 –
𝑙1 (m) Normal 0.22 0.0022 –
𝜖allow Normal 0.025 0.00025 –

𝑣(𝑡) (m∕s) Gaussian process ∑4
𝑖=1 𝑎

𝑚
𝑖 sin

(

𝑏𝑚𝑖 𝑡 + 𝑐𝑚𝑖
)

∑4
𝑗=1 𝑎

𝑠
𝑗 exp

{

−
[(

𝑡 − 𝑏𝑠𝑗
)

∕𝑐𝑠𝑗
]2
}

cos
(

2𝜋(𝑡2 − 𝑡1)
)

Note: The values of 𝑎𝑚𝑖 , 𝑏𝑚𝑖 , 𝑐𝑚𝑖 , 𝑎𝑚𝑗 , 𝑏𝑚𝑗 and 𝑐𝑚𝑗 can be found in [53].

Table 6
Time-dependent failure probability analysis results of Example 3.

Method 𝑁call 𝑃𝑓 𝛿𝑃𝑓
Reference

MCS 200 × 5 × 106 2.76 × 10−3 0.85% –
eSPT 52.4 2.77 × 10−3 1.77% [40]
SILK 36.1 2.79 × 10−3 1.94% [40]
REAL 29.3 2.79 × 10−3 1.72% [40]
VARAK 24.4 2.77 × 10−3 1.45% [40]
Proposed SL-GPR-AL 15.65 2.74 × 10−3 3.78% –

Fig. 7. Time-dependent failure probability function of Example 3.

Fig. 7 shows the statistical results regarding the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 12] obtained by
the proposed method, in comparison the reference solution by MCS. As can be observed, the failure probability mean curve is in
good agreement with the reference, with a narrow mean ± standard deviation band.

4.4. Example 4: A space truss structure

The final example is a 120-bar space truss structure subjected to thirteen vertical loads [54], as illustrated in Fig. 8. This structure
s modeled as a three-dimensional finite element model using an open-source software called OpenSees, and comprises 49 nodes
nd 120 truss elements. The cross-sectional area of each element is denoted by 𝐴 and the modulus of elasticity of the material is

denoted by 𝐸. Node 0 is subjected to a time-varying vertical concentrated load 𝑃0(𝑡), while nodes 1 through 12 are each subjected
o a time-invariant vertical concentrated load 𝑃1, 𝑃2,… , 𝑃12. The performance function is defined as follows:

𝑔(𝑿, 𝑌 (𝑡)) = 𝛥 − 𝑉0(𝐴, 𝐸 , 𝑃0(𝑡), 𝑃1, 𝑃2,… , 𝑃12), (30)

where 𝑡 ∈ [𝑡0, 𝑡𝑓 ] = [0, 50] year s; 𝑉0 denotes the vertical displacement of node 0; 𝛥 is the corresponding threshold, which is specified
as 100 mm. The involved random variables and stochastic process are given in Table 7. The time range of interest is discretized
nto 20 nodes.

The results for the time-dependent failure probability 𝑃𝑓 (0, 50) are shown in Table 8. The reference failure probability is 2.11 × 10−2
ith a CoV of 0.96%, given by MCS with 20 × 5 × 105 runs. In this example, we are unable to obtain the results of SILK and REAL, as

hey encountered out-of-memory errors before reaching their respective stopping criteria. The proposed SL-GPR-AL method works
ell and produces a failure probability mean of 2.12 × 10−2 with a CoV of 2.29%. Note that this is achieved with an average of only
11 
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Fig. 8. A 120-bar space truss structure under vertical loads.

Table 7
Random variables and stochastic process of Example 4.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

𝐸 (GPa) Normal 200 20 –
𝐴 (mm2) Normal 2000 200 –
𝑃1 , 𝑃2 ,… , 𝑃12 (k N) Lognormal 100 15 –
𝑃0(𝑡) (k N) Gaussian process 1000 150 exp

(

−(𝑡2 − 𝑡1)2∕50
)

Table 8
Time-dependent failure probability analysis results of Example 4.

Method 𝑁call 𝑃𝑓 𝛿𝑃𝑓
Reference

MCS 20 × 5 × 105 2.11 × 10−2 0.96% –
SILK – – – –
REAL – – – –
Proposed SL-GPR-AL 37.95 2.12 × 10−2 2.29% –

37.95 𝑔-function evaluations.
In addition, the proposed method can also yield the time-dependent failure probability function 𝑃𝑓 (0, 𝑡) for 𝑡 ∈ [0, 50] as a

byproduct. The statistical results are depicted in Fig. 9. As shown, the mean failure probability curve agrees well with the reference
ne obtained by MCS, with a fairly narrow mean ± standard deviation band.
12 
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Fig. 9. Time-dependent failure probability function of Example 4.

5. Concluding remarks

This paper presents a single-loop Gaussian process regression-based active learning (AL-GPR-AL) method for time-dependent
reliability analysis involving costly performance functions. The main idea is to replace an expensive-to-evaluate performance function
with a GPR model built in an active learning fashion. To achieve this, we propose a novel stopping criterion using the credible bounds
of the GPR model which can assess its convergence in estimating the time-dependent failure probability over a given period. In
addition, we also introduce new learning functions based on the concept of misjudgment probability, which allow the identification
of the most informative next points for further refinement of the GPR model when the stopping criterion cannot be satisfied. The
time-dependent failure probability can be obtained from the well-trained GPR model in conjunction with Monte Carlo simulation, as
well as the evolution of the failure probability as a byproduct. Besides, the proposed method can be applied to performance functions,
egardless whether they are subjected to stochastic processes or not. It is empirically observed from four numerical examples that
ur method is able to produce accurate time-dependent failure probability results with a small number of performance function
valuations.

It is important to note that there is still potential to further improve the performance of the proposed approach. First, for
ssessing small time-dependent failure probabilities, Monte Carlo simulation can be replaced by more efficient methods. Second,
eveloping suitable dimension-reduction techniques is crucial for effectively handling high-dimensional problems. Third, to increase
omputational efficiency, multiple points could be identified in each iteration to take advantage of parallel computing. These areas
resent promising directions for future research.
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