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Interval model updating is typically performed when gathering data is expensive, time-
consuming, or complex and only a limited amount of data is available to perform non-
deterministic model updating. In these situations, the fitted intervals will only provide an
estimate of the exact interval bounds. This is because the limited data available is unlikely
to include any samples that fall precisely on the interval boundaries. In these situations, an
analyst could use a metric to assess the accuracy of identified model uncertainties against
unseen missing data. Furthermore, when this metric is able to estimate the required amount
of data for accurate uncertainty quantification, data-gathering efforts are minimized. This
paper defines this metric as the reliability of a data-enclosing set as the probability that future
unseen data will fall within the set. Recently, Crespo et al. [1] presented a scenario optimization
approach to determine a lower bound for this reliability without having to characterize the
underlying distribution of the data generation mechanism. To calculate the reliability, the
scenario optimization approach needs the number of hyper-parameters to fit the data enclosing
set, the number of samples, and the dimension of the data enclosing set. Once these are obtained,
and a confidence level is determined, the approach calculates the lower bound of the reliability.
Additionally, analysts can calculate the number of samples required to fit the data enclosing set
with predefined lower bound reliability before the measurement campaign. The goals of this
paper are to develop the certified interval model updating based on scenario optimization and
to apply this to a dynamical modal analysis of a structural finite element model. A four-level
building numerical model is used to illustrate the accuracy and the practical application of the
developed methodologies.

I. Introduction
Interval model updating is a non-deterministic method that is used to update the uncertainty in models based on

indirect measurement data. This method considers the potential range of values for each measurement, rather than
assuming that the measured values are precise or conform to a predefined probabilistic distribution. Accounting for
the uncertainty in model updating is especially crucial when the measurements are prone to significant uncertainty or
noise. Intervals are powerful in cases where gathering data is difficult, time-consuming, or expensive [2, 3]. Therefore,
several procedures for interval model updating have been introduced in the literature [4–6]. Fang et al. [7] used interval
response surface models to save computational cost and to limit the typical overestimation of interval model updating
approaches. Additionally, methodologies employing a Kriging predictor model were proposed [8, 9]. Faes et al. [10]
described an efficient multivariate interval model updating for high dimensional models under scarce data availability.
Alternatively, when data collection is straightforward, analysts can use probabilistic techniques to describe and update
the uncertainty, such as the popular probabilistic model updating technique, Bayesian model updating [11], even though
in this case care should be taken with the definition of the prior distributions [12].

Regardless of whether interval or probabilistic uncertainty is considered, having a metric for the accuracy of the
identified model uncertainties against unseen missing data would provide the analyst with a tool to assess the “quality”
of the identified uncertainty. Furthermore, it can effectively reduce the data-gathering effort to a strictly required
minimum. This paper defines such a metric utilizing the concept of the lower bound reliability of a data enclosing set.
Here, reliability is defined as the probability that future unseen data will fall in the data-enclosing interval set. Recently,
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Crespo et al. [1] presented a scenario optimization approach to determine a lower bound value for this reliability without
having to characterize the underlying distribution of the data generation mechanism. To calculate the lower bound
reliability, the scenario optimization approach needs the number of hyper-parameters to fit the data enclosing set, the
number of samples, and the dimension of the data enclosing set. Together with a confidence level, the lower bound of
the reliability is calculated. Additionally, analysts can calculate the number of samples required for fitting the data
enclosing set with predefined lower bound reliability prior to the measurement campaign.

The goals of this paper are (1) to develop the certified interval model updating based on scenario optimization, (2)
to show the accuracy of this methodology in a numerical application of an interval model updating based on a modal
analysis, and (3) to illustrate the practical application of the interval model updating. Hereto the scenario optimization is
used to calculate the required number of data measurements for interval fitting. Scenario optimization can also be used
during the interval analysis procedure to calculate the required number of data samples for interval analysis. In case the
interval model updating is a convex optimization problem that yields the global minimum, the certified interval model
updating provides the total lower bound reliability with a known confidence level on the updated input interval set.

The paper is organized as follows. Section II introduces interval analysis and solution techniques based on
optimization and vertex analysis. Section III presents the scenario optimization theory and the application to the interval
model updating. Section IV illustrates the interval model updating on a four-level building and makes an in-depth
accuracy analysis. Section V concludes the paper by summarizing the key results of this paper.

II. Interval analysis
An interval scalar 𝑥𝐼 ∈ IR represents an uncertain parameter 𝑥 that has a fixed but unknown value, bounded by the

lower bound 𝑥 and upper bound 𝑥. 𝑥𝐼 is the interval set defined as
[
𝑥, 𝑥

]
, which is a set of real numbers that satisfies

𝑥 ≤ 𝑥 ≤ 𝑥, and IR is the domain of closed, real-valued intervals. The midpoint 𝑥𝑚 and width 𝑥𝑤 of an interval scalar 𝑥𝐼
are defined as

𝑥𝑚 =
𝑥 + 𝑥

2
, (1)

𝑥𝑤 =
𝑥 − 𝑥

2
. (2)

An interval vector 𝒙𝐼 ∈ IR𝑑X with independent interval scalars 𝑥𝐼
𝑖
, where 𝑖 = 1, . . . , 𝑑X , is defined as 𝒙𝐼 =

𝑥𝐼1 × 𝑥𝐼2 × . . . × 𝑥𝐼
𝑑X

, with × denoting the Cartesian product. The interval vector 𝒙𝐼 can also be denoted using a set
notation as:

𝒙𝐼 =
{
𝑥𝐼1, 𝑥

𝐼
2, . . . , 𝑥

𝐼
𝑑X

}𝑇
=

{
𝒙 ∈ R𝑑X | 𝑥𝑖 ∈ 𝑥𝐼

𝑖

}
. (3)

In interval analysis, an interval vector 𝒙𝐼 defines the hyper-rectangular input-space of a function M : R𝑑X ↦→
R𝑑Y , 𝒙 → 𝒚. Herein is M the numerical model that consists of 𝑑Y deterministic functions 𝑚𝑖 : R𝑑X ↦→ R, 𝒙 → 𝑦𝑖 ,
where 𝑖 = 1, . . . , 𝑑Y . The output of M when given the input 𝒙𝐼 is represented as a solution set 𝒚𝑆 ∈ R𝑑Y bounding the
model responses 𝒚 of interest. This set is explicitly given as follows:

𝒚𝑆 =
{
𝒚 | 𝒚 = M(𝒙), 𝒙 ∈ 𝒙𝐼

}
. (4)

Since finding the exact set 𝒚𝑆 in the general case constitutes an NP-hard problem, 𝒚𝑆 is usually bounded by an

interval vector 𝒚𝐼 ∈ IR𝑑Y : 𝒚𝐼 =
{
𝑦𝐼1 𝑦𝐼2 . . . 𝑦𝐼

𝑑Y

}𝑇
. The individual components of 𝒚𝐼 are 𝑦𝐼

𝑖
=

[
𝑦
𝑖
, 𝑦𝑖

]
and are

determined with an (anti-)optimisation procedure, i.e.,

𝑦
𝑖
= min

𝒙∈𝒙𝐼
(𝑚𝑖 (𝒙)) , (5)

𝑦𝑖 = max
𝒙∈𝒙𝐼

(𝑚𝑖 (𝒙)) . (6)

This optimization procedure finds the components 𝑦
𝑖
, 𝑦𝑖 of each interval 𝑦𝐼

𝑖
of the interval vector 𝒚𝐼 independently,

resulting in an approximation of the solution set 𝒚𝑆 as a conservative hyper-rectangle. The optimization approach
requires a total of 2𝑑Y optimization problems to be solved, each requiring potentially numerous model evaluations of
M. For a model M that is monotonic in 𝒙𝐼 the interval of each component 𝑦𝐼

𝑖
of 𝒚𝐼 can be found by vertex analysis. In

this approach, each component is found independently by minimizing/maximizing the model responses of the set of
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vertex points V of 𝒙𝐼 . This set contains all possible input parameter combinations located at vertex points of the interval
input vector 𝒙𝐼 , yielding 2𝑑X combinations. For large 𝑑X such an approach becomes computationally demanding, even
when one evaluation of M is computationally fast to solve. In the situation of a large 𝑑X and a linear model, the authors
recently introduced a computationally efficient alternative with Multilevel Monte Carlo for interval analysis [13]. Also,
[14] introduced a triple-engine parallel Bayesian global optimization for efficient interval analysis for expensive to
evaluate numerical models and 𝑑X < 20.

III. Certified Interval model updating

A. Reliability of data enclosing sets
In this paper, the reliability of a data-enclosing set is defined as the probability that future unseen data points will fall

in the data-enclosing set. The recently presented scenario theory [1] enables bounding this reliability without having
to characterize the underlying distribution of the data generation mechanism. As such, it provides a distribution-free
measure for the quality of the fitted interval bounds of the governing uncertain quantity.

The cost function of a data-driven constrained optimization is defined as J : Θ → R with design variable
𝜃 ∈ Θ ⊂ R𝑛𝜃 , and 𝑛𝜃 the number of design variables. Also, the set of design points satisfying the design requirements
for scenario (data samples) 𝛿 ∈ Δ are denoted as ℎ𝛿 . For each individual scenario 𝛿 (𝑖) ∈ D this is ℎ𝛿 (𝑖) . Then, consider
the constrained, data-driven scenario program

𝜃∗ (D) = argmin
𝜃∈Θ

{
J (𝜃) : 𝜃 ∈

𝑛⋂
𝑖=1

ℎ𝛿 (𝑖)

}
, (7)

where the data D = 𝛿 (1) , . . . , 𝛿 (𝑛) is sampled from a stationary data generating mechanism. The unknown probability
measure governing the underlying data generation mechanism is defined as 𝑃. The reliability of 𝜃∗ is 1 −𝑉 (𝜃∗), with
𝑉 (𝜃∗) being the violation defined as

𝑉 (𝜃∗) = 𝑃 [𝛿 ∈ Δ|𝜃∗ ∉ ℎ𝛿] . (8)

The lower the violation, the higher the reliability of 𝜃∗. As the data set D is chosen randomly out of infinitely many
possible data sets of size 𝑛, the 𝜃∗ and thus also 𝑉 (𝜃∗) is random. This randomness can be quantified by using

𝑃𝑛 [𝑉 (𝜃∗) ≤ 𝜖] ≥ 1 − 𝛽. (9)

This equation defines that the probability 𝑃𝑛 = 𝑃 × · · · × 𝑃 of the violation of 𝜃∗ being less or equal to 𝜖 ∈ [0, 1] is
greater than 1 − 𝛽. Herein represents 𝛽 ∈ [0, 1] the confidence and 𝜖 called the reliability. Note that 𝜃∗ is a random
element that depends on 𝑛 randomly chosen samples from 𝑃. Therefore, the violation probability 𝑉 (𝜃∗) can be greater
than 𝜖 for some random observations but not for others, and 𝛽 refers to the probability 𝑃𝑛 of observing one of those bad
sets of 𝑛 samples. As a result, the confidence 𝛽 is thus key to obtaining results that are guaranteed independently of 𝑃.

As a result, scenario theory allows evaluating (9) without making any assumption about 𝑃. When the optimization
program (7) is convex, the hyperparameters are obtained with a convex optimization from the data set, 𝑉 (𝜃∗) is
dominated by a beta distribution [15, 16], and 𝜖 can be calculated from(

𝑘 + 𝑛𝜃 − 1
𝑘

) 𝑘+𝑛𝜃−1∑︁
𝑖=0

(
𝑛

𝑖

)
𝜖 𝑖 (1 − 𝜖)𝑛−𝑖 ≤ 𝛽, (10)

where 𝑘 < 𝑛 − 𝑛𝜃 is the number of data points/outliers removed from the data set D before 𝜃∗ was calculated. Equation
(10) allows the analyst to compute a lower bound reliability estimate before 𝜃∗ is computed. As a result, the lower bound
reliability can be calculated before data is drawn from the data generation mechanism [1].

B. Randomized interval analysis
As discussed in section II, interval analysis (see the discussion after (5) and (6)) is computationally demanding

when 𝑑Y is high or/and when 𝑑X is high. The (anti-)optimization requires 2 ∗ 𝑑Y optimization procedures from which
the individual optimization procedures possibly require numerous model evaluations. The vertex analysis required in
total 2𝑑X model evaluations to solve the interval analysis. Yet, it is only applicable for models M that are monotonic in
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Input interval

Output interval

Measurement data

ErrorUpdate input interval

Propagation

Interval model updating

Fig. 1 Interval model updating flowchart

𝒙𝐼 . The vertex analysis has the advantage over the (anti-) optimization procedure to always yield the exact result and
to be less computationally demanding. However, the vertex analysis requires numerous model evaluations when the
number of input dimensions 𝑑X is moderately high. For example, for an interval analysis solved with vertex analysis
and a model with 𝑑X = 16 a total of 65.536 model evaluations are required.

Another new approach is the randomized interval analysis. Here the input interval vector 𝒙𝐼 is sampled randomly
from a known distribution. These samples are then propagated through the numerical model M. On the output side, an
approximation to the exact output intervals 𝒚𝐼 is independently found by the minimal and maximal model response.
However, the obtained output intervals are inherently an inner approximation of the exact output intervals.

The crucial question in this new approach is "How many samples from the input interval vector 𝒙𝐼 are required to
guarantee that the resulting intervals are close to the exact output intervals 𝒚𝐼?". The scenario optimization discussed
in paragraph III.A answers this question, with (10). For example, for the case with 𝑑X = 16 and a lower bound reliability
level of 𝜖 = 0.95 and confidence (1 − 𝛽) = 0.99 a total of 945 samples are required. The vertex method requires
for the same example 65.536 model evaluations. This example illustrates the increase in computational efficiency of
randomized sampling over vertex analysis. However, the computationally efficient randomized sampling technique is
not free as it does not yield the exact output intervals 𝒚𝐼 . Still, thanks to the scenario optimization approach a lower
bound reliability level 𝜖 is guaranteed with a known confidence level 𝛽.

It is also important to note that the results obtained from (10) are independent of the sampling distribution used for
taking samples of the input interval vector 𝒙𝐼 . As a result, it is also applicable in the situation where the distribution
is unknown which is the case for interval analysis. More powerfully, it allows the user to select any sort of input
distribution depending on the case at hand, and use this to estimate the output interval vector 𝒚𝐼 with its lower bound
reliability level 𝜖 and confidence 𝛽.

C. Certified interval model updating
Interval model updating is the process of updating the input interval vector 𝒙𝐼 of the numerical model M based on

the output 𝒚 of the numerical model and measurement data 𝒚𝒎. Figure 1 visualizes the interval model updating process
as a flowchart.

The measurement data is generated first. In this stage, the analyst is typically confronted with the question: "How
many samples do I have to take?". To answer this question for measurement data used to fit an interval, equation 10 of
the scenario optimization methodology is used. Fitting an interval around a measurement data-set Y ∈ R𝑑Y containing
𝑛 samples, in paragraph III.A referred to as scenarios 𝜹 (𝑖) here 𝒚 (𝑖) with 𝑖 = 1, · · · , 𝑛 in 𝑑Y dimensions is defined as

𝒚𝐼 =


𝑦1 = 𝑚𝑖𝑛(𝑦1) 𝑦1 = 𝑚𝑎𝑥(𝑦1)

...
...

𝑦𝑑Y = 𝑚𝑖𝑛(𝑦𝑑Y ) 𝑦𝑑Y = 𝑚𝑎𝑥(𝑦𝑑Y )

 . (11)

For each dimension 𝑑Y of 𝒚 (𝑖) , two interval bounds are calculated. As a result, the total number of design variables is
𝑛𝜃 = 2 ∗ 𝑑Y .

The lower bound reliability estimation calculated with equation 10 requires a random data sampling strategy and a
convex optimization procedure to find all 𝒙𝐼,∗ of the interval fitting. With superscript ,∗ denoting the input interval
vector obtained after model updating. Fitting intervals satisfies this requirement as finding the interval set of a randomly
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sampled data set yields the exact interval bounds for that data set. This, as fitting an interval set around randomly
sampled data is simply finding the minimum and maximum value of the data.

After sampling the data samples, the interval model updating starts. In this paper, the interval model updating
minimizes the distance between the fitted output interval vector 𝒚𝐼 of the numerical model and the fitted interval vector
that bounds the measurement data 𝒚𝒎

𝐼 . The total error function consists of two parts

𝑒𝑚 =

 𝒚𝑚−𝒚𝑚𝑚

𝒚𝑚𝑚


2
, (12)

𝑒𝑤 =

 𝒚𝑤−𝒚𝑚𝑤

𝒚𝑚𝑤


2
, (13)

where | | · | |2 is the L2 norm the subscripts 𝑚 and 𝑤 denote respectively the midpoint and width of an interval 𝑦𝐼
𝑖
.

Equation (12) calculates the error on the midpoint, and Equation (13) calculates the error on the width. Hereto, both
equations exploit the L2 norm of the normalized error between the interval vector around measurement data 𝒚𝐼𝑚 and the
interval vector 𝒚𝐼 obtained using a numerical model M. Both error terms are normalized with the interval vector 𝒚𝐼𝑚 of
the measurement data, this to make every individual component 𝑦𝑚,𝑖 of 𝒚𝑚 and 𝑦𝑖 of 𝒚𝑚 equally contributing to the
error terms. Both error terms are combined as

𝑒𝑟𝑟𝑜𝑟 = 0.5
𝑒𝑚

𝑒𝑚0

+ 0.5
𝑒𝑤

𝑒𝑤0

, (14)

with 𝑒𝑚0 and 𝑒𝑤0 the error terms that are calculated after an initial guess before the optimization is started. The
optimization itself is defined as:

𝒙𝐼,∗ = argmin
𝑥𝐼 ∈IR𝑑X

(𝑒𝑟𝑟𝑜𝑟). (15)

When the minimization is convex, a gradient-based optimization procedure yields the global minimum up to a numerical
error. One of the requirements for convex optimization is using a numerical model M with a monotonic response to
the input intervals 𝒙𝐼 . Note that only this requirement is not enough to obtain a convex optimization, the convexity is
case-dependent. For the case of a convex interval model updating, the total lower bound reliability 𝜖𝑡𝑜𝑡 estimation of the
interval model updating is

𝜖𝑡𝑜𝑡 = 𝜖𝐼 𝐴 ∗ 𝜖𝑑𝑎𝑡𝑎 (16)

with 𝜖𝐼 𝐴 the lower bound reliability estimation of the interval analysis used during the model updating and 𝜖𝑑𝑎𝑡𝑎 the
lower bound reliability estimation of the data. This equation holds when the model updating is independent of the data
and the confidence for both 𝜖𝐼 𝐴 and 𝜖𝑑𝑎𝑡𝑎 is equal. Next, 3 typically seen cases of model updating are discussed.

Case 1: a convex optimization combined with the vertex analysis. In this situation, a 100% reliability of the interval
analysis is obtained. This is as the vertex analysis yields the exact interval vector up to a numerical error and the convex
optimization that will obtain the exact minimum up to a numerical error. The total lower bound reliability on 𝒙𝐼,∗ for
this case is

𝜖𝑡𝑜𝑡 = 𝜖𝑑𝑎𝑡𝑎 . (17)

Case 2: a convex optimization combined with the randomized sampling approach. The total lower bound
reliability 𝜖𝑡𝑜𝑡 on 𝒙𝐼,∗ is in this case defined as:

𝜖𝑡𝑜𝑡 = 𝜖𝐼 𝐴 ∗ 𝜖𝑑𝑎𝑡𝑎, (18)

where 𝜖𝐼 𝐴 is the lower bound reliability of the randomized sampling approach used during every iteration of the
optimization procedure. Similar to the previous case, the optimization converges to the global minimum. However,
in this case, the global minimum is not the exact solution as the randomized sampling approach is used. As a result,
the lower bound reliability of the interval analysis step 𝜖𝐼 𝐴 is equal to the lower bound reliability of the randomized
sampling approach. Note that for this case to have a convex optimization, the randomness must be the same for every
iteration of the optimization procedure. This is typically ensured by fixing the random seed to a single value for the
complete optimization procedure. When the random seed is not fixed, a noisy non-linear optimization has to be solved
which is not convex.
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IV. Illustration of the Certified Interval Model Updating
This section illustrates the certified interval model updating on a numerical dynamical model of a four-level

building. Figure 2 shows the four-level building model. In the model, the mass of the four levels is equal to
𝑚 = 4000 kg = 𝑚1, 𝑚2, 𝑚3, 𝑚4. The stiffness values 𝑘1, 𝑘2, 𝑘3, 𝑘4 are different for each connection between the floors
and defined as interval uncertainty. The interval vector 𝒌 𝐼 is defined as:

𝒌 𝐼 =


𝑘 𝐼1
𝑘 𝐼2
𝑘 𝐼3
𝑘 𝐼3


=


4960 5040
4180 4620
4470 4730
5730 5870


N/m

This numerical model M calculates based on the input masses and stiffness, the first four eigenfrequencies 𝜙1, 𝜙2, 𝜙3, 𝜙4.

Ground

𝑚1: First floor

𝑚2: Second floor

𝑚3: Third floor

𝑚4: Fourth floor

𝑘1

𝑘2

𝑘3

𝑘4

Fig. 2 Dynamic model of a four-level building with masses {𝑚1, 𝑚2, 𝑚3, 𝑚4} and stiffness values {𝑘1, 𝑘2, 𝑘3, 𝑘4}.

A. Virtual measurement data
The first step in this illustration is the creation of a virtual measurement data set. From hereon, 𝜙𝑖,𝑚 denotes an

output variable with virtual measurement data. This virtual measurement data set consists of virtual measurements of
the eigenfrequencies 𝜙1,𝑚, 𝜙2,𝑚, 𝜙3,𝑚, 𝜙4,𝑚. The virtual measurement data is generated with the numerical model M
(see figure 2). Hereto, uniformly distributed samples are generated from the stiffness interval vector 𝒌 𝐼 . These samples
are then propagated through the numerical model M to obtain the virtual measurement data samples 𝝓 (𝑖)

𝑚 containing 𝑛

samples in 𝑑𝜙 dimensions. Around the virtual measurement data set, an interval vector 𝝓𝐼
𝑚 is fitted with

𝝓𝐼
𝑚 =


𝜙1,𝑚 = 𝑚𝑖𝑛(𝜙1,𝑚) 𝜙1,𝑚 = 𝑚𝑎𝑥(𝜙1,𝑚)

...
...

𝜙𝑑𝜙 ,𝑚 = 𝑚𝑖𝑛(𝜙𝑑𝜙 ,𝑚) 𝜙𝑑𝜙 ,𝑚 = 𝑚𝑎𝑥(𝜙𝑑𝜙 ,𝑚)

 . (19)
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The output interval vector 𝝓𝐼
𝑚 defines the smallest independent hyper-rectangle around the output samples 𝝓 (𝑖)

𝑚 . The
question here is "How many virtual data samples are enough to have an accurate interval fitting?". A rearranged
equation (10) provides the minimum number of samples 𝑛 required to obtain at least the lower bound reliability 𝜖𝑑𝑎𝑡𝑎
with a known confidence 𝛽. The confidence here is the probability that the reliability of the fitted interval vector 𝝓𝐼

𝑚 is
lower than the predefined 𝜖𝑑𝑎𝑡𝑎. Yet it is unclear what the influence of the chosen reliably is on the accuracy of the
interval model updating. An in-depth discussion is provided in paragraph IV.C.

For now, a few assumptions are made: the lower bound reliability 𝜖𝑑𝑎𝑡𝑎 = 0.95, the confidence of the reliability
𝛽 = (1 − 0.999), and the number of outliers that will be removed 𝑘 = 0. The number of design variables for fitting the
interval set around the virtual measurement data set 𝝓𝐼

𝑚 is 𝑛𝜃 = 2 ∗ 4 = 8 (see paragraph III.C).
Then based on these assumptions, the rearranged version of equation (10) provides the minimum number of samples

𝑛 = 386. From these samples the obtained output vector 𝝓𝐼
𝑚 is

𝝓𝐼
𝑚 =


𝜙1,𝑚 = 0.0593 𝜙1,𝑚 = 0.0602
𝜙2,𝑚 = 0.1775 𝜙2,𝑚 = 0.1790
𝜙3,𝑚 = 0.2699 𝜙3,𝑚 = 0.2737
𝜙4,𝑚 = 0.3251 𝜙4,𝑚 = 0.3294


Hz.

B. Interval Model Updating
The interval model updating uses an optimization program to minimize the error between the simulated generated

data set and the propagated data set based on the to-be-updated input intervals. The minimized error function is equation
(15). Each iteration of the model updating uses vertex analysis to propagate the input interval vector 𝒌 𝐼 to the output
interval vector 𝝓𝐼 through the numerical model M. This is possible as the eigenvalue analysis of the numerical model is
monotonic and 𝑑𝑘 = 4 is low. An advantage of the vertex analysis is that the exact interval bounds are obtained. The
convexity of the interval model updating is ensured by the combination of (1) the response of the numerical model to
varying stiffness values is monotonic (2) the eigenmodes are tracked with a Modal Assurance Criterium (3) when a
switch in eigenmodes is detected, the corresponding eigenvalues are switched as well. As a result, the interval model
updating can use a gradient descent algorithm.

The algorithm is chosen to be of the type SQP, yet this algorithm can change without loss of generality of the
methodology. For this optimization, the stopping criterion is a maximum 5000 model M evaluations and a step tolerance
of 1𝑒−6. The convex optimization yields a resulting interval input vector 𝒙𝐼,∗. This convex optimization with the vertex
analysis illustrates case 1 discussed in section III. As a result, the total lower bound reliability 𝜖𝑡𝑜𝑡 of the resulting
interval input vector 𝒙𝐼,∗ is defined by equation (17) and is equal to the lower bound reliability 𝜖𝑑𝑎𝑡𝑎 of the virtual
measurement interval vector 𝝓𝐼

𝑚 that is 0.95 with (1 − 0.999) confidence.
The optimization algorithm of the interval model updating stops with a remaining error lower than 1𝑒−6. Figure 3

shows the interval bounds on the output side, the obtained interval output vector 𝝓𝐼,∗ after propagating the interval
model updating result 𝒌 𝐼,∗ and the interval around the virtual measurement data 𝝓𝐼

𝑚. From this figure and the low
remaining error, it is clear that in the output space the optimization found an optimum.

The obtained interval set on the input side 𝒌 𝐼,∗ is summarized in table 1 together with the initially defined interval
set 𝒌 𝐼 to generate the numerical data. This shows that the obtained input intervals 𝒌 𝐼,∗ have a small error in comparison
to 𝒌 𝐼 . This error originates from the uniform sampling used to generate the virtual measurement data interval vector
𝝓𝐼
𝑚. The measurement data generated using samples from 𝒌 𝐼 have a high probability of not including any bounds of

𝒌 𝐼 . The added value of the scenario optimization in this situation is that it gives a certificate that the reliability of the
obtained interval bounds 𝒙𝐼,∗ is at least 0.95 with (1 − 0.999) confidence against missing unseen data.

Table 1 Comparison of the obtained stiffnesses and the stiffnesses used for data generation all units are N/m

Stiffness defined input interval model updating result
𝑘 𝐼1 [4960 5040] [4960 5056]
𝑘 𝐼2 [4180 4620] [4194 4587]
𝑘 𝐼3 [4470 4730] [4477 4700]
𝑘 𝐼4 [5730 5870] [5750 5859]
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0.0552 0.0556

1

0.3

0.302

4

0.16 0.1606

2

0.245 0.246 0.247

3

0.3 0.302

4

0.2445

0.2455

0.2465

3

0.16

0.1606

2

0.0554

0.0556

0.0558
1

Interval set result optimisation Generated dataset Interval set generated dataset

Fig. 3 The numerically generated data set in red “·” with the fitted interval set in black “♢” and the set of the
propagated solution in blue big dots “∗”.

C. Effect of the amount of virtual measurement data on the accuracy of interval model updating
The main question for this interval model updating is “How many virtual measurement data samples are required to

have an accurate interval model updating?”. This is studied by performing interval model updating, as performed in the
previous paragraphs, with varying the lower bound reliability 𝜖𝑑𝑎𝑡𝑎 from 0.1 to 0.99 for the virtual measurement data.
The change in 𝜖𝑑𝑎𝑡𝑎 is directly changing the required minimum amount of virtual measurement data samples. The
accuracy of the obtained input interval set 𝒙𝐼,∗ is defined as:

𝑑𝑚 =

 𝒌𝑚−𝒌∗
𝑚

𝒌𝑚


2
, (20)

𝑑𝑤 =

 𝒌𝑤−𝒌∗
𝑤

𝒌𝑤


2
, (21)

Here, the distances 𝑑𝑚, 𝑑𝑤 are defined as the L2 norm of the normalized difference between the midpoints and widths
respectively of the obtained interval vector 𝒌 𝐼,∗ and the exact interval vector 𝒌 𝐼 . The total distance is defined as

𝑑𝑡𝑜𝑡 = 0.5𝑑𝑚 + 0.5𝑑𝑤 . (22)

This distance is calculated for a range 𝑛 = [13, 1956] of number of virtual measurement data samples 𝝓 (𝑖)
𝑚 and with

50 different random seed numbers. The 50 different random seed numbers are selected to see the mean effect instead
of the effect from one single random seed. Figure 4 visualizes the mean “−·”-line and the envelope “·”-line of this
distance 𝑑𝑡𝑜𝑡 on the left vertical axis with an increasing number 𝑛 of virtual measurement data samples 𝝓 (𝑖)

𝑚 on the
horizontal axis. On the right vertical axis is the lower bound reliability 𝜖𝑡𝑜𝑡 visualized also with the same increasing
number of virtual measurement data samples. This figure shows that for a larger number 𝑛, the distance is lower and
the lower bound reliability becomes higher. For larger lower bound reliability 𝜖𝑡𝑜𝑡 > 0.95 the additional required
virtual measurement data samples 𝑛 increase fast. At the same time, the extra accuracy gains are decreasing. For a real
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measurement campaign, there will be a trade-off between accuracy (high lower bound reliability) and computational
cost.

Fig. 4 On the left vertical axis the distance 𝑑𝑡𝑜𝑡 between the obtained input interval vector 𝒌 𝐼,∗ and the exact
interval vector 𝒌 𝐼 for increasing number of virtual measurement data samples 𝑛. With mean “−·”-line and
envelope “·”-line. On the right vertical axis the lower bound reliability level 𝜖𝑡𝑜𝑡 for an increasing number of
virtual measurement data samples.

D. Propagation with the randomized interval analysis
In this paragraph, the added value of the randomized interval analysis is illustrated. Assume that instead of the

vertex method the randomized interval analysis would be applied to the four-level numerical model. Then the main
question is “How many samples during interval analysis are required to obtain an accurate updated input interval?”

This is studied by performing interval model updating with randomized interval analysis by varying the lower bound
reliability of the randomized interval analysis 𝜖𝐼 𝐴 from 0.1 to 0.99. The change in 𝜖𝐼 𝐴 is directly changing the required
minimum amount of samples used in the interval analysis. The obtained result of the interval model updating 𝒌 𝐼,∗ is
finally compared with the exact interval set 𝒌 𝐼 . The virtual measurement interval vector 𝝓𝐼

𝑚 is here generated with the
vertex analysis, in order to reduce the accuracy error from creating the virtual measurement data interval vector 𝝓𝐼

𝑚 to
zero. As a result, the accuracy of the randomized interval analysis technique is studied based on the accuracy of the full
interval model updating.

The accuracy is similarly defined as in paragraph IV.C. Here the accuracy distance 𝑑𝑡𝑜𝑡 is calculated for a range
𝑛 = [13, 1956] of data samples and with 50 different random seed numbers used for the randomized interval analysis.
The 50 different random seed numbers are selected to see the mean effect instead of the effect from one single random
seed. Figure 5 visualizes the mean “−·”-line and the envelope “·”-line of the accuracy distance 𝑑𝑡𝑜𝑡 on the left vertical
axis with an increasing number of data samples 𝑛 on the horizontal axis. On the right vertical axis is the lower bound
reliability 𝜖𝐼 𝐴 visualized also with the same increasing number of data samples. This figure shows that for a larger
number of data samples 𝑛, the accuracy distance 𝑑𝑡𝑜𝑡 is lower and the lower bound reliability 𝜖𝐴𝐼 becomes higher. For
lower bound reliability 𝜖𝐴𝐼 > 0.95 the additional required data samples 𝑛 increase fast. At the same time, the extra
accuracy gains are decreasing.

Similar to the measurement data, in a real situation, there will be a trade-off between accuracy (high lower bound
reliability) and computational cost. Note that this paragraph is only intended to showcase the randomized interval. For
this low-dimensional 𝑑X = 4 case the vertex analysis is more accurate and more computationally efficient.
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Fig. 5 On the left vertical axis the accuracy distance 𝑑𝑡𝑜𝑡 between the obtained input interval vector 𝒌 𝐼,∗ and
the exact interval vector 𝒌 𝐼 for increasing number of data samples. With mean “−·”-line and envelope “·”-line.
On the right vertical axis the lower bound reliability 𝜖𝐴𝐼 for an increasing number of data samples 𝑛.

V. Conclusions
This paper presents a novel approach that performs an interval model updating where a certificate against unseen

missing data is provided. Hereto the approach in this paper utilizes scenario theory to rigorously bound the probability
of unseen data falling outside an identified data enclosing set. The lower bound reliability approach provides the
analyst with additional insight into the obtained results compared to other existing techniques. For instance, it returns
information on whether enough data is generated to get a certain lower bound reliability of the results, and what the lower
bound reliability is when only very limited data is available. The scenario theory also allows for a more computationally
efficient interval analysis for moderate to large numbers of input intervals compared to interval techniques in the
literature. In this paper, the certified interval model updating is illustrated on a modal analysis of a 4-level building. This
illustration shows the additional insides of the scenario optimization theory. The minimum amount of measurement
data samples is calculated with the scenario optimization theory. For 4 input intervals and a predefined lower bound
reliability of 95% with 99, 9% confidence, the minimum amount of samples measurement data samples is 386. The 95%
reliability of the fitting interval set is also the total lower bound reliability of the interval model updating. This is due to
the fact that the optimization is convex. Also, the randomized interval analysis approach is introduced to reduce the
computation cost of interval analysis for medium to large uncertainty dimensions. With this approach, random samples
are taken from an interval with a distribution that can be chosen by the analyst. The scenario theory provides here, also,
a lower bound reliability depending on the amount of samples. The accuracy from the certified interval model updating
increases when a higher lower bound reliability is selected and thus more samples are taken. Yet more computational
time or more measurement data is required. In practice, it is concluded that there will always be a trade-off between (1)
the cost linked to computational resources and measurement data and (2) the accuracy of the obtained result. Here, the
reliability certificate provides the analyst with more information to make this trade-off.
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