
Full Length Article

Efficient forward and inverse uncertainty quantification for 
dynamical systems based on dimension reduction and Kriging 
surrogate modeling in functional space

Zhouzhou Song a,*, Weiyun Xu b, Marcos A. Valdebenito a, Matthias G.R. Faes a,c

a Chair for Reliability Engineering, TU Dortmund University, 44227 Dortmund, Germany
b Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
c International Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai 200092, PR China

A R T I C L E  I N F O

Keywords:
Dynamical systems
Uncertainty quantification
Surrogate model
Dimension reduction
Kriging

A B S T R A C T

Surrogate models are extensively employed for forward and inverse uncertainty quantification in 
complex, computation-intensive engineering problems. Nonetheless, constructing high-accuracy 
surrogate models for complex dynamical systems with limited training samples continues to be 
a challenge, as capturing the variability in high-dimensional dynamical system responses with a 
small training set is inherently difficult. This study introduces an efficient Kriging modeling 
framework based on functional dimension reduction (KFDR) for conducting forward and inverse 
uncertainty quantification in dynamical systems. By treating the responses of dynamical systems 
as functions of time, the proposed KFDR method first projects these responses onto a functional 
space spanned by a set of predefined basis functions, which can deal with noisy data by adding a 
roughness regularization term. A few key latent functions are then identified by solving the 
functional eigenequation, mapping the time-variant responses into a low-dimensional latent 
functional space. Subsequently, Kriging surrogate models with noise terms are constructed in the 
latent space. With an inverse mapping established from the latent space to the original output 
space, the proposed approach enables accurate and efficient predictions for dynamical systems. 
Finally, the surrogate model derived from KFDR is directly utilized for efficient forward and 
inverse uncertainty quantification of the dynamical system. Through three numerical examples, 
the proposed method demonstrates its ability to construct highly accurate surrogate models and 
perform uncertainty quantification for dynamical systems accurately and efficiently.

1. Introduction

Dynamical systems are widely encountered in engineering and applied sciences, such as vibratory mechanical systems [1], civil 
infrastructure [2], and physical or chemical processes [3]. In practice, the performance of a dynamical system is influenced by various 
uncertainties arising from materials, manufacturing, external forces, and the environment [4–7]. Quantifying the effects of these 
uncertainties on the system response is crucial. Forward uncertainty quantification and inverse uncertainty quantification are two 
essential aspects of uncertainty quantification (UQ). Forward UQ focuses on evaluating the uncertainty in system responses caused by 
uncertain inputs, whereas inverse UQ aims to estimate input uncertainties using observed response data. However, forward UQ is 
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typically conducted using the Monte Carlo sampling method, and inverse UQ often relies on Markov Chain Monte Carlo method within 
a Bayesian framework [8,9], both of which require numerous dynamical system simulations. This makes forward UQ and inverse UQ 
highly inefficient, particularly for computationally expensive problems.

Therefore, surrogate models are widely used in forward UQ and inverse UQ to create computationally efficient models for analysis. 
Over recent decades, various surrogate modeling approaches have been proposed for emulating dynamical systems. Based on dif-
ferences in modeling forms, these approaches can be broadly classified into two categories: autoregressive model-based methods and 
output feature mapping-based methods. Autoregressive model-based methods estimate time-variant responses using past observations 
or prior predictions. The autoregressive integrated moving average (ARIMA) model [10] is a well-known autoregressive approach that 
has achieved significant success in time series prediction. However, ARIMA assumes a linear relationship between past history and 
future forecasts, limiting its applicability to dynamical systems, which often exhibit nonlinearities. Therefore, nonlinear autoregressive 
models with exogenous input (NARX) [11] were introduced for dynamical systems. These models utilize exogenous inputs, such as 
time-variant excitation forces, and capture nonlinear relationships between inputs and outputs to achieve higher predictive accuracy. 
The NARX model enables integration with powerful and widely used surrogate models, such as support vector regression [12,13], 
polynomial chaos expansion [14,15], Kriging (or Gaussian processes) [16,17], and neural networks [18,19]. However, determining the 
optimal time lags for both exogenous and autoregressive inputs is challenging [20], and the NARX model has difficulty handling highly 
nonlinear dynamical problems [21]. To tackle these challenges, a manifold NARX (mNARX) model [22] was recently introduced, 
where the input is projected onto a problem-specific manifold that better supports the construction of the NARX model. However, the 
mNARX model relies on additional physical information.

Output feature mapping-based models aim to map the high-dimensional, time-variant response of a dynamical system into a low- 

Fig. 1. Overview of the proposed framework.
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dimensional latent space and construct the surrogate model between the inputs and the latent outputs. The most widely used 
dimensionality reduction technique for feature mapping is principal component analysis (PCA), also referred to as proper orthogonal 
decomposition or singular value decomposition in various fields of application. For example, Jacquelin et al. [23] proposed a non- 
intrusive method that combines PCA with polynomial chaos expansion to model random dynamical systems. Additional studies uti-
lizing PCA to reduce the dimensionality of high-dimensional outputs can be found in [7,24–27]. However, PCA is a linear mapping 
method and may not effectively extract features when dealing with highly nonlinear problems. Thus, several methods have been 
proposed to utilize nonlinear dimensionality reduction techniques for extracting output features. Lee and Carlberg utilized deep 
convolutional autoencoders to map dynamical systems onto nonlinear manifolds for the purpose of model reduction [28]. Simpson 
et al. [29] proposed to use autoencoders to infer a latent output space of nonlinear dynamical systems. However, accurately identifying 
the nonlinear latent output space requires a large number of samples, limiting its applicability to problems that involve costly ex-
periments or simulations for generating training samples.

To enhance flexibility and accuracy in inferring the latent output space under noisy conditions and with limited training data, we 
propose a Kriging modeling framework based on functional dimension reduction (KFDR) for constructing surrogate models for forward 
and inverse uncertainty quantification in dynamical systems. Fig. 1 presents an overview of the proposed KFDR method. First, instead 
of viewing the responses of dynamical systems as high-dimensional vectors, we reconsider them from a functional perspective and treat 
them as functions defined over a specific time interval. From this perspective, we project the time-variant responses onto a functional 
space spanned by a set of predefined basis functions, which can naturally address noisy data by adding a roughness regularization term. 
Subsequently, by solving the functional eigenequation, we can capture the majority of variations in the response of the dynamical 
system through key features in the functional space. The time-variant responses can then be represented as linear combinations of 
these key latent functions. Thus, the response of the dynamical system is mapped into a low-dimensional latent functional space, with 
an inverse mapping defined from the latent space to the original output space. Furthermore, Kriging surrogate models with noise terms 
are constructed in the latent space to account for errors arising from limited data and feature mapping, enabling accurate and efficient 
predictions of dynamical systems. Finally, the surrogate model constructed using KFDR is directly employed for efficient forward and 
Bayesian inverse UQ of the dynamical system.

The remainder of this paper is organized as follows. Section 2 introduces the fundamentals of forward and inverse UQ approaches 
for dynamical systems. Section 3 outlines the details of the proposed KFDR method. Section 4 presents case studies and discusses their 
results. Finally, Section 5 concludes the paper and suggests potential future research directions.

2. Problem statement

A response of interest of a dynamical system can be expressed as Y(X, t),t ∈ [t0,te], where X =
[
X1,⋯,Xp

]T
∈ Rp is the input vector. 

The purpose of forward uncertainty quantification is to obtain statistical information about the time-variant output Y given the 
probability density function of the input X ∼ fX(x). The statistics of interest typically include the mean function, 

μY(t) =
∫

Y(X, t)fX(x)dx, (1) 

the standard deviation function, 

σY(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

(Y(X, t) − μY(t) )
2fX(x)dx

√

, (2) 

and the probability density function of the output at different time nodes. For reliability analysis, the distributions of the maximum or 
minimum values over a specified time interval are also of interest. Since Y(X, t) often lacks an analytic expression, it is generally 
intractable to compute Eq. (1) and Eq. (2) directly. As a result, simulation methods are commonly used for forward UQ, with Monte 
Carlo simulation being one of the most widely used approaches. However, these methods require numerous evaluations of Y(X, t) to 
obtain precise results, which is computationally prohibitive especially for engineering applications that rely on costly simulations. To 
reduce the computational burden, a surrogate model of Y(X, t) needs to be constructed.

Forward UQ relies on the input uncertainty information fX(x) to obtain the uncertainty information of outputs. However, obtaining 
accurate fX(x) is often challenging in engineering applications, as it may require a large number of experiments. In some cases, prior 
knowledge can be used to determine fX(x), but this approach can be subjective and may lead to inaccurate forward UQ results. In this 
case, inverse UQ is needed to infer the uncertainty of the input based on observed response data. Inverse UQ is typically based on a 
Bayesian framework [30]. First, the input parameters are assumed to follow certain prior distributions, which are then updated ac-
cording to the observed response data to obtain the posterior distributions, ensuring that the simulation results are consistent with the 
response data. Markov Chain Monte Carlo sampling is commonly used to compute the posterior distributions, which requires 
numerous evaluations of Y(X, t). Therefore, a computationally efficient surrogate model is needed for effective inverse UQ.

Forward UQ and inverse UQ are two essential components of uncertainty quantification for dynamical systems. However, both 
forward UQ and inverse UQ require numerous system evaluations to obtain responses, making them computationally inefficient for 
complex problems. To address this, this paper proposes an efficient surrogate-based forward UQ and inverse UQ framework for 
dynamical systems.
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3. Methodology

As described in Section 2, the key to efficient forward UQ and inverse UQ of a dynamical system is constructing a surrogate model of 
it. In this section, we first introduce how to represent the responses of dynamical systems from a functional perspective. Then, 
dimension reduction and surrogate modeling are performed in the functional space. Subsequently, surrogate-based forward and in-
verse uncertainty quantification are described at the end of this section.

3.1. Dimension reduction in functional space

Since the output of a dynamical system is a function of time, treating it from a functional perspective allow us to obtain more useful 
information than traditional linear dimensionality reduction methods. For a square-integrable stochastic process Y(t), t ∈ [t0, te], let 
μ(t) = E[Y(t) ] be the mean function of Y, and let Yc(t) = Y(t) − μ(t) be the centered stochastic process. The covariance function of Y is 
defined as: 

c(s, t) = Cov(Y(s),Y(t) ) = E[Yc(s)Yc(t)] (3) 

Given that the covariance function is symmetric and positive semi-definite, Mercer’s theorem [31] implies that: 

c(s, t) =
∑∞

k=1

λkϕk(s)ϕk(t), (4) 

where λ1 ≥ λ2 ≥ ⋯ ≥ 0 are the eigenvalues and ϕ1,ϕ2,⋯ are the corresponding orthonormal eigenfunctions of the covariance 
operator: 

C : L2([t0, te] )→L2([t0, te] ), C[f ](t) =
∫ te

t0
c(s, t)f(s)ds, (5) 

where L2([t0, te] ) refers to the space of square-integrable functions defined on [t0, te]. Then, by Karhunen-Loève expansion, we have: 

Y(t) = μ(t)+
∑∞

k=1
ξ(k)ϕk(t), (6) 

where 

ξ(k) = 〈Yc,ϕk〉 =

∫ te

t0
Yc(t)ϕk(t)dt, k = 1,2,⋯ (7) 

are uncorrelated random variables with zero mean and variances of λ1, λ2, ⋯, respectively. ξ(k) is the principal component score 
associated with the k-th eigenfunction ϕk and is the projection of Yc(t) in the direction of the k-th eigenfunction ϕk.

The eigen functions ϕ1,ϕ2,⋯ can be obtained by solving the Fredholm integral equation of the second kind, expressed as: 
∫ te

t0
c(s, t)ϕ(t)dt = λϕ(s). (8) 

In practice, the continuous eigenproblem in Eq. (8) is discretized into a matrix eigenproblem to facilitate the solution of the integral 
equation. This is achieved by projecting the dynamical system response Y(t) and the eigen function ϕ(t) onto a functional space 
spanned by predefined basis functions. The covariance function c(s, t) is then estimated using samples of Y(t). Given a training data set 
with N samples, D =

{(
xi,yi

)
,i = 1,2,⋯,N

}
, where yi is an Nt × 1 output vector, and Nt is the number of discretized time nodes. Each 

yi represents a response function Yi(t). First, the output data is centered as: 

yc
i = yi −

1
N

∑N

k=1
yk. (9) 

Then, the centered time-variant output functions 
{
Yc

1(t),Yc
2(t),⋯,Yc

N(t)
}

are expressed as linear combinations of predefined basis 
functions 

{
η1(t), η2(t),⋯, ηNb

(t)
}

as: 

Yc(t) =
[
Yc

1(t),Y
c
2(t),⋯,Yc

N(t)
]T

= CTη(t). (10) 

where Nb is the number of basis functions, C = [c1, c2,⋯, cN] is the Nb × N coefficient matrix, ci, i = 1, 2,⋯,N are Nb × 1 coefficient 
vectors, and η(t) =

[
η1(t), η2(t),⋯, ηNb

(t)
]T. ci can be obtained by minimizing the sum of squared error between the observed and 

estimated response: 
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ci = argmin
c

∑Nt

j=1

[
yc

ij − Yc
i
(
tj
) ]2

= argmin
c

(
yc

i − Hc
)T( yc

i − Hc
)
, (11) 

where 

H =

⎡

⎢
⎢
⎣

η1(t1) η2(t1)

η1(t2) η2(t2)

… ηNb
(t1)

… ηNb
(t2)

⋮ ⋮

η1(tNt ) η2(tNt )

⋱ ⋮

… ηNb
(tNt )

⎤

⎥
⎥
⎦ (12) 

is an Nt × Nb matrix whose elements correspond to the values of various basis functions at different time nodes.
If the dynamical system responses include noise, such as that arising from measurements, a roughness regularization term [32] can 

be added to Eq. (11) as follows: 

ci = argmin
c

{
(
yc

i − Hc
)T( yc

i − Hc
)
+ τ

∫ te

t0

[
D2Yc

i (t)
]2dt

}

, (13) 

where D2Yc
i (t) is the second derivative of Yc

i (t), and the integrated squared second derivative measures the roughness of Yc
i (t). τ is the 

smoothing parameter and is non-negative. A large τ will cause Yc
i (t) to exhibit minimal fluctuations. As τ reaches zero, Yc

i (t) will 
attempt to pass through each sample point as closely as possible, potentially leading to erratic behavior in certain regions. By 
substituting Yc

i (t) = η(t)Tci into the roughness penalty term in Eq. (13), we obtain: 

τ
∫ te

t0

[
D2Yc

i (t)
]2dt = τcT

i

[ ∫ te

t0
D2η(t)D2η(t)Tdt

]

ci. (14) 

Let R =
∫ te

t0 D2η(t)D2η(t)Tdt, where R is an Nb × Nb symmetric matrix with elements Rij =
∫ te

t0 D2ηi(t)D2ηj(t)dt, i, j = 1,2,⋯,Nb. The 
analytical solution to Eq. (13) is: 

ci =
(
HTH + τR

)− 1HTyc
i . (15) 

Typically, the smoothing parameter τ can be determined through cross-validation. However, cross-validation is usually computa-
tionally expensive. In this research, we employ the generalized cross-validation (GCV) measure [33], which serves as a more efficient 
alternative to the standard cross-validation procedure. The GCV measure is expressed as: 

GCV(τ) = N
[N − trace(S(τ))]2

∑N

i=1

(
yc

i − Hci
)T( yc

i − Hci
)
, (16) 

where S(τ) = H
(
HTH + τR

)− 1HT. Then, the value of τ that minimizes GCV(τ) is selected for use in Eq. (15). In practice, it is not 
necessary to compute the exact minimum of GCV(τ). Instead, a grid search on a logarithmic scale can be performed to find the optimal 
τ. For example, the range of log10τ can be set to [-6, 6] and divided into uniform grids. The GCV value is then calculated for each grid 
point, and the τ corresponding to the grid point with the minimum GCV value is selected for use in Eq. (15). Table 1 presents the 
pseudocode for determining.

It is important to note that the roughness regularization term in Eq. (13) does not explicitly assume a specific noise distribution. 
Instead, it acts as a smoothness constraint to control the complexity and variability of the estimated model. However, Eq. (13) pri-
marily applies to Gaussian noise, as it relies on the standard square loss between the observed data and the functional representation. 
This approach may become suboptimal under significant non-Gaussian noise, such as skewed or heavy-tailed noise distributions [34]. 
In such cases, integrating the roughness regularization term with specialized loss functions can enhance accuracy and robustness. For 
instance, the Huber loss [35] is effective for handling heavy-tailed noise, while quantile loss [36] is suitable for skewed noise dis-
tributions. To simplify the problem without loss of generality, this study adopts the standard square loss and assumes Gaussian noise.

The commonly used basis functions, η(t), include Fourier basis functions and spline basis functions, which are shown in Fig. 2. 

Table 1 
Pseudocode of determining the smoothing parameter τ.

Algorithm 1: Determination of the smoothing parameter τ

Input: centralized time-variant output samples 
{
yc

1,yc
2,⋯, yc

N
}

and basis functions 
{

η1(t),η2(t),⋯,ηNb
(t)

}

Output: the smoothing parameter τ
1: Generate Nτ values for τ: τi←10− 6+12(i− 1)/(Nτ − 1) , i = 1,2,⋯,Nτ
2: Calculate the values of GCV(τi) for each τi

3: τ← min
τi∈{τ1 ,⋯,τNτ }

GCV(τi)
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Among the spline basis functions, B-spline functions [37] are extensively used, particularly in applications such as computer-aided 
design and computer graphics. Fourier basis functions are well suited for systems with continuous, strongly periodic, or near- 
periodic behavior. By decomposing signals into harmonic components (sines and cosines), they effectively capture oscillatory pat-
terns when boundaries align naturally with the data’s repeating structure. Although Fourier basis functions cannot directly represent 
non-periodic data, the data can be mirrored along the time axis to create periodic extensions, as illustrated in Fig. 3. Once periodicity is 
established, Fourier functions can then be utilized as basis functions. In contrast, B-spline basis functions provide greater flexibility for 
modeling aperiodic or transient behaviors due to their piecewise polynomial nature. They handle local irregularities, non-repeating 
trends, and boundary effects more effectively than Fourier functions. In summary, Fourier basis functions are generally preferred 
for dynamical systems with continuous, strongly periodic (or near-periodic) behavior. Conversely, B-splines are typically better suited 
for non-periodic or complex local behaviors. In practice, cross-validation is recommended to empirically determine the most appro-
priate basis system for a given problem.

Determining the number of basis functions Nb is crucial, as it directly influences the representation accuracy. In this study, we 
develop an error-based approach to select the appropriate Nb. After obtaining the coordinates ci of yi in the functional space using Eq. 
(15), the error between yc

i and Hci indicates the accuracy of the projection from the original time-variant response space to the 
functional space spanned by 

{
η1(t),η2(t),⋯,ηNb

(t)
}
. To quantify the deviation between yc

i and Hci, we use the normalized root mean 
square error (NRMSE): 

NRMSE
(
yc

i ,Hci
)
=

‖yc
i − Hci‖2

max yc
i − min yc

i
. (17) 

The average NRMSE of the training set is utilized to quantify the overall error: 

δ =
1
N

∑N

i=1
NRMSE

(
yc

i ,Hci
)
. (18) 

Note that, given a training set and a basis series, δ depends solely on the number of basis functions, Nb. Consequently, Nb can be 
incrementally increased from a starting value until the relative error between two consecutive δ values falls below a specified threshold 
δr. δr is set to be 0.05 in this research. The focus on the difference between two consecutive δ values, rather than δ itself, arises from the 
fact that when noise is present, increasing Nb causes NRMSE

(
yc

i ,Hci
)

to approach a value greater than zero instead of zero. In such 
cases, using δ as the convergence criterion may result in failure to converge. Table 2 provides the pseudocode for the error-based 
approach to determine Nb.

After obtaining the coefficient matrix C, the covariance function c(s, t) is estimated as: 

c(s, t) =
1

N − 1
η(s)TCCTη(t). (19) 

The eigenfunction ϕ(s) in Eq. (8) can also be approximated by the basis functions η(s) as: 

ϕ(s) = bTη(s) = η(s)Tb, (20) 

where b is an Nb × 1 vector and stands for the coordinates of ϕ(s) in the functional space spanned by η(s). Substituting Eq. (19) and Eq. 
(20) into Eq. (8), we obtain: 

Fig. 2. Illustrations of Fourier basis functions (left) and B-spline basis functions (right) over the time interval [0, 1].
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∫ te

t0
c(s, t)ϕ(t)dt = λη(s)Tb,

∫ te

t0

1
N − 1

η(s)TCCTη(t)η(t)Tbdt = λη(s)Tb,

1
N − 1

η(s)TCCT
[ ∫ te

t0
η(t)η(t)Tdt

]

b = λη(s)Tb.

(21) 

Let W =
∫ te

t0 η(t)η(t)Tdt, where W is an Nb × Nb symmetric matrix with elements Wij =
∫ te

t0 ηi(t)ηj(t)dt,i,j = 1,2,⋯,Nb. Then the discrete 
form of eigenequation is obtained: 

1
N − 1

η(s)TCCTWb = λη(s)Tb. (22) 

Since this equation must hold for all s, we obtain: 

1
N − 1

CCTWb = λb. (23) 

By defining u = W1/2b, we need to solve finally a symmetric eigenvalue problem: 

1
N − 1

W1/2CCTW1/2u = λu, (24) 

and compute b = W− 1/2u for each eigenvector. Note that Fourier basis functions are orthogonal to each other. Consequently, the 
matrix W reduces to an identity matrix for Fourier basis functions, and Eq. (23) simplifies to performing standard principal component 

Fig. 3. Generate periodic data from non-periodic data.

Table 2 
Pseudocode for the error-based approach to determine the number of basis functions Nb.

Algorithm 2: Error-based approach to determine the number of basis functions Nb

Input: centralized time-variant output samples 
{

yc
1,yc

2,⋯,yc
N
}

and a basis function system {η1(t),η2(t),⋯}

Output: number of basis functions Nb and the corresponding τ
1: Nb←N0

b , where N0
b is a given positive integer

2: Determine τ by using Algorithm 1
3: Compute the matrix H: Hij←ηj(ti), i = 1,2,⋯,Nt , j = 1,2,⋯,Nb

4: ci←
(
HTH + τR

)− 1HTyc
i , i = 1,⋯,N by using the basis functions 

{
η1(t),η2(t),⋯,ηNb

(t)
}

5: δ1←N− 1
∑N

i=1
NRMSE

(
yc

i ,Hci
)

6: k←1
7: While 1
8: Nb←Nb + kN0

b
9: Determine τ by using Algorithm 1
10: Compute the matrix H: Hij←ηj(ti), i = 1,2,⋯,Nt , j = 1,2,⋯,Nb

11: ci←
(
HTH + τR

)− 1HTyc
i , i = 1,⋯,N by using the basis functions 

{
η1(t), η2(t),⋯,ηNb

(t)
}

12: δ2←N− 1
∑N

i=1
NRMSE

(
yc

i ,Hci
)

13: If |δ1 − δ2|/δ2 < δr

14: Break
15: End If
16: δ1←δ2

17: k←k + 1
18: End While

Z. Song et al.                                                                                                                                                                                                            Mechanical Systems and Signal Processing 235 (2025) 112898 

7 



analysis on the coefficient matrix C. In contrast, since B-spline basis functions are generally not orthogonal, it is necessary to compute 
W and solve the eigenproblem in Eq. (24).

In practice, only the first few eigenfunctions {ϕ1(t),ϕ2(t),⋯,ϕm(t)} are sufficient to represent Y(t). There are several methods to 
determine the value of m, including the variance proportion-based approach [38–40], the Bayesian information criterion-based 
approach [41], the reconstruction error-based approach [26], and the ladle estimator-based approach [42,43]. In this study, we 
adopt the 99% variance proportion-based approach due to its simplicity and efficiency. Specifically, m is chosen as the smallest value 
that satisfies: 

∑m
i=1λi

∑Nb
i=1λi

≥ 99%, (25) 

where λ1, λ2,⋯, λNb are the eigenvalues of (N − 1)− 1W1/2CCTW1/2.
Once the eigenfunctions are obtained, the original high-dimensional time-variant response can be reduced to a low-dimensional 

vector, and the original response can be reconstructed from its low-dimensional representation. Let B = [b1,b2,⋯,bm], which is an Nb ×

m matrix. For a new time-variant response y*, its low-dimensional representation ξ* can be obtained in the same way as in Eq. (13) and 
Eq. (15): 

ξ* = argmin
ξ

{
(y* − HBξ)T

(y* − HBξ) + τξTBTRBξ
}
= B− 1( HTH + τR

)− 1HTy*. (26) 

For the training samples {y1,y2,⋯,yN}, their low-dimensional representation can be directly obtained as ξi = B− 1ci, for i = 1,⋯,N, 
where ci is computed as in Eq. (15) and ξi is an m × 1 vector. Additionally, for a low-dimensional vector ̂ξ in the latent functional space, 
the time-variant response is reconstructed as ŷ(t) = η(t)TBξ̂. By performing dimension reduction in the functional space, we connect 
the high-dimensional time-variant response to a low-dimensional vector in the latent functional space. Therefore, we can construct 
surrogate models between the inputs and the latent outputs to predict the original time-variant response. Table 3 presents the 
pseudocode for performing dimension reduction in the functional space.

3.2. Kriging-based emulator for learning dynamical systems

After performing dimension reduction in the functional space, time-variant response y is reduced to an m × 1 vector ξ =

[
ξ(1), ξ(2),⋯, ξ(m)

]T 
in the latent functional space. Since the latent functions ϕk(t) are orthogonal to each other, all ξ(k), k = 1, 2,⋯,m are 

uncorrelated. Therefore, to emulate the dynamical system, we can construct a surrogate model for each ξ(k) with respect to the input X 
and use these models to predict the system’s response. In this study, we use the Kriging surrogate modeling method due to its ability to 
quantify model prediction uncertainty, a highly valuable feature for assessing the surrogate model’s quality or supporting active 
learning. The training data D = {(xi, ξi), i = 1, 2,⋯,N } in the latent space may contain noise due to limited data and dimensionality 
reduction. Therefore, the Ordinary Kriging model with noise term is used for surrogate modeling in the latent space: 

ξ(x) = μ + Z(x) + ε, (27) 

where μ is the global mean, Z(x) ∼ GP(0, k(x,x’) ) is a zero mean Gaussian process, ε is a zero-mean Gaussian noise with covariance 
matrix Σn. This paper assumes homoscedastic noise, where Σn = σ2

nI (I being the identity matrix). It is worth noting that the assumption 
of homoscedastic noise can be relaxed to accommodate heteroscedastic noise, but such considerations are beyond the scope of this 
work. k(x, xʹ) = E[Z(x)Z(x́ ) ] is the covariance function (or kernel function) of Z(x). Among numerous existing kernel functions, the 
Gaussian kernel function is commonly used: 

Table 3 
Pseudocode of dimension reduction in the functional space for the time-variant response.

Algorithm 3: Dimension reduction in the functional space

Input: time-variant output samples {y1,y2,⋯,yN}

1: Centralize the data yc
i ←yi − N− 1

∑N
i=1

yi, i = 1,2,⋯,N
2: Select a basis function system {η1(t), η2(t),⋯} and determine Nb and τ by Algorithm 2
3: Compute the matrix H: Hij←ηj(ti), i = 1,2,⋯,Nt , j = 1,2,⋯,Nb

4: ci←
(
HTH + τR

)− 1HTyc
i , i = 1,⋯,N and C←[c1,c2,⋯,cN]

5: W←
∫ te

t0 η(t)η(t)Tdt
6: Solve the symmetric eigenvalue problem (N − 1)− 1W1/2CCTW1/2u = λu
7: Determine m with the 99 % variance proportion criterion and obtain the retained eigen pairs:{λ1,u1},⋯,{λm,um}

8: bk←W− 1/2uk, k = 1, 2,⋯,m and B←[b1,b2,⋯,bm]

9: ξi←B− 1ci, i = 1,⋯,N
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k(x,x’) = σ2
Zexp

{
− (x − x’)

TΘ(x − x’)
}
, (28) 

where σ2
Z is the variance of Z(x), Θ = diag(θ) and θ =

[
θ1, θ2,⋯θp

]T are scaling parameters to characterize the variability of the 
Gaussian process.

Given a training data set D j =
{(

xi, ξ(j)i

)
, i = 1, 2,⋯,N

}
for the j-th component of ξ, μ, σ2

Z, θ and σ2
n are obtained by maximizing the 

marginal log likelihood function as follows: 

μ̂, σ̂2
Z, θ̂, σ̂2

n = argmax
μ,σ2

Z ,θ,σ
2
n

log p
(
ξ|x, μ, σ2

Z, θ, σ2
n
)
,

logp
(
ξ|x, μ, σ2

Z, θ, σ2
n
)
= −

1
2
(
ξ(j) − 1μ

)T( Kxx + σ2
nIN

)− 1( ξ(j) − 1μ
)
−

1
2

log
⃒
⃒Kxx + σ2

nIN
⃒
⃒ −

N
2

log2π,
(29) 

where ξ(j) =
[
ξ(j)1 , ξ(j)2 ,⋯, ξ(j)N

]T
, 1 is an N × 1 vector of ones, Kxx is the N × N covariance matrix with (Kxx)i,j = k

(
xi, xj

)
,i,j, = 1,2,⋯,N, 

and IN is an N × N identity matrix. With the estimated parameters μ̂, σ̂2
Z, θ̂ and σ̂2

n , the predictive mean and variance at a new point x* 

are given by: 

μ̂ξ̂j
(x*) = μ̂ + kT

xx*

(
Kxx + σ2

nIN
)− 1( ξ(j) − 1μ

)
, (30) 

σ̂2
ξ̂j
(x*) = k(x*, x*) − kT

xx*

(
Kxx + σ2

nIN
)− 1kxx* , (31) 

where kxx* = [k(x1, x*), k(x2, x*),⋯, k(xN, x*)]
T.

The mean and covariance matrix of ̂ξ(x*) are μ̂ξ̂(x
*) =

[
μ̂ξ̂1

(x*),⋯, μ̂ξ̂m
(x*)

]T 
and Σ̂ξ̂(x

*) = diag
([

σ̂2
ξ̂1
(x*),⋯, σ̂2

ξ̂m
(x*)

]T
)

. And the 

predicted mean and variance of time-variant response ŷ(t) at a specified time node t* can be obtained as: 

μ̂ ŷ(x*, t*) = η(t*)
TBμ̂ξ̂(x

*). (32) 

σ̂2
ŷ(x

*, t*) = η(t*)
TBΣ̂ ξ̂(x

*)BTη(t*). (33) 

Denote M j the surrogate model for the j-th component of ξ, then the surrogate model for the dynamical system can be denoted as M =

{M 1,M 2,⋯,M m}.

3.3. Surrogate-based forward and inverse UQ for dynamical systems

Once the surrogate model for the dynamical system is constructed, it can be directly combined with Monte Carlo simulation for 
forward UQ. Given a set of Monte Carlo samples x1, x2,⋯,xNMCS according to fX(x), μY(t) in Eq. (1) and σY(t) in Eq. (2) can be estimated 
as follows: 

μ̂Y(t) =
1

NMCS

∑NMCS

i=1
η(t)TBμ̂ξ̂(xi) =

1
NMCS

η(t)TB
∑NMCS

i=1
μ̂ξ̂(xi). (34) 

σ̂Y(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
NMCS

∑NMCS

i=1

(
η(t)TBμ̂ξ̂(xi) − μ̂Y(t)

)2

√
√
√
√ , (35) 

where μ̂ξ̂(xi) =
[

μ̂ξ̂1
(xi),⋯, μ̂ξ̂m

(xi)
]T

.

For inverse UQ, a Bayesian framework is utilized in this research. The surrogate model M can be viewed as a function of input 
parameters X mapping to the high-dimensional output Y. In the Bayesian framework, a discrepancy term can be added to link pre-
dictions M (X) with observations Y as follows: 

Y = M (X) + ∊, (36) 

where ∊ is an Nt-dimensional vector. For simplicity, we assume ∊ follows a zero mean multivariate Gaussian distribution with 
covariance matrix σ2I, where I is an Nt-dimensional identity matrix. This assumption makes sense because, for an observed time- 
variant response, we can consider that zero-mean Gaussian noise with variance σ2 is added at each time node due to measurement 
error. Note that other assumptions about the discrepancy term can also be incorporated into the Bayesian inverse UQ framework.

The posterior distribution of 
(
X,σ2), under the assumption that X and σ2 are independent, can be written by Bayes’ theorem as: 

p
(
X, σ2|Y

)
∝p(X)p

(
σ2)p

(
Y
⃒
⃒X, σ2), (37) 
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where p(X) and p
(
σ2) are the prior distributions of X and σ2 respectively, and p

(
Y
⃒
⃒X, σ2) is the likelihood function. When Nobserve 

observations are available, p
(
Y
⃒
⃒X, σ2) has the following form: 

p
(
Y
⃒
⃒X, σ2 ) =

∏Nobserve

i=1

1
(2πσ2)

Nobserve/2 exp
[

−
1

2σ2(yi − M (X) )T
(yi − M (X) )

]

. (38) 

In this research, the affine invariant ensemble algorithm [44] is used to calculate the posterior distribution. In the implementation, 100 
parallel chains are generated, with initial points randomly sampled from the prior distributions. Each chain is set to run for 300 MCMC 
iterations. The proportion of samples discarded as burn-in is set to 50 %. This MCMC approach is efficiently executed using the UQLab 
toolbox [45,46].

4. Examples and discussions

In this section, we evaluate the performance of the proposed method alongside several comparative methods on both mathematical 
and engineering examples. We compare the modeling accuracy of the proposed KFDR with Kriging models that incorporate PCA 
(KPCA), independent component analysis (KICA), and autoencoders (KAE). Each method follows a similar procedure to KFDR: first 
performing dimension reduction on the time-variant response, then constructing Kriging models between the inputs and each low- 
dimensional representation of the response. The primary difference lies in the dimension reduction technique employed by each 
method. KPCA treats the responses of dynamical systems as vectors and applies standard PCA to reduce response dimensionality. The 
number of retained principal components is chosen so that they explain more than 99 % of the total variance. KICA uses independent 
component analysis (ICA), a blind source separation technique, for dimension reduction, decomposing a signal into a linear combi-
nation of independent component signals. KAE employs an autoencoder for dimension reduction, which is a nonlinear technique with a 
natural framework for encoding (dimension reduction) and decoding (reconstruction). The transfer functions for both the encoder and 
decoder are configured as logistic sigmoid functions. The maximum number of training epochs for the autoencoder is set to 1000, and 
the L2 weight regularization coefficient is set to 0.001. The number of neurons in the hidden layer is set to 20. For the proposed KFDR, 
we represent the time-variant responses using both Fourier basis functions and B-spline basis functions, referred to as KFDR-F and 
KFDR-B, respectively. Normalized root mean square error (NRMSE) is used to quantify the modeling error: 

NRMSE =
1

Ntest

∑Ntest

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nt

∑Nt

j=1

(
yi
(
tj
)
− ŷi

(
tj
) )2

√

max
j

[
yi
(
tj
) ]

− min
j

[
yi
(
tj
) ]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (39) 

where Ntest denotes the size of test set, Nt is the number of discretized time nodes, yi
(
tj
)

and ŷi
(
tj
)

are the true and predicted values of 
the i-th time-variant response at tj, respectively. Besides, the performances of different methods on forward and inverse uncertainty 
quantification tasks are investigated.

For the comparison methods, we selected PCA as it is a widely used classical linear dimension reduction technique that has been 
extensively applied in dynamical system analysis [23–26]. ICA was chosen as another major linear dimension reduction method, often 
employed to extract statistically independent features from complex signals. Autoencoders represent a widely used nonlinear 
dimension reduction approach, successfully applied across various fields, including recent applications to dynamical systems, as shown 
in references [28,29]. It is worth noting that other nonlinear dimension reduction methods, such as kernel PCA, isometric feature 
mapping, and locally linear embedding, also exist. However, these methods typically lack a direct inverse mapping from the latent 
space back to the original data space, which is essential for reconstructing the response of dynamical systems. Consequently, we 
selected PCA, ICA, and autoencoders to represent mainstream feature extraction approaches that are well-suited for surrogate 
modeling of dynamical systems, ensuring both relevance and practical applicability.

4.1. Example 1: The Duffing oscillator

The Duffing oscillator adopted from [17] is used as the first example. The governing ordinary differential equation for the Duffing 
oscillator is as follows: 

mÿ(t)+ cẏ(t)+ ky(t)+ k2y2(t)+ k3y3(t) = f(t), (40) 

where m = 1, k = 1× 104, k2 = 1× 107, k3 = 5× 109, y(t) is the displacement of oscillator with initial conditions ẏ(0) = 0 and y(0) =

y0, and f(t) is the excitation force given by: 

f(t) = αcos(βt)+ sin((β + 3)t )+ sin(2βt). (41) 

Physical units have been dropped intentionally for simplicity in this example. The quantity of interest is the oscillator displacement y(t)
over the time interval [0, 2]. Runge-Kutta method is used to solve Eq. (40) to obtain y(t), and the time interval is uniformly discretized 
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into 401 time nodes. The parameters α, β, c, and y0 are set as input variables, with their lower and upper bounds listed in Table 4. Fig. 4
shows 100 different realizations for this problem.

The number of basis functions (Nb) for KFDR-F and KFDR-B is 201 and 405, respectively, while the number of retained latent 
functions (m) for both KFDR-F and KFDR-B is 14. Fig. 5 illustrates the modeling error of different methods across different training 
sample sizes. In the left panel of Fig. 5, each box displays the median as the central mark, with the bottom and top edges representing 
the 25th and 75th percentiles, respectively. The solid lines extend to the most extreme data points that are not considered outliers, 
while outliers are indicated separately using diamond markers. The error is evaluated using an additional test set of 1000 samples, with 
both training and test samples generated through Latin hypercube sampling. To mitigate randomness effects, each experiment is 
repeated ten times. In each trial, identical training samples are used to construct surrogate models for all methods.

Fig. 5 demonstrates a clear downward trend in NRMSE across all methods as the number of training samples increases. However, 
the proposed KFDR-F and KFDR-B yield a smaller NRMSE compared to KPCA, KICA, and KAE across all training sample sizes, indi-
cating higher modeling accuracy. The proposed approach outperforms KPCA and KICA because KPCA and KICA are based on linear 
dimensionality reduction techniques, while KFDR-F and KFDR-B can capture nonlinear features in the response through basis 
expansion in the functional space. As a result, the proposed method offers a more flexible representation than the linear methods. 
Although the autoencoder is a powerful nonlinear dimensionality reduction method, it may lose effectiveness with a small sample size. 
Consequently, the modeling accuracy of KAE is not as high as that of KFDR-F and KFDR-B. An interesting phenomenon is that as the 
number of training samples increases, the modeling error of KAE becomes smaller than that of KPCA and KICA. This is because the 
autoencoder can extract nonlinear features more effectively with a large sample size, highlighting the potential of neural network- 
based approaches when handling large datasets. Since the modeling accuracy of KFDR-F and KFDR-B are close, we focus on KFDR- 
F in the subsequent UQ and inverse UQ analyses. Also, from a practical perspective, B-spline basis functions have broader applica-
bility. Unlike Fourier basis functions, which mainly excel for periodic responses, B-spline basis functions can effectively represent 
periodic, non-periodic, or locally varying system responses.

In addition, we investigate the influence of noise level σ and training sample size on the modeling accuracy of the proposed KFDR 
method. Zero-mean Gaussian noise with varying standard deviations (σ) is added to the training output data. The results based on 
KFDR-B are presented in Fig. 6, which depicts the NRMSE as a function of the training set size for σ = 1 × 10-5, 5 × 10-5, and 1 × 10-4. 
Additionally, we compare the proposed method to the approach that does not include the roughness regularization term in Eq. (13). It 
is observed that NRMSE decreases as the number of training samples increases across all noise levels and methods. For all training 
sample size, larger σ values result in higher NRMSE, indicating the increased challenge of accurate modeling under noisy conditions. 
Methods with regularization (solid lines) exhibit consistently lower NRMSE compared to those without regularization (dashed lines), 
demonstrating the effectiveness of the roughness regularization term in enhancing model robustness, particularly in noisy scenarios. 
Furthermore, for smaller σ values (1 × 10-5), the performance gap between methods with and without regularization is less significant. 
However, at higher noise levels (1 × 10-4), the benefit of regularization becomes more evident, highlighting its importance in handling 
noisy data effectively.

For the forward uncertainty quantification, the uncertainty information of the input parameters is provided in Table 5. Forward UQ 
is conducted using the real model and surrogate models trained on 100 samples with different methods. The number of Monte Carlo 
simulation samples for forward UQ is 1 × 105. Since the modeling accuracy of KPCA and KICA are close, only KPCA is used for forward 
UQ. Fig. 7 illustrates the forward UQ results. From the upper left panel, we can see that all methods provide accurate predictions of the 
mean function of the dynamical system’s response. While KFDR-B can obtain a more accurate estimation of the standard deviation 
function than other methods. The lower two panels of Fig. 7 show the probability density functions of the maximum and minimum 
time-variant responses, fitted using the kernel density estimation method. The probability density function obtained by KFDR-B is 
closer to the true probability density function than those obtained by other methods, indicating that the proposed approach can 
achieve higher accuracy in the forward UQ task.

For inverse uncertainty quantification, the four parameters α, β, c, and y0 are assumed to follow uniform prior distributions, with 
their lower and upper bounds provided in Table 4. The data for inverse UQ consists of three observations at 

[
α, β, c, y0

]
=

[
1.19, 1.82,

0.94, − 3.3× 10− 5], with zero-mean Gaussian noise having a standard deviation of 1 × 10-5 added at each time node. Table 6
presents the inverse UQ results, showing the mean values and 95 % credible intervals of the calibration parameters. Fig. 8 shows the 
posterior distributions of the calibration parameters. The results indicate that the posterior distributions of c and y0 obtained using the 
KPCA method exhibit a significant deviation from those of the real model. Similarly, the posterior distribution of c obtained using the 
KAE method shows a notable deviation. In contrast, the posterior distributions obtained using the KFDR-B method are closer to those of 
the real model than those from KPCA and KAE, effectively inferring the correct distributions of the calibration parameters. This 
demonstrates that the proposed approach can achieve higher accuracy in the inverse UQ task.

Table 4 
Lower and upper bounds of inputs of the Duffing oscillator.

Variables Lower bounds Upper bounds

α 0.6 1.4
β 1.5 2.5
c 0.6 1.4
y0 − 1 × 10-4 0
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Fig. 4. 100 realizations of the responses for the Duffing oscillator problem.

Fig. 5. Boxplots (left) and means (right) of the normalized root mean square errors of different methods across different training sample sizes for the 
Duffing oscillator problem.

Fig. 6. Normalized root mean square errors for different noise levels with and without regularization as a function of the number of training 
samples for the Duffing oscillator problem.

Table 5 
Uncertainty information of the parameters of the Duffing oscillator.

Variables Distribution Mean Standard deviation

α Normal 1.0 0.05
β Normal 2.0 0.1
c Normal 1.0 0.05
y0 Normal − 5 × 10-5 5 × 10-6
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4.2. Example 2: The Bouc-Wen hysteretic oscillator

In this example, the forward and inverse UQ of a nonlinear Bouc-Wen oscillator [15] are investigated. The Bouc-Wen model is 
described by the following differential equation: 

{
mÿ(t) + cẏ(t) + k[αy(t) + (1 − α)z(t) ] = f(t),

ż(t) = Aẏ(t) − β|ẏ(t) ||z(t) |n− 1z(t) − γẏ(t)|z(t) |n, (42) 

where m is the mass, y(t) is the displacement of oscillator with initial conditions ẏ(0) = 0 and y(0) = y0, c the viscous damping co-
efficient, k the stiffness, α the degree of hysteresis, z(t) the hysteretic displacement with zero initial condition, f(t) the excitation force, 
and A, β, γ, n are parameters controlling the behavior of hysteresis and are set A = 1, β = γ = 7.8× 103, n = 3. In this example, the 
excitation force is fixed in the following form: 

Fig. 7. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value distributions (lower left), and 
minimum value distributions (lower right) of real and predicted time-variant responses for the Duffing oscillator problem.

Table 6 
Inverse uncertainty quantification results of the Duffing oscillator.

Variables Methods Mean values 95 % credible intervals

α Real 1.1927 [1.1894, 1.1958]
KPCA 1.1850 [1.1782, 1.1916]
KAE 1.1964 [1.1917, 1.2011]
KFDR-B 1.1878 [1.1847, 1.1910]

β Real 1.8200 [1.8190, 1.8210]
KPCA 1.8172 [1.8152, 1.8192]
KAE 1.8140 [1.8119, 1.8163]
KFDR-B 1.8191 [1.8180, 1.8202]

c Real 9.4627 × 10-1 [9.1448, 9.8181] × 10-1

KPCA 7.5348 × 10-1 [6.8398, 8.1570] × 10-1

KAE 7.7070 × 10-1 [7.0421, 8.5689] × 10-1

KFDR-B 9.8347 × 10-1 [9.4824, 10.179] × 10-1

y0 Real − 3.2712 × 10-5 [-3.4977, − 3.0616] × 10-5

KPCA − 2.2209 × 10-5 [-2.5622, − 1.8702] × 10-5

KAE − 3.0564 × 10-5 [-3.3123, − 2.8259] × 10-5

KFDR-B − 3.3765 × 10-5 [-3.5846, − 3.1583] × 10-5
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f(t) = −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.006π

√
m
∑150

k=1
[ϑkcos(0.1πkt)+ ϑ150+ksin(0.1πkt)], (43) 

where ϑk is a realization of the standard normal distribution. The quantity of interest is the oscillator displacement y(t) over the time 
interval [0, 16]. Runge-Kutta method is used to solve Eq. (42) to obtain y(t), and the time interval is uniformly discretized into 401 time 
nodes. The parameters m, c, k, α and y0 are set as input variables, with their lower and upper bounds listed in Table 7. Fig. 9 shows 100 
realizations of the responses for this problem.

The number of basis functions (Nb) for KFDR-F and KFDR-B is 201 and 405, respectively, while the number of retained latent 
functions (m) for both KFDR-F and KFDR-B is 7. Fig. 10 shows the modeling error of various methods across different training sample 
sizes, evaluated on a test set of 1000 samples generated with Latin hypercube sampling. Each experiment is repeated ten times to 

Fig. 8. Posterior distributions of the four calibration parameters for the Duffing oscillator problem: real model (upper left), KPCA model (upper 
right), KAE model (lower left), and proposed KFDR-B model (lower right).

Table 7 
Lower and upper bounds of inputs of the Bouc-Wen oscillator.

Variables Lower bounds Upper bounds

m (kg) 4 × 104 8 × 104

c (kg/s) 8 × 104 1.2 × 105

k (N/m) 4 × 106 6 × 106

α 0.1 0.3
y0 (m) − 0.02 0.02
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reduce randomness effects. Fig. 10 demonstrates the proposed KFDR-B yield a smaller NRMSE compared to other methods across all 
training sample sizes, indicating higher modeling accuracy. However, KFDR-F performs poorly in this example, likely because Fourier 
basis systems are not well-suited for capturing the motion of the Bouc-Wen oscillator. This indicates that the B-spline basis system is 
more flexible than Fourier basis systems and can represent a broader range of functions. Again, as the number of training samples 
increases, the modeling error of KAE becomes smaller than that of KPCA and KICA but remains larger than that of KFDR-B, demon-
strating the advantage of the proposed approach when faced with a small dataset.

In addition, we investigate the influence of noise level σ and training sample size on the modeling accuracy of the proposed KFDR 
method. Zero-mean Gaussian noise with varying standard deviations (σ = 1 × 10-3, 5 × 10-3, and 1 × 10-2) is added to the training 
output data. The results based on KFDR-B are presented in Fig. 11, which depicts the NRMSE as a function of the training sample size 
for different σ. Additionally, we compare the proposed method to the approach that does not include the roughness regularization. It is 
observed that NRMSE decreases as the number of training samples increases across all noise levels and methods. For all training sample 
size, larger σ values result in higher NRMSE, indicating the increased challenge of accurate modeling under noisy conditions. For 
smaller σ values (1 × 10-3), the performance gap between methods with and without regularization is less significant. However, at 
higher noise levels (1 × 10-2), the benefit of regularization becomes more evident, demonstrating the effectiveness of the roughness 
regularization term in enhancing model robustness, particularly in large noisy scenarios.

For the forward UQ, the uncertainty information of the input parameters is provided in Table 8. Forward UQ is conducted using the 
real model and surrogate models trained on 110 samples with KPCA, KAE, and KFDR-B. The number of Monte Carlo simulation samples 
for forward UQ is 1 × 105. Fig. 12 shows the forward UQ results. Again, all methods provide accurate predictions of the mean function 
of the dynamical system’s response. While KFDR-B obtains a more accurate estimation of the standard deviation function than other 
methods. The lower two panels of Fig. 12 show that the extreme value distributions obtained by KFDR-B are closer to the true 
probability density function than those from other methods, indicating that the proposed approach achieves higher accuracy in the 
forward UQ task.

For inverse uncertainty quantification, the mass of oscillator is fixed at 7 × 104, the other four parameters c, k, α and y0 are assumed 
to follow uniform prior distributions, with their lower and upper bounds provided in Table 7. The data for inverse UQ consists of three 
observations at 

[
c, k, α, y0

]
=

[
1.05× 105, 4.77× 106, 0.21, 0.01

]
, with zero-mean Gaussian noise having a standard deviation of 5 ×

10-3 added at each time node. Table 9 presents the inverse UQ results, showing the mean values and 95 % credible intervals of the 
calibration parameters. Fig. 13 shows the posterior distributions of the calibration parameters. The results indicate that all methods 
provide relatively accurate posterior distributions for c and k. However, the posterior distributions of α obtained using the KPCA and 
KAE methods show a significant deviation from those of the real model. Additionally, KPCA and KAE produce wider 95 % credible 

Fig. 9. 100 realizations of the responses for the Bouc-Wen oscillator problem.

Fig. 10. Boxplots (left) and means (right) of the normalized root mean square errors of different methods across different training sample sizes for 
the Bouc-Wen oscillator problem.
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Fig. 11. Normalized root mean square errors for different noise levels with and without regularization as a function of the number of training 
samples for the Bouc-Wen oscillator problem.

Table 8 
Uncertainty information of the parameters of the Bouc-Wen oscillator.

Variables Distribution Mean Standard deviation

m (kg) Lognormal 6 × 104 3 × 103

c (kg/s) Lognormal 1 × 105 3 × 103

k (N/m) Lognormal 5 × 106 1 × 105

α Normal 0.2 0.01
y0 (m) Normal 0 0.002

Fig. 12. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value distributions (lower left), and 
minimum value distributions (lower right) of real and predicted time-variant responses for the Bouc-Wen oscillator problem.
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intervals for y0 compared to the real model and the KFDR-B method. Moreover, methods KPCA and KAE erroneously infer a strong 
positive correlation between α and y0. In contrast, the KFDR-B method yields posterior distributions for α and y0 that are very close to 
those of the real model, once again demonstrating the high accuracy of the proposed method in inverse UQ.

4.3. Example 3: A crane structure

This example considers the transient analysis of a crane structure under a sudden load. Fig. 14 shows a schematic and Fig. 15 shows 
the dimensions of the crane. The crane is composed of steel box beams with two different cross-sections for the main beams and bracing 
beams. One end of the main beams is fixed at points A, B, C, and D, while the other end (point E) is subjected to an instantaneous impact 
force with a magnitude of F and a duration of TF. All beams are made of the same steel material, with density ρ, Young’s modulus E, and 
shear modulus G treated as varying parameters. In addition, F and TF are also treated as varying parameters. Table 10 presents the 
lower and upper bounds for these five input parameters. The quantity of interest is the force in the Y-direction at point A over the 
specified time interval [0, 0.5 s], which is obtained through finite element analysis (FEA). The time interval is uniformly discretized 
into 201 time nodes.

We collected 100 samples using FEA, with input samples generated through Latin hypercube sampling. Fig. 16 illustrates the 100 
realizations of responses. Ten-fold cross-validation was employed to evaluate the modeling accuracy of the various methods in this 
example, and the process was repeated ten times to mitigate the impact of randomness. The number of basis functions (Nb) for KFDR-F 
and KFDR-B is 151 and 205, respectively, while the number of retained latent functions (m) for both KFDR-F and KFDR-B is 11. Fig. 17
illustrates the modeling errors of the different methods. The proposed methods, KFDR-F and KFDR-B, show lower NRMSE values 
compared to the comparative methods (KPCA, KICA, and KAE), indicating better modeling accuracy. Additionally, their narrower 
boxplots suggest more consistent performance across different trials. Among the comparative methods, KPCA and KICA have higher 
NRMSE values with larger variability, reflecting lower accuracy and stability. While KAE achieves lower median NRMSE than KPCA 
and KICA.

For the forward UQ, the uncertainty information of the input parameters is provided in Table 11. Forward UQ is conducted using 
the surrogate models trained on all 100 samples with KPCA, KAE, and KFDR-B. The number of Monte Carlo simulation samples for 
forward UQ is 1 × 105. Fig. 18 presents the forward UQ results, showing that the mean functions predicted by the three methods are 
consistent, while the standard deviation functions exhibit differences among the methods. All standard deviation functions exhibit 
higher values around 0.2 s, as the external force is removed at this point, causing the crane to transition from forced vibration to free 
vibration. For the extreme value distributions, the three methods predict different modes for the maximum value distribution, with 
KAE even producing a multimodal PDF. In contrast, all three methods predict the same mode for the minimum value distribution, 
although the PDF obtained by KAE differs from those of KPCA and KFDR-B.

For inverse uncertainty quantification, ρ, E, and G are fixed at 7800, 2 × 1011, and 8 × 1010, respectively. F and TF are assumed to 
follow uniform prior distributions in [-11 × 103, − 9 × 103] and [0.19, 0.23], respectively. The data for inverse UQ consists of three 
observations at [F,TF ] = [-9.8 × 103, 0.21], with zero-mean Gaussian noise having a standard deviation of 100 added at each time node. 
Table 12 presents the inverse UQ results, showing the mean values and 95 % credible intervals of the calibration parameters. Fig. 19
shows the posterior distributions of the calibration parameters. The results show that the proposed KFDR-B method generates posterior 
distributions that are very close to the true values, whereas the KPCA and KAE methods exhibit slight deviations from the true values.

5. Conclusions and outlook

In this research, we propose a method, referred to as KFDR, that integrates dimension reduction and Kriging surrogate modeling in 
functional space to perform forward and inverse uncertainty quantification accurately and efficiently for dynamical systems. The 

Table 9 
Inverse uncertainty quantification results of the Bouc-Wen oscillator.

Variables Methods Mean values 95 % credible intervals

c Real 1.0679 × 105 [1.0415, 1.0922] × 105

KPCA 1.0999 × 105 [1.0661, 1.1325] × 105

KAE 1.0968 × 105 [1.0550, 1.1349] × 105

KFDR-B 1.0722 × 105 [1.0468, 1.0971] × 105

k Real 4.7655 × 106 [4.7510, 4.7812] × 106

KPCA 4.7438 × 106 [4.7254, 4.7614] × 106

KAE 4.7529 × 106 [4.7324, 4.7741] × 106

KFDR-B 4.7638 × 106 [4.7487, 4.7788] × 106

α Real 2.1378 × 10-1 [2.0790, 2.1993] × 10-1

KPCA 2.2865 × 10-1 [1.9450, 2.6527] × 10-1

KAE 2.2429 × 10-1 [2.1517, 2.3361] × 10-1

KFDR-B 2.1250 × 10-1 [2.0689, 2.1788] × 10-1

y0 Real 0.9854 × 10-2 [0.9001, 1.0740] × 10-2

KPCA 1.1253 × 10-2 [0.7830, 1.5239] × 10-2

KAE 1.0353 × 10-2 [0.8838, 1.2022] × 10-2

KFDR-B 0.9757 × 10-2 [0.8903, 1.0618] × 10-2
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proposed KFDR begins by projecting the responses of dynamical systems onto a functional space spanned by a set of predefined basis 
functions. Next, the functional eigenequation is solved to identify key latent functions, mapping the response of the dynamical system 
into a low-dimensional latent functional space. Subsequently, Kriging surrogate models with noise terms are constructed in the latent 
space, enabling accurate and efficient predictions of dynamical systems. Finally, the surrogate model derived from KFDR is directly 
employed for efficient forward and Bayesian inverse UQ of the dynamical system. Three numerical examples were investigated, 
leading to the following conclusions: 

• By treating the responses of dynamical systems from a functional perspective, they can be represented as linear combinations of a 
few key latent functions. This functional approach effectively handles noisy data and captures the nonlinear characteristics of the 
responses. Additionally, an inverse mapping can be directly established from the latent space to the original output space, enabling 
efficient predictions.

Fig. 13. Posterior distributions of the four calibration parameters for the Bouc-Wen oscillator problem: real model (upper left), KPCA model (upper 
right), KAE model (lower left), and proposed KFDR-B model (lower right).
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• Kriging surrogate models with noise terms are constructed in the latent functional space to account for errors arising from limited 
data and feature mapping. Additionally, the probabilistic predictions provided by Kriging models enable the estimation of pre-
diction uncertainty in the time-variant response, allowing metamodeling uncertainty to be considered during uncertainty 
quantification.

• The illustrative examples demonstrate that the proposed KFDR approach achieves significantly smaller errors in surrogate 
modeling. Additionally, the forward UQ and inverse UQ results obtained using KFDR show closer agreement with those of the real 
model compared to the results from the comparative methods, highlighting the accuracy of the proposed approach. Furthermore, 

Fig. 14. The crane structure subjected to an instantaneous impact force.

Fig. 15. Dimensions of the crane structure (unit: meters).

Table 10 
Lower and upper bounds of inputs of the crane structure.

Variables Lower bounds Upper bounds

ρ (kg/m3) 7600 8000
E (Pa) 1.8 × 1011 2.2 × 1011

G (Pa) 7.8 × 1010 8.2 × 1010

F (N) − 12 × 103 − 6 × 103

TF (s) 0.17 0.23

Fig. 16. 100 realizations of the responses for the crane structure problem.
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Fig. 17. Boxplots of the normalized root mean square errors of different methods for the crane structure problem.

Table 11 
Uncertainty information of the parameters of the crane structure.

Variables Distribution Mean Standard deviation

ρ (kg/m3) Lognormal 7800 20
E (Pa) Lognormal 2 × 1011 2.5 × 109

G (Pa) Lognormal 8 × 1010 2 × 108

F (N) Normal − 9 × 103 500
TF (s) Lognormal 0.2 0.005

Fig. 18. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value distributions (lower left), and 
minimum value distributions (lower right) of predicted time-variant responses for the crane structure problem.
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the results indicate that B-spline basis functions exhibit greater applicability than Fourier basis functions, making them the rec-
ommended choice for the KFDR method.

In the current framework, the Kriging technique is employed to train surrogate models in the latent functional space. Consequently, 
the proposed method may not be well-suited for high-dimensional inputs. A promising direction for future research is to integrate the 
proposed method with input dimension reduction techniques to enhance its practical applicability. Additionally, like other surrogate 
modeling methods, the accuracy of KFDR depends on both the quality and quantity of training samples. When data is scarce or 
insufficient, reliably estimating the underlying functional relationships between parameters and responses becomes challenging. 
Although KFDR partially mitigates data scarcity issues through effective dimension reduction, it still requires an adequate amount of 
data to capture essential system behavior. In practice, since KFDR provides probabilistic predictions of dynamical system responses, 
incorporating adaptive sampling or active learning techniques into the KFDR framework could help address this limitation effectively. 
Moreover, the proposed approach can be further improved by integrating advanced inverse UQ techniques to achieve more accurate 
and robust inverse analysis. Furthermore, the proposed KFDR method is not limited to uncertainty quantification but can also be 
extended to reliability analysis and design optimization for dynamical systems.
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Table 12 
Inverse uncertainty quantification results of the Bouc-Wen oscillator.

Variables Methods Mean values 95 % credible intervals

F KPCA − 9.7510 × 103 [-9.7997, − 9.7036] × 103

KAE − 9.8694 × 103 [-9.9484, − 9.7885] × 103

KFDR-B − 9.8083 × 103 [-9.8772, − 9.7422] × 103

TF KPCA 0.2094 [0.2093, 0.2096]
KAE 0.2105 [0.2103, 0.2106]
KFDR-B 0.2100 [0.2098, 0.2101]

Fig. 19. Posterior distributions of the two calibration parameters for the crane structure problem: KPCA model (left), KAE model (middle), and 
proposed KFDR-B model (right).
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