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Abstract

This paper proposes a novel stochastic finite element scheme to solve partial differential equations

defined on random domains. A geometric mapping algorithm first transforms the random domain

into a reference domain. By combining the mesh topology (i.e. the node numbering and the

element numbering) of the reference domain and random nodal coordinates of the random domain,

random meshes of the original problem are obtained by only one mesh of the reference domain.

In this way, the original problem is still discretized and solved on the random domain instead of

the reference domain. A random isoparametric mapping of random meshes is then proposed to

generate the stochastic finite element equation of the original problem. We adopt a weak-intrusive

method to solve the obtained stochastic finite element equation. In this method, the unknown

stochastic solution is decoupled into a sum of the products of random variables and deterministic

vectors. Deterministic vectors are computed by solving deterministic finite element equations, and

corresponding random variables are solved by a proposed sampling method. The computational

effort of the proposed method does not increase dramatically as the stochastic dimension increases

and it can solve high-dimensional stochastic problems with low computational effort, thus the

proposed method avoids the curse of dimensionality successfully. Four numerical examples are

given to demonstrate the good performance of the proposed method.
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1. Introduction1

As predicting uncertainty propagation of physical models has become an important part of the2

analysis of many engineering problems, it is necessary to develop efficient computational schemes3

for dealing with a variety of uncertainties, e.g. random material properties, random external forces,4

random geometries and their couplings [1, 2]. The focus of this work is on the geometric un-5

certainty, which may arise from many kinds of problems, e.g. topology optimization, random6

multi-phased materials, etc [3, 4, 5, 6, 7].7

In this paper, we pay attention on solving deterministic/stochastic partial differential equations8

(PDEs) defined on random/parameter-dependent domains. In the last decades, several methods9

have been proposed for this purpose. Following the approaches to deal with random geometries,10

they can be divided into the remeshing method [8], the geometric mapping method [9], the ficti-11

tious method [10, 11] and the extended stochastic finite element method [5, 6], etc. A straightfor-12

ward method to deal with random domains is the Monte Carlo simulation (MCS) [12] and other13

non-intrusive techniques, e.g. multilevel MCS, response surface method, stochastic collocation14

method, etc [8, 13, 14]. This kind of method remeshes the geometry associated with each random15

sample and classical finite element solvers are then used to solve the solution on each sampled16

mesh. It is easy to implement and existing codes can be adopted without difficulties. The method17

is independent or weakly dependent on stochastic dimensions, thus it can be applied to the geome-18

tries related to a large number of random variables. However, numerous deterministic simulations19

are necessary in order to obtain a high-precision stochastic solution, which leads to expensive20

computational costs. Also, since the samples of the stochastic solution are obtained on different21

domains and meshes, extra attention is required for the postprocessing of the stochastic solu-22

tion. In order to avoid remeshing the domain for each sample realization, the geometric mapping23
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method is proposed in [9, 15, 16]. The method maps the random domain into a reference domain24

and then transforms the PDE defined on the random domain into a stochastic PDE defined on the25

reference domain. In this method, a boundary-conforming coordinate system is used to map the26

random geometry, which can be considered as a stochastic extension of deterministic mesh map-27

ping methods [17]. For the obtained stochastic PDE, classical stochastic finite element solvers28

are used to solve the stochastic finite element equation (SFEE), e.g. MCS, stochastic collocation29

method, spectral stochastic finite element method, etc [9, 18, 19, 20]. However, extra complexities30

are introduced when tackling nonlinear PDEs since the differential operator is coupled with the31

geometric mapping.32

The fictitious domain method, as a stochastic extension of the deterministic fictitious domain33

method [21], is proposed to solve PDEs defined on random domains [10, 11]. The fictitious do-34

main is a deterministic domain including all possible sample realizations of the random domain35

and it usually has simple geometry. This kind of method can be applied to complex geometries,36

but effective methods are required to tackle the random boundaries of the random domain in the37

fictitious domain. In [10], the original PDE is transformed into a saddle-point problem defined on38

the fictitious domain and the original boundary conditions are enforced by Lagrange multipliers.39

In [11], the original PDE is reformulated on the fictitious domain. The proper generalized decom-40

position (PGD) method is used to approximate the stochastic solution and a stochastic indicator41

function is proposed to capture the random domain in the fictitious domain. Furthermore, the42

extended stochastic finite element method is proposed in [5, 6, 22, 23]. This method still reformu-43

lates the PDE on a fictitious domain and extends the deterministic extended finite element method44

[24] to handle the discontinuities of the stochastic solution on the fictitious domain. The spectral45

stochastic finite element method [18, 25] is then used to solve the solution on the mesh of the46

fictitious domain. Other methods have also been developed, e.g. the computational frameworks47

and error estimations for Neumann and Dirichlet boundary value problems defined on random48

domains [26, 27], the perturbation-based methods for problems with small geometric variability49

[28, 29, 30] and the PGD-based descriptions for geometric parameters [31, 32].50

In this paper, we develop an efficient numerical scheme for solving linear deterministic/stochastic51

partial differential equations (PDEs) defined on random/parameter-dependent domains. To avoid52
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remeshing the random domain, a geometric mapping algorithm is adopted to transform the random53

domain into a reference domain. As the unknown stochastic solution of the transformation equa-54

tion, random nodal coordinates of the random domain are obtained by solving a Laplace equation55

with random boundary conditions. The random mesh of the random domain can be generated by56

combining the mesh topology (i.e. the node numbering and the element numbering) of the ref-57

erence domain and random nodal coordinates. A random isoparametric mapping of the random58

mesh is developed to assemble the stochastic stiffness matrix and the stochastic force vector. The59

assembly procedure is the same as the classical FEM assembly and is completely non-intrusive.60

Existing FEM codes can be embedded without any modification.61

We mention that a similar random mesh approach is also used in [16] as a discretized version62

of the method proposed in [9, 15] and conditions are given to ensure the well-posedness of the63

geometric transformation. However, the method relies on the polynomial chaos approximation64

of the random coordinates and still assembles stochastic matrices and vectors in the reference65

domain, which leads to the coupling of the differential operator of the PDE and the geometric66

uncertainty. Much attention is needed to tackle the coupling when nonlinear PDEs defined on67

random domains are solved. Our proposed method still discretizes and solves the original PDE on68

the random domain instead of the reference domain. Hence it decouples the differential operator69

of the PDE and the geometric uncertainty, which is consistent with the fact that the differential70

operators of PDEs are not sensitive to geometric domains when using the finite element method.71

We also mention that a random isoparametric mapping is used in [28], which embeds the random72

isoparametric mapping of the random boundary into the spectral SFEM frame. This method relies73

on the polynomial chaos-based approximations of random boundaries, mapping of differential op-74

erators and corresponding Jacobian matrices, which is considered as a kind of intrusive approach.75

Additional computational complexity is thus required. Also, high-dimensional stochastic prob-76

lems remain challenging for this method. The proposed random isoparametric mapping in this77

paper has the same computational complexity as the deterministic isoparametric mapping and it is78

easy to implement by existing FEM assembly codes.79

After assembling stochastic matrices and vectors, we adopt a weak-intrusive method to solve80

the obtained stochastic finite element equation. In this method, the unknown stochastic solution81
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is decoupled into a sum of the products of a set of random variables and deterministic vectors.82

Deterministic vectors are obtained by solving deterministic finite element equations that are gen-83

erated by applying the stochastic Galerkin method to the original SFEE. Corresponding random84

variables are the solutions of one-dimensional stochastic algebraic equations that are solved ef-85

ficiently by use of a proposed sampling method. Since the computational effort of the proposed86

method does not increase dramatically as the stochastic dimension increases and it can solve high-87

dimensional stochastic problems with low computational effort, the proposed method avoids the88

curse of dimensionality successfully.89

The paper is organized as follows: Section 2 gives the basic setting of deterministic/stochastic90

PDEs on random domains and a geometric transformation from the random domain to a reference91

domain is presented. Section 3 introduces a random isoparametric mapping method to assemble92

SFEE. A weak-intrusive SFEM is then used to solve the obtained SFEE in Section 4. The al-93

gorithm implementation of the proposed method is elaborated in Section 5. Following that, four94

numerical examples, including an elastic equation defined on a random domain, a stochastic ellip-95

tic PDE with a random interface and a case from orthodontics with random material properties and96

random geometry, are given to demonstrate the performance of the proposed method in Section 6,97

and conclusions and discussions follow in Section 7.98

2. Geometric transformation of the random domain99

2.1. PDEs defined on random domains100

Let (Θ,Ξ,P) be a suitable probability space , where Θ denotes the space of elementary events,101

Ξ is a σ-algebra defined on Θ and P is a probability measure. In this paper, we consider the102

deterministic/stochastic linear PDE defined on a random domainD (θ) ⊂ Rd with the physical di-103

mension d = 1, 2, 3 and the random boundary ∂D (θ). We solve the following stochastic problem:104

find a stochastic solution u (x, θ) : D (θ)→ R such that the following PDE holds for all θ ∈ Θ,105

L(u (x, θ) , x) = 0 in D (θ) , (1)

subjected to boundary conditions on ∂D (θ), where L(·) is a linear differential operator, x =106

(x1, · · · , xd) ∈ Rd is the Cartesian coordinate. We assume that the random boundary ∂D (θ) is107
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sufficiently regular and that Eq. (1) is well-posed. The randomness of the domain D (θ) is only108

described by the random boundary ∂D (θ) that is related to random variables/fields (the parameters109

for describing unfixed domains can also be considered as special random variables). Although we110

only consider linear PDEs in this paper, nonlinear PDEs defined on random domains are readily111

solved in the computational frame proposed in this paper.112

2.2. Geometric transformation from random domain to reference domain113

To avoid remeshing the random domain D
(
θ(i)

)
for each sample θ(i), i = 1, · · · , ns, where114

ns is the number of random samples, we transform the random domain into a reference domain115

and represent the random domain by the mesh topology of the reference domain. To transform116

the random domain D (θ) ⊂ Rd into a reference domain D ⊂ Rd, we consider that the random117

coordinate x (θ) = (x1 (θ) , · · · , xd (θ)) ∈ D (θ) is mapped into the deterministic coordinate x =118

(x1, · · · , xd) ∈ D by the following transformation,119

x = M −1 (x (θ) , θ) , (2)

and the random coordinate x (θ) is represented by the deterministic coordinate x and the inverse120

mapping of Eq. (2),121

x (θ) = M
(
x, θ

)
, (3)

where M (·, θ) represents the mapping operator and M −1 (·, θ) is its inverse operator. In this way,122

we can use the deterministic coordinate of the reference domain to represent the random coordinate123

of the random domain. In other words, the random domain is fully described by the reference124

domain and the realization θ. The selection of M (·, θ) is not unique and it is dependent on the125

selection of the reference domain and the uncertainty involved in the problem under consideration.126

We can adopt an arbitrary reference domain as long as the ease of implementation and well-127

posedness of the transformation can be ensured [9, 17]. In practice, the mean of the random128

domain is usually chosen as the reference domain.129

2.3. Geometric mapping based on the Laplace equation130

We execute the transformation Eq. (3) on the mesh of the reference domain. Correspondingly,131

the random mesh of the random domain is obtained by the mesh transformation of the reference132
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domain, which can be considered a mesh-based random geometry description. Several differen-133

tial system-based mapping methods are initially developed for the mesh transformation, e.g. the134

elliptic equations, hyperbolic equations, etc [17], which are then extended to deal with random135

geometries in [9, 15]. In this paper we adopt the Laplace equation for the transformation M (·, θ)136

in Eq. (3), which corresponds to137

∆xi (θ) = 0 in D, i = 1, · · · , d (4)

with the geometric boundary constraints138

xi (θ)|Γ j
= Mi, j

(
x
∣∣∣
Γ j
, θ

)
, j = 1, · · · , b, (5)

where ∆ =
d∑

j=1

∂2

∂x2
j

represents the Laplace operator, x
∣∣∣
Γ j

=
[
x1|Γ j

, · · · , xd|Γ j

]
∈ Rd and x (θ)|Γ j

=139 [
x1 (θ)|Γ j

, · · · , xd (θ)|Γ j

]
∈ Rd represent the deterministic and random coordinates on the boundary140

Γ j, Mi, j (·, θ) represents the mapping of the i-th coordinate on the boundary Γ j, b is the total number141

of geometry boundaries under consideration. In this paper, we assume that the obtained random142

mesh has a good quality and can be used to solve the PDE, e.g., there should be no element flips143

in the random mesh. Conditions to ensure the well-posedness of the transformation can be found144

in [16, 17]. Further, several advanced mesh deformation methods [33, 34] can be used for more145

general cases that the Laplace equation-based mesh transformation does not work well, e.g., the146

case of too large mesh deformations caused by large uncertainties, which is beyond the scope of147

this paper and will be presented in follow-up studies.148

2.4. Finite element solution of the transformation equation149

To solve Eq. (4), we discretize the reference domain by use of the finite element method [35].150

Let Xi ∈ Rn, i = 1, · · · , d be the discretized nodal coordinates of the coordinate xi obtained151

by the finite element discretization, where n is the number of nodes, and Xi (θ) ∈ Rn be the152

corresponding stochastic solution on the discretized nodes, which is also the discretization of the153

random coordinate xi (θ). The finite element equation of Eq. (4) is thus given by154 
KGXi (θ) = 0

Xi (θ)|Γ j
= Mi, j

(
X
∣∣∣
Γ j
, θ

)
, j = 1, · · · , b

, i = 1, · · · d, (6)
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which can be rewritten as155 

K̃G,0,0 K̃G,0,1 · · · K̃G,0,b

K̃G,1,0 K̃G,1,1 · · · K̃G,1,b
...

...
. . .

...

K̃G,b,0 K̃G,b,1 · · · K̃G,b,b





Xi (θ)|D(θ)

Mi,1

(
X
∣∣∣
Γ1
, θ

)
...

Mi,b

(
X
∣∣∣
Γb
, θ

)


= 0, i = 1, · · · d, (7)

where Xi (θ)|D(θ) ∈ Rn0 represents the unknown stochastic solution of the nodes not on the con-156

straint boundaries, n0 is the number of the nodes not on the constraint boundaries, Xi (θ)|Γ j(θ) =157

Mi, j

(
X
∣∣∣
Γ j
, θ

)
∈ Rn j , j = 1, · · · , b are the stochastic solutions of the nodes on the boundary Γ j and158

they can be calculated via Eq. (5), K̃G,i, j ∈ Rni×n j are corresponding submatrices, n1, · · · , nb are the159

number of nodes on the boundary Γ j, j = 1, · · · , b. The matrix KG is also not unique and depends160

on the selection of the reference domain. For a given reference domain and its mesh discretization,161

the matrix KG is unique and assembled by using the classical finite element method [35]. Eq. (7)162

is considered as a deterministic finite element equation with stochastic Dirichlet boundary condi-163

tions. To calculate the submatrix K̃G,i, j, i, j = 0, 1, · · · , b, we let
{
Ii,1, · · · ,Ii,ni

}
be the numbering164

of nodes on the i-th mapped boundary (the case i = 0 corresponds to the nodes not on mapped165

boundaries). The index matrix IIi j is given by166

IIi j =


Ii,1
...

Ii,ni

 ⊗
[
I j,1, · · · ,I j,n j

]
=


(
Ii,1,I j,1

)
· · ·

(
Ii,1,I j,n j

)
...

. . .
...(

Ii,ni ,I j,1

)
· · ·

(
Ii,ni ,I j,n j

)
 ∈ Rni×n j , (8)

where ⊗ represents the outer product operator. The submatrix K̃G,i, j is thus calculated by167

K̃G,i, j = KG
[
IIi j

]
. (9)

Based on the first row of Eq. (7), the stochastic solution Xi (θ)|D(θ) is solved by an explicit form168

Xi (θ)|D(θ) =

b∑
j=1

K
G, jMi, j

(
X
∣∣∣
Γ j
, θ

)
, i = 1, · · · , d, (10)

where the matrices K
G, j = −K̃−1

G,0,0K̃G,0, j ∈ Rn0×n j .169

The above transformation is summarized in Algorithm 1. In step 1, we choose a reference170

domain and generate its mesh topology
[
K {Node,Ele} ,

{
Xi

}d

i=1

]
, where K {Node,Ele} represents171

the topology of the node numbering and the element numbering. The matrix KG in Eq. (6) (or172
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Algorithm 1 Algorithm for mapping random domains to reference domains

1: Choose a reference domain and generate its mesh topology
[
K {Node,Ele} ,

{
Xi

}d

i=1

]
2: Assemble the deterministic matrix KG in Eq. (6) (or Eq. (7))

3: for the geometric boundary j = 1, · · · , b do

4: Calculate the matrices K
G, j = −K̃−1

G,0,0K̃G,0, j ∈ Rn0×n j

5: end

6: for the geometric boundary j = 1, · · · , b do

7: for the coordinate dimension i = 1, · · · , d do

8: The coordinate transformation Mi, j

(
X
∣∣∣
Γ j
, θ

)
on the j-th boundary

9: end

10: end

11: for the coordinate dimension i = 1, · · · , d do

12: Solve the random coordinate Xi (θ)|D(θ) via Eq. (10)

13: end

Eq. (7)) is assembled in step 2, the computation of which is fully deterministic for a given reference173

domain. From step 3 to 5, the matrices K̂G, j are solved by a set of systems of linear equations,174

K̃G,0,0K
G, j = K̃G,0, j, j = 1, · · · , b, (11)

which can be solved efficiently by use of existing FEM solvers [35] and can be executed in parallel175

for each boundary j. After that, the random boundaries are computed by step 6 to 10, which only176

depends on the choice of the reference domain and is almost independent of the finite element177

discretization (weakly depends on the number of the discretized nodes on the boundaries). We178

adopt a non-intrusive way to execute the transformation Mi, j

(
X
∣∣∣
Γ j
, θ

)
∈ Rn j×ns of the i-th coordi-179

nate on the j-th boundary, where θ =
{
θ(i)

}ns

i=1
are ns sample realizations. In this way, changes in180

the geometric shape can be accurately captured compared to the approximation method [9, 16].181

Also, the procedure from step 6 to 10 is independent of the matrix assembly from step 3 to 5 and182

they can be executed in parallel. Taking into account K̂G, j and Mi, j

(
X
∣∣∣
Γ j
, θ

)
as calculated in the183

previous steps, the stochastic solutions Xi (θ)|D(θ) are computed in step 12.184
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3. Discretization and assembly on random domains185

Based on the above geometric mapping, we transform the random domain into a reference186

domain. A popular method is to transform the PDE defined on the random domain into a stochastic187

PDE defined on the reference domain [9, 15]. In this kind of method, the dependency of the188

PDE on the geometric randomness is transformed into the dependence on stochastic coefficients189

over the reference domain by means of a random Jacobian matrix. The differential operator of190

the PDE and the randomness are coupled in this way. In this section, we propose a random191

isoparametric mapping to deal with the PDEs defined on the random domain, which decouples the192

differential operator of the PDE and the randomness and has the same computational complexity193

as the classical isoparametric mapping.194

3.1. Random isoparametric mapping195

We recall the mesh topology
[
K {Node,Ele} ,X

]
of the reference domain generated in step 1196

in Algorithm 1, where X =
[
X1, · · · ,Xd

]
∈ Rn×d is the set of node coordinates of the reference197

domain. We construct a random mesh of the random domain in the form [K {Node,Ele} ,X (θ)],198

where X (θ) = [X1 (θ) , · · · ,Xd (θ)] ∈ Rn×d is the stochastic solutions of Eq. (6). In other words,199

the random mesh is obtained by combining the topology K {Node,Ele} of the reference domain200

and the random coordinates X (θ) of the random domain. To illustrate the construction of the201

random mesh, we consider two sample realizations D
(
θ(1)

)
and D

(
θ(2)

)
of the random domain202

shown in Fig. 1a and both of them are transformed into the reference domain D. The mesh203

topology K {Node,Ele} is generated on the reference domain by one meshing and the random204

coordinates X (θ) of the random domain is solved by Eq. (6). The realizations of two random205

meshes
[
K {Node,Ele} ,X

(
θ(1)

)]
and

[
K {Node,Ele} ,X

(
θ(2)

)]
are thus obtained. They have the206

same mesh topology K {Node,Ele} and only one meshing is involved. Further, we consider the207

element analysis of the random elements Ei

(
θ(1)

)
and Ei

(
θ(2)

)
in random domains D

(
θ(1)

)
and208

D
(
θ(2)

)
, which are mapped from the element Ei in the reference domain D. As shown in Fig. 1b,209

the elements Ei, Ei

(
θ(1)

)
and Ei

(
θ(2)

)
have the same element number (i.e. i) and consist of the210

same node group (i.e.
{
n(1)

i , n(2)
i , n(3)

i , n(4)
i

}
). The only difference between them is the coordinates of211
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the node group
{
n(1)

i , n(2)
i , n(3)

i , n(4)
i

}
. We extend the deterministic isoparametric mapping to random212

cases and map elements Ei

(
θ(1)

)
and Ei

(
θ(2)

)
into the isoparametric element Eiso.213

Let us simply recall the deterministic isoparametric mapping [35, 36]. For complex geometric214

domains, irregular elements are used to fit irregular curves (or surfaces), which increases com-215

putational complexity of the element analysis. Isoparametric mapping enables meshing geomet-216

ric domains with irregular elements but performing the element analysis using regular elements.217

Isoparametric formulations are used to map the irregular elements into regular elements and the218

mapping functions are usually the same as shape functions used for the solutions. Based on the219

mapping, the numerical integration on the irregular elements is transformed into that on the reg-220

ular isoparametric elements. For the explanation of this point, we consider a two-dimensional221

irregular rectangular element E with four nodes (xi, yi), i = 1, · · · , 4 as the physical element, and222

a two-dimensional regular rectangular element Eiso with four nodes (ηi, ζi), i = 1, · · · , 4 as the223

reference element. The basic idea of the deterministic isoparametric mapping is to use the shape224

functions Ni (η, ζ), i = 1, · · · , 4 on the reference element Eiso to describe the shape of E through225

the following equations226

x (η, ζ) =

4∑
i=1

xiNi (η, ζ) , y (η, ζ) =

4∑
i=1

yiNi (η, ζ) . (12)

The solution u (η, ζ) is approximated in a similar way227

u (η, ζ) =

4∑
i=1

uiNi (η, ζ) . (13)

After the above mapping, we can transform the irregular elements and the solution into those on228

the reference elements. The element analysis is then performed on the reference elements, such as229

calculating numerical integration and assembling element matrices.230

We extend the above idea of deterministic isoparametric mapping to random cases. Consider-231

ing the weak form of Eq. (1) discretized by finite element method, the stochastic solution u(i) (θ)232

of the i-th element is thus represented by shape functions of the isoparametric element in a way233

similar to the deterministic isoparametric mapping Eq. (13)234

u(i) (θ) =

nI∑
j=1

N j
(
η
)

u(i, j) (θ) (14)

and the random coordinates are approximated in a similar way,235
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D
(
θ(1)

)

D
(
θ(2)

)

D

[
K{Node,Ele},X

]

[
K{Node,Ele},X

(
θ(1)

)]
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(a) Random domain transformation and the mesh topology reuse.
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(b) Random isoparametric mapping.

Figure 1: Domain transformation and random isoparametric mapping: (a) domain transformation and random mesh

obtained from the reference domain, (b) random isoparametric mapping.

x(i)
k (θ) =

nI∑
j=1

N j
(
η
)

x(i, j)
k (θ), k = 1, · · · , d, (15)

where N j
(
η
)

is the shape function of the isoparametric element, η ∈ Rd represents the local236

coordinate of the isoparametric element, u(i, j) (θ) is the value of the stochastic solution u (θ) on237

the j-th node of the i-th element, x(i, j)
k (θ) is the value of the random coordinate xk (θ) on the j-238

th node of the i-th element, nI is the number of nodes of the i-th element. It is noted that the239

12



random isoparametric mapping in this section is applicable to any type of element although only240

the rectangular element is shown in Fig. 1. Also, different N j
(
η
)

and nI should be adopted if241

elements of different types and orders are used for the finite element discretization. Thus Eq. (14)242

and Eq. (15) can represent the isoparametric mapping analyses of general cases. Also, from now243

on we discard the reference domain D and all analyses are performed on the random domain and244

the corresponding random mesh.245

Inspired by the deterministic isoparametric analysis, the random transformation between the246

global coordinate x(i) (θ) and the local coordinate η is given by247

∂N j
(
η
)

∂η
= J

(
x(i) (θ)

) ∂N j
(
η
)

∂x(i) (θ)
, j = 1, · · · , nI , (16)

where the vectors ∂N j(η)
∂η
∈ Rd and ∂N j(η)

∂x(i)(θ) ∈ R
d are defined as248

∂N j
(
η
)

∂η
=

[
∂N j

(
η
)

∂η1
, · · · ,

∂N j
(
η
)

∂ηd

]T

∈ Rd,
∂N j

(
η
)

∂x(i) (θ)
=

∂N j
(
η
)

∂x(i)
1 (θ)

, · · · ,
∂N j

(
η
)

∂x(i)
d (θ)

T

∈ Rd (17)

and J
(
x(i) (θ)

)
is the random Jacobian matrix given by249

J
(
x(i) (θ)

)
=


∂x(i)

1 (θ)
∂η1

· · ·
∂x(i)

d (θ)
∂η1

...
. . .

...

∂x(i)
1 (θ)
∂ηd

· · ·
∂x(i)

d (θ)
∂ηd

 ∈ Rd×d. (18)

The inverse transformation of Eq. (16) is250

∂N j
(
η
)

∂x(i) (θ)
= J−1

(
x(i) (θ)

) ∂N j
(
η
)

∂η
, (19)

where J−1
(
x(i) (θ)

)
∈ Rd×d is the inverse matrix of the Jacobian matrix J

(
x(i) (θ)

)
. In this way,251

we transform the random global coordinates into the deterministic local coordinates. The above252

random isoparametric mapping is very similar to the classical isoparametric analysis but involves253

the random coordinates instead of the deterministic coordinates. We will extend the classical254

isoparametric mapping for solving PDEs to a random case in the next section.255

3.2. Elastic equation defined on the random domain256

We illustrate the proposed random isoparametric analysis using an elastic equation defined on257

a random domain, but the proposed method can be applied to more general PDEs, as will be shown258

in the example 6.2. Consider a two-dimensional linear elastic equation written as259
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div (σ (x (θ))) + f (x (θ)) = 0 in D (θ) , (20)

where div (·) represents the divergence operator, σ (x (θ)) is the stochastic stress tensor and f (x (θ))260

is the stochastic external force. Based on the finite element discretization of Eq. (20), the stochastic261

strain ε(i) (θ) of the i-th element is given by262

ε(i) (θ) =

∂u(i)
1

(
x(i) (θ)

)
∂x(i)

1 (θ)
,
∂u(i)

2

(
x(i) (θ)

)
∂x(i)

2 (θ)
,
∂u(i)

1

(
x(i) (θ)

)
∂x(i)

2 (θ)
+
∂u(i)

2

(
x(i) (θ)

)
∂x(i)

1 (θ)

 =
[
B1 (θ) , · · · ,BnI (θ)

]
u(i) (θ) ,

(21)

where u(i) (θ) =
[
u(i,1) (θ)T , · · · ,u(i,nI ) (θ)T

]T
is the stochastic solution of all nodes of the i-th ele-263

ment, u(i, j) (θ) =
[
u(i, j)

1 (θ) , u(i, j)
2 (θ)

]T
is the stochastic solution of the j-th node of the i-th element.264

The submatrix B j (θ) of the strain matrix B (θ) =
[
B1 (θ) , · · · ,BnI (θ)

]
is defined as265

B j (θ) =


∂N j(η)
∂x(i)

1 (θ)
0

0 ∂N j(η)
∂x(i)

2 (θ)
∂N j(η)
∂x(i)

2 (θ)

∂N j(η)
∂x(i)

1 (θ)

 ∈ R
3×2, j = 1, · · · , nI . (22)

Further, the element stochastic stiffness matrix k(i) (θ) can be calculated via the isoparametric ele-266

ment [35, 36]267

k(i) (θ) =

∫
D(i)(θ)

BT (θ) CB (θ) dx (θ) =

∫
Eiso

BT (θ) CB (θ) |J (x (θ))| dη ∈ R2nI×2nI , (23)

where i = 1, · · · , ne is the element numbering, D(i) (θ) is the i-th random element, |J (x (θ))| repre-268

sents determinant of the matrix J (x (θ)) and the material matrix C is given by269

C =
E

1 − µ2


1 µ 0

µ 1 0

0 0 1−µ
2

 . (24)

where E and µ are the Young’s modulus and the Poisson’s ratio, respectively. We can compute the270

global stochastic stiffness matrix by assembling the element stochastic stiffness matrix,271

K (θ) =

ne⋃
i=1

(
k(i) (θ)

)
∈ Rn×n, (25)

where
ne⋃

i=1
is the assembly operation. The global stochastic force vector F (θ) =

ne⋃
e=1

(
f(e) (θ)

)
∈ Rn

272

can be obtained in a similar way, where f(e) (θ) ∈ R2nI is the element stochastic force vector.273
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The inverse Jacobian matrix J−1
(
x(i) (θ)

)
in Eq. (19) has the following form for 2D finite ele-274

ments,275

J−1
(
x(i) (θ)

)
=

1∣∣∣J (
x(i) (θ)

)∣∣∣


∂x(i)
2 (θ)
∂η2

−
∂x(i)

2 (θ)
∂η1

−
∂x(i)

1 (θ)
∂η2

∂x(i)
1 (θ)
∂η1

 ∈ R2×2, (26)

where the component is given by276

∂x(i)
k (θ)
∂η j

=

nI∑
l=1

∂Nl
(
η
)

∂η j
x(i,l)

k (θ), k, j = 1, 2 (27)

and its determinant is277 ∣∣∣∣J (
x(i) (θ)

)∣∣∣∣ =
∂x(i)

1 (θ)
∂η1

∂x(i)
2 (θ)
∂η2

−
∂x(i)

1 (θ)
∂η2

∂x(i)
2 (θ)
∂η1

. (28)

Combining Eq. (19) and Eq. (26) we rewrite Eq. (22) as278

B j (θ) =


1 0

0 0

0 1

 J−1
(
x(i) (θ)

) [∂N j
(
η
)

∂η
, 02×1

]
+


0 0

0 1

1 0

 J−1
(
x(i) (θ)

) [
02×1,

∂N j
(
η
)

∂η

]
, (29)

which indicates that the random coordinate x (θ) is only related to the random inverse Jacobian ma-279

trix J−1
(
x(i) (θ)

)
. We compute the random coordinate x (θ) by the non-intrusive solution of Eq. (6)280

in practice. Following that, we still adopt the non-intrusive way to compute the matrix B j (θ) in281

Eq. (29) and assemble the element stochastic stiffness matrix in Eq. (23), which can be performed282

by using the deterministic FEM procedure to loop random samples x
(
θ(i)

)
, i = 1, · · · , ns. It is noted283

that Eq. (23) and Eq. (29) are only applicable to the elastic equation considered in this section, and284

other assembly formats should be adopted for more general problems.285

It is seen from Eq. (23) that if the material parameters are not spatially dependent, the material286

matrix C is independent of the random coordinate x (θ). If the random material matrix C (θ) is287

involved in the problem, the same computational framework as described above can be employed288

to assemble the stiffness matrix. In the numerical example 6.2, we will show that the proposed289

method can be applied to the stochastic PDE defined on the random geometry, the random co-290

efficients of which are simulated as random variables. However, since simulating random fields291

defined on random domains is still an open problem, PDEs that couple random geometries and292

random coefficient fields require further study. Also, although we only consider linear PDEs in293
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this paper, the proposed method is readily extended to nonlinear PDEs. For instance, we can294

describe inelastic behavior by adopting a nonlinear material matrix C in Eq. (23), which is still in-295

dependent of the random coordinate and can be assembled in the same way as deterministic FEM.296

The applicability of the proposed method to nonlinear PDEs on random domains will be verified297

with the aid of a nonlinear heat equation on a random domain in Section 6.4.298

4. Solution algorithm of stochastic finite element equations299

Based on the above assembly of the stochastic matrix and the stochastic vector, we can obtain300

a stochastic finite element equation (SFEE)301

K (θ) u (θ) = F (θ) . (30)

It is noted that the stochastic matrix K (θ) and the stochastic vector F (θ) are assembled in a non-302

intrusive way. By repeating the realizations K
(
θ(i)

)
∈ Rn×n and F

(
θ(i)

)
∈ Rn for ns different303

samples, they usually have the forms K (θ) ∈ Rn×n×ns and F (θ) ∈ Rn×ns . Much memory is needed304

to store K (θ) and F (θ) if the sample size ns is large. However, if a small size ns is adopted, the305

accuracy of the stochastic solution will be low. To avoid the difficulties, we adopt a weak-intrusive306

SFEM [37, 38] to solve Eq. (30) in this paper.307

4.1. A weak-intrusive SFEM308

To solve Eq. (30), we approximate the stochastic solution u (θ) in the form,309

u (θ) ≈
k∑

i=1

λi (θ) di = DΛ (θ) , (31)

where λi (θ) ∈ R denotes a scalar random variables, Λ (θ) = [λ1 (θ) , · · · , λk (θ)]T
∈ Rk is a random310

variable vector, di ∈ Rn denotes a deterministic vector and D = [d1, · · · ,dk] ∈ Rn×k is a matrix.311

All of these terms are not known a priori and need to be solved. As it is not easy to compute them312

at once, we adopt a sequential way to solve the couple {λi (θ) ,di}i one by one. For this purpose,313

we assume that the first k − 1 couples {λi (θ) ,di}
k−1
i=1 have been determined and Eq. (30) is thus314

transformed into315

K (θ) λk (θ) dk = Fk (θ) , (32)
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where Fk (θ) = F (θ) − K (θ)
k−1∑
i=1
λi (θ) di. In this way, only λk (θ) and dk are unknown. They are316

solved via an alternating iterative algorithm as follows.317

For a known random variable λk (θ) (or a given initial value, the details of which can be found318

in Section 5), a deterministic finite element equation is obtained by use of the stochastic Galerkin319

method [18, 25],320

E
{
λ2

k (θ) K (θ)
}

dk = E {λk (θ) Fk (θ)} , (33)

which can be solved efficiently via existing FEM solvers [35]. To speed up the convergence, we321

let the vector dk orthogonal to the obtained vectors {di}
k−1
i=1 . The Gram-Schmidt orthogonalization322

is adopted,323

dk = dk −

k−1∑
i=1

dT
k di

dT
i di

di, (34)

where {di}
k−1
i=1 are normalized orthogonal vectors that meet dT

i d j = δi j, where δi j is the Kronecker324

delta. Based on the solution dk of Eq. (33), the random variable λk (θ) is updated via the Galerkin325

approach,326 [
dT

k K (θ) dk

]
λk (θ) = dT

k Fk (θ) . (35)

In this paper we assume that the matrix K (θ) is positive (or negative) definite, i.e. xTK (θ) x >327

0 (< 0) holds for the nonzero vector x ∈ Rn, which holds true in many problems. For the indefinite328

matrix K (θ), Eq. (35) is insolvable when the realization dT
k K

(
θ(i)

)
dk = 0. The residual minimiza-329

tion can be used to build a numerically stable equation
[
dT

k K (θ)T K (θ) dk

]
λk (θ) = dT

k K (θ)T Fk (θ),330

the details of which will not be discussed in this paper. In order to solve the stochastic algebraic331

equation (35) efficiently, we adopt a non-intrusive way [37, 38], which is easily implemented and332

can be applied to high-dimensional stochastic problems. Specifically, if the matrix K (θ) is not an333

indefinite matrix, Eq. (35) is solved by334

λk (θ) =
dT

k Fk (θ)

dT
k K (θ) dk

∈ Rns , (36)

where θ =
{
θ(i)

}ns

i=1
∈ Rns represents ns sample realizations of the random variables, λk (θ) ∈ Rns335

is the sample vector of the random variable λk (θ) and statistical methods are used to provide the336

probability characteristics of λk (θ). Eq. (36) is insensitive to stochastic dimensions and has low337
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computational costs even for very high-dimensional stochastic problems. In this way, Eq. (31)338

is considered a weak-intrusive approximation, which combines the high efficiency of intrusive339

methods and the weakly dimensional dependence of non-intrusive methods.340

A set of couples {λi (θ) ,di}
k
i=1 can be obtained by the above iteration and a specific criterion341

for the selection of the size k will be discussed in Section 5. It is noted that these couples are342

solved in a sequential way, thus they do not exactly fulfill Eq. (30). The stochastic solution u (θ)343

approximated by the couples {λi (θ) ,di}
k
i=1 may have poor accuracy in some cases. To improve the344

accuracy, we consider {di}
k
i=1 as reduced bases and recompute the random vector Λ (θ) in Eq. (31)345

by346 [
DTK (θ) D

]
Λ (θ) = DTF (θ) , (37)

where the reduced-order matrix DTK (θ) D ∈ Rk×k and the reduced-order vector DTF (θ) ∈ Rk. The347

computational effort is very cheap due to the small size of Eq. (37). The final stochastic solution348

is obtained by ns solutions Λ
(
θ(i)

)
, i = 1, · · · , ns of Eq. (37).349

We mention that although similar expansions have been widely used in the computational350

framework of PGD methods [39, 40], the proposed approximation Eq. (31) is more powerful351

than the classical PGD methods and is more suitable for solving high-dimensional and nonlinear352

stochastic problems due to its weak intrusiveness. With the aid of numerical examples, we will353

show that it is also applicable to solve Eq. (30) with a small sample size ns.354

4.2. Computational aspects355

In this section we will discuss the numerical details of the implementation of the proposed356

method, including the implementations at the global and element levels.357

4.2.1. Implementation at the global level358

We recall that the stochastic matrix K (θ) ∈ Rn×n×ns and the stochastic vector F (θ) ∈ Rn×ns are359

obtained in a non-intrusive way and the sample vector of the random variable λk (θ) are given by360

λk (θ) ∈ Rns . The computations of Eq. (33) and Eq. (36) can be executed at the global level via361
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E
{
λ2

k (θ) K (θ)
}

=
1
ns

ns∑
j=1

λ2
k

(
θ( j)

)
K

(
θ( j)

)
∈ Rn×n, (38)

E {λk (θ) F (θ)} =
1
ns

F (θ) λk (θ) ∈ Rn, (39)

dT
k K (θ) dk =

[
dT

k K
(
θ(1)

)
dk, · · · ,dT

k K
(
θ(ns)

)
dk

]T
∈ Rns , (40)

dT
k F (θ) = F (θ)T dk ∈ Rns , (41)

which provides a direct way to perform the stochastic computations. It is seen that Eq. (39) and362

Eq. (41) can be computed efficiently. However, Eq. (38) and Eq. (40) may need much more363

computational effort and storage memory. In practice, we store K (θ) ∈ Rn×n×ns in a sparse tensor364

structure and adopt efficient tensor multiplications to execute the computations.365

4.2.2. Implementation at the element level366

To avoid the large storage memory required for the above implementation, we implement the367

stochastic computations at the element level and deterministic assemblies are then executed, which368

corresponds369

E
{
λ2

k (θ) K (θ)
}

=

ne⋃
i=1

(
E

{
λ2

k (θ) k(i) (θ)
})

=

ne⋃
i=1

 1
ns

ns∑
j=1

λ2
k

(
θ( j)

)
k(i)

(
θ( j)

) ∈ Rn×n, (42)

E {λk (θ) F (θ)} =

ne⋃
i=1

(
E

{
λk (θ) f(i) (θ)

})
=

ne⋃
i=1

(
1
ns

f(i) (θ) λk (θ)
)
∈ Rn, (43)

dT
k K (θ) dk =

 ne∑
i=1

d(i)T
k k(i)

(
θ(1)

)
d(i)

k , · · · ,

ne∑
i=1

d(i)T
k k(i)

(
θ(ns)

)
d(i)

k

T

∈ Rns , (44)

dT
k F (θ) =

ne∑
i=1

f(i) (θ)T d(i)
k ∈ R

ns , (45)

where the element matrix and vector are k(i) (θ) ∈ RnI×nI×ns and f(i) (θ) ∈ RnI×ns . In this way,370

only the element matrix and vector are stored for each iteration, which reduces the storage mem-371

ory. However, we need to reassemble the element matrix and vector for each iteration and more372

computational effort is needed for the assemblies compared to the implementation at the global373

level.374
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5. Algorithm implementation375

The above iterative algorithm for solving PDEs defined on random domains is summarized in376

Algorithm 2, which consists of two-loop procedures. The inner loop is from step 7 to 24 and is377

used to compute the couple {λk(θ),dk}. To execute the inner loop, random samples λ(0)
k (θ) ∈ Rns are378

initialized in step 6. All nonzero vectors of size ns can be used as the initial random samples and it379

has little influence on the computational accuracy and efficiency of the proposed method. With the380

initial random samples, the deterministic vector d( j)
k is computed in step 14 by solving linear finite381

element equations. By using the Gram-Schmidt orthogonalization in step 15, d( j)
k is orthogonalized382

and normalized along the whole iteration. With the obtained vector d( j)
k , the random variable λ( j)

k (θ)383

is calculated in the form of random samples λ( j)
k (θ) ∈ Rns in step 22. Two numerical strategies can384

be adopted to implement the above iteration, i.e. the implementation at the global level via steps385

3, 9, 17 and the implementation at the local level via steps 11, 12, 19, 20. After the inner loop, the386

stochastic solution uk (θ) in step 25 of the outer loop is approximated recursively to meet Eq. (30).387

Following that, based on the known matrix D, the random vector Λ (θ) is recalculated by solving388

ns k-dimensional linear stochastic finite element equations. It is noted that we can adopt different389

sample sizes in step 6 and step 28. In practice, a small size ns is first used in step 6 and a large390

sample size is adopted to recompute the random vector Λ (θ), which saves a lot of computational391

costs but still has good accuracy. The performance of this strategy will be illustrated in numerical392

examples.393

Also, two iterative criteria in Algorithm 2 are used to check the convergence, i.e. εd, j in step394

23 and εu,k in step 26. The locally iterative error εd, j is defined as395

εd, j =

∥∥∥d( j)
k − d( j−1)

k

∥∥∥∥∥∥d( j)
k

∥∥∥ = 2 − 2d( j)T
k d( j−1)

k , (46)

where the operator ‖�‖ = E
{
�T�

}
. It measures the difference between the vectors d( j)

k and d( j−1)
k396

and the calculation is stopped when d( j)
k is almost the same as d( j−1)

k . Similarly, the globally iterative397

error εu,k is defined as398

εu,k =
‖uk (θ) − uk−1 (θ)‖

‖uk (θ)‖
=

E
{
λ2

k (θ)
}

dT
k dk

k∑
i, j=1

E
{
λi (θ) λ j (θ)

}
dT

i d j

=
E

{
λ2

k (θ)
}

k∑
i=1

E
{
λ2

i (θ)
} , (47)
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Algorithm 2 Algorithm for solving PDEs defined on random domains
1: Generate the mesh topology K {Node,Ele} of the reference domain and solve the random coordinate

x (θ) via Algorithm 1

2: if Implementation at the global level then

3: Assemble the tensor K (θ) ∈ Rn×n×ns and the matrix F (θ) ∈ Rn×ns

4: end

5: while εu,k > εu do

6: Initialize random samples λ(0)
k (θ) =

{
λ(0)

k

(
θ(i)

)}ns

i=1
∈ Rns

7: while εd, j > εd do

8: if Implementation at the global level then

9: Compute E
{
λ2

k (θ) K (θ)
}

and E {λk (θ) Fk (θ)} by Eq. (38) and Eq. (39)

10: else if Implementation at the local level then

11: Assemble the tensor k(i) (θ) ∈ RnI×nI×ns and the matrix f(i) (θ) ∈ RnI×ns

12: Compute E
{
λ2

k (θ) K (θ)
}

and E {λk (θ) Fk (θ)} by Eq. (42) and Eq. (43)

13: end

14: Compute the deterministic vector d( j)
k via Eq. (33)

15: Orthogonalize d( j)
k ⊥ {di}

k−1
i=1 and normalize

∥∥∥∥d( j)
k

∥∥∥∥ = 1

16: if Implementation at the global level then

17: Compute dT
k K (θ) dk and dT

k Fk (θ) by Eq. (40) and Eq. (41)

18: else if Implementation at the local level then

19: Assemble the tensor k(i) (θ) ∈ RnI×nI×ns and the matrix f(i) (θ) ∈ RnI×ns

20: Compute dT
k K (θ) dk and dT

k Fk (θ) by Eq. (44) and Eq. (45)

21: end

22: Update λ( j)
k (θ) ∈ Rns via Eq. (36)

23: Compute the locally iterative error εd, j

24: end

25: Update the stochastic solution uk (θ) = uk−1 (θ) + λk (θ) dk

26: Compute the globally iterative error εu,k

27: end

28: Recompute the random vector Λ (θ) ∈ Rk via Eq. (37)
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which measures the contribution of the k-th couple {λk(θ),dk} to the stochastic solution uk(θ).399

However, since the random variables {λi (θ)} are calculated in a sequential way and the value of400

E
{
λ2

k (θ)
}

does not keep decreasing in some cases [38], Eq. (47) may be not a good convergence401

checker in practice. To avoid this issue, we adopt a new error indicator by modifying the random402

variables {λi (θ)} in Eq. (47). To this end, we consider the autocorrelation function of the random403

vector Λ (θ)404

CΛΛ = E
{
Λ (θ)Λ (θ)T

}
, (48)

which is decomposed into405

CΛΛ = QZQT (49)

by the eigendecomposition, where Q ∈ Rk×k is an orthonormal matrix and Z is a diagonal matrix.406

We rewrite the stochastic solution u (θ) in Eq. (31) as407

u (θ) = DQQTΛ (θ) (50)

and let a new random vector Λ̃ (θ) = QTΛ (θ) =
[̃
λ1 (θ) , · · · , λ̃k (θ)

]T
∈ Rk, the autocorrelation408

function of which is given by409

C̃Λ̃Λ̃ = E
{
Λ̃ (θ) Λ̃ (θ)T

}
= QTE

{
Λ (θ)Λ (θ)T

}
Q = Z. (51)

To improve Eq. (47), we replace the random variables {λi (θ)} with the new random variables410 {̃
λi (θ)

}
and the iterative error εu,k thus becomes411

εu,k =
E

{̃
λ2

k (θ)
}

k∑
i=1

E
{̃
λ2

i (θ)
} =

Zk

Tr (Z)
, (52)

where Tr (·) is the trace operator and Zk is the element at position (k, k) of the matrix Z. In this way,412

the iterative error εu,k keeps decreasing as the retained item k increases. It is noted that Eq. (50)413

does not improve the accuracy of the stochastic solution and just provides a new representation.414

6. Numerical examples415

We test the proposed method with the aid of four numerical examples. The convergence errors416

are set as εd = 1 × 10−3 and εu = 1 × 10−8 in Algorithm 2. All tests are performed on a laptop417
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(dual-core, Intel Core i7, 2.40GHz). Without loss of generality, we ignore the dimension of the418

physical quantities and execute the dimensionless analysis in the first two examples.419

6.1. Example 1: elastic equation defined on a random domain420

6.1.1. Problem setting421

In this example, we consider a two-dimensional elastic problem as discussed in Eq. (20), which422

is defined on the random domain shown in Fig. 2. The outer bound of the domain is a deterministic423

square of length 2. The inner boundary Γr (θ) of the domain is a hole described by a random424

elliptic curve that is controlled by four mutually independent random variables xc (θ), yc (θ), lx (θ),425

ly (θ). As depicted in Fig. 2, the location (xc (θ) , yc (θ)) of the center point of the ellipse are two426

uniformly distributed random variables on [−0.2, 0.2] and the major and minor (or minor and427

major) axes lx (θ) and ly (θ) are two uniformly distributed random variables on [0.9, 1.1]. The428

boundary conditions are given by the vertical force f (x, y) = −1 on the upper boundary ΓN and429

the Dirichlet condition u (x, y) = 0 on the lower boundary ΓD. The Young’s modulus and the430

Poisson’s ratio are 2.10 × 108 and 0.3, respectively.431

We choose the mean value of the random boundary Γr (θ) as the inner boundary of the reference432

domain. As shown in Fig. 3a, the reference domain has the same outer boundary as the random433

domain and its inner boundary is a circle with the center (0, 0) and the diameter 1. The finite ele-434

-1 0 1
-1

0

1

Figure 2: The domain with a random inner boundary.
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(a) The reference domain. (b) Finite element mesh of the reference domain.

Figure 3: The reference domain and its finite element mesh.

ment mesh of the reference domain is shown in Fig. 3b, and 624 nodes and 1136 linear triangular435

elements are included. Following that, we construct the mapping between the reference and the436

random domains based on the mesh of the reference domain. The random boundary Γr (θ) can be437

represented by random scaling and shift transformations of the circle in the reference domain438  x (θ)

y (θ)

 = D (θ) S (θ)


x

y

1

 on Γr (θ) , (53)

where the random shift transformation matrix D (θ) and the random scaling transformation matrix439

S (θ) are given by440

D (θ) =

 1 0 xc (θ)

0 1 yc (θ)

 ∈ R2×3, S (θ) =


lx (θ) 0 0

0 ly (θ) 0

0 0 1

 ∈ R3×3. (54)

6.1.2. Numerical results441

By using Algorithm 1, we can solve the random nodal coordinates of the random mesh of the442

random domain. To solve the displacement u (θ) in Eq. (20), we set the sample size as ns,1 = 40443

in step 6 in Algorithm 2. After obtaining the reduced-order matrix D, we reset the sample size as444

ns,2 = 1 × 104 in step 28 in Algorithm 2. It is noted that the choice of the sample size in step 6 is445

still an open problem. In this paper we adopt the sample size ns,1 = 10r, where r is the number of446
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random variables. A large sample size is suggested if storage requirements are ignored.447
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Figure 4: Iterative errors of different numbers of the retained item k calculated by Eq. (52).
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Figure 5: Solutions of the components: the first four solutions {di}
4
i=1 in the x direction (the first row), the first four

solutions {di}
4
i=1 in the y direction (the second row) and PDFs of the first four random variables {λi (θ)}4i=1 (the third

row).

Iterative errors εu,k in step 26 in Algorithm 2 calculated using Eq. (52) are shown in Fig. 4448

and retaining 17 terms achieves the specified accuracy, which demonstrates the good convergence449
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of the proposed method. It is seen that the iterative errors keep decreasing as the retained items450

increase, which verifies the effectiveness of the proposed error indicator Eq. (52). First four com-451

ponents of the deterministic vectors {di}
17
i=1 are depicted in Fig. 5, where {di}

4
i=1 in the x direction452

and {di}
4
i=1 in the y direction are seen from the first and second rows of Fig. 5, respectively. PDFs453

of the first four components of the recomputed random variables {λi (θ)}17
i=1 are shown in the third454

row of Fig. 5, which are obtained by 1 × 104 random samples. It is noted that the j-th value di, j455

of the vector di is the solution of the j-th node whose coordinate is given by
(
x j (θ) , y j (θ)

)
. It is456

not easy to show a vector on random coordinates, thus the vector di is described in the node-index457

coordinate system instead of the Cartesian coordinate system in this paper. Although we show the458

vector di on the reference domain, they can be depicted on all possible domains.459
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Figure 6: PDFs of stochastic displacements of the point A in the x and y directions obtained by the proposed method

and 1 × 104 MCS.

To test the accuracy of the proposed method, we compare PDFs of stochastic displacements of460

the point A (its node number is 6 as shown in Fig. 3b) obtained by the proposed method and 1×104
461

MCS. As shown in Fig. 6, PDFs of the stochastic displacements in both x and y directions have462

good agreements with MCS, which indicates that the proposed method has comparable accuracy463

to MCS. It is seen from Fig. 6 that compared to that in the y direction, the PDF of the stochastic464

displacement in the x direction is slightly less accurate, but its accuracy is still acceptable in most465

problems. If a more accurate stochastic solution is required in some cases, we can retain more466
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Figure 7: PDFs of stochastic displacements of the point A in the x and y directions obtained by the proposed method

retaining 50 terms and 1 × 104 MCS.

terms for the purpose. PDFs of the stochastic displacements of the point A in x and y directions467

obtained by the proposed method retaining 50 terms are depicted in Fig. 7. They have much higher468

accuracy than that in Fig. 6 and reach very good agreements with MCS. Furthermore, we test the469

computational efficiency of the proposed method. Computational costs of different implementa-470

tions are listed in Tab. 1, where GI (ns,1, ns,2) and LI (ns,1, ns,2) represent the implementation at471

global and local levels with sample sizes ns,1, ns,2 in steps 6 and 28 in Algorithm 2. The solving472

cost and the recomputing cost are the computational cost from step 5 to 27 and the computational473

cost of step 28 in Algorithm 2, respectively. Total computational times of three implementations474

are much less than the cost of 1×104 MCS, which demonstrates the high efficiency of the proposed475

method. It is noted that stochastic solutions obtained by implementations at global and local levels476

have the same accuracy and only the matrix and the vector are formed differently. Compared to GI477

(40, 1× 104), LI (40, 1× 104) needs a bit more solving costs since more assemblies are performed478

in steps 9 and 19 in Algorithm 2. As a comparison, we test the case LI (1 × 103, 1 × 104), i.e.479

ns,1 = 1 × 103 samples are adopted in step 9. A solution of similar accuracy to the case LI (40,480

1 × 104) is obtained, which indicates that ns,1 = 40 can reach good accuracy in this example. But481

the case LI (1 × 103, 1 × 104) requires more costs for sample assemblies. The recomputing costs482

of the three implementations are close since they have the same number of retained items and the483
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size of the reduced-order stochastic finite element equation (37) is fixed.484

Table 1: Computational costs of different implementations.

Methods GI (40, 1 × 104) LI (40, 1 × 104) LI (1 × 103, 1 × 104) MCS (1 × 104)

Solving costs 324.49 361.74 427.31

Recomputing costs 28.02 27.53 30.67

Total costs (second) 352.51 389.27 457.98 2519.66

6.1.3. Postprocessing of the stochastic solution485

As discussed above, the vector di is depicted on the node-index coordinates, which is different486

from the classical FEM. Thus we need to pay extra attention to the postprocessing of stochastic487

solutions. In practice, to perform the postprocessing of stochastic solutions, we need to combine488

each realization of stochastic solutions and the corresponding realization of random meshes. For489

an explanation of this point, let us consider the postprocessing of the stochastic solution under the490

sample realization
[
xc (θ∗) , yc (θ∗) , lx (θ∗) , ly (θ∗)

]
= [0.1215,−0.1564, 1.0876, 0.9390]. As shown491

in Fig. 8 (left), the random mesh is obtained via combining the mesh topology of the reference492

domain and the random coordinates, where the green part is the reference domain. The realization493

of the stochastic solution in x and y directions are then depicted on the random mesh shown in494
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Figure 8: Postprocessing of the stochastic solution of the sample realization
[
xc (θ∗) , yc (θ∗) , lx (θ∗) , ly (θ∗)

]
=

[0.1215,−0.1564, 1.0876, 0.9390]: The reference domain (green part) and the random mesh (left), the solution in

the x direction (mid) and the solution in the y direction (right).
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Fig. 8 (mid and right). In this way, the stochastic solution is shown in the Cartesian coordinate495

system, the same way as the classical FEM postprocessing.496

6.2. Example 2: stochastic elliptic PDE with a random interface497

6.2.1. Problem setting498

In this example, we consider a stochastic elliptic PDE499

−∇ · (c (x (θ) , y (θ), θ)∇u (x (θ) , y (θ), θ)) = f (x (θ) , y (θ)) (55)

defined on the random domain D (θ) shown in Fig. 9, which has been widely used in many500

problems with random interfaces [5, 6, 15, 41]. Boundary conditions are given by the Dirich-501

let condition u (x (θ) , y (θ)) = 0 on ΓD, the Neumann conditions ∂u
∂−→n

∣∣∣∣
ΓN,1

= 1, ∂u
∂−→n

∣∣∣∣
ΓN,2

= 2 and the502

f (x (θ) , y (θ)) = 1 inD (θ). We consider the discontinuously random coefficients503

c1 (x (θ) , y (θ), θ) = ξc,1 (θ) + 1, c2 (x (θ) , y (θ), θ) = 2ξc,2 (θ) + 2, (56)

where ξc,1 (θ) and ξc,2 (θ) are independently uniform random variables on [0, 1].504

The random interface Γr (θ) is considered as a Gaussian random field Γ (x, θ) with the mean505

function Γ (x) = 0 and the covariance function506

CΓΓ (x1, x2) = σ2
Γ (min (x1, x2) − x1x2) , (57)

0 1
-0.5

0

0.5

Figure 9: The domain with a random interface.
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(a) The reference domain. (b) Finite element mesh of the reference domain.

Figure 10: The reference domain and its finite element mesh.

where the standard deviation σΓ = 0.1. By use of KL expansion [18, 42, 43], the random field507

Γ (x, θ) is approximated as508

Γ (x, θ) = σΓ

r∑
i=1

ξi (θ)
√
κiΓi (x), (58)

where {κi}
r
i=1 and {Γi (x)}ri=1 are eigenvalues and eigenfunctions of the covariance function CΓΓ (x1, x2)509

and their analytical solutions are510

Γi (x) =
√

2 sin (iπx) , κi = (iπ)−2 , i = 1, · · · , r. (59)

In the numerical implementation, we limit the sample realization Γi (x) in the interval [−0.25, 0.25].511

To reach this point, non-Gaussian bounded distributions can also be adopted to model the random512

interface, such as the Beta distribution and the lognormal distribution. Further, the covariance513

function in Eq. (57) is non-smooth and more random variables are required to achieve a high-514

accuracy simulation of the random field. Smooth or differentiable covariance functions can be515

used to reduce the number r of the truncation in Eq. (58) [44, 45].516

As shown in Fig. 10a, we choose the mean value Γ (x) = 0 of the random interface Γr (θ) as517

the inner interface of the reference domain. As depicted in Fig. 10b, 1217 nodes and 2304 linear518

triangular elements are generated for the finite element mesh of the reference domain. Based on519

the finite element mesh, discretized random coordinates of points on the random interface are520

represented as521
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x (θ) = x, y (θ) = Γ (x, θ) on Γr (θ) . (60)

6.2.2. Numerical results522

A low-dimensional case is considered by truncating KL expansion Eq. (58) at r = 5 items, thus523

7 (=5+2) random variables are involved in this example. The sample sizes ns,1 = 70 in step 6 and524

ns,2 = 1×104 in step 28 in Algorithm 2 are adopted. The iterative errors of different numbers of the525

retained item k calculated by Eq. (52) are shown in Fig. 11 and 11 retained items converge to the526

final stochastic solution, which verifies the fast convergence of the proposed method again. First527

eight deterministic vectors {di}
8
i=1 are depicted in the first and second rows of Fig. 12 and PDFs528

of corresponding first four recomputed random variables {λi (θ)}4i=1 are depicted in the third row.529

It is seen from Fig. 12 that as the number of retained terms increases, the deterministic vectors530

concentrate near the random interface, which makes that the stochastic solution near the random531

interface can be approximated with good accuracy.532

2 4 6 8 10

10-8

10-5

100

Figure 11: Iterative errors of different numbers of the retained item k calculated by Eq. (52).

As shown in Fig. 10b, we check the accuracy of the stochastic solution by using three char-533

acteristic points, i.e. the point A (its node number is 696) in the lower domain, the point B (its534

node number is 22) on the random interface and the point C (its node number is 558) in the up-535

per domain. PDFs of the solutions at three points are calculated by the proposed method and536

1 × 104 MCS and their comparisons are found in Fig. 13. For all three points, PDFs obtained by537
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Figure 12: Solutions of the components: the first four solutions {di}
4
i=1 (the first row), the fifth to eighth solutions

{di}
8
i=5 (the second row) and PDFs of the first four random variables {λi (θ)}4i=1 (the third row).
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Figure 13: PDFs of the stochastic solutions of points A, B, C obtained by the proposed method and 1 × 104 MCS.

the proposed method have good matches with MCS, which demonstrates the high accuracy of the538

proposed method in this example.539
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6.2.3. Reduced-order model540

Eq. (37) is considered as a reduced-order equation of the original stochastic finite element541

equation (30) and the matrix D in Eq. (37) is considered as a set of reduced bases. Thus the pro-542

posed method provides a powerful way to generate a reduced-order model of the original stochastic543

problem. For the explanation of this point, we compare stochastic solutions of full- and reduced-544

order models of three sample realizations listed in Tab. 2. Three realizations of the random meshes,545

Table 2: Three sample realizations of the random variables.

ξ1 (θ) ξ2 (θ) ξ3 (θ) ξ4 (θ) ξ5 (θ) c1 (θ) c2 (θ)

Sample 1 0.1194 0.0566 −0.5075 −0.8939 −0.8390 1.6139 3.2612

Sample 2 −1.4709 0.3656 1.4673 1.3410 0.8728 1.1345 2.7835

Sample 3 0.5906 −0.8849 −1.5840 0.2493 −1.0121 1.2153 2.4775
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Figure 14: Comparisons between full- and reduced-order models of three sample realizations shown in Tab. 2: the

random meshes (the first column), the full-order solutions (the second column), the reduced-order solutions (the third

column) and their absolute errors (the fourth column).
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the full-order stochastic solutions, the reduced-order stochastic solutions and their absolute errors546

are depicted in Fig. 14. The maximum of the absolute errors of three realizations is less than547

3 × 10−3, which indicates that the stochastic solutions of reduced-order models have comparable548

accuracy to the full-order models and the proposed method can provide an accurate reduced-order549

model of the original problem.550

6.2.4. High-dimensional stochastic problems551

In this section, we show that the proposed method can be applied to high-dimensional stochas-552

tic problems without any modification. The truncation of KL expansion Eq. (58) is set as r = 50.553

A total of 52 random variables are considered in this example. The sample sizes ns,1 = 520 in554

step 6 and ns,2 = 1 × 104 in step 28 in Algorithm 2 are used in this case. Corresponding iterative555

errors εu,k in step 26 in Algorithm 2 calculated using Eq. (52) are depicted in Fig. 15 and 28 items556

are retained to achieve the convergence error. Compared to the low-dimensional case, the high-557

dimensional case requires more retained items to capture the high-accuracy stochastic solution.558

The PDFs of the stochastic solutions of the point B (shown in Fig. 10b) obtained by the proposed559

method and MCS are compared in Fig. 16. The PDF obtained by the proposed method is in good560

agreement with MCS, which indicates that the proposed method has good accuracy even for high-561

dimensional stochastic problems. The PDF shown in Fig. 16 is close to that of the low-dimensional562
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Figure 15: Iterative errors of different numbers of the retained item k calculated by Eq. (52) for the stochastic dimen-

sion 52.
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Figure 16: PDFs of the stochastic solutions of the point B when the stochastic dimension is 52.

case shown in Fig. 13 since the last few terms expanded by KL expansion Eq. (58) may have less563

contributions to the quantities of interest. It is noted that the proposed method solves both low-564

and high-dimensional stochastic problems using a unified frame and no modification for high-565

dimensional cases is needed. Only more retained terms are required to capture the large variability566

of the stochastic solution if there are large uncertainties caused by high-dimensional expansions.567

To show the computational efficiency of the proposed method, the computational costs of the568

stochastic dimensions 7 and 52 are listed in Tab. 3. As the stochastic dimension increases, the total569

computational cost of the proposed method increases slowly and the recomputing cost slightly570

increases since the number of the retained items increases. Compared to MCS, the proposed571

method can solve high-dimensional stochastic problems with low computational costs, thus it572

avoids the curse of dimensionality successfully.573

Table 3: Computational costs of the stochastic dimensions 7 and 52.

Dimension 7 (=5+2) 52 (=50+2)

Method SFEM MCS SFEM MCS

Solving costs 264.76 382.75

Recomputing costs 19.56 33.83

Total costs (second) 284.32 2124.76 416.58 2359.72
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The computational efficiency of the proposed method with respect to different stochastic di-574

mensions are further studied. The truncation r in Eq. (58) is set as 5, 10, 20, 35, 50, respectively,575

and corresponding total dimensions are 7, 12, 22, 37, 52. We execute the iterations correspond-576

ing to different stochastic dimensions until the specified convergence error εu,k = 1 × 10−8 is577

achieved. The number of retained terms k and corresponding total computational costs are re-578

spectively shown in Fig. 17a and Fig. 17b, which demonstrates that the number of retained items579

increase slightly as the stochastic dimension increases. Corresponding computational costs also580

does not increase dramatically with the stochastic dimension. For the low dimensions (not greater581

than 12) and the high dimensions (not less than 22), the computational cost is almost proportional582

to the stochastic dimension. The cost jumping between the dimensions 12 and 22 may be caused583

by the large variability induced by the increased dimension.584
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(a) Numbers of the retained items for different dimensions.
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(b) Total computational costs for different dimensions.

Figure 17: Numbers of the retained items (left) and corresponding computational costs (right) for different stochastic

dimensions.

6.3. Example 3: study case from orthodontics with random material properties and random ge-585

ometry586

6.3.1. Problem setting587

In this example, we consider a typical case of orthodontics that involves the human tooth shown588

in Fig. 18 (left), which is from [46]. It is only a simplified model of the human tooth and more589
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realistic models can be found in [47]. The Young’s modulus of multi-layer material of the tooth590

are modeled as Gaussian random variables due to individual differences in patients. The Poisson’s591

ratio and the mean values of Young’s modulus are listed in Tab. 4. Standard deviations of all592

Young’s modulus are 0.1 times the mean values. In the numerical implementation, to ensure that593

the Young’s modulus is positive, random samples of the Young’s modulus less than 1 × 10−3 are594

dropped out, thus they are considered as truncated Gaussian random variables in practice. But it595

is noted that the truncation usually results in a loss of coercivity in the bilinear form of the finite596

element approximation [40, 48, 49]. Better stochastic modeling of the material properties should597

further considered to avoid this issue. The force induced by the orthodontic appliance is applied598

to the model in the horizontal direction and its magnitude is 1N.599
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Figure 18: The geometry of tooth model (left) and its finite element mesh (right).

Table 4: Mean values of Young’s modulus and Poisson’s ratio.

Bone Ligament Dentine Pulp Enamel

Young’s modulus 12 Gpa 100 Mpa 18 Gpa 4 Mpa 90 Gpa

Poisson’s ratio 0.2 0.3 0.2 0.35 0.2

In order to formulate a good orthodontics plan, we need to predict the deformation of the tooth600
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after each orthodontic appliance according to the randomness of material properties and current601

orthodontics outcomes (i.e. the current position of the tooth). The current position of the tooth602

is also uncertain due to the randomness of material properties. As shown in Fig. 18 (right), the603

random position is modeled by the rotation angle α (θ) of the tooth around a point (the red point604

in Fig. 18 (right)), where α (θ) is a uniform random variable on [−2◦, 2◦]. Thus the interface Γr (θ)605

between the bone and the ligament is considered as a random interface depending on the position606

of the tooth. The quantity of interest during orthodontics is the horizontal displacement of the607

tooth. In this paper, we focus on the horizontal stochastic displacement uA,x (θ) of the point A608

shown in Fig. 18 (right). We adopt the two-dimensional elastic equation discussed in Eq. (20).609

The Dirichlet boundary condition is given by u (θ) = 0 on the boundary ΓD (shown in Fig. 18610

(left)). The reference domain and its mesh are depicted in Fig. 18 (right), which has the same611

boundary ΓD as the random domain and includes 1394 nodes, 2670 linear triangular elements and612

2788 degrees of freedom in total.613

6.3.2. Numerical results614

In this example, the sample sizes ns,1 = 60 in step 6 and ns,2 = 1 × 104 in step 28 in Algorithm615

2 are used for the implementation. For different numbers of the retained item, iterative errors616

εu,k in step 26 in Algorithm 2 calculated by Eq. (52) are shown in Fig. 19 and only six items are617

retained, which achieves a high-accuracy solution with fewer items due to the small variability of618
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Figure 19: Iterative errors of different numbers of the retained item k calculated by Eq. (52).
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the random geometry. The PDFs of the horizontal stochastic displacement uA,x (θ) of the point A619

obtained by the proposed method and 1 × 104 MCS are compared in Fig. 20 and they are very620

consistent. Compared to the computational time 2948.69s for MCS, there are only 192.84s for621

executing the proposed method, including the solving time 189.04s and the recomputing time622

3.80s, which significantly saves computational effort.623

1.8 2 2.2 2.4 2.6 2.8 3

10-5

0

0.5

1

1.5

2

2.5

105

Figure 20: PDFs of the horizontal stochastic displacement uA,x (θ) of the point A obtained by the proposed method

and 1 × 104 MCS.

6.4. Example 4: nonlinear stochastic heat equation defined on a random domain624

6.4.1. Problem setting625

In this example, to test the applicability of the proposed method to nonlinear PDEs on random626

domains, we consider a nonlinear stochastic heat equation627 
−∇ · (c (T, θ)∇T (x (θ) , y (θ), θ)) = 0 in D (θ)

−
−→n · ∇T (x (θ) , y (θ), θ) = f (x (θ) , y (θ)) on Γr (θ)

(61)

defined on the random domainD (θ) as shown in Fig. 21, where the nonlinear stochastic coefficient628

c (T, θ) is given by c (T, θ) =
√

10 + T 2 (θ), the heat flux f (x (θ) , y (θ)) = 100W/m is applied to the629

random boundary Γr (θ), the temperature T = 0 on upper and lower boundaries (red lines shown630

in Fig. 21), −→n is the outward normal. It is noted that the applied position of f (x (θ) , y (θ)) is also631

random due to the randomness of the boundary Γr (θ), and the coefficient c (T, θ) is considered632
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as a random field defined on the random domain due to the spatial dependence of the stochastic633

solution T (x (θ) , y (θ), θ). The geometric uncertainties, the reference domain and the mesh are634

the same as those in Fig. 2 in Example 6.1. Further, to consider the correlations of the geometric635

uncertainties, the Pearson correlation coefficient of any two random variables in xc (θ), yc (θ), lx (θ)636

and ly (θ) (see from Example 6.1) is 0.2.637

-1 0 1
-1

0

1

Figure 21: The domain with a random inner boundary and a moving force.

For the numerical implementation, the fixed-point iteration is adopted to deal with the nonlin-638

earity in Eq. (61) [36, 50]. Similar to Eq. (32), we can get the following linearized stochastic finite639

element equation about the unknown couple {λk (θ) ,dk} based on the previous stochastic solution640

approximation Tk−1 (θ)641

K (Tk−1 (θ)) λk (θ) dk = F (θ) −K (Tk−1 (θ)) Tk−1 (θ) , (62)

where K (Tk−1 (θ)) is the linearized stochastic matrix assembled using the previous approximation642

Tk−1 (θ), F (θ) is the stochastic vector related to the heat flux f (x (θ) , y (θ)). In this example,643

T0 (θ) = 0 is set to initialize the above iteration.644

6.4.2. Numerical results645

Algorithm 2 still can be used to solve Eq. (62). But before performing each inner loop, the646

stochastic matrix K (Tk−1 (θ)) is updated and reassembled based on Tk−1 (θ). The sample sizes647

ns,1 = 40 in step 6 in Algorithm 2 and ns,2 = 1 × 104 in step 28 are used. To well capture the648
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Figure 22: Iterative errors of different numbers of the retained item k calculated by Eq. (52).
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Figure 23: PDFs of the horizontal stochastic displacement uA,x (θ) of the point A obtained by the proposed method

and 1 × 104 MCS.

nonlinearity, the stopping criterion εu in step 5 is set as 1 × 10−12 in this case. Iterative errors εu,k649

corresponding to different numbers of the retained item is still calculated by Eq. (52) and shown in650

Fig. 22, which demonstrates that the convergence of the proposed method for nonlinear problems651

is still good enough. PDFs of the stochastic solution TA (θ) of the point A (see Fig. 3b) obtained652

by the proposed SFEM and 1 × 104 MCS are plotted in Fig. 23. They are still in good agreement.653

Regarding the computational efficiency, MCS costs 3324.56s, while the proposed SFEM takes654

351.57s, including the solving time 289.64s and the recomputing time 61.93s, which indicates655

that the proposed method is still efficient for nonlinear cases.656
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7. Conclusions657

In this paper we develop an efficient stochastic finite element method for solving determinis-658

tic/stochastic PDEs defined on random domains and illustrate its effectiveness using four numer-659

ical examples. A reference domain is used to generate a mesh topology and to represent random660

nodal coordinates of the random domain. Random meshes of the random domain are obtained by661

combining the mesh topology of the reference domain and the random nodal coordinates of the662

random domain. In this way, the proposed method still solves the PDEs on the random domain663

instead of the reference domain, which decouples the differential operator of the PDE and the ran-664

dom domain and can be implemented via existing FEM assembly codes. The proposed method665

can be applied to high-dimensional stochastic problems without any modification and avoids the666

curse of dimensionality to a great extent, which has been demonstrated by an example of up to667

52 stochastic dimensions. Also, a nonlinear heat equation defined on a random domain has been668

used to verify the applicability of the proposed method to nonlinear PDEs on random domains.669

However, it is noted that the non-intrusive assembly of the stochastic stiffness matrix costs a lot of670

storage memory compared to intrusive ways, thus it is attractive to develop an intrusive assembly671

of stochastic stiffness matrices.672
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[22] A. Nouy, F. Schoefs, N. Moës, X-SFEM, a computational technique based on X-FEM to deal with random721

shapes, European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique 16 (2007)722
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