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Abstract
[bookmark: _Hlk193183961]Time-variant uncertainties are omnipresent in engineering systems. These significantly impact the structural performance. The main challenge in this context is how to handle them in dynamic domain response topology optimization. To tackle this challenge, a new transient dynamic robust topology optimization (TDRTO) method is proposed to optimize the topology of continuous structures. This method comprehensively considers the uncertainties of material property, loading directions, and time-variant stochastic parameters of loading amplitudes. The time-variant performance function is transformed into a set of independent instantaneous performance functions, where the stochastic processes are discretized by using the optimal linear estimation method to simulate the correlations among various time nodes. The mean and standard deviation of the structural compliance are approximated through a Taylor expansion. Moreover, the Hilber-Hughes-Taylor α method is employed to address the structural dynamic problem. The design and stochastic sensitivities are derived by the “discretize-then-differentiate” and the adjoint methods, thereby improving the computational efficiency. Three illustrative cases are tested to validate the efficacy of TDRTO method, which shows its superiority over the traditional robust topology optimization method for dealing with time-variant stochastic uncertainties.
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1. Introduction
Topology optimization (TO) techniques have evolved significantly since the late 1980s [1, 2]. The advent of dynamic TO [3] has greatly fueled this advancement, which offers an indispensable tool in structural design. The widely used static TO methods focus on finding optimized designs under static loading conditions. However, it becomes imperative to consider the time-variant characteristics and inertial effects of engineering structures when dealing with high-frequency excitations [4, 5]. In such scenarios, dynamic response TO emerges and becomes the popular approach [6-9].
Dynamic response TO is broadly divided into two types: frequency domain optimization method and time domain optimization method. Frequency domain optimization method aims to mitigate structural vibration under harmonic or periodic loading conditions. In 1993, Ma et al. [10] pioneered using the homogenization method to minimize the structural frequency response. Subsequently, Pan and Wang [11] introduced an adaptive genetic algorithm to optimize truss structures subjected to the constraints of fundamental frequency, displacement, and acceleration, thereby effectively reducing the structural weight. Since the frequency-domain dynamic response computation requires a large amount of computational effort, Yoon [12] utilized model reduction techniques to compute dynamic responses and sensitivities efficiently, which include modal superposition, Ritz Vector, and quasi-static Ritz Vector methods. For further reducing the computation time of harmonic response for large-scale TO problems, Liu et al. [13] applied the modal displacement method, the modal acceleration method (MAM), and the full method. In the study of Shang et al. [14], the improved MAM is put forward to address the limitations of traditional MAM, which was applied to perform vibro-acoustic coupling analysis under steady-state stochastic excitation. Moreover, Liu et al. [15] minimized the frequency response of honeycomb composites over a specific frequency range that offers a broad design space to enhance its dynamic performance.
[bookmark: _Hlk193220333][bookmark: _Hlk193181281]Unlike the frequency domain optimization method, dynamic response TO method focuses on handling the time-variant dynamic behavior. For example, Min et al. [16] firstly explored the dynamic response TO problem in the time domain, thereby minimizing the average dynamic compliance through the homogenization techniques. Since dynamic topology optimization involves time discretization, it results in significant computation and storage demands. Thus, it is extremely time consuming. To tackle this issue, Kang et al. [17] and Jiang et al. [18] converted dynamic loads into equivalent static load (ESL) sets, which significantly reduces the computational time. Subsequently, Kim and Park [19] extended ESL to solve nonlinear dynamic TO problem. However, it was reported that ESL algorithm has limitation for solving dynamic response TO problems, which may result in the misleading topology layout. Thus, Stolpe [20] put forward an improved ESL method that calculated the gradient of the displacement vector at each time node, but it results in expensive computational cost. To enhance computational efficiency, Zhu and Kang [21] adopted the modal displacement method for calculating the quasi-static response, in which an efficient transient dynamic TO framework was further developed.
[bookmark: _Hlk193180567][bookmark: _Hlk193723611][bookmark: _Hlk193186608]It should be noted that the above-mentioned dynamic TO mainly focuses on deterministic scenarios, which neglects the impact of inevitable uncertainties incurred by manufacturing errors, environmental changes, and fatigue wear in practical engineering applications [22-26]. It was reported that these time-variant uncertainties profoundly affect the mechanical performance of structures, especially for dynamic structures with different service periods [27-30]. Therefore, it is necessary to employ robust topology optimization (RTO) to address these uncertainties[31-34]. Rostami et al. [35] proposed a novel robust topology optimization method of continuous structures under material and loading uncertainties, which integrated the evolutionary structural optimization method with the extended finite element method to enhance the computational efficiency with clear and smooth structural boundaries. For RTO under uncertain dynamic excitation, Zhang et al. [36] used a non-probabilistic ellipsoidal convex model to describe the dynamic loads and simplified the RTO model into a single-loop optimization model through a generalized flexibility matrix, thereby avoiding complex non-probabilistic calculation. Cai et al. [37] suggested a parallel RTO method for periodic microstructures, where the uncertainties of probabilistic dynamic loads were considered. Zheng et al. [38] combined the RTO method and the level set approach for designing uniform periodic microstructures under stochastic and interval uncertainties, where a hybrid dimension reduction technique with binary reduction schemes was applied to estimate the objective function effectively. 
However, the aforementioned studies mainly focus on considering the impact of uncertain dynamic excitation on the structure, while the effects of time-variant characteristics under actual working conditions are ignored [39, 40]. This may result in the misleading results for assessing performance. Thus, how to put forward the time-variant RTO method is crucial. However, to the best of the author's knowledge, the exploration of RTO with time-variant uncertainties is very scarce. Moreover, the time-variant RTO requires deriving the design and stochastic sensitivities, which also is a challenging work.
[bookmark: _Hlk193219570][bookmark: _Hlk193202215]This study proposes a new transient dynamic robust topology optimization (TDRTO) model for continuous structure, which can reasonably account for the impact of time-variant uncertainties. The TDRTO model comprehensively incorporates the uncertainties of geometric size, material property, loading direction, and time-variant loading amplitude. The “discretize-then-differentiate” approach and the adjoint method are utilized for deriving design and stochastic sensitivities, where the Lagrange equation is constructed twice. The remaining parts of this article are as below. Section 2 introduces the background of transient dynamic deterministic topology optimization (DTO) model and probabilistic method. Section 3 presents the proposed TDRTO model and the sensitivity calculation. Section 4 explains the numerical implementation. Section 5 presents three numerical examples. Conclusions are presented in Section 6.
2. Background
2.1. Problem statement


Topology optimization (TO) of continuum structures aims to determine the optimal material layout in the design domain [41]. The dynamic compliance  within a specified time interval [0, ] is widely adopted as the objective function in transient topology optimization (TO) [42, 43], which quantifies dynamic stiffness through temporal integration of structural compliance, thereby minimizing energy dissipation under transient or periodic loading conditions. The mathematical representation of this TO problem is given as:

		











[bookmark: _Hlk193186666][bookmark: MTBlankEqn]where  denotes the number of time nodes. F denotes the external excitations.  represents the design variables.  represents the element number.  represents the maximum loading time. M, C, and K represent the mass, damping, and stiffness matrixes.  represents the displacement vector.  and  represent the velocity and acceleration vectors.  and  represent the initial displacement and acceleration. V denotes the material volume with allowable value . The stiffness matrix and mass matrix are computed by

		

		







[bookmark: _Hlk193187045]where  and  are the l-th element mass and stiffness matrices, respectively.  and  are their respective shape functions and strain-displacement matrices.  represents the material constitutive matrix for linear isotropic materials.  and  define the volume interpolation function and material interpolation function, respectively [44]. Their definitions are as follows:

[bookmark: ZEqnNum157070]		




In Eq. , an Ersatz parameter  is used in  and  to prevent numerical instability when  approaches zero.
The volume interpolation function is computed using a threshold projection function [45]:

		


[bookmark: _Hlk193207209]where  denotes the threshold density.  controls the projection aggressiveness. The stiffness interpolation function is selected by the rational approximation of material properties function [44, 46].

		




where  is the penalization exponent. The proportional damping is employed to calculate the damping matrix , where  and  are the Rayleigh damping parameters.
2.2. Uncertainty propagation via Taylor series expansion
To integrate the governing uncertainties in the dynamical TO problem, they need to be modelled mathematically. Probability has been shown both theoretically and practically to be a rigorous approach in this context [47-50]. In the context of RTO, there exists the need to compute the mean and variance of the response to measure the robustness of a design. These quantities are given by:

		




[bookmark: _Hlk193204750][bookmark: _Hlk193204765]where  represents the response function.  denotes the probability density function.  and  indicate the mean and variance, respectively.


However, the calculation of complex integral formulas is very challenging in the case of dynamical problems due to the implicit nature and high dimensions of the corresponding integral equations. Since we are dealing with an optimization problem over second order response moments, however, it is sufficient to make accurate predictions in the vicinity of the current iteration. Therefore, the Taylor series expansion method is employed in this paper. For the objective function , the Taylor expansion can be obtained by introducing as follow: 

		

where x are stochastic variables. Nx represents the number of x. Assuming  and the structure is linear, the first-order expected value is 0. If these uncertainty factors are uncorrelated, the first and second statistical moments [51] of f with respect to (w.r.t.) x become

[bookmark: ZEqnNum454741]		
where μ and σ denote the mean and standard deviation (SD), respectively. 
3. The transient dynamic robust topology optimization method
3.1. Model establishment

Under practical working conditions, the load at each time instant is stochastic [52]. Thus, it is essential to incorporate time-variant characteristics to form a new TDRTO model. To achieve this goal, the expansion optimal linear estimation (EOLE) [53] method is applied to discretize the stochastic process , where the time-variant dynamic compliance is reformulated as the corresponding instantaneous dynamic compliance, thereby simulating the dependencies between different time instances. The TDRTO model is constructed as follows:

[bookmark: ZEqnNum702528]		

where  represents the dynamic compliance. It is determined by

[bookmark: ZEqnNum576267]		





where  is a stochastic process with mean value , SD , and autocorrelation function . The stochastic process is represented by EOLE as:

[bookmark: ZEqnNum611602]		







where h denotes the number of dominated eigenvalues that should be less than . The eigenvalues and eigenvectors of covariance matrix are denoted by  and .  denotes the time-variant covariance vector and can be calculated by .  represents the j-th uncorrelated normal stochastic variable of  with a standard normal distribution. The parameter h controls the accuracy of the stochastic process discretization. A higher h results in a more accurate representation of the dependence between different instantaneous dynamic compliance values. According to EOLE expansion in Eq. , the time-variant dynamic compliance is determined as below:

		








The instantaneous dynamic compliance at  depends on the values at previous time nodes. This correlation is explicitly captured by the EOLE method through the inclusion of . Then, the stochastic process  is converted into the independent stochastic variables , and the dynamic compliance  becomes . In this way, the solutions for  and  are computed by using the Taylor expansion for Eqs.  and , which are formulated as follows:

[bookmark: ZEqnNum495885]		



where  represents stochastic variables. Nx and Nz represent the number of stochastic variables and independent standard normal stochastic variable, respectively.  and  represent the sensitivity w.r.t. time-invariant stochastic variables x and time-variant stochastic variables Z, which will be derived in section 3.3.
3.2. Hilber-Hughes-Taylor α method 
[bookmark: _Hlk193188063]The (Hilber-Hughes-Taylor α) HHT-α method is an extension of the Newmark-β method for solving structural dynamic problems [54-56]. It modifies the motion equations by introducing a parameter α, which accounts the numerical lag between the damping, stiffness, and external force vectors. The generalized α method is depicted as follows:

		

[bookmark: ZEqnNum760549]		
where

[bookmark: _Hlk166679481]		




where  represents the time step. The update equations of , , and  are identical to those used in the Newmark algorithm.



When , , and , it degenerates into the HHT-α algorithm.

[bookmark: ZEqnNum882603]		

where . To guarantee the second-order accuracy and unconditional stability of the HHT-α method, the following conditions must be satisfied [54].

		









To address the dynamic problem, Eq.  is computed to obtain .  and  are updated for each time step . For time step ,  and  are used from the initial conditions, and  is computed by solving .
3.3. Stochastic sensitivity analysis 


[bookmark: _Hlk193184589]In real-word engineering system, the uncertainties mainly include the geometric size, material property, loading amplitude, and loading direction. When the geometric size and material property are considered as stochastic variables, a Lagrange function  is generated by introducing an adjoint vector . It is formulated as follows:

		


Then, the sensitivity of  w.r.t.  is as follows:

[bookmark: ZEqnNum612811]		
Because there is no correlation between the initial conditions and structural properties, the final term in Eq.  becomes

[bookmark: ZEqnNum138251]		

Substituting Eq.  into Eq. ,  is calculated as follows:

		
Then, the adjoint conditions are obtained as:

[bookmark: ZEqnNum937264]		

Therefore, the sensitivity of  is determined by

[bookmark: ZEqnNum760899]		

When the loading amplitude of  is considered as the stochastic variable, it is converted to Z by using EOLE, and the sensitivity of dynamic compliance c w.r.t. Z is computed as below:

[bookmark: ZEqnNum317712]		


For computing , a Lagrange equation  is constructed as

		

The sensitivity of  w.r.t. loading amplitude is as below:

[bookmark: ZEqnNum845637]		


where f represents . It is a vector composed of , in which l and m represent the l-th and m-th time instants. It satisfies the following conditions:

		
Because there is no correlation between the initial conditions and loading amplitude, the finial term in Eq.  is transformed through integration by parts into

		
Then, the adjoint conditions are obtained.

		

Therefore, the sensitivity of  is described as below:

[bookmark: ZEqnNum846972]		

The sensitivity of c w.r.t.  is

[bookmark: ZEqnNum644228]		

Similarly, when the loading direction is treated as a stochastic variable, the Lagrange equation  is constructed as follows:

		

Then, the sensitivity of  w.r.t. loading direction is evaluated as follows:

[bookmark: ZEqnNum401826]		
The adjoint conditions are as follows:

		
3.4. Design sensitivity analysis

To tackle the TDRTO problem by using gradient-based optimization methods, the computation of design sensitivity is vital. Based on Eq. , the design sensitivity of objective function J w.r.t.  is as below:

[bookmark: ZEqnNum882492]		


To reduce the high computational cost of , a Lagrange function is constructed by incorporating an adjoint vector .

		


The sensitivity of  w.r.t.  is as below:

[bookmark: ZEqnNum646841]	
Because there is no correlation between the initial conditions and design variables, the finial term in Eq.  is simplified as below:

[bookmark: ZEqnNum491449]		

Substituting Eq.  into Eq. ,  becomes

[bookmark: ZEqnNum725621]		

[bookmark: OLE_LINK2]Since Eq.  applies for any , the adjoint vector is found by addressing the adjoint problem below:

		


Therefore, the sensitivity of  w.r.t.  is evaluated by

[bookmark: ZEqnNum692338]		


After computing the sensitivity of dynamic compliance w.r.t. , the sensitivity of SD w.r.t.  is calculated by

[bookmark: ZEqnNum773388]		


Therefore, it is necessary to solve and , where the Lagrange equation should be constructed twice.


For computing , the Lagrange equation  is constructed as

		


Then, the sensitivity of  w.r.t.  is as below:

		
Because there is no correlation between the initial conditions of structural properties and design variables, the finial term in the equation is transformed through integration by parts into

		
From the above, the adjoint equation is derived as

[bookmark: ZEqnNum646466]		


As shown in Eq. , since  and , the Eq.  is simplified as below:

		


Then, the sensitivity of  w.r.t.  is expressed as

[bookmark: ZEqnNum450965]		

For computing , differentiating Eq.  yields 

[bookmark: ZEqnNum575369]		



Since  and  are independent, the last term in Eq.  equals zero. For the first term in Eq. , the Lagrange equation  is constructed as

		


The sensitivity of  w.r.t.  is as follows:

[bookmark: ZEqnNum183065]		
Because there is no correlation between the initial conditions and loading amplitude and design variables, the finial term in Eq.  is transformed through integration by parts into

		
From the above, the adjoint conditions are derived as

		


So, the sensitivity of  w.r.t.  is as follows:

[bookmark: ZEqnNum328846]		


And the sensitivity of  w.r.t.  is computed as

[bookmark: ZEqnNum602827]		


For computing , the Lagrange equation  is stated as follows:

		


Therefore, the sensitivity of  w.r.t.  is as follows:

[bookmark: ZEqnNum570367]		
The adjoint equation is derived as

[bookmark: ZEqnNum704890]		

Therefore, the sensitivities of SD w.r.t.  can be obtained by substituting Eqs. , , , , , and  into Eq. .
3.5. Numerical implementation
A pseudocode is illustrated to explain the computation process, as shown in Table 1. The moving asymptote algorithm (MMA) [57] is applied for updating design variables. Based on practical experience, parameter α = 0.05 is selected to ensure the accuracy and stability of the HHT-α method [58]. The density filter technique is applied to eliminate the checkerboard pattern [59], which transforms the design variables as follows:

[bookmark: ZEqnNum402738]		




where  denotes the modified design variables. .  denotes the center distance.  represents the filtering radius.
[bookmark: _Ref167634054]Table 1 Pseudocode of TDRTO
	Algorithm 1 Transient dynamic robust topology optimization 

	
Input: design domain, design variables and uncertain parameters: structural properties, loading amplitude, loading directions, and maximum loading time .

	Define maxIter, set k=0.

	
Initialize .

	
While and k<maxIter do

	iter= iter + 1.

Initialize the acceleration vector by solving the equation .

	for i=1: N do

	
Compute  using Eq. .

	

Update  and  using Eq. .

	end

	Perform the sensitivity analysis using adjoint method. The sensitivities of stochastic and design variables are computed by Eqs. , , , and .

	Compute the robust objective function using Eq. and its sensitivities using Eq. .
Calculate the mean and variance using Eq. .

	Perform the density filter using Eq. .

	Update the design variables with MMA.

	

max.

	end



4. Examples



[bookmark: _Hlk193183842]This section presents three test examples, where the damping coefficients are denoted as  and . For the 2D cases, the uncertainties of material property, loading direction, and time-variant loading magnitude are considered. For the 3D case, the uncertainties of geometric size, material property, loading direction, and time-variant loading amplitude are considered. To ensure stable convergence and clear topological structures, the penalty factor is fixed at 9 [59]. The minimum density filter radius  is 1.5 times the element length. All these codes are performed on the computer with configuration: Intel Core i9-10940X @3.4 GHz and 128GB RAM.
4.1. An L-shaped beam

[bookmark: _Hlk193188303]An L-shaped beam is selected. The design domain is divided into 14,400 isoperimetric quadrilateral elements, as illustrated in Fig. 1. Its length H and width L o are 1 and 0.6 m, respectively. Stochastic variables, including material property, loading direction, and the loading amplitude, are assumed to follow a normal distribution. Their mean values, coefficients of variation (COVs), and SDs are shown in Table 2. The allowable volume fraction ratio is 50%. Three load cases, including  = 0.003, 0.005, and 0.1, are considered.
Fig. 2 illustrates two different categories of stochastic loading amplitude. Both of them follow normal distributions and are generated by Monte Carlo simulation (MCS). The standard deviations of half-cycle sinusoidal loads are 100 and their means can be expressed as follows [58]:

		



where  represents the e-th time instant.  represents the load amplitude at the e-th time instant.  represents the maximum loading time. 
[bookmark: _Hlk193982647]Fig. 2(a) demonstrates five half-cycle sinusoidal loads where time-variant stochasticity is not considered. In other words, the fluctuations of load amplitude only vary with the sine cycle and do not change over time. In contrast, the load amplitude in Fig. 2(b) considers time-variant stochasticity. The time-variant stochasticity is described by the autocorrelation function, which represents the correlation between different time points. The detailed description is as follows:


		




where  and  represent different time instants.  is the maximum loading time. The Gaussian process  is decomposed by EOLE with 101 time nodes. For all methods, the maximum iteration is 400. The optimization cases are summarized as follows:
- Case 1: DTO;

- Case 2: RTO with COV=0.05 and =1;

- Case 3: RTO with COV=0.05 and =2;

- Case 4: RTO with COV=0.1 and =1;

- Case 5: RTO with COV=0.1 and =2;

[bookmark: _Hlk177065509]- Case 6: TDRTO with COV=0.05 and =1;

- Case 7: TDRTO with COV=0.05 and =2;

- Case 8: TDRTO with COV=0.1 and =1;

[bookmark: _Hlk193202650]- Case 9: TDRTO with COV=0.1 and =2. 



Table 3 presents the optimal objective function values for DTO, RTO, and TDRTO, and Table 4 presents their optimal layouts. The convergence histories for RTO and TDRTO designs are presented in Fig. 3, and the validation results are obtained by MCS with  samples. The results are summarized in Table 5. J and  denote the objective function values and verification values of MCS, and  represents the relative error. The conclusions are drawn as below:



(1) As shown in Table 3 and Table 4, the objective function values of Case 1 (DTO) are 0.0318, 0.0501, and 0.0346 for = 0.003, 0.005, and 0.1, respectively. The results of Case 9 (TDRTO, COV=0.1, =2) are 0.0383, 0.0607, and 0.0433 for  = 0.003, 0.005, and 0.1, respectively. Significant differences can be obtained between the optimal layouts of DTO and those of TDRTO, which highlight the importance of considering uncertain factors.



(2) Table 3 and Table 4 show that the TDRTO results considering time-variant characteristics are significantly different from those of RTO. For example, the objective function values of Case 5 (RTO, COV=0.1, =2) are 0.0437, 0.0628	, and 0.0498 for = 0.1, 0.5, and 1, respectively, while the corresponding results of Case 9 (TDRTO, COV=0.1, =2) results are 0.0383, 0.0607, and 0.0433. Additionally, Table 4 shows that the main structure of TDRTO is thicker than that of RTO, and the objective function is generally smaller. This indicates that TDRTO exhibits better structural stiffness than RTO, thereby improving the robustness.



(3) As shown in Table 3 and Table 4, the objective function values of Case 6 (TDRTO, COV=0.05, =1) are 0.0335, 0.0538, and 0.0370 for  = 0.003, 0.005, and 0.1, respectively, while their values of Case 8 (TDRTO, COV=0.1, =1) are 0.0351, 0.0578, and 0.0391. Under the same loading time, the structure demonstrates a certain degree of correlation. However, the perturbations caused by uncertainties increase with the increase of the COV, which amplifies the horizontal component of the load. To ensure the structural stability and mitigate the impact of these horizontal forces, additional horizontal elements are added to enhance the stiffness of the structure, thereby maximizing the robustness of the structure.
[bookmark: _Hlk193202746](4) Fig. 3 demonstrates that the objective function converges stably, where the iteration curve is smooth after sufficient iterations. This verifies the good convergence of the TDRTO method. According to Table 5, it is apparent that all relative error indicators are smaller than 2%, which indicates the accuracy of the TDRTO method is acceptable.


[bookmark: _Ref178085220]Fig. 1. Design domain of example 1.
[image: ][image: ]
[bookmark: _Ref172191264](a) loads without time-variant stochasticity     (b) loads with time-variant stochasticity
[bookmark: _Ref178085319]Fig. 2. Half-cycle sinusoidal loading amplitude of two different cases for example 1.
[bookmark: _Ref182581467][bookmark: OLE_LINK1]Table 2. The means and SDs of stochastic variables for example 1.
	Variables
	E(GPa)
	

(kg/)
	F(KN)
	
(°)

	Means
	200
	7800
	1000
	


	SDs (COV=5%)
	10
	390
	50
	


	SDs (COV=10%)
	20
	780
	100
	



[bookmark: _Ref170843891]

[bookmark: _Ref182581492]Table 3. Objective functions of  = 0.003, 0.005, and 0.1 for example 1.
	Methods
	Cases
	
Objective values ()

	
	
	

	

	


	DTO
	[bookmark: _Hlk178086838]Case 1
	3.178
	5.005
	3.459

	RTO
	Case 2
	3.372
	4.757
	3.843

	
	Case 3
	3.539
	5.676
	4.219

	
	Case 4
	3.895
	5.676
	4.219

	[bookmark: _Hlk178151136]
	Case 5
	4.365
	6.284
	4.976

	TDRTO
	Case 6
	3.348
	5.382
	3.696

	
	Case 7
	3.507
	5.781
	3.914

	
	Case 8
	3.507
	5.781
	3.914

	
	Case 9
	3.827
	6.065
	4.332




[bookmark: _Ref172191539]Table 4. DTO, RTO, and TDRTO results of  = 0.003, 0.005, and 0.1 for example 1.
	
	

	

	


	Case 1
	[image: ]
	[image: ]
	[image: ]

	Case 2
	[image: ]
	[image: ]
	[image: ]

	Case 3
	[image: ]
	[image: ]
	[image: ]

	Case 4
	[image: ]
	[image: ]
	[image: ]

	Case 5
	[image: ]
	[image: ]
	[image: ]

	Case 6
	[image: ]
	[image: ]
	[image: ]

	Case 7
	[image: ]
	[image: ]
	[image: ]

	Case 8
	[image: ]
	[image: ]
	[image: ]

	Case 9
	[image: ]
	[image: ]
	[image: ]


[bookmark: _Hlk177978558][bookmark: _Ref177064826]
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(a) RTO (COV=0.05,=1)	(b) RTO (COV=0.05,=2)
[image: ] [image: ]


(c) RTO (COV=0.1,=1)	(d) RTO (COV=0.1,=2)


   


(e) TDRTO (COV=0.05,=1)	(f) TDRTO (COV=0.05,=2)


   


(g) TDRTO (COV=0.1,=1)	(h) TDRTO (COV=0.1,=2)
[bookmark: _Ref177564986]Fig. 3. Convergence curves of RTO and TDRTO for example 1.


[bookmark: _Ref177052945]Table 5. Comparisons of different methods of  = 0.003, 0.005, and 0.1 for example 1.
	Cases
	
Objective values ()

	
	
	

	
	

	
	


	
	
	J
	

	

	
	J
	

	

	
	J
	

	


	Case 2
	
	3.372
	3.380
	0.23%
	
	4.757
	4.702
	1.17%
	
	3.843
	3.798
	1.18%

	Case 3
	
	3.539
	3.606
	1.86%
	
	5.676
	5.699
	0.40%
	
	4.219
	4.258
	0.92%

	Case 4
	
	3.895
	3.819
	1.46%
	
	5.676
	5.641
	0.62%
	
	4.219
	4.127
	0.52%

	Case 5
	
	4.365
	4.380
	0.34%
	
	6.284
	6.315
	0.49%
	
	4.976
	4.992
	0.32%

	Case 6
	
	3.348
	3.316
	0.97%
	
	5.382
	5.373
	0.17%
	
	3.696
	3.672
	0.65%

	Case 7
	
	3.507
	3.494
	0.37%
	
	5.781
	5.755
	0.45%
	
	3.914
	3.946
	0.81%

	Case 8
	
	3.507
	3.519
	0.34%
	
	5.781
	5.763
	0.31%
	
	3.914
	3.931
	0.43%

	Case 9
	
	3.827
	3.819
	0.21%
	
	6.065
	6.090
	0.41%
	
	4.332
	4.356
	0.55%



4.2. A Clamped beam


A fixed beam experiences a half-cycle cosine force is applied at the midpoint of its lower span, as illustrated in Fig. 4. Its length L and width H are 12 and 2 m, respectively. The structure contains 15,606 elements. Stochastic variables are presented in Table 6. The allowable volume fraction ratio is 50%. Three load cases, i.e.,  = 0.1, 0.5, and 1, are considered. Fig. 5 presents two types of loading amplitudes with  = 1, and both of them are generated by MCS. The standard deviations of five half-cycle cosine loads are 100 and their means are expressed as follows:

		
Fig. 5(a) represents five half-cycle cosine loads without considering time-variant stochasticity, while Fig. 5(b) represents five half-cycle cosine loads with time-variant stochasticity. The autocorrelation function is as follows:

		
The stochastic process is discretized into 101 time nodes. The maximum iteration number is 400. The optimization cases are summarized as follows:
- Case 1: DTO;

- Case 2: RTO with COV=0.05 and =1;

- Case 3: RTO with COV=0.05 and =2;

- Case 4: RTO with COV=0.1 and =1;

- Case 5: RTO with COV=0.1 and =2;

- Case 6: TDRTO with COV=0.05 and =1;

- Case 7: TDRTO with COV=0.05 and =2;

- Case 8: TDRTO with COV=0.1 and =1;

- Case 9: TDRTO with COV=0.1 and =2.

Table 7 presents the optimal objective function values for DTO, RTO, and TDRTO. Table 8 presents their optimal layouts. The convergence histories for RTO and TDRTO design are shown in Fig. 6. The optima are validated by MCS with  samples, and the verification results are presented in Table 9.



As shown in Table 7 and Table 8, the objective function values of Case 1 (DTO) are 0.0088, 0.0086, and 0.0086 for = 0.1, 0.5, and 1, respectively. The results of Case 8 (TDRTO, COV=0.1, =1) are 0.0115, 0.0098, and 0.0096 for = 0.1, 0.5, and 1, respectively. Significant differences are seen between the optimal layouts of DTO and TDRTO, which highlight the importance of considering uncertain factors. Additionally, the structural layout adaptively adjusts to ensure stability as the COV increases.
Table 7 and Table 8 show that the structures optimized by TDRTO have a more robust layout and smaller objective function values, which indicates that TDRTO achieves better structural stiffness than RTO. This emphasizes the importance of time-variant characteristics in enhancing structural robustness. Fig. 6 shows the iterative curve of the TDRTO method is stable. Furthermore, the relative error consistently remains below 2%, which shows the TDRTO method can provide enough accuracy, as demonstrated in Table 9.


[bookmark: _Ref178100278]Fig. 4. Design domain of example 2.
[image: ][image: ]
(a) loads without time-variant stochasticity    (b) loads with time-variant stochasticity
[bookmark: _Ref178100331]Fig. 5. Half-cycle cosine loading amplitude of two different cases for example 2.
[bookmark: _Ref169594588]Table 6. The means and SDs of stochastic variables for example 2.
	Variables
	E(GPa)
	

(kg/)
	F(KN)
	
(°)

	Means
	200
	7800
	1000
	


	SDs (COV=5%)
	10
	390
	50
	


	SDs (COV=10%)
	20
	780
	100
	



[bookmark: _Ref169594601]

[bookmark: _Ref177049880]Table 7. Objective functions of  = 0.1, 0.5, and 1 for example 2.
	Methods
	Cases
	
Objective values ()

	
	
	

	

	


	DTO
	Case 1
	0.883
	0.860
	0.857

	RTO
	Case 2
	1.089
	0.949
	0.945

	
	Case 3
	1.106
	1.040
	1.041

	
	Case 4
	1.106
	1.040
	1.041

	
	Case 5
	1.321
	1.246
	1.231

	TDRTO
	Case 6
	1.045
	0.895
	0.909

	
	Case 7
	1.151
	0.980
	0.957

	
	Case 8
	1.147
	0.979
	0.956

	
	Case 9
	1.163
	1.111
	1.083




[bookmark: _Ref172190333]Table 8. DTO, RTO, and TDRTO results of  = 0.1, 0.5, and 1 for example 2.
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(a) RTO (COV=0.05,=1)	(b) RTO (COV=0.05,=2)
[image: ] [image: ]


(c) RTO (COV=0.1,=1)	(d) RTO (COV=0.1,=2)
[image: ] [image: ]


(e) TDRTO (COV=0.05,=1)	(f) TDRTO (COV=0.05,=2)
[image: ] [image: ]


[bookmark: _Ref175317114](g) TDRTO (COV=0.1,=1)	(h) TDRTO (COV=0.1,=2)
[bookmark: _Ref179291325]Fig. 6. Convergence curves of RTO and TDRTO for example 2.

[bookmark: _Ref177050226]Table 9. Comparisons of different methods of  = 0.1, 0.5, and 1 for example 2.
	Cases
	
Objective values ()

	
	
	

	
	

	
	


	
	
	J
	

	

	
	J
	

	

	
	J
	

	


	Case 2
	
	1.089
	1.100
	1.00%
	
	0.949
	0.936
	1.39%
	
	0.945
	0.953
	0.84%

	Case 3
	
	1.106
	1.118
	1.07%
	
	1.040
	1.052
	1.14%
	
	1.041
	1.032
	0.87%

	Case 4
	
	1.106
	1.100
	0.55%
	
	1.040
	1.031
	0.87%
	
	1.041
	1.060
	1.79%

	Case 5
	
	1.321
	1.309
	0.92%
	
	1.246
	1.257
	0.88%
	
	1.231
	1.234
	0.24%

	Case 6
	
	1.045
	1.060
	1.42%
	
	0.895
	0.899
	0.44%
	
	0.909
	0.914
	0.55%

	Case 7
	
	1.151
	1.159
	0.69%
	
	0.980
	0.992
	1.21%
	
	0.957
	0.967
	1.03%

	Case 8
	
	1.147
	1.131
	1.41%
	
	0.979
	0.963
	1.66%
	
	0.956
	0.974
	1.85%

	Case 9
	
	1.163
	1.176
	1.11%
	
	1.111
	1.125
	1.24%
	
	1.083
	1.075
	0.74%



4.3. A 3D cantilever beam




[bookmark: _Hlk194070749]A typical 3D structure is optimized. The boundary conditions and design domain are illustrated in Fig. 7(a). Four corners on the left end of the structure are fixed. A stochastic half-period sinusoidal load is exerted at the center of the right edge. The angle of the load is depicted in the Fig. 7(b). Its length L, width D, and thickness H are 320, 240, and 240 mm, respectively. The design domain is divided into  8-node isoperimetric hexahedral elements. The volume fraction ratio is limited to 40%. Two load cases, i.e.  = 0.1 and 1, are considered. Table 10 presents the means and SDs of stochastic variables, including geometric size, material property, loading amplitude, and loading direction. It should be noted that the description of vector forces in three-dimensional structures typically requires two angles, as shown in Fig. 7. By using the angle  at the z-axis and the angle  at the x-axis, the force can be decomposed by

		

Fig. 8 presents two types of loading amplitudes with  = 1, and they are generated by MCS. The standard deviations of five half-cycle cosine loads are 100 and their means are expressed as follows:

		
Fig. 8(a) represents five half-cycle cosine loads without considering time-variant stochasticity, while Fig. 8(b) represents five half-cycle cosine loads with time-variant stochasticity. The autocorrelation function is as follows:

		
The stochastic process is discretized into 101 time nodes. The maximum iteration number is 180. The optimization cases are summarized as follows:
- Case 1: DTO;

- Case 2: RTO with COV=0.1 and =1;

- Case 3: RTO with COV=0.1 and =2;

- Case 4: RTO with COV=0.1 and =4;

- Case 5: TDRTO with COV=0.1 and =1;

- Case 6: TDRTO with COV=0.1 and =2;

- Case 7: TDRTO with COV=0.1 and =4;
Table 11 presents the optimal objective function values for DTO, RTO, and TDRTO, and Table 12 presents their optimal layouts. The convergence histories for RTO and TDRTO are shown in Fig. 9. 
As shown in Table 11 and Table 12, it is evident that the optimal layouts of DTO and TDRTO show obvious differences, which highlight the importance of considering uncertain factors. As observed from Table 12, the objective function values of TDRTO, which accounts the time-variant characteristics, are significantly lower than those for RTO. These findings demonstrate that the consideration of time-variant characteristics contributes to maintain structural robustness. It also confirms the influence of uncertainty and time-variant characteristics on structural performance is obvious. Besides, the iterative curve in Fig. 9 demonstrates that the TDRTO method converges stably.


[bookmark: _Ref178104995]Fig. 7. The design problem of the 3D cantilever beam of example 3.
[image: ][image: ]
(a) loads without time-variant stochasticity   (b) loads with time-variant stochasticity
[bookmark: _Ref178105063]Fig. 8. Loading amplitude of two different cases for example 3.

[bookmark: _Ref172192825][bookmark: _Hlk193980353]Table 10. The means and SDs of stochastic variables for example 3.
	[bookmark: _Hlk193980254]Variables
	a(m)
	b(m)
	c(m)
	E(GPa)
	

(kg/)
	F(KN)
	
(°)
	
(°)

	Means
	0.32
	0.24
	0.24
	200
	7800
	1000
	

	


	SDs 
	0.064
	0.048
	0.048
	40
	1560
	200
	

	





[bookmark: _Ref177112745]Table 11. Results of optimization of  = 0.1 and 1 for example 3.
	Methods
	Cases
	
Objective values ()

	
	
	

	


	DTO
	Case 1
	0.268
	0.467

	RTO
	Case 2
	0.384
	0.760

	
	Case 3
	0.500
	1.040

	
	Case 4
	0.734
	1.611

	TDRTO
	Case 5
	0.320
	0.688

	
	Case 6
	0.372
	0.906

	
	Case 7
	0.473
	1.342




[bookmark: _Ref172192888]Table 12. DTO and RTO results of  = 0.1 and 1 for example 3.
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(a) COV=0.1,=1	(d) TDRTO (COV=0.1,=1)
[image: ] [image: ] 


(b) COV=0.1,=2	(e) TDRTO (COV=0.1,=2)
[image: ] [image: ]


(c) COV=0.1,=4	(f)TDRTO (COV=0.1,=4)
[bookmark: _Ref178061004]Fig. 9. Convergence curves of RTO and TDRTO for example 3.
5. Conclusions 
In this study, the TDRTO model is proposed to address transient dynamic RTO problems, which comprehensively considers the uncertainties in material parameters, loading direction, and time-variant loading amplitude. To discretize the time-variant loading amplitude, the EOLE method is used, which can simulate the correlation of dynamic loads at different time instants. The design and stochastic sensitivities are derived by adjoint method and the "discretize-then-differentiate" approach, where the Lagrange equation is constructed twice. Besides, the HHT-α method is employed to address structural dynamic problems, thereby improving the computational efficiency.
Three numerical examples are examined to confirm the accuracy and efficiency of the TDRTO method by comparing its results with those of the RTO approach. The results show that time-variant uncertainties significantly impact the topology layout of structures, in which the structural layout tends to change for enhancing stiffness, thereby improving robustness. However, high-resolution large-scale computation remains a major challenge in dynamic topology optimization. In the future, some efficient frameworks or models, such as the second-order Arnoldi reduction approach [60] or dimensionality reduction methods [61], can be employed to decrease the computational cost for dynamic TO.
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