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Total knee arthroplasty (TKA) failures are often attributed to unbalanced knee

ligament loading. The current study aims to develop a probabilistic planning

process to optimize implant component positioning that achieves a ligament-

balanced TKA. This planning process accounts for both subject-specific

uncertainty, in terms of ligament material properties and attachment sites,

and surgical precision related to the TKA process typically used in clinical

practice. The consequent uncertainty in the implant position parameters is

quantified by means of a surrogate model in combination with a Monte Carlo

simulation. The samples for the Monte Carlo simulation are generated through

Bayesian parameter estimation on the native knee model in such a way that

each sample is physiologically relevant. In this way, a subject-specific

uncertainty is accounted for. A sensitivity analysis, using the delta-moment-

independent sensitivity measure, is performed to identify the most critical

ligament parameters. The designed process is capable of estimating the

precision with which the targeted ligament-balanced TKA can be realized

and converting this into a success probability. This study shows that without

additional subject-specific information (e.g., knee kinematic measurements), a

global success probability of only 12% is estimated. Furthermore, accurate

measurement of reference strains and attachment sites critically improves

the success probability of the pre-operative planning process. To allow

more precise planning, more accurate identification of these ligament

properties is required. This study underlines the relevance of investigating in

vivo or intraoperative measurement techniques to minimize uncertainty in

ligament-balanced pre-operative planning results, particularly prioritizing the

measurement of ligament reference strains and attachment sites.
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1 Introduction

Even though total knee arthroplasty (TKA) is widely

accepted to treat end-stage osteoarthritis (OA), a revision rate

of 5–10% within 10 years (Lidgren et al., 2004) is reported.

Survival analysis, however, underestimates the problem, as

20–30% of patients (Delport et al., 2013) present with

persistent pain, joint stiffness, and/or are limited in

performing activities of daily living (e.g., going upstairs)

(Bourne et al., 2010). Noble et al. (2005) even reported that

52% of TKA subjects have functional limitations. Nam et al.

(2014) showed that only 66% of the patients indicated that their

knees felt “normal” and 54% had residual symptoms. In 47.4% of

the cases, revision surgery was related to joint stiffness,

instability, or implant loosening (Sharkey et al., 2014). These

failures are most often related to sub-optimal patient-specific

implant alignment, resulting in unbalanced loading of the

surrounding ligaments.

Pre-operative planning can aid the surgeon in identifying the

ideal, patient-specific implant position. When performing this

pre-operative plan, surgical precision is a large source of

uncertainty as has been shown in Bartsoen et al. (2021).

Table 1 shows the precision of three different surgical

techniques, namely, conventional surgery (De Vloo et al.,

2017), patient-specific guides (De Vloo et al., 2017), and

robot-assisted surgery (RAS). The precision of RAS from two

different systems is reported, namely, MAKO (Hampp et al.,

2019) and TSolution One (Cosendey et al., 2021), where Hampp

et al. (2019) did not report on all degrees of freedom, long-plural

form = degrees of freedom (DOFs). The precision required to

achieve a surgical precision for 90% success probability (Pr90%)

(Bartsoen et al., 2021) is given as well, meaning that this surgical

precision leads to a 90% probability of TKA surgery resulting in

ligament balancing within the post-TKA safe zone, on the

condition that patient-specific ligament properties can

accurately be measured. Bartsoen et al. (2021) and the current

study consider TKA as balanced when forces are generated in the

medial and lateral ligaments throughout the squat motion and

ligament strains do not exceed 6%. This zone will be further

referred to as the “post-TKA safe zone.”

Currently, pre-operative planning does not consider soft

tissue loading, which may contribute to a non-optimal

implant position despite pre-operative planning. The

importance of ligament balancing was already highlighted in

1977 by Freeman et al. (1977). However, even today, no clear

consensus exists on the best method/surgical technique.

Typically, knee ligaments are considered to “mainly” be

mechanical joint stabilizers. They, however, have a sensory

function that also contributes to joint stabilization (Delport

et al., 2013). Qualitatively, TKA is considered ligament

balanced when the ligaments are appropriately tensioned to

provide passive stability without inducing stiffness or pain or

limiting motion. The difficulty is, however, to quantify

“appropriately tensioned.” Although a few studies (Kuster

et al., 2004; Delport et al., 2015; Twiggs et al., 2018) identified

a set of quantifiable requirements resulting in a positive outcome,

no study has so far identified a conclusive safe zone.

The incorporation of a computational knee model that

generates a precise estimation of tibio-femoral (TF)

kinematics and consequent ligament strains for each

individual patient could be a dedicated approach to account

for ligament balancing in pre-operative planning. Most

published knee models are rigid-body musculoskeletal

models (Smith et al., 2016; Vanheule et al., 2017) and finite

TABLE 1 Surgical precision—according to the literature—is reachable with conventional surgery (De Vloo et al., 2017), patient-specific guides (De
Vloo et al., 2017), RAS (MAKO (Hampp et al., 2019) and TSolution One (Cosendey et al., 2021)), and Pr90% (Bartsoen et al., 2021). It is to be noted
that Hampp et al. (2019) did not report on all DOFs; the non-reported DOFs are indicated with “NA.”

Technique Conventional Psg RAS Pr90%

Femur Medial/lateral (mm) NA NA NA and 0.26 1.18

Anterior/posterior (mm) NA NA NA and 0.33 0.23

Proximal/distal (mm) NA NA NA and 0.36 0.23

Flexion/extension (°) 3.32 2.37 0.45 and 0.5 1.19

Varus/valgus (°) 1.99 1.47 0.18 and 0.3 0.33

Internal/external (°) 1.97 2.27 0.30 and 0.5 0.28

Tibia Medial/lateral (mm) NA NA NA and 0.28 0.88

Anterior/posterior (mm) NA NA NA and 0.43 0.64

Proximal/distal (mm) NA NA NA and 0.29 0.18

Slope (°) 2.28 2.42 0.38 and 1.6 0.85

Varus/valgus (°) 1.81 1.66 0.32 and 0.4 0.23

Internal/external (°) 9.0 6.28 NA and 0.73 1.87
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element models (Beidokhti et al., 2017). When introducing such

a model-based simulation step, the planning process based on a

computational knee model introduces uncertainty on several

subject-specific parameters (e.g., ligament material properties)

that are currently not identifiable in clinical practice in addition

to the previously discussed uncertainty introduced by the

surgical precision. Not only in rigid-body models but also in

finite element models, the ligaments are typically simplified as

line elements. The force–strain behavior of such an element can

then be described as tension-only with a linear relation between

force and strain presenting a quadratic toe region (see

Supplementary Material for detailed implementation). This

material model requires two subject-specific parameters,

namely, the linear stiffness k and the reference strain ϵr.
Measurements of these material properties are generally

scarce. Some studies (Trent et al., 1976; Woo et al., 1991;

Sugita and Amis, 2001; LaPrade et al., 2005; Robinson et al.,

2005; Chandrashekar et al., 2006) attempted measuring linear

stiffness. From the studies that are available, it can be seen that

inter-subject variability is large. In addition, almost no or very

limited information on the reference strain is available.

Bartsoen et al. (2023) estimated a collection of sets of

ligament properties while accounting for physiologically

relevant ligament strains, based on in vitro experimental

squatting data of a knee rig experiment, which typically

suffers from measurement errors. The study failed to identify

a narrow range of ligament properties applicable to multiple

tested specimens. The authors concluded that accounting for

uncertainty in each individual ligament property, independent

of the other properties, would overestimate surgical outcome

uncertainty as a reference strain, and attachment points are

highly correlated. They suggested representing uncertainty as a

subject-specific collection of sets of ligament properties.

In vivo measurement techniques to measure ligament

properties not only are emerging (Slane et al., 2017; Pedersen

et al., 2019) but also impose specific challenges. For most

modeling approaches, it is, however, unknown how the

uncertainty of these input parameters affects the simulation

results. Such an analysis is, however, highly relevant to

evaluate if it is even worthwhile investing in developing in

vivo measurement methods to identify ligament parameters

for application in musculoskeletal knee models (MSKMs) for

pre-operative TKA planning. A few studies have investigated the

effect of ligament properties on simulated TF kinematics and

contact forces (Smith et al., 2016; Beidokhti et al., 2017;

Pianigiani et al., 2017). They reported an important influence

of the ligament material properties on the TF contact forces.

None of these studies, however, investigated the effect of

ligament properties on the planned implant position. Such an

analysis would be needed to assess if introducing extra

measurements obtained based on newly developed

measurement techniques needs to be included in the

computational knee model for pre-operative planning of TKA.

The current study aims to design and evaluate a planning

process for ligament-balanced TKA that accounts for uncertainty

in ligament material properties, attachment sites, and surgical

precision. The uncertainty in the planned implant position is

quantified and reported with a success probability of the

ligament-balanced TKA. The uncertainty in the ligament

material properties and attachment sites is quantified through

a subject-specific collection of sets of ligament properties. In

addition, a sensitivity analysis (SA) identifies the most critical

ligament properties of the success probability.

2 Materials and methods

An overview of the planning process is illustrated in Figure 1.

The figure consists of two parts. The top part illustrates how

subject-specific uncertainty (Section 2.2) in the ligament

properties is quantified, whereas the bottom part optimizes

the implant position such that the success probability is

maximized. The reader should note that the described success

probability indicates the probability of success when the

proposed plan is rigorously executed without further

adjustments to the implant position and/or ligament releases

based on the surgeon’s expertise. In short, the top part illustrates

that the subject-specific uncertainty is quantified by identifying a

collection of sets (further referred to as “set family”) of ligament

properties satisfying a native safe zone.

To generate a set family of matching input parameters,

Bayesian parameter estimation (BPE) can be applied given a

statistical distribution of the output parameters satisfying the

native safe zone. To this end, given the physiologically relevant

ligament strains, a set family of subject-specific ligament

properties can then be established. To ensure a feasible

computational cost, BPE is applied to a surrogate model of

the MSKM, simulating a squat motion of the native knee

joint. This set family is used to quantify the uncertainty in the

planned ligament-balanced implant position parameters. To

achieve this, the mean implant position is optimized in order

to maximize the global success probability (GSP) (Section 2.4) on

a ligament-balanced outcome.

The bottom part of Figure 1 illustrates the optimization of the

implant position. Two surgical scenarios are evaluated, namely,

RAS (Cosendey et al., 2021) and Pr90% (Bartsoen et al., 2021), as

well as three different set families are used for describing

ligament uncertainty. To ensure a feasible computational cost,

this method is executed by training a surrogate model of the

MSKM (Section 2.1) simulating a squat motion of the post-TKA

knee joint. As a surrogate model, an artificial neural network

(ANN) (Section 2.3) is used in order to design an optimization

process with a feasible computational time. A sensitivity analysis

(SA) (Section 2.5) is performed to identify the most critical

ligament properties. More methodological details are provided

in the subsequent sections.
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2.1 Knee model

The knee model is a rigid body MSKM, implemented into

the AnyBody Modeling System 7.3.0 (AnyBody Technology

A/S, Aalborg, Denmark). The model is based on the knee

model described by Vanheule et al. (2017). The implant

system is a posterior-stabilized (PS) system (Performance,

Biomet Inc., Warsaw, IN, United States). A squat motion from

20° to 120° of flexion is simulated. The model is validated using

seven cadaveric specimens, to which a squat motion is applied

using a dynamic knee simulator system. The boundary

conditions of the dynamic knee simulator are based on the

study of Victor et al. (2009a). The authors validated the

simulated native and replaced kinematics. The hip joint is

allowed to slide vertically and flex/extend. The ankle joint is

allowed to rotate along all DOFs and to translate

mediolaterally. To each of the hamstring attachments, a

force of 50 N is exerted. A variable force is exerted on the

quadriceps such that a vertical ankle force of 111 N is

achieved. During the simulation, similar DOFs and forces

as in the experiment are applied to the knee model. A full

description of the MSKM simulation pipeline is presented in

the previously published work by our group (Vanheule et al.,

2017).

In short, the secondary knee kinematics are computed using

force-dependent kinematics (FDK) (Skipper Andersen et al.,

2017). This means that eleven DOFs are computed with FDK,

five of the TF joints (medial/lateral (M/L), anterior/posterior (A/

P), proximal/distal (P/D), varus/valgus (V/V), and internal/

external (I/E)) and six of the patellofemoral (PF) joint. This is

in contrast with the original model of Vanheule et al. (2017),

where the patella tendon length was kept constant, reducing the

number of DOFs calculated by FDK to five. FDK is implemented

in the AnyBody Modeling System (AnyBody Technology A/S,

Aalborg, Denmark).

The model is made as subject-specific as would currently be

feasible in a clinical setting. More specifically, the bone geometry

and cartilage geometry are segmented from MR images using

Mimics 17.0 (Materialise N.V., Leuven, Belgium). As the

ligament attachment sites are not clearly visible on MRI, these

are initially estimated based on the literature and then perturbed

in the parameter estimation. The medial collateral ligament

(MCL), lateral collateral ligament (LCL), anterolateral

ligament (ALL), popliteofibular ligament (PFL), posterior

capsule (PC), anterior cruciate ligament (ACL) with an

anteromedial and posterolateral bundle, and posterior cruciate

ligament (PCL) with an anterolateral and posteromedial bundle

are modeled. Details on the implementation of the ligament

material model can be found in the Supplementary Material. The

PF ligaments are modeled as spring elements with linear elastic

properties between the patella and femur to reduce the

computation time.

2.2 Subject-specific uncertainty

The subject-specific set family of ligament properties is

defined using BPE. BPE allows generating a set family of

input parameters based on a given statistical distribution of

the output parameters. The native safe zone describes a set of

requirements for the model outputs (ligament strains and TF

kinematics) that match the behavior of a native knee joint.

Through BPE, a set family of knee model input parameters is

collected that result in outputs within the requirements. As no

consensus exists on the quantification of physiologically relevant

knee ligament strains, the current study compares three different

FIGURE 1
Overview of the probabilistic planning process for TKA.
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set families of ligament properties: 1) the first native safe zone

solely accounts for a damage criterion. As ligament damage is

unlikely during a squat movement of a healthy knee, ligament

property sets that lead to a maximal strain exceeding 6% are

excluded from the set family, as Provenzano et al. (2002) and Guo

et al. (2015) indeed indicated that ligament damage occurs from

this strain level onwards. As no preference for a specific strain is

required, a uniform posterior distribution is associated with the

maximal ligament strain between the physiological ranges of −2%

and 6%. 2) A second native safe zone accounts for damage and

stability. Stability is ensured when forces are generated in the

medial (deepMCL and supMCL), lateral (LCL, ALL, and PFL),

and central ligaments (ACL and PCL) throughout the squat

motion. This is based on the study of Victor et al. (2009b) and

Delport et al. (2015) that showed that in the native knee, theMCL

remains isometric throughout flexion and the LCL stays

isometric throughout early and mid-flexion, while tension

decreases toward deep flexion. Likewise, Harner et al. (1995)

showed the engagement of the ACL in early to mid-flexion, while

the PCL ensures anterior/posterior stability from mid to deep

flexion. This constraint is quantified as the maximal strain of the

medial, lateral, and central ligaments being greater than 0%

throughout the squat motion. Similar to the damage

constraint, there is no preference for a specific strain.

Consequently, a uniform posterior distribution is enforced. 3)

A third safe zone assumes that measured kinematics of a squat

motion is available, while also accounting for damage. The

posterior distribution of the TF kinematics is modeled as

normally distributed with a mean equal to the measured

kinematics and standard deviation of 0.5 mm or 0.5° for M/L

and A/P translation and I/E rotation and 1.0 mm or 1.0° for P/D

translation and V/V rotation. These safe zones will be referred to

as SZD, SZD&S, and SZD&K, respectively. Further details on the

definition of the posterior distributions can be found in Bartsoen

et al. (2023).

For each of the native safe zones, a set family of 10,000 sets of

ligament parameters is collected using BPE. We collect

10,000 sets to ensure enough data to train the post-TKA

surrogate model (Section 2.3). These sets are defined within

the sampling bounds given in Table 2. The analysis is

performed with a feasible computational cost by using an

ANN as a surrogate model of the native MSKM. The

transitional Markov chain Monte Carlo (TMCMC) (Ching

and Chen, 2007; Betz et al., 2016) algorithm is used to

perform the BPE. For further details on the implementation,

we refer to Bartsoen et al. (2023). This study determines the

possible ligament properties based on experimental

measurement data of the kinematics of a squat motion. The

gathered sets of ligament properties are consistent with SZD&K.

Comparison of the set families of ligament properties between

specimens allows to study the variation in properties throughout

the population.

2.3 TKA surrogate model

The developed TKA knee surrogate model is an ANN. This

network is implemented using TensorFlow 2.4.0 (Abadi et al.,

2016). This results in a network with respectively 51 and

45 input parameters for the native and post-TKA MSKM.

Further information on the ANN for the native MSKM can

be found in Bartsoen et al. (2023). Although, where the native

ANN is trained on the entire input parameter range has been

given in Table 2, this is not required for the post-TKA ANN.

The post-TKA ANN can be trained on the set family satisfying

SZD. As SZD&S and SZD&K are subfamilies of SZD, the network

will also be valid for those native safe zones. The implant

position parameters and flexion angle are assigned using

Sobol sampling. The sampling bounds are taken at [−8,8]

mm or ° with respect to the implant position consistent with

TABLE 2 Training bounds of the ANN for the ligament material properties.

Ligaments r k [N] Femur [mm] Tibia [mm]

Min Max Min Max xF yF xT yT

deepMCL −0.2 0.3 2000 9,000 [−10, 10] [−8, 8] [−10, 10]

supMCL −0.2 0.2 2000 9,000 [−10, 10] [−8, 8] [−10, 10]

LCL −0.2 0.2 2000 9,000 [−8, 8] [−8, 8] [−5, 5]

ALL −0.3 0.2 2000 9,000 [−8, 8] [−8, 8] [−10, 10]

PFL −0.3 0.2 2000 9,000 [−10, 10] [−6, 6]

ACL0 −0.2 0.4 4,000 10,000 [−6, 6] [−6, 6] [−8, 8] [−8, 8]

ACL1 −0.2 0.4 4,000 10,000 [−6, 6] [−6, 6] [−8, 8] [−8, 8]

PCL0 −0.5 0.4 4,000 12,000 [−6, 6] [−6, 6] [−8, 8] [−8, 8]

PCL1 −0.5 0.4 4,000 12,000 [−6, 6] [−6, 6] [−8, 8] [−8, 8]

PC 0.05 0.2 5,000 10,000
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mechanical alignment (Knee Planner of Materialise N.V.,

Leuven, Belgium).

The ANN has a fully connected architecture [45:128:256:512:

256:128:64:11] with an activation function called Softplus given

in Eq. 1. Further details on the training can be found in the

Supplementary Material. The post-TKA network is only trained

for subject 1.

a x( ) � log exp x( ) + 1( ). (1)

2.4 Implant position optimization

To quantify the GSP of the ligament-balanced pre-operative

planning, the mean (planned) implant position is optimized

toward the position that results in the largest success

probability given surgical precision and uncertainty in the

ligament properties. The optimization is performed for the

three set families of physiologically relevant ligament

properties according to SZD, SZD&S, and SZD&K. Two different

types of surgical methods are evaluated, namely, RAS (Cosendey

et al., 2021) and Pr90% (Bartsoen et al., 2021). Evaluation of the

objective function requires an evaluation of uncertainty caused

by surgical precision and ligament properties. This is performed

by applying a Monte Carlo simulation (MCS) with 4,096 samples

for seven flexion angles equally divided between 20° and 120°. The

number of samples is chosen based on a convergence analysis.

Further details can be found in the Supplementary Material.

The samples for the MCS are taken by random sampling of

normally distributed implant position parameters with a mean of

0.0 mm or ° and standard deviations given in Table 1. This set

family of samples is indicated with Sx�0MCS. To avoid differences

between iterations due to statistical noise on the output of the

MCS, Sx�0MCS is constant throughout the optimization and

transformed based on the mean of the implant position

parameters of the current iteration. In Eq. 2, x represents the

12 DOFs of the implant position, and SxMCS represents the

transformed samples.

SxMCS � Sx�0MCS + x. (2)

The transformed set family of samples SxMCS is combined

with samples from the subject-specific set family of ligament

properties, resulting in the set family of samples SMCS used for

estimating global uncertainty.

The optimization toward the implant position is defined as in

Eq. 3, where x represents the 12 DOFs of the implant position,

SMCS represents the samples from the MCS, nMCS is the number

of samples in the MCS, θFE is the knee flexion angle (20°–120°), ϵ
is the strain in a ligament, L is the set of all ligaments (deepMCL,

supMCL, LCL, ALL, PFL, and PC), Llat is the set of all lateral

ligaments (LCL, ALL, and PFL), and Lmed is the set of all medial

ligaments (deepMCL and supMCL). ϵLlatmax and ϵLmed
max are the

maximal strains in Llat and Lmed, respectively. ϵtmax � 6 % is

the upper bound on the maximal strain in the ligaments.

min
x

10
nMCS

∑
SMCS

u1 + u2( ) + 0.005∑
12

1

x2
i ,

with
u1 � ∑

L
∑

θFE : ϵ> ϵtmax
ϵ − ϵtmax( )2

u2 � ∑
θFE : ϵ

Llat
max < 0

ϵLlatmax( )2 +∑
θFE : ϵ

Lmed
max < 0 ϵLmed

max( )2
⎧⎪⎨
⎪⎩

.

(3)
The package pymoo (Blank and Deb, 2020) is used to

perform the optimization. A genetic algorithm is applied as

this is a global optimization algorithm, which has the large

advantage that it is unlikely to converge to a local minimum

of the objective function as long as the population size is chosen

large enough. Further details on the implementation can be

found in the Supplementary Material.

2.5 Sensitivity analysis

To collect samples for the SA, the same optimization as

described in Section 2.4 is performed but with constant ligament

properties. This optimization is executed for 750 sets of ligament

properties that were gathered with BPE using SZD&S. To quantify

the uncertainty caused by the implant position parameters, a

quasi-Monte Carlo simulation (QMCS) is used. A QMCS uses a

low-discrepancy sequence to generate the samples for the MCS.

The application of a low-discrepancy sequence allows the

convergence of the set of samples toward the aimed statistical

distribution with a smaller number of samples compared to a

random generation of samples as used with standard MCS. In

this study, the Sobol sequence is applied as a low-discrepancy

sequence. A convergence analysis shows that 256 samples are

required. Details on the convergence analysis can be found in the

Supplementary Material.

To identify the most critical parameters for the critical

implant position parameters (as identified by Bartsoen et al.

(2021)) and the success probability, the delta moment-

independent sensitivity measure (Borgonovo, 2007) is

computed. This measure is based on the difference in

probability density of the model output parameter including

all parameters and keeping one parameter constant. In contrast

to variance-based global sensitivity measures, like Sobol indices

(Sobol, 2001), the delta moment-independent measure does not

rely on a single moment, for example, variance, to assess

parameter sensitivity. The measure takes into account the

entire input/output distribution. The SALib Python library

(Herman and Usher, 2017) is applied.

A convergence analysis is performed to identify the required

number of samples. A convergence measure is defined that

quantifies the changes in the 10 most critical ligament

parameters with respect to the ground truth 10 most critical. The

ground truth set is defined based on the total number of samples
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gathered. For every ground truth, the critical ligament property that

is not in the evaluated set of 10 critical properties, a penalty is added

to the convergence measure. The size of this penalty depends on the

rank (r) in the ground truth most critical, where the most critical

parameter receives r = 1 and the least critical receives r = 10. The

penalties are determined according to Eq. 4.

p � 10.0
r

. (4)

3 Results

The subject-specific uncertainty in the ligament properties

represented by a set family shows a similar variation for SZD and

SZD&S and a slightly smaller variation for SZD&K. As in Bartsoen

et al. (2023), a high correlation between the reference strain and

attachment sites has been identified. This correlation is nevertheless

more pronounced for SZD&K. Further details on the subject-specific

uncertainty can be found in the Supplementary Material.

The validation accuracy of the post-TKA neural network was

aimed at a 90th percentile of the absolute error (AE) below 3% for

each of the ligament strains. This accuracy is minimally required

compared to an optimization objective specifying the maximal

strain at 6%. A total of 18,929 samples is required to achieve this

accuracy objective. Details on the post-TKA neural network

validation error can be found in the Supplementary Material.

The results of the implant position optimization are

discussed in more detail in Section 3.1 for each of the three

evaluated native safe zones and the two surgical precisions. Part

3.2 gives the results on the identification of the critical ligament

properties. This section closes with an evaluation of the

computational efficiency of the developed method (Section 3.3).

3.1 Implant position optimization

Table 3 gives the optimization objective (OO)—as computed

with Eq. 3—and the GSP for the different native safe zones (SZD,

SZD&S, and SZD&K) and for two different surgical precisions (RAS

(Cosendey et al., 2021) and Pr90% (Bartsoen et al., 2021)). It can

be seen that the 90% success probability of Pr90%, which solely

included surgical precision, is reduced to 3.0%, 13.0%, and 13.0%

for SZD, SZD&S, and SZD&K, respectively, due to the uncertainty

introduced by the ligament properties. It can be seen that the

results are similar to the RAS surgical precision. SZD&S and

SZD&K show similar success probabilities, but OO is, however,

halved. As OO is based on the square of the difference between

the ligament strain and the post-TKA safe zone, this shows a

reduction in variation due to ligament properties when pre-

operative squat kinematics is known.

3.2 Sensitivity analysis

Figure 2 shows the results of the convergence analysis,

implying that SA has converged after 510 samples.

Figure 3 shows the box plots of the means of the different

implant position parameters for Pr90% with variation in the

ligament properties according to SZD&S. This figure illustrates

that the uncertainty of the critical implant position parameters

(indicated with *) due to the uncertainty in the ligament

properties (blue) is large compared to the required surgical

error that was established in Bartsoen et al. (2021) (red). The

success probability does not vary largely.

Table 4 presents the results of SA. The table gives the

10 most critical parameters, out of the 50 ligament

properties, for each of the critical implant position

parameters, as identified by Bartsoen et al. (2021), as well as

the success probability. Each of the critical ligament properties

is further divided according to their corresponding delta

moment-independent sensitivity measure. The three largest

measures are indicated as most critical, the next three are

indicated as mid-critical, and the remaining four are

indicated as least critical. Mainly, the reference strain and, to

a slightly lesser extent, the attachment sites are most critical.

The linear stiffness is of lesser importance. It can also be seen

that for every ligament, at least one of the properties is critical.

3.3 Computational efficiency

The optimization process to quantify GSP requires

4,096 knee model evaluations for seven flexion angles per

chain, with a total of 64 offspring per generation. As each

optimization requires on average 400 iterations, this results in

a total of 734 million evaluations per optimization. With an

evaluation time of ±4 min for the knee model directly, this

analysis would be infeasible. Using the ANN as a surrogate

results in an evaluation time of ±1 ms, allowing optimization

in 10 days on the “AMD EPYC 7601 32-core processor.” The

neural network nevertheless requires training with

17,036 training samples and 1,893 validation samples. With

12 parallel workers, this takes about 47 h to sample on “Intel

Xeon CPU E5-2630.”

TABLE 3 Pre-operative planning results with different native safe
zones and surgical precisions. OO = optimization objective; GSP =
global success probability.

SZD SZD&S SZD&K

OO GSP OO GSP OO GSP

RAS 328.2 3.44% 131.7 12.0% 48.1 15.6%

Pr90% 329.0 3.03% 132.1 12.9% 53.6 12.9%
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4 Discussion

We developed a ligament-balanced probabilistic planning tool

that accounts for subject-specific and surgical uncertainty with a

feasible computational cost. Three different native safe zones (SZD,

SZD&S, and SZD&K), representing physiological ligament strains, were

evaluated along using two different surgical transfer techniques (RAS

and Pr90%). Our results show that the OO values and the GSP are

similar between RAS and Pr90%. It is important to note that the RAS

precision quantified by Cosendey et al. (2021) is based on

experimental measurements on sawbones but not in a clinical

setting and documents the precision of the cuts and not the final

implant position. Actual errors are thus most likely larger but are not

available in the literature for all DOFs of the implant position.

With solely accounting for ligament damage, only 3% GSP can

be achieved, meaning that without exact measurements of the

ligament properties, the success probability is reduced by 87%.

Even if an extra constraint on stability is applied, the GSP only

increases to 13%. When squat kinematics are measured, the GSP

does not increase further. The OO is, however, more than halved,

showing that the total variation in the ligament strain is considerably

reduced. Interestingly, the results show that measuring native

kinematics can reduce ligament properties’ uncertainty, but that

solely measuring kinematics during a squat movement is

insufficient. Combining different movements, for example, laxity

trials in several DOFs, could potentially offer a large enough

reduction in ligament properties’ uncertainty. A device allowing

this type of measurement is being studied by Pedersen et al. (2019).

FIGURE 2
Convergence of SA for the critical implant position parameters and success probability. The error bars indicate the variation throughout
50 random samplings.

FIGURE 3
Variation in mean implant position parameters and success probability due to variation in ligament properties accounting for SZD&S (blue) and
due to the surgical precision Pr90% (red). The critical implant position parameters, identified by Bartsoen et al. (2021), are indicated with *.
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They developed an arthrometer that is applied in combination with

a biplanar x-ray system to measure knee joint laxity in four DOFs.

It has to be highlighted that the success probabilities, as

estimated in the current study, do not account for the experience

of the surgeon. The success probabilities indicate the probability of

success when the proposed plan would be blindly executed without

further adjustments of the implant position and/or ligament releases

based on the surgeon’s expertise. Consequently, in the literature,

reported patient satisfaction is higher.

The results of the SA show that the variance in reference strain and

attachment sites causes the small GSP, where the linear stiffness is of

lesser importance. A single most critical ligament could not be

identified, where even the attachment sites of the ACL and PCL

are of high importance evenwhen a PS implant is implanted. The high

importance of ACL and PCL also partially explains the low success

probabilities as their effect cannot be accounted for using a PS implant,

where the cruciate ligaments are sacrificed. The small GSP, while

imposing native squat kinematics, could also partially be explained by

the use of a PS implant, where other studies have shown that it cannot

entirely replicate native kinematics. Zhao et al. (2015), for example,

concluded that the PS implant had an abnormal forward displacement,

insufficient rollback of the lateral femoral condyle, and the tibia

presented insufficient internal rotation during early flexion. Dejtiar

et al. (2020), however, showed that a cruciate retaining (CR) implant is

capable of approximating native kinematics. Therefore, it would be

interesting to perform the same analysis with a CR implant to

investigate how implant type affects the success probability.

This study needs to be considered in light of the following

limitations. The conclusions are based on a single subject. The

computational knee model is based on an in vitro squat simulation,

where only the quadriceps and hamstring muscles are modeled and

considered passive structures through which an external, known

force is applied. A model with active muscles would require the

introduction of extra patient-specific input parameters to the knee

model, which would introduce extra uncertain parameters that have

to be accounted for in the probabilistic knee model.

To allow clinical application of the designed pre-operative

planning process in the future, the native and post-TKA safe

zones need to be verified. The different safe zones are based on

strain measurements and experimental damage testing in ligaments

but have not been linked to patient satisfaction yet.

Another requirement to facilitate clinical application is to

increase computational knee model robustness. Indeed, the current

knee model formulation assumes each ligament with one strand with

TABLE 4 Ten most critical ligament properties (out of 50) for the critical implant position parameters and success probability. The 10 most critical
ligament properties are further classified into the three most critical, three mid-critical, and four least critical.

Output Critical Reference strain Stiffness Attachment

Femur Tibia

Femur A/P Most deepMCL and PFL deepMCL

Mid ALL and PC ACL1

Least ACL0 and supMCL ACL0 and PCL1

P/D Most ALL and PFL PCL1

Mid LCL ACL0 ACL1

Least deepMCL supMCL PFL PCL0

V/V Most ALL and PFL ACL0

Mid LCL ACL0 and PCL0

Least deepMCL and PFL ACL1 and PCL1

I/E Most ALL, deepMCL, and PFL

Mid LCL deepMCL PCL1

Least ACL0, PC, and supMCL ACL0

Tibia P/D Most ALL, deepMCL, and LCL

Mid deepMCL and PFL PCL1

Least PC and PFL ACL0 ACL1

V/V Most ALL and PFL ACL0

Mid LCL ACL0 and deepMCL

Least deepMCL and PC PFL PCL1

Success probability Most ALL, LCL, and PFL

Mid deepMCL deepMCL PCL1

Least ALL ACL0 ACL0 and ACL1
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the exception of ACL and PCLwhere two strands are used. To reduce

the effect of the attachment sites, each ligament could bemodeledwith

multiple strands. As the attachment sites and reference strain are

highly correlated, this approach will also decrease the influence of the

reference strain. If this approach still proves insufficient to further

reduce ligament-balanced implant position uncertainty, the focus of

future research should be on identifying reference strain and

attachment sites prior to surgery to achieve an accurate prediction.

Research has been investigating in vivo measurement techniques to

measure ligament strains. Slane et al. (2017), for example, discussed

ultrasound elastography for measuring knee ligament properties in

vivo. However, issues related to the measurement of 3D ligament

movement using 2D imaging techniques are limiting accurate strain

measurements. Alternatively, the pre-operative planning could be

tuned intra-operatively. RAS or augmented reality (AR) systems could

allow extra measurements of ligament properties through tracking of

passive movements and force measurements. The motion and/or

force data can be converted into an estimation of the ligament

properties as shown in the current study in the estimation of the

set family corresponding to SZD&K. This set family identifies the

ligament properties corresponding to the kinematics of a squat

movement. The same procedure could be followed to quantify a

set family of ligament properties corresponding to other movements

and/or forces as well. As performed in the current study, the

computed set family can be translated into remaining uncertainty

in the ligament strains or other knee model output parameters that

might be of interest.

A final step toward clinical applicability is to further decrease

computational costs. Even though the use of an ANN as a surrogate

for the knee model reduces the computational time of the pre-

operative planning process significantly, its application in clinical

practice is still infeasible as a global optimization with subject-specific

and surgical uncertainty still requires several days. A possibility to

further reduce this is by the application of a single loop scheme—as,

for example, presented by Hong et al. (2022) through their Bayesian

augmented space learning (BASL) method—where a direct

prediction of the optimized mean implant position along with its

remaining uncertainty would be performed. This would allow

prediction of the pre-operatively planned implant position in a

few milliseconds. In addition, the ANN should be trained on a

patient-specific basis. Future versions of the network should therefore

include patient geometry, allowing the definition of one single ANN

for the pre-operative planning of individual (unseen) patients.

5 Conclusion

We developed a ligament-balancing probabilistic planning

tool for TKA that accounts for uncertainty in ligament

properties and surgical precision. Through inverse uncertainty

quantification, a set family of ligament properties was identified

that satisfies different physiologically relevant native safe zones.

We concluded that only a GSP of 12% can be reached, meaning

that without extra measurements of kinematics and/or direct

measurements of ligament properties, uncertainty is too large to

reduce the risk of ligament damage. A SA showed that the

reference strain and to a lesser extent also the attachment sites

were the most critical parameters. However, no single ligament

could be identified as being the most critical parameter.
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