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A B S T R A C T

The well-established Bayesian failure probability inference (BFPI) framework offers a solid foundation for
developing new Bayesian active learning reliability analysis methods. However, there remains an open question
regarding how to effectively leverage the posterior statistics of the failure probability to design the two
key components for Bayesian active learning: the stopping criterion and learning function. In this study, we
present another innovative Bayesian active learning reliability analysis method, called ‘Weakly Bayesian Active
Learning Quadrature’ (WBALQ), which builds upon the BFPI framework to evaluate extremely small failure
probabilities. Instead of relying on the posterior variance, we propose a more computationally feasible measure
of the epistemic uncertainty in the failure probability by examining its posterior first absolute central moment.
Based on this measure and the posterior mean of the failure probability, a new stopping criterion is devised.
A recently developed numerical integrator is then employed to approximate the two analytically intractable
terms inherent in the stopping criterion. Furthermore, a new learning function is proposed, which is partly
derived from the epistemic uncertainty measure. The performance of the proposed method is demonstrated
by five numerical examples. It is found that our method is able to assess extremely small failure probabilities
with satisfactory accuracy and efficiency.
1. Introduction

Structural reliability analysis is a critical tool for evaluating the
ability of an engineered structure to perform its intended functions
– such as safety, serviceability and durability – while accounting for
various uncertainties inherent in both internal structural properties and
external environmental conditions. In a purely probabilistic setting,
structural reliability analysis usually involves calculating the com-
plement of reliability, the so-called failure probability 𝑃𝑓 , which is
mathematically defined by an often intractable multiple integral:

𝑃𝑓 = ∫
𝐼(𝒙)𝑓𝑿 (𝒙)d𝒙, (1)

in which 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑 ] ∈  ⊆ R𝑑 is a vector of 𝑑 basic
continuous random variables with support  ; 𝒙 denotes a realization
of 𝑿; 𝑓𝑿 ∶ R𝑑 → R≥0 is the joint probability density function (PDF)
of 𝑿; 𝐼 ∶ R𝑑 → {0, 1} is the indicator function: 𝐼 = 1 if 𝑔(𝒙) < 0, and
𝐼 = 0 otherwise; 𝑔 ∶ R𝑑 → R represents the performance function (also
known as the limit state function), and a failure occurs when 𝑔 takes a
negative value.

Numerical methods for structural reliability analysis have been
developed since Freudenthal published his first work on safety of struc-
tures [1,2]. These methods include Monte Carlo simulation (MCS) and
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its variants (e.g., importance sampling (IS) [3–6], subset simulation [7–
9], directional simulation [10,11] and line sampling [12–14]), first-
/second- order reliability method [15,16], statistical moments based
methods [17–19] and surrogate-assisted methods (e.g., response surface
method [20], polynomial chaos expansion [21], support vector regres-
sion [22], Kriging [23]), among many others. One can refer to [24] for
an excellent review of existing structural reliability analysis methods.
Over the past decade, a particular class of adaptive methods, known as
active learning reliability analysis methods, has received a great deal
of attention. This is largely because they have demonstrated the ability
to provide accurate failure probability estimates with a relatively small
number of performance function evaluations. Two milestone contribu-
tions in this area are the efficient global reliability analysis [25] and
the Active Kriging Monte Carlo simulation (AK-MCS) [26]. The latter
is regarded as the cornerstone of various methods devised by modifying
one or more aspects of AK-MCS. For a comprehensive review of recent
advances in active learning reliability analysis methods, the reader is
referred to [27,28].

The first author and his collaborators have recently advanced the
development of a specialized type of active learning for structural
reliability analysis, namely Bayesian active learning. The resulting
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methods, referred to as Bayesian active learning reliability analysis
methods, feature a unique fusion of Bayesian inference and active
learning. The basic idea can be roughly summarized as follows: (1)
estimation of the failure probability integral (Eq. (1)) is first interpreted
s a Bayesian inference problem; (2) active learning of the failure
robability value is then set up based on the posterior statistics of the
ailure probability. The first idea is exposed in [29], where the posterior

mean and an upper bound on the posterior variance of the failure
probability are derived given a Gaussian process (GP) prior is placed
over the performance function. On this basis, a Bayesian active learning
method called ‘Active Learning Probabilistic Integration’ (ALPI) is also
developed. The ALPI method is further improved by the ‘Parallel Adap-
tive Bayesian Quadrature’ (PABQ) [30] method to estimate (extremely)
mall failure probabilities and to allow parallel distributed processing.
t is important to note that the upper bound of the posterior variance of

the failure probability tends to overestimate the true variance in most
instances. Thus, the Bayesian approach to failure probability estimation
is revisited in [31]. The authors offer a principled Bayesian failure
robability inference (BFPI) framework, where an expression for the
osterior variance of the probability of failure is obtained. From the
erspective of the second-order posterior statistics, the BFPI framework
rovides a relatively comprehensive Bayesian treatment of the failure
robability integral, which can therefore serve as a good starting point
or developing Bayesian active learning reliability analysis methods.
nfortunately, the posterior variance of the failure probability is ana-

ytically intractable and computationally demanding, making it difficult
o use in a Bayesian active learning context.

To develop Bayesian active learning methods based on the BFPI
framework for structural reliability analysis, two types of ideas have
been explored. The first one involves designing the two key compo-
nents for Bayesian active learning (i.e., stopping criterion and learning
function) using only the posterior mean of the failure probability.
Examples in this category include the ‘Partially Bayesian Active Learn-
ing Cubature’ (PBALC) method [32] and the ‘Semi-Bayesian Active
Learning Quadrature’ (SBALQ) method [33]. The latter utilizes not
nly the posterior mean but also the posterior variance of the failure
robability, albeit with some simplification. ALPI [29] and PABQ [29]
all into this category, though they were developed before the BPFI
ramework. In addition, there are the ‘Parallel Bayesian Probabilistic

Integration’ (PBPI) method [34] and ‘Quasi-Bayesian Active Learning
Cubature’ (QBALC) method [35]. Despite significant progress, develop-
ing an effective structural reliability analysis method based on the BFPI
framework remains an open problem. In particular, it is still challenging
to create a method that can produce a failure probability estimate
with a prescribed level of accuracy, while minimizing the number of
performance function evaluations.

To fill the research gap, this work presents another novel Bayesian
ctive learning reliability analysis method, called ‘Weakly Bayesian
ctive Learning Quadrature’ (WBALQ), by leveraging the BFPI frame-
ork. The method is expected to be able to evaluate extremely small

ailure probabilities, which is one of the key challenges in structural
eliability analysis. The main contributions can be summarized as
ollows:

• An upper bound on the first absolute central moment of the
posterior failure probability is derived, providing a more com-
putationally feasible alternative to the posterior variance as a
measure of epistemic uncertainty in the failure probability;

• A new stopping criterion, a key component of Bayesian active
learning, is proposed based on the epistemic uncertainty measure
and posterior mean of the failure probability. It ensures that the
failure probability estimate reaches a certain level of accuracy
before terminating the iterative process;

• Additionally, a new learning function, another essential element
for Bayesian active learning, is developed, which is partially
derived from the epistemic uncertainty measure. This function
guides the section of the most informative points for evaluating
the performance function;
2 
• The performance of the proposed WBALQ method is evaluated
against several representative existing Bayesian active learning
reliability analysis methods using five benchmark numerical ex-
amples.

The rest of this paper is structured as follows. Section 2 provides
a general overview of several related studies. The proposed WBALQ
method is introduced in Section 3. Five benchmark numerical exam-
ples are studied in Section 4 to demonstrate the performance of the
roposed method against several existing methods. The paper closes
ith some concluding remarks in Section 5.

2. Review of relevant literature

This section provides a brief introduction to the BFPI framework
[31] that underpins our new development. In addition, it also sum-

arizes some typical existing Bayesian active learning methods for
tructural reliability analysis. To be consistent with the setting of the
roposed method, the BFPI framework is restated in standard normal
pace rather than the physical space. Let us first introduce a transfor-

mation 𝑇 (e.g., Nataf transformation or Rosenblatt transformation) that
an transform the original random vector 𝑿 into a standard normal

one 𝑼 = [𝑈1, 𝑈2,… , 𝑈𝑑 ] ∈  ⊆ R𝑑 , i.e., 𝑼 = 𝑇 (𝑿). Then, the
riginal performance function 𝑔 can be rewritten as (𝒖) = 𝑔(𝑇 −1(𝒖)),

where  = 𝑔◦𝑇 −1 is called the transformed performance function. The
corresponding indicator function and failure probability are denoted as

and 𝑓 respectively.

2.1. Bayesian failure probability inference

2.1.1. Prior distribution
We model our prior beliefs about  using a GP, i.e.,

̃0(𝒖) ∼ (𝑚̃0 (𝒖), 𝑘̃0 (𝒖, 𝒖′)), (2)

where ̃0 represents the prior distribution of ; 𝑚̃0 (𝒖) and 𝑘̃0 (𝒖, 𝒖
′)

enote the prior mean and covariance functions, respectively. Among
he various options available, we adopt the commonly-used constant
nd squared exponential kernel for the prior mean and covariance
unctions, respectively:

𝑚̃0 (𝒖) = 𝑏, (3)

𝑘̃0 (𝒖, 𝒖
′) = 𝜎20 exp

(

−1
2
(𝒖 − 𝒖′)𝜮−1(𝒖 − 𝒖′)⊤

)

, (4)

where 𝑏 ∈ R; 𝜎0 > 0 denotes the prior standard deviation; 𝜮 =
iag

{

𝑙21 , 𝑙22 ,… , 𝑙2𝑑
}

with 𝑙𝑖 > 0 being the lengthscale in 𝑖th dimension.
With the above settings, the GP prior is parameterized by the 𝑑 + 2
hyper-parameters collected in 𝝑 =

{

𝑏, 𝜎0, 𝑙1, 𝑙2,… , 𝑙𝑑
}

. Note that the
choice of prior mean and covariance functions does not affect the
generality of the BFPI framework.

2.1.2. Estimating the hyper-parameters
Let  = { ,} be a dataset consisting of 𝑛 input–output pairs of the

unction , where  is an 𝑛-by-𝑑 matrix whose 𝑖th row is the 𝑖th input
point 𝒖(𝑖) and  is an 𝑛-by-1 column vector whose 𝑖th component is the
th -function observation 𝑦(𝑖) (𝑦(𝑖) = (𝒖(𝑖))). The hyper-parameters 𝝑
an be fitted to the dataset  by maximizing the log likelihood:

log 𝑝( | ,𝝑) = −1
2

[

( − 𝑏)⊤𝑲−1
̃0
( − 𝑏) + log |𝑲 ̃0 | + 𝑛 log 2𝜋

]

, (5)

where 𝑲 ̃0 is an 𝑛-by-𝑛 covariance matrix with its (𝑖, 𝑗)th entry being
𝑘 (𝒖(𝑖), 𝒖(𝑗)).
̃0



C. Dang et al.



𝑚
𝑘
b



d
h

v
d
v
a
o
m
r

s
s

m

m
c
s

Structural Safety 112 (2025) 102539 
2.1.3. Posterior distributions
Conditional on the data , our current state of knowledge about 

is expressed by its posterior distribution, which is also a GP:
̃𝑛(𝒖) ∼ (𝑚̃𝑛 (𝒖), 𝑘̃𝑛 (𝒖, 𝒖′)), (6)

where ̃𝑛 represents the posterior distribution of  after seeing 𝑛 ob-
servations; 𝑚̃𝑛 (𝒖) and 𝑘̃𝑛 (𝒖, 𝒖

′) are the posterior mean and covariance
functions respectively, which can be expressed as:

𝑚̃𝑛 (𝒖) = 𝑚̃0 (𝒖) + 𝒌̃0 (𝒖, )𝑲−1
̃0

(

 −𝒎̃0 ( )
)

, (7)

𝑘̃𝑛 (𝒖, 𝒖
′) = 𝑘̃0 (𝒖, 𝒖

′) − 𝒌̃0 (𝒖, )𝑲−1
̃0
𝒌̃0 ( , 𝒖′), (8)

where 𝒎̃0 ( ) is an 𝑛-by-1 column vector with its 𝑖-the element being
̃0 (𝒖

(𝑖)); 𝒌̃0 (𝒖, ) is a 1-by-𝑛 row vector with its 𝑖th element being
̃0 (𝒖, 𝒖

(𝑖)); 𝒌̃0 ( , 𝒖′) is an 𝑛-by-1 column vector with its 𝑖th element
eing 𝑘̃0 (𝒖

(𝑖), 𝒖′).
The posterior distribution of the indicator function  conditional on

follows a generalized Bernoulli process (GBP):

̃𝑛(𝒖) ∼ (𝑚̃𝑛 (𝒖), 𝑘̃𝑛 (𝒖, 𝒖′)), (9)

where ̃𝑛 denotes the posterior distribution of ; 𝑚̃𝑛 (𝒖) and 𝑘̃𝑛 (𝒖, 𝒖
′)

are the posterior mean and covariance functions respectively, which
can be given by:

𝑚̃𝑛 (𝒖) = 𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

, (10)

𝑘̃𝑛 (𝒖, 𝒖
′) = 𝛷2

(

[

0
0

]

;

[

𝑚̃𝑛 (𝒖)
𝑚̃𝑛 (𝒖

′)

]

,

[

𝜎2
̃𝑛
(𝒖) 𝑘̃𝑛 (𝒖

′, 𝒖)
𝑘̃𝑛 (𝒖, 𝒖

′) 𝜎2
̃𝑛
(𝒖′)

])

−𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

−
𝑚̃𝑛 (𝒖

′)

𝜎̃𝑛 (𝒖
′)

)

, (11)

where 𝛷 denotes the cumulative distribution function (CDF) of a stan-
ard normal variable; 𝛷2 denotes the bi-variate normal CDF, which
as no analytical solution; 𝜎̃𝑛 (𝒖) is the posterior standard deviation

function of , i.e., 𝜎̃𝑛 (𝒖) =
√

𝑘̃𝑛 (𝒖, 𝒖).
The distribution type of the posterior failure probability ̃𝑓 ,𝑛 is

not known exactly. Fortunately, its posterior mean and variance are
available:

𝑚̃𝑓 ,𝑛 = ∫
𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖, (12)

𝜎2̃𝑓 ,𝑛 = ∫ ∫
𝑘̃𝑛 (𝒖, 𝒖

′)𝜙(𝒖)𝜙(𝒖′)d𝒖d𝒖′, (13)

where 𝜙 denotes the joint PDF of 𝑼 ; 𝑘̃𝑛 (𝒖, 𝒖
′) is defined in Eq. (11).

Once  is given, the posterior mean 𝑚̃𝑓 ,𝑛 naturally serves as a point
estimate of the failure probability. More importantly, the posterior
ariance 𝜎2

̃𝑓 ,𝑛 can measure our epistemic uncertainty in the estimate
ue to the finite (more often limited) number of -function obser-
ations. However, both 𝑚̃𝑓 ,𝑛 and 𝜎2

̃𝑓 ,𝑛 are analytically intractable
nd entail numerical integration. Compared to 𝑚̃𝑓 ,𝑛 , the calculation
f 𝜎2

̃𝑓 ,𝑛 is much more challenging due to its underlying complexity,
aking it difficult to use in the development of Bayesian active learning

eliability analysis methods.

2.2. Typical Bayesian active learning reliability analysis methods

As mentioned earlier, some Bayesian active learning reliability anal-
ysis methods have already been developed, which are based on, or can
be seen as based on the BFPI framework. Typical methods include the
ALPI [29], PBALC [32], SBALQ [33], PBPI [34] and QBALC [35]. The
topping criteria and learning functions developed in these methods are
ummarized in Table 1. It should be noted that all the stopping criteria

entail numerical integration, which is not detailed here. Furthermore,
some of the methods allow for the selection of multiple points from
3 
the learning functions, thus enabling parallel distributed processing.
Despite significant efforts, there remains room for the development of
new reliability analysis methods based on the BFPI framework that
can further reduce the number of performance function calls while

aintaining a desired level of accuracy.

3. Weakly Bayesian active learning quadrature

In this section, we present another novel Bayesian active learning
method called WBALQ for structural reliability analysis with extremely
small failure probabilities, which is based on the BFPI framework. The

ain innovation of our method lies in the development of the stopping
riterion and learning function by properly exploiting the posterior
tatistics of the failure probability. Since the posterior variance is

computationally demanding, we try to avoid using it directly as existing
Bayesian active learning reliability analysis methods do. However, our
method differs significantly from these existing methods in the way we
construct the stopping criterion and the learning function, as described
below. Note that the proposed method is called ‘Weakly’ Bayesian
active learning because it does not fully incorporate all the Bayesian
aspects of the BFPI framework.

3.1. Stopping criterion and its numerical treatment

It is often required when performing structural reliability analysis
that the failure probability estimate maintains a certain level of accu-
racy. Therefore, our objective here is to devise a stopping criterion that
can assess the accuracy of the failure probability estimate, specifically
the posterior mean (Eq. (12)), without depending on the posterior
variance (Eq. (13)). To accomplish this, the key lies in developing
an alternative measure capable of capturing our epistemic uncertainty
about the failure probability. Moreover, this measure should be easier
to compute than the posterior variance.

Let us examine the first absolute central moment (also known as
mean absolute deviation around the mean) of the posterior failure
probability ̃𝑓 ,𝑛:
E̃𝑓 ,𝑛

{

|

|

|

̃𝑓 ,𝑛 − 𝑚̃𝑓 ,𝑛
|

|

|

}

= E̃𝑛

{

|

|

|

|

|

|

∫
̃𝑛 (𝒖)𝜙(𝒖)d𝒖 − ∫

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖
|

|

|

|

|

|

}

= E̃𝑛

{

|

|

|

|

|

|

∫

[

̃𝑛 (𝒖) −𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)]

𝜙(𝒖)d𝒖
|

|

|

|

|

|

}

≤ E̃𝑛

{

∫

|

|

|

|

|

|

̃𝑛 (𝒖) −𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

|

|

|

|

|

|

𝜙(𝒖)d𝒖

}

= ∫
E̃𝑛

{

|

|

|

|

|

|

̃𝑛 (𝒖) −𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

|

|

|

|

|

|

}

𝜙(𝒖)d𝒖

= ∫

[

|

|

|

|

|

|

0 −𝛷
(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

|

|

|

|

|

|

×𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

+
|

|

|

|

|

|

1 −𝛷
(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

|

|

|

|

|

|

× 𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)]

𝜙(𝒖)d𝒖

= 2∫
𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖,

(14)

where E𝐴 {𝐵} means to take expectation of 𝐵 with respect to 𝐴. If we
denote

𝜆̃𝑛 = ∫
𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖, (15)

then there exists
{

| ̃ |

}

E̃𝑓 ,𝑛 |

|

𝑓 ,𝑛 − 𝑚̃𝑓 ,𝑛 |
|

≤ 2𝜆̃𝑛 . (16)
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Table 1
Stopping criteria and learning functions developed in several typical Bayesian active learning reliability analysis methods.

Method Stopping criterion Learning function

ALPI
∫

√

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝛷
(

𝑚̃𝑛
(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖 LF (𝒖) =

√

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷
(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)

PBALC1
∫

[

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

−𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖) −𝑏

)]

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖1 LF (𝒖) =

[

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

−𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

− 𝑏
)]

𝜙(𝒖)

PBALC2
∫

[

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖) +𝑏

)

−𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)]

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖2 LF (𝒖) =

[

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

+ 𝑏
)

−𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)]

𝜙(𝒖)

PBALC3
∫

[

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖) +𝑏

)

−𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖) −𝑏

)]

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖3 LF (𝒖) =

[

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

+ 𝑏
)

−𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

− 𝑏
)]

𝜙(𝒖)

SBALQ
∫ 𝛷

(

−
|𝑚̃𝑛

(𝒖)|

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖 LF (𝒖) = 𝛷

(

− |𝑚̃𝑛 (𝒖)|
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)

PBPI
∫

[

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝛷
(

𝑚̃𝑛
(𝒖)

𝜎̃𝑛
(𝒖)

)]
𝛼
2
𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖 LF (𝒖) =

[

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷
(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)]
𝛼
2

QBALC

√

𝜌̃ ∫

√

𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝛷
(

𝑚̃𝑛
(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖

∫ 𝛷
(

−
𝑚̃𝑛

(𝒖)

𝜎̃𝑛
(𝒖)

)

𝜙(𝒖)d𝒖
< 𝜖 LF (𝒖; 𝑝) =

√

𝛷
(

− 𝑚̃𝑛 (𝒖)
𝑝𝜎̃𝑛 (𝒖)

)

𝛷
(

𝑚̃𝑛 (𝒖)
𝑝𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)

Note: 𝜖, 𝜖1, 𝜖2 and 𝜖3 denotes the user-defined stopping criterion thresholds; 𝑏 is a critical value that determines the desired
credible level; 𝛼 is a parameter; 𝜌̃ is the equivalent correlation coefficient; 𝑝 is a penalty factor.
This indicates that the mean absolute deviation around the mean of
he posterior failure probability ̃𝑓 ,𝑛 has an upper bound of 2𝜆̃𝑛 . Note
hat when 𝜆̃𝑛 approaches to zero, ̃𝑓 ,𝑛 theoretically converges to the

true failure probability. Thus, 𝜆̃𝑛 can be considered as an alternative
measure of the epistemic uncertainty in the failure probability. Besides,
his measure is much easier to evaluate than the posterior variance
2
̃𝑓 ,𝑛 . Interestingly, 𝜆̃𝑛 happens to be the integrated posterior variance
2
̃𝑛
(𝒖) under the weight 𝜙(𝒖), and also a special case of the pseudo

posterior standard deviation given in [34]. It is worth mentioning that a
ooser upper bound of E̃𝑓 ,𝑛

{

|

|

|

̃𝑓 ,𝑛 − 𝑚̃𝑓 ,𝑛
|

|

|

}

was provided in a previous
tudy [36].

Once the new measure 𝜆̃𝑛 has been obtained, the stopping criterion
s defined as follows:
𝜆̃𝑛
𝑚̃𝑓 ,𝑛

< 𝜖 , (17)

where 𝜖 is a user-defined threshold, a small positive value of which
is desired. The stopping criterion implies that the iterative process
involved in the proposed method should stop as soon as 𝜆̃𝑛 becomes
relatively small compared to 𝑚̃𝑓 ,𝑛 . Note that the proposed stopping

criterion can be seen as a special case of the stopping criterion given
in [34]. Since both 𝑚̃𝑓 ,𝑛 and 𝜆̃𝑛 lack analytical tractability, imple-

enting the proposed stopping criterion necessitates the use of an
ffective numerical integration technique. In this study, we employ the
Hyper-shell Simulation’ (HSS) method developed in [33].

The standard normal space  is partitioned into ℎ concentric hyper-
pherical shells such that [37]:
ℎ

𝑖=1
𝑖 =  , (18)

𝑖
⋂

𝑗 = ∅, 𝑖 ≠ 𝑗 , (19)

where 𝑖 =
{

𝒖|𝑅𝑖−1 ≤ ‖𝒖‖ < 𝑅𝑖
}

is the 𝑖th shell, defined by the inter
adius 𝑅𝑖−1 and outer radius 𝑅𝑖. The sequence of radii

{

𝑅𝑖
}ℎ
𝑖=0 is in

scending order such that 0 = 𝑅0 < 𝑅1 < ⋯ < 𝑅ℎ = ∞. As
uggested by [37], the radius 𝑅𝑖 (𝑖 = 1, 2,… , ℎ − 1) can be specified
s 𝑅 =

√

𝜒−2(1 − 10−𝑖), where 𝜒−2(⋅) represents the inverse CDF of the
𝑖 𝑑 𝑑

4 
chi-squared distribution with degree 𝑑. One can refer to Fig. 1(a) for a
schematic illustration of the space partition in three dimensions.

Following the standard normal space decomposition, 𝑚̃𝑓 ,𝑛 and 𝜆̃𝑛
can be further expressed as:

𝑚̃𝑓 ,𝑛 =
ℎ
∑

𝑖=1
𝑚(𝑖)
̃𝑓 ,𝑛

=
ℎ
∑

𝑖=1
∫𝑖

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖

=
ℎ−1
∑

𝑖=1
𝑣𝑖 ∫𝑖

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)𝑝(𝑖)(𝒖)d𝒖

+ 𝛿ℎ ∫ℎ

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜓 (ℎ)(𝒖)d𝒖,

(20)

𝜆̃𝑛 =
ℎ
∑

𝑖=1
𝜆(𝑖)
̃𝑛

=
ℎ
∑

𝑖=1
∫𝑖

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)d𝒖

=
ℎ−1
∑

𝑖=1
𝑣𝑖 ∫𝑖

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)𝑝(𝑖)(𝒖)d𝒖

+ 𝛿ℎ ∫ℎ

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜓 (ℎ)(𝒖)d𝒖,

(21)

where 𝑝(𝑖)(𝒖) denotes the uniform sampling PDF for the ℎ − 1 inner
hyper-shells:

𝑝(𝑖)(𝒖) =
{ 1

𝑣𝑖
, 𝒖 ∈ 𝑖, 𝑖 = 1, 2,… , ℎ − 1

0, ot her wise
, (22)

in which 𝑣𝑖 denotes the volume of the 𝑖th hyper-shell, given by 𝑣𝑖 =
𝜋𝑑∕2

𝛤 (𝑑∕2+1)

(

𝑅𝑑𝑖 − 𝑅
𝑑
𝑖−1

)

with 𝛤 (⋅) being Euler’s gamma function; 𝜓 (ℎ)(𝒖)
denotes truncated normal sampling PDF for the outermost hyper-
shell:

𝜓 (ℎ)(𝒖) =
{ 𝜙(𝒖)

𝛿ℎ
, 𝒖 ∈ ℎ , (23)
0, ot her wise
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Fig. 1. Schematic illustration of the HSS method (ℎ = 3) in three dimensions.
t
m
p
s

d

d
t

in which 𝛿ℎ = ∫ℎ
𝜙𝑼 (𝒖)d𝒖 is the probability content of the outermost

hyper-shell ℎ.

The estimators of 𝑚̃𝑓 ,𝑛 and 𝜆̃𝑛 can be given by:

𝑚̂̃𝑓 ,𝑛 =
ℎ
∑

𝑖=1
𝑚̂(𝑖)
̃𝑓 ,𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖

[

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝛷

(

−
𝑚̃𝑛 (𝒖

(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

𝜙(𝒖(𝑖,𝑗))

]

+ 𝛿ℎ
1
𝑁ℎ

𝑁ℎ
∑

𝑗=1
𝛷

(

−
𝑚̃𝑛 (𝒖

(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)

,

(24)

𝜆̂̃𝑛 =
ℎ−1
∑

𝑖=1
𝜆̂(𝑖)
̃𝑛

=
ℎ−1
∑

𝑖=1
𝑣𝑖

[

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝛷

(

−
𝑚̃𝑛 (𝒖

(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

𝛷

(

𝑚̃𝑛 (𝒖
(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

𝜙(𝒖(𝑖,𝑗))

]

+ 𝛿ℎ
1
𝑁ℎ

𝑁ℎ
∑

𝑗=1
𝛷

(

−
𝑚̃𝑛 (𝒖

(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)

𝛷

(

𝑚̃𝑛 (𝒖
(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)

,

(25)

where
{

𝒖(𝑖,𝑗)
}𝑁𝑖
𝑗=1 is a set of 𝑁𝑖 random samples drawn from 𝑝(𝑖)(𝒖),

𝑖 = 1, 2,… , ℎ − 1;
{

𝒖(ℎ,𝑗)
}𝑁ℎ
𝑗=1 is a set of 𝑁ℎ random samples generated

according to 𝜓 (ℎ)(𝒖). For details on how to obtain these samples, the
reader is referred to [33]. See Fig. 1(b) for a schematic illustration of
he sub-region sampling in three dimensions. The terms ‘‘partial means’’
nd ‘‘total means’’ will be used to refer to the quantities 𝑚̂(𝑖)

̃𝑓 ,𝑛 and 𝜆̂(𝑖)
̃𝑛

,
respectively, and to the quantities 𝑚̂̃𝑓 ,𝑛 and 𝜆̂̃𝑛 , respectively.

The variances associated with 𝑚̂̃𝑓 ,𝑛 and 𝜆̂̃𝑛 are expressed as:

V
[

𝑚̂̃𝑓 ,𝑛
]

=
ℎ
∑

𝑖=1
V
[

𝑚̂(𝑖)
̃𝑓 ,𝑛

]

=
ℎ−1
∑

𝑖=1

1
𝑁𝑖 − 1

⎧

⎪

⎨

⎪

⎩

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

[

𝑣𝑖𝛷

(

−
𝑚̃𝑛 (𝒖

(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

𝜙(𝒖(𝑖,𝑗))

]2

− 𝑚̂(𝑖),2
̃𝑓 ,𝑛

⎫

⎪

⎬

⎪

⎭

+ 1
𝑁ℎ − 1

⎧

⎪

⎨

⎪

⎩

1
𝑁ℎ

𝑁ℎ
∑

𝑗=1

[

𝛿ℎ𝛷

(

−
𝑚̃𝑛 (𝒖

(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)]2

− 𝑚̂(ℎ),2
̃𝑓 ,𝑛

⎫

⎪

⎬

⎪

⎭

,

(26)
i

5 
V
[

𝜆̂̃𝑛
]

=
ℎ
∑

𝑖=1
V
[

𝜆̂(𝑖)
̃𝑛

]

=
ℎ−1
∑

𝑖=1

1
𝑁𝑖 − 1

{

1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

[

𝑣𝑖𝛷

(

−
𝑚̃𝑛 (𝒖

(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

× 𝛷

(

𝑚̃𝑛 (𝒖
(𝑖,𝑗))

𝜎̃𝑛 (𝒖
(𝑖,𝑗))

)

𝜙(𝒖(𝑖,𝑗))

]2

− 𝜆̂(𝑖),2
̃𝑛

⎫

⎪

⎬

⎪

⎭

+ 1
𝑁ℎ − 1

{

1
𝑁ℎ

𝑁ℎ
∑

𝑗=1

[

𝛿ℎ𝛷

(

−
𝑚̃𝑛 (𝒖

(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)

× 𝛷

(

𝑚̃𝑛 (𝒖
(ℎ,𝑗))

𝜎̃𝑛 (𝒖
(ℎ,𝑗))

)]2

− 𝜆̂(ℎ),2
̃𝑛

⎫

⎪

⎬

⎪

⎭

,

(27)

where V [⋅] means to take variance of its argument. We shall refer to
V
[

𝑚̂(𝑖)
̃𝑓 ,𝑛

]

and V
[

𝜆̂(𝑖)
̃𝑛

]

as partial variances, and to V
[

𝑚̂̃𝑓 ,𝑛
]

and V
[

𝜆̂̃𝑛
]

total variances.
Clearly, the sample sizes for the different hyper-shells do not need

o be identical. To effectively reduce the corresponding total variance,
ore samples should be allocated in the hyper-shell(s) with the largest
artial variance(s). Therefore, it is recommended to increase the sample
izes progressively until a stopping criterion is met. This criterion is
efined as

√

V
[

𝑚̂̃𝑓 ,𝑛
]

∕𝑚̂̃𝑓 ,𝑛 < 𝛾1 and
√

V
[

𝜆̂̃𝑛
]

∕𝜆̂̃𝑛 < 𝛾2, where 𝛾1

and 𝛾2 are two user-defined thresholds. For convenience, we assume
that the sample size is the same for each enrichment in all hyper-
shells, denoted as 𝛥𝑁 . Initially, 𝛥𝑁 samples for each hyper-shell are
generated. Additional samples are only generated for the hyper-shell(s)
with the largest partial variance(s) if the stopping criterion is not met.
Note that the relatively time-consuming item 𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

should be
reused as much as possible to speed up the overall computation. For
etailed information on the implementation of the HSS method, refer
o [33]. The two terms involved in the proposed stopping criterion

(InEq. (17)) should be replaced by their respective final estimates,
i.e., 𝑚̂̃𝑓 ,𝑛 and 𝜆̂̃𝑛 . The stopping criterion should be met two times in
succession to increase its robustness.

3.2. Learning function and next best point selection

Another essential component of a Bayesian active learning reliabil-
ty analysis method is the so-called learning function, which comes into
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Fig. 2. Flowchart of the proposed WBALQ method.
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play if the stopping criterion developed in the previous subsection is not
et. Specifically, the learning function guides the learning process to

dentify the most promising point(s) at which to evaluate the -function
ext. Since we believe that the accuracy of failure probability estimate
an be controlled by the stopping criterion (Ineq. (17)), a natural idea
o design the sought learning function is to examine the term on the
eft-hand side of the inequality, i.e., the ratio of 𝜆̃𝑛 and 𝑚̃𝑓 ,𝑛 . This

is not straightforward, however, mainly because it may be difficult
to extract a unified function from the ratio involving two integrals.
Alternatively, we might turn to 𝜆̃𝑛 , which serves as the epistemic
ncertainty measure for the failure probability.

Following the idea above, we introduce a novel learning function
termed ‘Weighted Epistemic Uncertainty Contribution’ (WEUC):

WEUC (𝒖) = 𝜎̃𝑛 (𝒖)
⏟⏟⏟

1⃝

𝛷

(

−
𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝛷

(

𝑚̃𝑛 (𝒖)
𝜎̃𝑛 (𝒖)

)

𝜙(𝒖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2⃝

, (28)

where 1⃝ represents the posterior standard deviation function of ,
which serves as a weight for 2⃝; 2⃝ is the integrand of 𝜆̃𝑛 , referred
o as the ‘epistemic uncertainty contribution’. The proposed WEUC

function can be interpreted as follows. The second term 2⃝ actually
provides a measure of the contribution of the epistemic uncertainty at
oint 𝒖 to the total value of 𝜆̃𝑛 , which is then multiplied by the first
erm 1⃝ to reward points with large uncertainty (hence to increase the
xploration).

The next best point to query the -function can be selected by:

𝒖(𝑛+1) = arg max
𝒖∈[−𝛽 ,𝛽]𝑑

WEUC (𝒖) , (29)

where [−𝛽 , 𝛽]𝑑 denotes a hyper-rectangle of side length 𝛽 in the stan-
dard normal space  ; 𝛽 can be determined according to 𝛽 =
√

𝜒−2
𝑑 (1 − 𝜌) with 𝜌 = 1 × 10−10 [32]. As the learning function is

relatively cheap to evaluate, we can use any suitable meta-heuristic
optimization algorithm to solve the optimization problem, such as the
genetic algorithm.
6 
3.3. Implementation procedure of the proposed method

The main procedure for implementing the proposed method is
ummarized below in six steps, together with a flowchart given in

Fig. 2.
Step 1: Generating an initial dataset
First, a set of 𝑛0 uniform samples  =

{

𝒖(𝑖)
}𝑛0
𝑖=1 is generated within

a 𝑑-ball of radius 𝑅0 using an appropriate low-discrepancy sequence. In
this study, the radius 𝑅0 is set to 𝑅0 =

√

𝜒−2
𝑑 (1 − 𝛿) with 𝛿 = 1 × 10−8,

and the Hammersley sequence is employed. Subsequently, the output
values of the -function at  can be evaluated, which are denoted as
 =

[

𝑦(1), 𝑦(2),… , 𝑦(𝑛0)]⊤ with 𝑦(𝑖) = (𝒖(𝑖)). At last, the initial dataset
can be constructed as  = { ,}. Let 𝑛 = 𝑛0.

Step 2: Obtaining the posterior statistics of 
The posterior GP of the -function conditional on  needs to be

cquired. This involves primarily estimating the hyperparameters using
he maximum likelihood estimation method. In our study, we utilize
he fitrgp function from the Statistics and Machine Learning Toolbox of
ATLAB.
Step 3: Computing the two integral terms in the stopping crite-

rion
One has to compute the two estimates 𝑚̂̃𝑓 ,𝑛 and 𝜆̂̃𝑛 by using the

SS method outlined in Section 3.1.
Step 4: Checking the stopping criterion
If

𝜆̂̃𝑛
𝑚̂̃𝑓 ,𝑛

< 𝜖 is satisfied twice in row, go to Step 6; Otherwise,
proceed to Step 5.

Step 5: Enriching the dataset
First, the next best point 𝒖(𝑛+1) is identified by Eq. (29). Then,

evaluating the  function at 𝒖(𝑛+1) gives its output value 𝑦(𝑛+1). Finally,
the previous dataset  is enriched with

{

𝒖(𝑛+1), 𝑦(𝑛+1)}. Let 𝑛 = 𝑛 + 1
and go to Step 2.

Step 6: Ending the algorithm
Return the last posterior mean estimate 𝑚̂ and end the algorithm.
̃𝑓 ,𝑛
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Fig. 3. Illustration of the proposed WBALQ method (𝜖 = 3.0%) for Example 1.
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4. Numerical examples

In this section, five numerical examples are examined to demon-
strate the performance of the proposed WBALQ method in estimating
xtremely small failure probabilities. The parameters of our method
re set as follows: 𝑛0 = 10, 𝛥𝑁 = 105, ℎ = 10, 𝛾1 = 𝛾2 =

2%, and 𝜖 is varied to see its effect. Where applicable, the failure
probability estimate provided by MCS is used as the reference so-
lution. In all the examples, the proposed method is compared with
several other state-of-the-art methods: Active learning Kriging Markov
Chain Monte Carlo (AK-MCMC) [38], PBALC1 [32], PBALC2 [32],
PBALC3 [32], SBALQ [33], and QBALC [35]. To test their robustness,
ll the (Bayesian) active learning methods are run independently 20
imes and the corresponding statistical results are reported.

4.1. Example 1: A series system with four branches

The first numerical example is concerned with a series system with
our branches, which has been extensively studied (e.g., see [26]). The
erformance function is given by:

𝑔 (𝑿) = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎 + (𝑋1−𝑋2)2
10 − (𝑋1+𝑋2)

√

2

𝑎 + (𝑋1−𝑋2)2
10 + (𝑋+𝑋2)

√

2

(𝑋1 −𝑋2) + 𝑏
√

2

(𝑋2 −𝑋1) + 𝑏
√

2

, (30)

where 𝑎 and 𝑏 are two constant parameters, which are specified as 𝑎 = 6
and 𝑏 = 12; 𝑋1 and 𝑋2 are two independent standard normal variables.

Table 2 reports the results of several methods, i.e., MCS, AK-MCMC,
PBALC1, PBACL2, PBALC3, SBALQ, QBALC and the proposed WBALQ.

he reference value for the failure probability is adopted as 3.01 × 10−9
(with a COV of 1.82%), produced by MCS with 1012 samples. At the cost
of an average number of 195.45 performance function evaluations, AK-
MCMC gives a biased mean value of the failure probability, i.e., 2.34 ×
10−9, with a rather large COV of 33.11%. PBALC1, PBALC2, PBALC3,
SBALQ and QBALC perform well in terms of the number of 𝑔-function
calls on average, as well as the unbiasedness and variability of the
mean failure probability value. For the proposed WBALQ method itself,
as the stopping criterion threshold 𝜖 decreases, (1) the number of
performance function evaluations increases on average; (2) the bias
of the mean failure probability value is reduced; (3) the COV of the
mean failure probability value decreases. Taking the case 𝜖 = 3.0% as
an example, it is found that the proposed WBALQ method significantly
outperforms AK-MCMC and slightly outperforms the other five methods
7 
Table 2
Reliability analysis results of Example 1 by several methods.

Method 𝑁𝑐 𝑎𝑙 𝑙 𝑃𝑓 𝛿𝑃𝑓 Reference

MCS – 1012 3.01 × 10−9 1.82% [32]
AK-MCMC – 195.45 2.34 × 10−9 33.11% [32]
PBALC1 𝜖1 = 2.5% 44.75 3.04 × 10−9 3.82% [32]
PBALC2 𝜖2 = 2.5% 50.10 3.04 × 10−9 1.39% [32]
PBALC3 𝜖3 = 5.0% 49.50 3.03 × 10−9 1.99% [32]
SBALQ 𝜖 = 2.0% 41.15 3.03 × 10−9 1.31% [33]
QBALC 𝜖 = 5.0% 44.75 3.03 × 10−9 2.57% [35]

Proposed WBALQ

𝜖 = 5.0% 32.05 2.79 × 10−9 6.55% –
𝜖 = 4.5% 33.50 2.85 × 10−9 5.20% –
𝜖 = 4.0% 34.30 2.91 × 10−9 3.23% –
𝜖 = 3.5% 35.20 2.95 × 10−9 2.08% –
𝜖 = 3.0% 36.00 2.98 × 10−9 1.83% –
𝜖 = 2.5% 37.10 2.99 × 10−9 0.97% –
𝜖 = 2.0% 39.05 3.01 × 10−9 0.91% –

Note: 𝑁𝑐 𝑎𝑙 𝑙 = the total (average) number of -function calls; 𝑃𝑓 = the (mean) failure
probability estimate; 𝛿𝑃𝑓 = the COV of 𝑃𝑓 , which is obtained from 20 replications for
(Bayesian) active learning methods.

(i.e., PBALC1, PBALC2, PBALC3, SBALQ, and QBALC) in terms of the
verage number of 𝑔-function calls.

The proposed method (𝜖 = 3.0%) is further illustrated by Fig. 3
based on an arbitrary run. It can be seen from Fig. 3(a) that: (1) the
initial 10 points are very scattered, as we expected; (2) most of the
points identified in the active learning loop are located around the
four branches of the true limit state curve. Fig. 3(b) shows that as the
umber of points increases, the posterior mean estimate of the failure
robability eventually converges to the reference failure probability.

4.2. Example 2: A nonlinear oscillator

In the second example, we consider a single-degree-of-freedom non-
inear oscillator subject to a rectangular pulse load [20], as depicted in

Fig. 4. The performance function is formulated as:

𝑔 (𝑿) = 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑐1 + 𝑐2

sin

(

𝑡1
2

√

𝑐1 + 𝑐2
𝑚

)

|

|

|

|

|

|

, (31)

in which 𝑚, 𝑐1, 𝑐2, 𝑟, 𝐹1 and 𝑡1 are six basic random variables, as listed
in Table 3.

The performance of the proposed WBALQ method is compared
with several other methods (i.e., MCS, AK-MCMC, PBALC1, PBACL2,
PBALC3, SBALQ and QBALC) in Table 4. The failure probability esti-
mate given by MCS with 1012 samples is taken as the reference, which
is 4.01 × 10−8 with a COV of 0.50%. AK-MCMC can provide an unbiased
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Fig. 4. A nonlinear oscillator subject to a rectangular pulse load.
Table 3
Basic random variables for Example 2.

Variable Description Distribution Mean COV

𝑚 Mass Lognormal 1.0 0.05
𝑐1 Stiffness Lognormal 1.0 0.10
𝑐2 Stiffness Lognormal 0.2 0.10
𝑟 Yield displacement Lognormal 0.5 0.10
𝐹1 Load amplitude Lognormal 0.4 0.20
𝑡1 Load duration Lognormal 1.0 0.20

Table 4
Reliability analysis results of Example 2 by several methods.

Method 𝑁𝑐 𝑎𝑙 𝑙 𝑃𝑓 𝛿𝑃𝑓 Reference

MCS – 1012 4.01 × 10−8 0.50% [32]
AK-MCMC – 282.30 4.03 × 10−8 0.76% [32]
PBALC1 𝜖1 = 5.0% 29.10 4.03 × 10−8 4.29% [32]
PBALC2 𝜖2 = 5.0% 31.90 4.07 × 10−8 2.61% [32]
PBALC3 𝜖3 = 10.0% 30.95 4.05 × 10−8 3.66% [32]
SBALQ 𝜖 = 4.0% 31.45 4.03 × 10−8 1.72% [33]
QBALC 𝜖 = 5.0% 29.25 4.03 × 10−8 2.49% –

Proposed WBALQ

𝜖 = 5.0% 24.00 3.95 × 10−8 4.02% –
𝜖 = 4.5% 25.25 3.99 × 10−8 3.56% –
𝜖 = 4.0% 26.20 3.99 × 10−8 2.81% –
𝜖 = 3.5% 27.25 4.06 × 10−8 1.99% –
𝜖 = 3.0% 27.65 4.03 × 10−8 1.76% –
𝜖 = 2.5% 29.95 4.04 × 10−8 1.53% –
𝜖 = 2.0% 31.90 4.02 × 10−8 1.00% –

mean failure probability value with a very small COV, but at the cost
of an average of 282.30 performance function calls. PBALC1, PBACL2,
PBALC3, SBALQ and QBALC are able to reduce the average number
of -function evaluations significantly, while still producing quite good
results. For the case of 𝜖 = 4.0%, the proposed WBALQ method demon-
strates comparable unbiasedness and variability, but requires fewer
𝑔-function evaluations on average compared to the aforementioned five
methods. Overall, as 𝜖 decreases, the performance of the proposed
method improves, albeit with an increase in the average number of
performance function evaluations.

4.3. Example 3: An I beam

The third numerical example consists of a simply-supported I beam
under a concentrated force [39], which is shown in Fig. 5. The perfor-
mance function is expressed as follows:

𝑔(𝑿) = 𝑆 − 𝜎max, (32)

in which

𝜎max =
𝑃 𝑎(𝐿 − 𝑎)𝑑

2𝐿𝐼
, (33)

with

𝐼 =
𝑏𝑓𝑑3 − (𝑏𝑓 − 𝑡𝑤)(𝑑 − 2𝑡𝑓 )3

12
. (34)

Eight basic random variables 𝑿 = [𝑃 , 𝐿, 𝑎, 𝑆 , 𝑑 , 𝑏𝑓 , 𝑡𝑤, 𝑡𝑓 ] are involved
in the performance function (Eq. (32)), as described in Table 5.
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Table 5
Basic random variables for Example 3.

Variable Distribution Mean COV

𝑃 Gumbel 1500 0.15
𝐿 Normal 120 0.05
𝑎 Normal 72 0.10
𝑆 Normal 200,000 0.15
𝑑 Normal 2.3 0.05
𝑏𝑓 Normal 2.3 0.05
𝑡𝑤 Normal 0.16 0.05
𝑡𝑓 Normal 0.26 0.05

Table 6
Reliability analysis results of Example 3 by several methods.

Method 𝑁𝑐 𝑎𝑙 𝑙 𝑃𝑓 𝛿𝑃𝑓
MCS – 1011 1.16 × 10−7 0.93%
AK-MCMC – 390.05 1.16 × 10−7 2.23%
PBALC1 𝜖1 = 5.0% 46.35 1.16 × 10−7 3.46%
PBALC2 𝜖2 = 5.0% 50.40 1.15 × 10−7 2.72%
PBALC3 𝜖3 = 10.0% 49.15 1.15 × 10−7 3.48%
SBALQ 𝜖 = 4.0% 47.45 1.14 × 10−7 3.91%
QBALC 𝜖 = 5.0% 45.80 1.14 × 10−7 3.10%

Proposed WBALQ

𝜖 = 5.0% 33.55 1.14 × 10−7 6.34%
𝜖 = 4.5% 34.65 1.14 × 10−7 5.82%
𝜖 = 4.0% 37.05 1.13 × 10−7 3.76%
𝜖 = 3.5% 40.40 1.13 × 10−7 3.30%
𝜖 = 3.0% 42.40 1.14 × 10−7 3.44%
𝜖 = 2.5% 46.30 1.14 × 10−7 3.27%
𝜖 = 2.0% 50.70 1.14 × 10−7 2.33%

The main results of several methods, i.e., MCS, AK-MCMC, PBALC1,
PBACL2, PBALC3, SBALQ, QBALC and WBALQ, are summarized in
Table 6. The reference solution for the failure probability provided by
MCS with 1011 samples is 1.16 × 10−7 with a COV of 0.93%. All the
six methods, i.e., AK-MCMC, PBALC1, PBACL2, PBALC3, SBALQ and
QBALC, can give satisfactory results for the failure probability. Among
these, the last five methods require on average significantly fewer 𝑔-
function evaluations than AK-MCMC. In all cases studied except for
𝜖 = 5.0% and 𝜖 = 4.5%, the proposed WBALQ method provides an
unbiased mean value of the failure probability with a COV of less
than 5%. Specifically, for 𝜖 = 4.0%, the proposed WBALQ method
outperforms PBALC1, PBACL2, PBALC3, SBALQ, and QBALC in terms
of the average number of performance function evaluations.

4.4. Example 4: A space truss structure

The fourth numerical example involves a 56-bar space truss struc-
ture [40], as depicted in Fig. 6. The finite element model of this
structure is established using OpenSees with 56 elements and 25 nodes.
Assume that the Young’s modulus and the cross-sectional area are the
same for each element, denoted 𝐸 and 𝐴 respectively. Nine concen-
trated loads, 𝑃1, 𝑃2,… , 𝑃9, are applied to nodes 1 ∼ 9 along the negative
of the 𝑧 axis. Once the vertical displacement of the top node exceeds a
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Fig. 5. A simply-supported I beam subjected to a concentrated force.
Fig. 6. Schematic diagram of a 56-bar space truss structure.
certain threshold, a failure is considered to have occurred, resulting in
the following performance function:

𝑔(𝑿) = 𝛥 − 𝑉1(𝑃1 ∼ 𝑃9, 𝐸 , 𝐴), (35)

where 𝛥 denotes the threshold, which is specified as 50 mm; 𝑉1 is the
vertical displacement of node 1; 𝑃1 ∼ 𝑃9, 𝐸 and 𝐴 are eleven basic
random variables, as listed in Table 7.
9 
In this example, the IS method available in UQLab [41] is employed
to provide a reference solution. The failure probability value obtained
is 4.94 × 10−8 with a COV of 1.00%, using 66,107 𝑔-function calls.
The results of IS and several other methods are reported in Table 8.
It can be seen that AK-MCMC can produce very good results, but at the
cost of an average of 465.00 𝑔-function calls, which is far more than
other methods (except IS). Besides, the proposed method (𝜖 = 4.0%)
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Fig. 7. A jet engine turbine blade: (a) Geometry; (b) Mesh.
Table 7
Basic random variables for Example 4.

Variable Distribution Mean COV

𝑃1 Lognormal 150 kN 0.20
𝑃2 ∼ 𝑃9 Lognormal 100 kN 0.20
𝐸 Normal 2.06 GPa 0.10
𝐴 Normal 2000 mm2 0.05

Table 8
Reliability analysis results of Example 4 by several methods.

Method 𝑁𝑐 𝑎𝑙 𝑙 𝑃𝑓 𝛿𝑃𝑓 Reference

IS – 66,107 4.94 × 10−8 1.00% [35]
AK-MCMC – 465.00 4.97 × 10−8 2.92% [35]
PBALC1 𝜖1 = 5.0% 27.20 4.86 × 10−8 5.70% [32]
PBALC2 𝜖2 = 5.0% 26.90 4.85 × 10−8 4.61% [32]
PBALC3 𝜖3 = 10.0% 26.30 4.87 × 10−8 6.64% [32]
SBALQ 𝜖 = 4.0% 31.40 4.77 × 10−8 5.32% –
QBALC 𝜖 = 5.0% 29.20 4.69 × 10−8 6.42% –

Proposed WBALQ

𝜖 = 5.0% 24.90 4.76 × 10−8 8.98% –
𝜖 = 4.5% 25.75 4.80 × 10−8 8.91% –
𝜖 = 4.0% 26.30 4.87 × 10−8 5.57% –
𝜖 = 3.5% 27.50 4.90 × 10−8 4.87% –
𝜖 = 3.0% 29.05 4.97 × 10−8 4.48% –
𝜖 = 2.5% 31.05 4.92 × 10−8 2.85% –
𝜖 = 2.0% 32.40 4.97 × 10−8 1.68% –

performs similarly to PBALC1, PBALC2 and PBALC3, and slightly better
than SBALQ and QBALC in terms of the average number of model
evaluations.

4.5. Example 5: A jet engine turbine blade

The final example is a turbine blade in a jet engine (shown in
Fig. 7(a)), which extracts energy from high-temperature, high-pressure
gas and converts it into rotational motion to generate thrust. This model
is available in the Partial Differential Equation Toolbox of Matlab
R2023a. The turbine blade is made of a nickel-based alloy (NIMONIC
90), with material properties including Young’s modulus 𝐸, Poisson’s
ratio 𝑣, coefficient of thermal expansion 𝜅. For the boundary condition,
the surface of the root in contact with the other metal is fixed. The
pressure and suction sides of the blade are subject to pressure loads 𝑝1
and 𝑝2, respectively. As depicted in Fig. 7(b), the finite element model
is generated using a tetrahedral mesh with the maximum element size
of 0.01 m. A common cause of turbine blade failure is stress exceeding
the stress limit of the material, so the following performance function
is considered:

( )
𝑔(𝑿) = 𝜎t h − 𝜎max 𝐸 , 𝑣, 𝜅 , 𝑝1, 𝑝2 , (36)
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Table 9
Basic random variables for Example 5.

Variable Distribution Mean COV

𝐸 Normal 220 GPa 0.10
𝜈 Normal 0.30 0.05
𝜅 Uniform 1.25 × 10−7 1/K 0.05
𝑝1 Gumbel 500 kPa 0.15
𝑝2 Gumbel 450 kPa 0.15

Table 10
Reliability analysis results of Example 5 by several methods.

Method 𝑁𝑐 𝑎𝑙 𝑙 𝑃𝑓 𝛿𝑃𝑓 Time (s)
AK-MCMC – 231.95 1.17 × 10−8 11.60% 231.95
PBALC1 𝜖1 = 5.0% 27.15 1.25 × 10−8 5.03% 234.67
PBALC2 𝜖2 = 5.0% 29.10 1.25 × 10−8 2.64% 265.18
PBALC3 𝜖3 = 10.0% 27.65 1.24 × 10−8 2.28% 246.89
SBALQ 𝜖 = 4.0% 27.80 1.22 × 10−8 6.47% 195.27
QBALC 𝜖 = 5.0% 26.70 1.22 × 10−8 7.06% 329.49

Proposed WBALQ

𝜖 = 5.0% 22.00 1.22 × 10−8 6.13% 103.55
𝜖 = 4.5% 22.80 1.24 × 10−8 5.74% 111.58
𝜖 = 4.0% 23.40 1.23 × 10−8 4.46% 114.06
𝜖 = 3.5% 24.05 1.25 × 10−8 2.10% 126.15
𝜖 = 3.0% 25.15 1.24 × 10−8 2.52% 139.04
𝜖 = 2.5% 28.55 1.25 × 10−8 1.31% 172.81
𝜖 = 2.0% 28.25 1.26 × 10−8 1.76% 176.00

where 𝜎max is the maximum von Mises stress of the blade; 𝜎t h is the
associated threshold, which is specified as 0.8 GPa; 𝐸, 𝑣, 𝜅, 𝑝1 and 𝑝2
are treated as random variables, as detailed in Table 9.

The reliability analysis results obtained by several different methods
are summarized in Table 10. The simulations were performed on a
computer with an AMD Ryzen Threadripper PRO 5975WX processor,
64 GB of RAM. The reference failure probability is taken as 1.24 × 10−8
with a COV of 2.28%, produced by PBALC3 with an average of 27.65
performance function evaluations. AK-MCMC requires, on average,
231.95 performance function calls, while producing a slightly biased
mean for the failure probability, with a large COV up to 11.60%. The
average computation time is 231.95 s. The other methods (i.e., PBALC1,
PBALC2, PBALC3, SBALQ, QBALC and WBALQ) perform much better
than AK-MCMC. Taking 𝜖 = 3.5% as an example, the proposed WBALQ
method gives fairly good results, while requiring fewer 𝑔-function calls
and less computation time on average among them.

Remark. In the five numerical examples above, we have studied the
effect of the stopping criterion threshold 𝜖 on the performance of our
method. It is shown empirically that: (1) a large 𝜖 (e.g., 5.0%) can lead
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to a high bias and a large COV for the probability of failure; (2) a small
𝜖 (e.g., 2.0%) can lead to a low (or almost no) bias and a rather small
COV for the probability of failure. As a compromise, 𝜖 = 4.0% can be
adopted to produce a COV for the failure probability around 5%, while
with an acceptable bias.

5. Concluding remarks

In this work, another novel Bayesian active learning method, termed
‘weakly Bayesian active learning quadrature’ (WBALQ), is presented
for structural reliability analysis, particularly for evaluating extremely
small failure probabilities. The proposed method is grounded in the
well-established Bayesian failure probability inference framework. The
main contributions lie in the development of two key components
(i.e., stopping criterion and learning function) for Bayesian active learn-
ing of the failure probability without relying on the posterior variance
of the failure probability (which is computationally prohibitive). This
s achieved by examining the upper bound of the first absolute central
oment of the posterior failure probability instead. Utilizing this upper

ound and the posterior mean of the failure probability, we devise a
ew stopping criterion involving two analytically intractable integrals.
hese integrals are then solved using a recently developed numerical

ntegration scheme. A new learning function, called ‘Weighted Epis-
emic Uncertainty Contribution’ (WEUC), is also developed in light of
he upper bound. By studying five numerical examples, it is empirically
hown that the proposed WBALQ method: (1) can estimate extremely
mall failure probabilities (on the order of 10−9 - 10−7); (2) performs
uch better, or at least similarly, to several existing methods. In

addition, 𝜖 = 4.0% is recommended for the stopping criterion of the
proposed method.

Admittedly, the proposed method has difficulties in dealing with
igh dimensional and/or highly non-linear problems. A possible re-
earch direction to improve its performance in high dimensions is to
ncorporate dimension reduction techniques. While for dealing with
ighly non-linear problems, a possible way is to use other kernels
nstead of the Gaussian one, or even other Bayesian models instead of
he GP.
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