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Abstract11

This paper is concerned with approximating the scalar response of a complex computational model12

subjected to multiple input interval variables. Such task is formulated as finding both the global13

minimum and maximum of a computationally expensive black-box function over a prescribed14

hyper-rectangle. On this basis, a novel non-intrusive method, called ‘triple-engine parallel15

Bayesian global optimization’, is proposed. The method begins by assuming a Gaussian pro-16

cess prior (which can also be interpreted as a surrogate model) over the response function.17

The main contribution lies in developing a novel infill sampling criterion, i.e., triple-engine18

pseudo expected improvement strategy, to identify multiple promising points for minimiza-19

tion and/or maximization based on the past observations at each iteration. By doing so, these20

identified points can be evaluated on the real response function in parallel. Besides, another21

potential benefit is that both the lower and upper bounds of the model response can be ob-22

tained with a single run of the developed method. Four numerical examples with varying complexity23

are investigated to demonstrate the proposed method against some existing techniques, and results indicate24

that significant computational savings can be achieved by making full use of prior knowledge and parallel25

computing.26
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Abbreviations

3-D three-dimensional

BGO Bayesian global optimization

EI expected improvement

EI-MAX expected improvement for maximum

EI-MIN expected improvement for minimum

GP Gaussian process

I-MLQMC interval multilevel quasi-Monte Carlo

LHS Latin hypercube sampling

N-PBGO non-parallel Bayesian global optimiza-

tion

NLML negative log marginal likelihood

PBGO parallel Bayesian global optimization

PEI pseudo expected improvement

PEI-MAX pseudo expected improvement for

maximum

PEI-MIN pseudo expected improvement for min-

imum

PEI-MIN-MAX pseudo expected improvement

for minimum and maximum

T-PBGO triple-engine parallel Bayesian global

optimization

T-PEI triple-engine pseudo expected improve-

ment

TLBO teaching–learning-based optimization

1. Introduction29

Along with the rapid development of computation techniques, deterministic numerical analysis has made30

great progress in various fields over the past several decades [1]. In this context, all parameters of a31

computational model designed to describe underlying structures or systems are typically treated as precise32

(crisp) numbers. This kind of numerical analysis, however, is essentially not suitable for situations where33

non-determinism has to be properly considered, which is the common case for a broad range of modern34

science and engineering disciplines. A typical example of such situations is the design and analysis of35
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engineering systems at an early stage where many aspects could be only imprecisely known. Alternatively,36

non-deterministic numerical analysis is emerging as an exciting research frontier with new opportunities37

and also challenges. Such opportunities and challenges arise throughout the whole analysis, e.g.,38

non-determinism characterization on the input side and response uncertainty quantification39

on the output side.40

In general, three types of approaches are available for modelling non-determinism: probabilistic approach,41

imprecise probabilistic approach and non-probabilistic approach [2]. On the basis of classical probability42

theory and statistical techniques, the probabilistic approach is most widely used. Herein, an uncertain43

parameter is modelled as a random variable with a precisely known probability distribution. Thus, it is44

often challenging to apply the probabilistic approach in reality since a large amount of high-quality data is45

required to infer an accurate probability distribution. Against this background, by generalizing traditional46

probability and statistics concepts, the imprecise probabilistic approach has evolved as a powerful and elegant47

framework for quantifying uncertainty from incomplete information [3, 4]. Within this approach, one needs48

to assign a pair of lower and upper probabilities to an event, rather than a single probability. On the other49

hand, the non-probabilistic approach, such as interval models and fuzzy sets [5], is also gaining increasing50

interest for non-determinism modelling, especially when the available information is limited. With51

the interval concept, a non-deterministic parameter is treated as an interval variable specified by a pair52

of numbers, i.e., the lower and upper bounds, and potentially a function modelling the auto-dependencies53

among multiple interval parameters [6]. Thus, instead of a full probability distribution the analyst only needs54

to determine the bounds and auto-dependency functions, which can be easily and objectively acquired from55

a small number of samples. The present study limits its scope to interval uncertainty.56

There have been plenty of methods developed to propagate interval uncertainty via a computational57

model, which can be roughly classified into four kinds. The first kind of methods is based on using the58

interval arithmetic of Moore, e.g., refer to [7]. Despite its efficiency, the interval calculus cannot trace59

parameter dependency by definition (the so-called dependency problem), which therefore can lead to a60

severe overestimation of the size of a response interval. Recent developments are focused on limiting61
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the overestimation by, e.g., accounting for dependency among interval variables [8–12] or62

using interval fields [13, 14], parameterizing intervals via trigonometric functions [15, 16]63

and representing intervals by affine arithmetic [17, 18], etc. Although these methods are able to64

provide sharp bounds within reasonable computational cost, their applicability is still limited due to the65

intrusive nature of interval arithmetic. The approximate analytical methods that rely on constructing a66

simplified approximation of true response function falls in the second group. Typical examples of such67

methods include, Taylor series expansion methods [19–23] and Chebyshev series expansion methods [24, 25],68

which are intrusive and non-intrusive, respectively. However, these Taylor methods tend to lose accuracy69

when the considered problem involves large uncertainty (i.e.,the widths of interval variables being large)70

and/or highly nonlinear behavior. For these Chebyshev methods, the required number of response function71

evaluations grows exponentially with the number of dimensions. As for the third type, the vertex method72

[26, 27] and interval multilevel quasi-Monte Carlo (I-MLQMC)) [28, 29] are non-intrusive and can produce73

accurate response bounds under certain conditions. The classical vertex method is exact on the premise74

that the response function is monotonic with respect to d interval parameters, while at the cost of 2d model75

evaluations. More strictly, the I-MLQMC method requires a linearity assumption on the response function.76

As such, these two methods suffer from non-linearity and/or dimensionality.77

In the last group, global optimization methods are naturally applicable to the topic of interval numerical78

analysis. In this context, several studies have been conducted by directly using, e.g., genetic algorithm79

[30, 31]. Generally, global optimization algorithms require a large number of model evaluations to find the80

minimum/maximum, and hence can be computationally demanding especially when each such evaluation81

is expensive. To alleviate the computation burden, a cheap-to-evaluate surrogate model can be adopted to82

substitute the original computational model based on some observations. Along this line, Kriging-assisted83

global optimization (formally called Bayesian global optimization (BGO)) algorithms are attracting increas-84

ing attention due to their high efficiency for optimizing expensive black-box functions. A typical BGO85

method starts by building an initial Kriging model for the objective function based on a small number of86

observations, and then refines the initial model by sequentially selecting more updating points according to a87
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infill sampling criterion [32]. Existing studies then focus more on developing efficient infill sampling criteria88

so as to reduce the total number of function evaluations. On this aspect, representative works in the context89

of interval uncertainty propagation include the maximum improvement criterion [33], expected improvement90

criterion [34, 35] and a comparison study of several criteria [36]. It is shown that these methods exhibit91

encouraging features regarding the computational efficiency and accuracy for computationally92

expensive black-box problems over other existing methods. Despite these advantages, one93

of the major limitations of the existing BGO methods is that they are sequential in nature94

and hence unsuitable for parallelization, or at least high-level parallelization, hindering the95

potential benefits from parallel distributed processing.96

In this paper, a parallel Bayesian global optimization (PBGO) method is proposed for estimating the97

response bounds of a computational model in the presence of interval variables. Our main objective is to98

further reduce the computational time of existing BGO methods by making use of parallelism. For this99

purpose, a novel infill sampling criterion is developed to select multiple points at each iteration, and hence100

corresponding model evaluations can be distributed on multiple processing cores simultaneously. Such101

parallelisation is relevant when the model at hand is computationally intensive and parallel102

computing facilities are available. Besides, in contrast to the traditional way of searching the103

lower and upper bounds of a scalar response quantity via two separate optimization problems,104

we consider it only as one problem. Following the developed scheme, the lower and upper bounds can105

be obtained simultaneously with a single run. Last but not least, a Matlab implementation of the developed106

algorithm is also readily available to the public 1.107

The remainder of the paper is organized as follows. Section 2 describes the interval analysis problem to108

be solved in this study. The proposed PBGO method is introduced in Section 3, with its relationship to other109

PBGO methods also being discussed. Four numerical examples are studied in Section 4 to demonstrate the110

performance of the developed method. In Section 5, some concluding remarks and perspectives are given to111

end the paper112

1to be released upon acceptance of the paper
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2. Problem formulation113

Let us consider a computational model represented by a deterministic, continuous, and real-valued func-114

tion y = g(x) : Rd → R. Here the model response y is a scalar quantity of interest, the g-function is115

assumed to be an expensive-to-evaluate black box, and the model input vector x consists of d variables, i.e.,116

x = [x1, x2, · · · , xd].117

Under the assumption that available information on the model inputs is poor or incomplete, we proceed118

to treat them with interval models. For identifying intervals from real observations, one can refer119

to, e.g., [37, 38]. An interval vector xI = [xI1, x
I
2, · · · , xId] ∈ IRd can be defined as:120

xI = [x,x] =
{
x ∈ Rd|x ≤ x ≤ x

}
, (1)

and its component xIi satisfies

xIi = [xi, xi] = {x ∈ R|xi ≤ x ≤ xi} , i = 1, 2, · · · , d,

where x = [x1, x2, · · · , xd] and x = [x1, x2, · · · , xd] represent the lower and upper bounds of xI , respectively.

Further, the midpoint xC and radius xR of xI can be defined as:

xC =
x+ x

2
,

xR =
x− x

2
.

It follows that the interval vector defined in Eq. (1) can also be rewritten in terms of xC and xR as:

xI = xC + δx,

where δx ∈ [−1, 1]xR. For convenience, the interval variables are assumed to be independent.121

In fact, for dependent interval variables one can transform them into independent ones by122

applying a suitable transformation, e.g., [39].123

With the interval vector xI as input, the g-function will also give rise to a interval output yI in our124

context, i.e., yI =
{
y ∈ R|y = g(x),x ∈ xI

}
. The resulting interval can be fully characterized by its lower125

and upper bounds, which correspond to the worst or best case of yI that we might be interested in. Therefore,126
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the main objective is to determine the lower and upper bounds of yI , which are naturally defined as the127

solutions of the following two optimization problems:128

y = min
x∈xI

{y|y = g(x)} , (2)

129

y = max
x∈xI

{y|y = g(x)} , (3)

where y and y can be interpreted as the global minimum and maximum of y = g(x) subject to x ∈ xI ,130

respectively.131

Although their definitions are rather simple, the analytical solutions to y and y are unavailable for a132

general black-box problem. Thus, numerical approximation techniques are necessary and useful tools for133

practical applications. Existing numerical methods, however, still suffer from their respective limitations134

as discussed in the introduction section. This motivates us to develop a PBGO method for propagating135

interval uncertainty in the following section.136

3. Triple-engine parallel Bayesian global optimization137

In this section, the propagation of interval uncertainty via an expensive black-box computational model is138

treated by a kind of Bayesian numerical method, i.e., the so-called Bayesian global optimization (BGO) [32].139

Specifically, an efficient method, termed “Triple-engine parallel Bayesian global optimization” (T-PBGO),140

is proposed to approximate the lower and upper bounds of the model output yI (defined in Eqs. (2) and141

(3)) when the model input is characterized by a interval vector xI (defined in Eq. (1)). The proposed142

method makes use of the Gaussian process model and a newly developed infill sampling criterion, as will be143

introduced in what follows. For notational simplicity, the superscripts of xI and yI are omitted when there144

is no confusion.145

3.1. Gaussian process model146

Under the black-box assumption, no additional knowledge on the inner structure of the g-function is

available and the only possibility for us is to evaluate it at some points. That is, we know nothing about

the behavior of the g-function (e.g., concavity and linearity) before seeing any observations, let along its
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minimum and maximum. The lack of knowledge on g(·) is referred to as a kind of epistemic uncertainty

simply because it is numerically unknown until we actually evaluate it, and hence reduceable. Following

a Bayesian approach, our prior beliefs on the g-function can be modeled by assigning a Bayesian prior

distribution. In this study, we adopt a Gaussian process (GP) prior over g. In the following, we only give

a brief introduction to the GP model, and for further details the reader can refer to [40]. The GP prior

assumes that the g-function is a realization of a GP indexed by x. To formalize this, we write the GP prior

as:

ĝ0(x) ∼ GP(m0(x), k0(x,x′)) = m0(x) + Z(x),

where ĝ0 denotes the prior distribution of g; m0(x) is the mean function of the GP prior; Z(x)

is a stationary GP with zero-mean and covariance function k0(x,x′). The GP prior is completely

characterized by its prior mean function m0(x) and covariance function k0(x,x′). The prior mean function

reflects the general trend of the GP model, while the prior covariance function encodes the key features of

the g-function, e.g., stationarity, isotropy, smoothness and periodicity. There are many kinds of specific

functional forms available in literature for the prior mean and covariance functions [40]. In

this paper, without loss of generality, the prior mean function is assumed to be a constant (i.e., m0(x) = β)

and the prior covariance function is of squared exponential form expressed as:

k0(x,x′) = σ2
g exp

[
−1

2
(x− x′)Σ−1 (x− x′)T

]
,

where σ2
g is the overall variance with σg > 0; Σ = diag

(
l21, l

2
2, · · · , l2d

)
with li > 0 being the characteristic147

length-scale in i-th dimension; and diag(·) denotes a diagonal matrix whose entries are equal to the argument148

values. The d+ 2 free parameters β, σ2
g and {li}di=1 are referred to hyper-parameters whose values need to149

be determined, denoted by θ =
{
β, σ2

g , l1, l2, · · · , ld
}

.150

Now assume that we have evaluated the g-function at several (e.g., n ∈ Z+) points. We aggregate the151

sampled points in a n × d matrix X with its j-th row being the j-th point x(j), and the corresponding152

g-function values in a n × 1 vector y with its j-th element being y(j), where y(j) = g(x(j)). The set of153
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hyper-parameters can then be estimated by minimizing the negative log marginal likelihood (NLML) [40]:154

θ̂ = arg min
θ

(− log [p(y|X,θ)]) , (4)

with155

− log [p(y|X,θ)] =
1

2
(y − β)TK−10 (y − β) +

1

2
log [|K0|] +

n

2
log [2π] , (5)

where K0 is a n× n covariance matrix with its (i, j)-th entry being [K0]ij = k0(x(i),x(j)). Eq. (4) can be156

solved by gradient-based optimization schemes since the derivatives of NLML in Eq. (5) with respect to θ157

are analytically tractable.158

Conditioning on the observations (X,y) and GP prior will give rise to a posterior distribution ĝn of g.

This distribution still follows a GP ĝn(x) ∼ GP(mn(x), kn(x,x′)), with the posterior mean and covariance

functions as follows:

mn(x) = m0(x) + k0(x,X)K−10 (y −m0(X)),

kn(x,x′) = k0(x,x′)− k0(x,X)K−10 k0(x′,X)T,

where k0(x,X) is a 1×n covariance vector between x and X, whose j-th element is k0(x,x(j)); k0(x′,X) is159

similarly defined; m0(X) is a n×1 mean vector, whose j-th element is m0(x(j)). It is seen that via a Bayesian160

treatment a full predictive distribution ĝ(x) ∼ N (mn(x), σ2
n(x)) is now available, where the posterior mean161

function mn(x) can be used as a predictor, while the posterior variance function σ2
n(x) = kn(x,x) can162

measure the prediction uncertainty.163

3.2. Proposed triple-engine pseudo expected improvement criterion164

In order to make inference about the minimum and maximum of the g-function using as few function165

evaluations as possible, our main concern is to design an efficient infill sampling criterion that can effectively166

suggest future evaluation points based on the posterior GP (implicitly the past observations). In particular,167

we seek to identify a batch of informative and diverse points at each iteration. Hence, multiple evaluations168

of the g-function can be distributed on several cores simultaneously so as to reduce the overall wall-clock169

time. For convenience of illustration, we assume that the number of points we would like to select at170
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each iteration is a even number q in sequel, though it should not to be. Our purposes are achieved by171

generalizing the pseudo expected improvement (PEI) criterion [41], which has been recently developed in172

the field of global optimization, to an enhanced version, termed ‘triple-engine pseudo expected improvement’173

(T-PEI) criterion. The T-PEI criterion actually involves a set of three infill sampling criteria174

that we call them ‘engines’, as discussed below.175

3.2.1. Engine 1: PEI for minimum176

The first engine is the PEI criterion originally developed in [41] for global minimization177

problems (denoted by PEI-MIN for convenience). In the present study, this criterion will178

be directly used to select q promising points for the propose of minimizing the g-function179

wherever applicable.180

Let ymin = min1≤j≤n y
(j) indicate the minimum value of y observed so far. The improvement181

at point x over the current best solution ymin can be defined as [32]:182

Imin(x) = max (ymin − ĝn(x), 0) =


ymin − ĝn(x), if ĝn(x) < ymin

0, otherwise

, (6)

which is a random variable at site x. The so-called expected improvement (EI) over the current183

minimum ymin consists of taking expectation of Imin(x), and can be derived in a closed-form184

expression as [32]:185

EImin(x) = E [Imin(x)] = (ymin −mn(x))Φ

(
ymin −mn(x)

σn(x)

)
+ σn(x)φ

(
ymin −mn(x)

σn(x)

)
, (7)

where φ(·) and Φ(·) are the probability density function and cumulative distribution function186

of the standard normal variable, respectively. The next best point be acquired within the187

minimization process can be selected by maximizing EImin(x), i.e.,188

x
(n+1)
min = arg max

x∈xI

EImin(x). (8)

This criterion is referred to as EI-MIN for the sake of convenience. Note that the first term of189

EImin(x) (see Eq. (7)) prefers the point whose prediction mn(x) is small, whereas the second190
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term prefers the point whose variance σ2
n(x) is large.Thus, the EI-MIN criterion gives an191

elegant balance between exploitation (i.e., local search) and exploration (i.e., global search).192

Despite this, the EI-MIN criterion can only produce one single point at each iteration, and193

hence not suitable for parallelization.194

To overcome the limitation, the basic idea of the PEI-MIN criterion is to modify the initial195

EI function (Eq. (7)) sequentially, by multiplying it by an influence function. That is, the first196

updating point x
(n+1)
min is still generated by using the initial EI-MIN criterion (Eq. (8)). Then,197

the second one x
(n+2)
min can be identified by maximizing a modified EI function that considers198

the possible impact of the first updated point bringing to the EI function. In such a sequential199

way, a desired number of points can be obtained at each iteration without evaluating the g-200

function at any newly selected points. Thus, a good influence function should capture the real201

influence of the newly identified points on the initial EI function as much as possible, while202

remaining computationally tractable. The influence function proposed in [41] is motivated by203

the fact that the EI function (Eq. (7)) is zero at the sampled points, and positive in between.204

After q− 1 points have been identified, the synthesized influence function for the q-th point is205

formulated as [41]:206

IF (x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ) =

q−1∏
j=1

[
1− ρ

(
x,x

(n+j)
min

)]

=

q−1∏
j=1

[
1− exp

[
−1

2

(
x− x(n+j)

min

)
Σ−1

(
x− x(n+j)

min

)T]]
,

(9)

where ρ
(
x,x

(n+j)
min

)
is the correlation function between two points x and x

(n+j)
min . It should be207

noted that the influence function is zero at the q−1 newly selected points x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ,208

and approaches to one when far away from these points. The PEI function for the q-th point209

can be defined as [41]:210

PEImin(x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ) = EImin(x)× IF (x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ). (10)

The PEImin function can be interpreted as an approximation of the ‘real’ EImin function

because it is constructed without evaluating the g-function at these q− 1 points and updating
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the GP model (i.e., re-evaluating the hyper-parameters). Besides, it reduces to the standard

EImin function when q = 1, and hence the standard EImin function can be seen as a special

case of the PEI function. The q-th point can be selected by maximizing the PEImin function

such that:

x
(n+q)
min = arg max

x∈xI

PEImin(x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ).

3.2.2. Engine 2: PEI for maximum211

Inspired by the PEI-MIN criterion, we can also define a similar criterion to select q promis-212

ing points for maximizing the g-function if needed. The resulting criterion is called PEI-MAX,213

which is regarded as the second engine.214

Let ymax = max1≤j≤n y
(j) denote the maximum value of y among the past n observations. In215

analogy to Eq. (6), the improvement at point x beyond the current best solution ymax can be216

defined as:217

Imax(x) = max (ĝn(x)− ymax, 0) =


ĝn(x)− ymax, if ĝn(x) > ymax

0, otherwise

. (11)

The EI for the maximum is analytically derived in closed form as follows:218

EImax(x) = E [Imax(x)] = (mn(x)− ymax)Φ

(
mn(x)− ymax

σn(x)

)
+ σn(x)φ

(
mn(x)− ymax

σn(x)

)
. (12)

However, by maximizing the EImax function (the EI-MAX criterion), only one point for max-219

imization is produced. In order to obtain a batch of q points, the the first point x
(n+1)
max can be220

identified by x
(n+1)
max = arg maxx∈xI EImax(x). The following q − 1 points should be sequentially221

selected by using a modified EImax function. In analogy to the PEImin function (Eq. (10)), we222

can define the PEImax function for the q-th point such that:223

PEImax(x;x(n+1)
max ,x(n+2)

max , · · · ,x(n+q−1)
max ) = EImax(x)× IF (x;x(n+1)

max ,x(n+2)
max , · · · ,x(n+q−1)

max ), (13)

where the IF (·) function is defined in Eq. (9). The q-th point x
(n+q)
max is obtained by:

x(n+q)
max = arg max

x∈xI

PEImax(x;x(n+1)
max ,x(n+2)

max , · · · ,x(n+q−1)
max ).
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3.2.3. Engine 3: PEI for both minimum and maximum224

As we would like to infer both the minimum and maximum simultaneously, rather than in225

a sequential order, promising points for both extrema should be identified within one iteration226

until some predefined criteria are satisfied. Based on the PEI-MIN and PEI-MAX criteria, a227

infill sampling criterion for both minimizing and maximizing the g-function can be developed.228

This criterion is denoted by PEI-MIN-MAX, and it is served as the third engine.229

The proposed PEI-MIN-MAX criterion proceeds as follows. The first updating point is230

identified by x
(n+1)
min = arg maxx∈xI EImin(x), which is used for minimization. Likewise, the sec-231

ond one (the first point for maximization) is computed by maximizing the PEImax(x) function,232

i.e., x
(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
min ). The third point (the second for minimization) is233

produced by maximizing the PEImin function, i.e., x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
max ),234

and the fourth one (the second point for maximization) is determined by maximizing the235

PEImax function, i.e., x
(n+4)
max = PEImax(x;x

(n+1)
min ,x

(n+2)
max ,x

(n+3)
min ). As the process goes on, a de-236

sired q (≥ 2) updating points can be obtained sequentially ahead of observing their g-function237

values. Note that one can also start the first point with x
(n+1)
max , and then generate a set of q238

points (x
(n+1)
max ,x

(n+2)
min ,x

(n+3)
max , · · · ) following a similar procedure.239

3.3. Proposed T-PBGO algorithm240

Based on the GP model and T-PEI infill sampling criterion, we propose a T-PBGO algorithm for inter-241

val analysis. The numerical implementation procedure of the proposed T-PBGO algorithm, which is also242

illustrated in Fig. 1, includes the following main steps:243

244

Step 1: Define the problem and initialize the optimization245

Define the minimization and maximization problem to be solved in terms of its ojective246

function g(x) and feasible region xI , as in Eqs. (2) and (3). Initialize the parameters of the247

proposed T-PBQO method, namely, the initial sample size n0, and two thresholds εmin and248
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εmax. Details about these parameters and possible numerical values for them are discussed249

below.250

Step 2: Generate an initial training dataset251

Generate an initial set of n0 samples using Latin hypercube sampling (LHS) over xI , denoted by a n0×d252

matrix X =
{
x(j)

}n0

j=1
. Observations of the g-function at these points can be computed in parallel, which253

are denoted by a n0 × 1 vector y =
{
y(j)
}n0

j=1
with y(j) = g(x(j)). The initial training dataset is defined as254

D = {X,y}. Set n = n0.255

As we seek to enlarge the training dataset sequentially, the initial size n0 should not be chosen too large256

and it is usually set as 5-10.257

Step 3: Construct a GP model for the g-function258

Construct a GP model GP(mn(x), kn(x,x′)) for y = g(x) based on the training dataset D. This step259

mainly consists of specifying the hyper-parameters by using the maximum likelihood estimation. All the260

numerical examples in this study are performed with the fitrgp function in Matlab Statistics and Machine261

Learning Toolbox.262

Step 4: Check the predefined criteria and select the engine263

In this stage, we first need to check whether the GP has achieved reasonable accuracy at both the264

minimum and maximum. If not, the GP should be then improved further, and this improvement means265

computing additional points. Thus, it should be clear what kind of additional points is still required, for266

minimization, maximization or both. Let ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) denote the267

minimum and maximum values of y observed so far, respectively. Compute the maxima of EImin(x) and268

EImax(x) by: δy1 = maxx∈xI EImin(x) and δy2 = maxx∈xI EImax(x). In this study, five criteria consisting269

in judging the ratios of the maximum expected improvements (i.e., δy1 and δy2) to the best current minimum270

and maximum (i.e., ymin and ymax) respectively, are given as follows:271

•Criterion 1 (Stopping criterion). If both δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax are satisfied for two272

successive iterations, go to Step 7; Else, check Criterion 2.273

• Criterion 2 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still not274
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accurate enough for estimating both the minimum and maximum and one should go to Step 5c; Else, check275

Criterion 3.276

• Criterion 3 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be still not277

accurate enough for both estimating the minimum and maximum (due to potential fake convergence) and278

one should go to Step 5c; Else, check Criterion 4.279

• Criterion 4 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be still not280

accurate for estimating the minimum one should go to Step 5a; Else, check Criterion 5.281

• Criterion 5 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still not282

accurate enough for estimating the maximum one should go to Step 5b.283

In Criteria 1-5, δ is a small number to ensure that the denominators are always greater than zero, which284

is specified as 10−6 in this study. It should be noted that these two quantities δy1
|ymin|+δ and δy2

|ymax|+δ play a285

pivotal role for our decision-making. The first one represents the ratio of maximum expected improvement286

for the minimum to the current absolute minimum, while the second one is the ratio of maximum expected287

improvement for the maximum to the current absolute maximum, if δ is treated as zero. When the current288

GP model is relatively accurate for both the minimum and maximum, it is expected that these two ratios289

should be very small. Thus, it is appropriate to judge the convergence of the proposed method by monitoring290

these two ratios. According to our experience, εmin and εmax can be set in the order of 0.001.291

Step 5a: Identify q updating points for minimization (Engine 1)292

Identify q updating points for minimization by using the PEI-MIN criterion. The first point is selected293

by x
(n+1)
min = arg maxx∈xI EImin(x), the second one x

(n+2)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ), and the294

third one x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
min ), etc. The q updating points can be denoted by295

Xadd =
{
x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q)

min

}
. Then, go to Step 6.296

Step 5b: Identify q updating points for maximization (Engine 2)297

Identify q updating points for maximization by using the PEI-MAX criterion. The first point is selected298

by x
(n+1)
max = arg maxx∈xI EImax(x), the second one x

(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
max ), and the299

third one x
(n+3)
max = arg maxx∈xI PEImax(x;x

(n+1)
max ,x

(n+2)
max ), etc. The q updating points can be denoted by300
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Xadd =
{
x
(n+1)
max ,x

(n+2)
max , · · · ,x(n+q)

max

}
. Then, go to Step 6.301

Step 5c: Identify q updating points for both minimization and maximization (Engine 3)302

Identify q updating points for both minimization and maximization by using the PEI-MIN-MAX crite-303

rion. The first point is selected by x
(n+1)
min = arg maxx∈xI EImin(x), the second one x

(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
min ),304

and the third one x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
max ), etc. The q updating points can be de-305

noted by Xadd =
{
x
(n+1)
min ,x

(n+2)
max , · · · ,x(n+q)

max

}
. Then, go to Step 6.306

Step 6: Enrich the training dataset307

The q updating points Xadd are evaluated on the g-function in parallel, and the corresponding ob-308

servations are denoted by yadd =
{
y(n+1), y(n+2), · · · , y(n+q)

}
. The training dataset D is enriched by309

Dadd = {Xadd,yadd}, i.e., D = D ∪Dadd. Set n = n+ q and then go to Step 2.310

Step 7: Record results and end the algorithm311

Record ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) as approximate solutions to the lower and upper312

bounds of yI respectively, and end the algorithm.313

314

In Steps 4 and 5a-5c, the involved optimization problems are solved by a nature-inspired315

global optimizer, called Teaching–learning-based optimization (TLBO) [42], as they are usually316

much more cheaper compared to one call of the computational model. As the proposed method317

is rooted in the classical BGO method, its theoretical analysis may refer to, e,g., [43], which,318

however, is beyond the scope of the present study.319

The proposed method has four major advantages. First, the technique often requires relatively few g-320

function evaluations. This is possible because one can incorporate prior knowledge to explore the design321

space. Second, our method allows a high-level parallelization as the proposed T-PEI criterion is compu-322

tationally tractable for selecting multiple informative and diverse points. This feature further makes the323

method time-saving when parallel computing is available. Third, the proposed method is derivative-free and324

directly works with black-boxes, and thus is easy to implement and widely applicable (e.g., no matter the325

g-function is linear or non-linear and how large the supports of the input intervals are). Fourth, accurate326
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Construct a GP model ŷ(x) ∼ GP(mn(x), kn(x,x′))
based on D

Compute maxima of EImin(x) and EImax(x) by:
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Figure 1: Flowchart of the proposed T-PBGO method.

approximate solutions to both lower and upper bounds of model response can be obtained with only one327

single run of the proposed algorithm.328

3.4. Relationship to existing PBGO approaches329

With the emergence of the classical BGO (originally called efficient global optimization)330

[32], there has been an growing interest to enable its capability of parallel processing. Repre-331

sentative works of PBGO include the q-EI criterion [44–46], multi-modal EI criterion [47, 48],332

PEI [41], Kriging Believer or Constant Liar strategy [45] and multiple surrogate assisted ap-333

proach [49, 50], etc. The T-PEI criterion in the proposed T-PBGO method can be regarded as334

an improved PEI. The difference between the proposed method and the other PBGO methods335

is significant. The objective of the proposed method is to obtain both the minimum and maxi-336

mum in one single run, while the other methods are only designed for minimum or maximum,337

not both.338
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4. Numerical examples339

In order to illustrate and verify the proposed method, four numerical examples are studied in this section.340

These examples cover a wide range of types, from simple test problems to real-world applications. In all341

numerical examples, the proposed method is compared with several existing methods in terms of efficiency342

and accuracy. Besides, we propose a non-parallel BGO (N-PBGO) (given in Appendix A) as a potential343

competitor for the proposed method, which is also conducted for comparison.344

4.1. Example 1: A one-dimensional test function345

The first example consists of a test function with one interval:

y = g(x) = (2x− 1)
2

sin
(

4πx− π

8

)
,

where x ∈ [0, 1]. As can also be seen in Fig. 2, the g-function is multi-modal and has multiple maxima and346

minima.347

The lower and upper bounds of y are computed by the analytical method, vertex method, genetic348

algorithm, N-PBGO and proposed T-PBGO method (n0 = 5 and εmin = εmax = 0.002). The results349

are summarized in Table 1 together with the total number of function evaluations N , and the number of350

iterations N?. Although the vertex method outperforms the other numerical methods in terms of both N351

and N?, it produces totally wrong estimates for the response bounds. The inaccuracy of the interval method352

is caused by its underlying assumption that y should be monotonic with respect to x. As a representative353

of nature-inspired optimization algorithms, the genetic algorithm is able to yield accurate results, but at354

the expense of large computation cost. The N-PBGO method requires a relatively small number of function355

evaluations (N = 16), while still providing good results for both the lower and upper bounds. The N-356

PBGO method, however, is limited by its non-parallelism. On the contrary, the proposed T-PBGO method357

can overcome this limitation by taking advantage of the developed infill sampling criterion (i.e., T-PEI).358

Compared to N-PBGO, T-PBGO can significantly reduce the function evaluations in terms of N?, while still359

maintaining high accuracy. In addition, it also can be found that N? gradually decreases with the increase360

of q, and remains the same when q = 8, 10, though N also increases non-monotonously.361
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Table 1: Interval analysis for Example 1 by different methods.

Method Lower bound Upper bound N N? Reference

Exact solution −0.7081 0.5197 - - -

Vertex method (q = 2) −0.3827 −0.3827 2 1 [26]

Genetic algorithm (q = 10) −0.7081 0.5197 520 + 520 = 1040 104 [51]

N-PBGO (q = 1) −0.7081 0.5197 5 + 6 + 5 = 16 16 Appendix A

Proposed method (T-PBGO)

q = 2 −0.7081 0.5197 5 + 8 = 13 7 -

q = 4 −0.7081 0.5197 5 + 16 = 21 6 -

q = 6 −0.7081 0.5197 5 + 24 = 29 5 -

q = 8 −0.7081 0.5197 5 + 24 = 29 4 -

q = 10 −0.7081 0.5197 5 + 30 = 35 4 -

Note: N = the total number of g-function evaluations, and N? = the number of iterations

To visually illustrate the proposed method, one special case is considered here (i.e., q = 4). It can be362

observed from Fig. 2 that the proposed method gradually approaches to the exact bounds as the iterative363

process goes on. Besides, these added points are more densely distributed around the global minimum and364

maximum, and thereby informative for our purposes.365
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Figure 2: Illustration of the proposed method (q = 4) in Example 1: (a) True function, initial points and added points identified

by T-PEI criterion; (b) Exact bounds and approximate bounds after each iteration.
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4.2. Example 2: A two-dimensional test function366

The second example takes a test function with two intervals [21]:

y = g (x) = (1.5x1 − 2)
2 − (x2 − 3)

2
+ x1x2 + 10 sin (2πx1) + 10 sin (2πx2) ,

where x1, x2 ∈ [2, 5]. As shown in Fig. 3, the test function is highly nonlinear and has several367

local optima over the prescribed region.368

Figure 3: Plot of the two-dimensional test function in Example 2.

The lower and upper bounds of y are computed by several methods, as listed in Table369

2. The exact response bounds of y are obtained as −8.10 and 59.95. The genetic algorithm370

can yield accurate results, but at the expense of 4000 g-function evaluations. Although the371

classical vertex method requires the minimum number of g-function evaluations among all the372

numerical methods, it gives completely wrong estimates for the lower and upper bounds. At373

the cost of 6912 g-function calls (the largest among all the numerical methods), the subinterval374

method is able to produce acceptable results. The subinterval decomposition analysis method375

yields close results to these of the subinterval method, while requires significantly less g-376

function evaluations. For the N-PGBO method, faily good results can be produced using a377

total number of 74 g-function evaluations, and 65 iterations. The proposed T-PBGO method378
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(n0 = 10, εmin = 0.002 and εmax = 0.001) is capable of generating quite accurate lower and upper379

bounds, while reducing the number of iterations down to 9 when q = 8.380

Table 2: Interval analysis results for Example 2 by different methods.

Method Lower bound Upper bound N N? Reference

Exact solution -8.10 59.95 - - -

Genetic algorithm -8.10 59.95 4000 - Tab. 7 in [21]

Vertex method (q = 4) 4.00 51.25 4 1 [26]

Subinterval method -8.70 60.39 6912 - Tab. 7 in [21]

Subinterval decomposition analysis -8.55 58.81 97 - Tab. 7 in [21]

N-PBGO (q = 1) -8.01 59.92 10 + 42 + 22 = 74 65 Appendix A

Proposed method (T-PBGO)

q = 2 -8.08 59.94 10 + 58 = 68 30 -

q = 4 -8.08 59.94 10 + 72 = 82 19 -

q = 6 -8.09 59.93 10 + 72 = 82 13 -

q = 8 -8.10 59.94 10 + 80 = 90 9 -

q = 10 -8.10 59.93 10 + 90 = 100 10 -

4.3. Example 3: A transmission tower subjected to wind loads381

This example consists of a transmission tower subjected to wind loads (shown in Fig. 4), which is modified

from Ref. [52]. The tower is modelled as a three-dimensional (3D) truss structure with 24 joints and 80

elements in OpenSees. Three kinds of members, i.e., columns, diagonal members and horizontal members,

are included in the model, the cross-sectional area of which are denoted as A1, A2 and A3, respectively.

The geometry of the model is shown in Fig. 4(a). The wind effect acting on the tower is simplified to four

equivalent static loads at the top four nodes, and inclined by θ
◦

relative to the x-axis (Fig. 4(b)). The

constitutive law of the steel material adopts the bi-linear model, as depicted in Fig. 4(c). Eight interval

variables are included in the 3D truss model, which are descried in Table 3. The response of interest is
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defined as the horizontal displacement of node A, i.e.,

y = g(P, θ, Fy, E, b, A1, A2, A3) =
√
u2A,x + u2A,y,

where uA,x and uA,y denote the displacements of node A in x and y directions, respectively.382
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Figure 4: A transmission tower subject to wind loads: (a) 3D truss model; (b) loading at the top of tower; (c) bi-linear

constitutive model.

The bounds of y are solved by several methods, and the results are summarized in Table 4. The particle383

swarm optimization (q = 10) is used to provide reference results for the bounds. For the proposed T-PBGO384

method, we set the user-specified parameters as: n0 = 10, εmin = 0.002 and εmax = 0.001. The vertex385

method requires 256 g-function calls, which, however, greatly underestimates the upper bound. Both N-386

PBGO and T-PBGO can give close results to these of particle swarm optimization. The N-PBGO method is387
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Table 3: Interval variables for Example 3.

Variable Description Interval Unit

P Wind load [100, 200] kN

θ Angle between the load direction and the x-axis [−45, 45]
◦

Fy Yield strength of steel [300, 400] MPa

E Young’s modulus of steel [1.8, 2.4]× 105 MPa

b Strain hardening ratio [0.015, 0.025] -

A1 Cross-sectional area of the column members [4000, 5000] mm2

A2 Cross-sectional area of the diagonal members [3000, 4000] mm2

A3 Cross-sectional area of the horizontal members [2000, 3000] mm2

computationally advantageous in terms of N among all methods, while the proposed T-PBGO can further388

reduce N? by taking advantage of its parallelism.389

Table 4: Interval analysis results for Example 3 by different methods.

Method Lower bound/mm Upper bound/mm N N? Reference

Particle swarm optimization (q = 10) 11.9592 57.2421 1920 + 3840 = 5760 576 [51]

Vertex method (q = 10) 11.9592 44.3887 256 25.60 [26]

N-PBGO (q = 1) 11.9592 57.2421 10 + 9 + 5 = 24 24 Appendix A

Proposed method (T-PBGO)

q = 2 11.9592 57.2403 10 + 22 = 32 16 -

q = 4 11.9592 57.2421 10 + 28 = 38 10 -

q = 6 11.9592 57.2372 10 + 36 = 46 8 -

q = 8 11.9592 57.2421 10 + 40 = 50 7 -

q = 10 11.9760 57.2388 10 + 60 = 70 7 -

4.4. Example 4: A spatial frame with viscous dampers subjected to earthquake390

The last example considers a spatial frame with viscous dampers subjected to earthquake, as shown in

Fig. 5. The 3-D finite element model is developed in OpenSees, the geometry of which can be found in
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Fig. 5(a). Each beam/column member is modelled with an elastic beam-column element with cross section

IPE270/IPB300 (Fig. 5(b)/(c)). For each viscous damper (see Fig. 5(d)), a two-node link element is used

with the viscous damper material. We only consider the self weight as the mass source for the columns,

while for beams the mass source is determined based on “self weight + dead load + 0.2 live load”. The

structure is subjected to a base acceleration corresponding to the N-S component of the El-Centro 1940

earthquake, as shown in 5(e). The ground motion is applied along the direction with a rotation angle θ
◦

with respect to the y-axis (Fig. 5(a)). As summarized in Table 5, eleven interval variables are involved in

this example. Of interest is the maximum horizontal displacement of node A, i.e.,

y = g(θ,AF,DL,LL,KD, CD, α, ρ, E, v, ζ) = max
t

√
u2A,x(t) + u2A,y(t),

where uA,x(t) and uA,y(t) denote the displacements of node A in x and y directions, respectively.391

Table 5: Interval variables for Example 4.

Variable Description Interval Unit

θ Angle between the earthquake direction and the y-axis [−45, 45] ◦

AF Amplification factor of the earthquake ground motion [0.5, 1.5] -

DL Floor dead load [4, 5] kN/m2

LL Floor live load [2, 3] kN/m2

KD Axial Stiffness of the viscous damper [3, 4]× 104 kN/m

CD Damping coefficient of the viscous damper [20, 30] kN(s/m)α

α Velocity exponent [0.2, 0.4] -

ρ Density of steel [7.8, 7.9]× 103 kg/m3

E Young’s modulus of steel [1.8, 2.2]× 105 MPa

v Poisson’s ratio [0.25, 0.30] -

ζ Damping ratio [0.02, 0.04] -

The bounds of the model response y are computed by the particle swarm optimization, vertex method,392

N-PBGO and T-PBGO (n0 = 10, εmin = 0.002 and εmax = 0.001), and the results are summarized in Table393

6. The reference solution is taken from the particle swarm optimization method. The vertex method is able394
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Figure 5: A spatial frame with viscous dampers subject to earthquake: (a) 3D frame model; (b) IPE270 for beams; (c) IPB300

for columns; (4) Viscous Damper; (e) N-S component of El Centro earthquake (1940)

to produce good estimates, but requires a large number of g-function evaluations (N = 2048 and N? = 204.8)395

in this example. Compared to the N-PBGO method and vertex method, the proposed T-PBGO method can396

significantly reduce the number of g-function calls per core, though the total number of g-function calls may397

increase (e.g., q = 4, 8) relative to the N-PBGO method. Besides, the proposed method still gives desirable398

results for the response bounds. It should be emphasized that N? does not decrease monotonically as q399

increases. This means that there may be an optimal parallelization level q that minimizes N?, e.g., q = 6 in400

the example.401
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Table 6: Interval analysis results for Example 4 by different methods.

Method Lower bound/mm Upper bound/mm N N? Reference

Particle swarm optimization (q = 10) 11.9762 137.4651 3000 + 2400 = 5400 540 [51]

Vertex method (q = 10) 12.0084 137.4651 2048 204.8 [26]

N-PBGO (q = 1) 12.0929 137.3746 10 + 14 + 4 = 28 28 Appendix A

Proposed method (T-PBGO)

q = 2 12.0483 137.4651 10 + 14 = 24 12 -

q = 4 12.0084 137.2062 10 + 24 = 34 9 -

q = 6 12.0489 137.4651 10 + 18 = 28 5 -

q = 8 12.0063 137.4651 10 + 32 = 42 6 -

4.5. Finial remarks402

In practical applications, the g-function can be rather expensive-to-evaluate and the com-403

putational budget is limited. In such cases, one may need to prespecify optimal values for404

the parameters n0, q, εmin and εmax before running the proposed method in order to save the405

computational time, while remaining a desired level of accuracy. As a rule of thumb, the initial406

sample size n0 can be set as 10. As observed in the four numerical examples, the number of407

iterations N? does not decrease monotonically with q and takes its minimum value when q = 8408

in most cases. Therefore, q = 8 is recommended in case that at least 8 cores are available.409

The two thresholds εmin and εmax not only influence the the efficiency of the proposed method,410

but also the accuracy, The smaller εmin and εmax are, the proposed method usually requires411

more iterations and more accurate results can be obtained. According to our experience,412

εmin = 0.002 and εmax = 0.002 can be adopted.413

5. Conclusions414

In this study, a triple-engine parallel Bayesian global optimization (T-PBGO) method is proposed for415

efficient interval numerical analysis, especially when the computational model is a expensive-to-416

evaluate black box. The advancement of the proposed method lies in utilizing the Gaussian process (GP,417
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also known as Kriging) prior for the expensive black-box g-function and an acquisition function (or infill418

sampling criterion) that can suggest promising points to be evaluated next. To order to make full use of prior419

knowledge and parallel computing, the main contribution of this paper is the development of a multi-points420

selection strategy, called ‘triple-engine pseudo expected improvement’ (T-PEI), which can select a batch of421

informative and diversity points for minimization and/or maximization at each iteration. Four numerical422

examples are investigated to demonstrate the proposed method. The main advantages of T-PBGO can be423

summarized as follows:424

(i) The proposed method usually requires less g-function evaluations to achieve the same accuracy com-425

pared to non-Bayesian methods, due to its ability to exploit prior knowledge;426

(ii) Compared to N-PBGO, T-PBGO allows for identifying multiple points at each iteration, and hence427

could be more efficient when parallel computing is available;428

(iii) The developed method is non-intrusive in nature (directly works with black-box problems), and there-429

fore easy-to-implement and broadly applicable;430

(iv) Both lower and upper bounds can be obtained with one single run of the proposed method.431

However, the proposed method still has several major limitations. First, T-PBGO typically works only432

well in low dimensions (typically, d < 20), and for high-dimensional problems new developments are needed.433

Second, as the parallelization level q and the size of training dataset increase, optimizing the T-PEI criterion434

can be time-consuming. Third, only the bounds of a single model response can be captured by the proposed435

method in its current form. Future works can be done along these directions.436
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Appendix A. Non-parallel Bayesian global optimization446

The traditional Bayesian global optimization is sequential in nature, which means that only one update447

point is identified at each iteration. Therefore, it cannot take advantage of parallelism. Besides, finding the448

minimum and maximum of a function is typically treated as two separate optimization problems. However,449

this is not advisable when computational efficiency is of great concern. That is because that the observations450

obtained when searching the minimum can be reused to speed up searching the maximum, and vice versa.451

This strategy is adopted in this study as a potential competitor to the proposed method, and we simply call452

it non-parallel Bayesian global optimization (N-PBGO). The main procedure of N-PBGO is summarized as453

follows:454

455

Step A.1: Generate an initial training dataset456

Generate an initial set of n0 samples using LHS over xI , denoted by a n0 × d matrix X =
{
x(j)

}n0

j=1
.457

Observations of the g-function at these points can be computed in parallel, which are denoted by a n0 × 1458

vector y =
{
y(j)
}n0

j=1
with y(j) = g(x(j)). The initial training dataset can be written as D = {X,y}. Set459

n = n0.460

Step A.2: Construct a GP model461

Construct a GP model GP(mn(x), kn(x,x′)) based on the initial training dataset D. This step mainly462

consists of choosing the hyper-parameters by using the maximum likelihood estimation. All the numerical463
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examples in this study are performed with the fitrgp function in Matlab Statistics and Machine Learning464

Toolbox.465

Step A.3: Compute maximum of EImin(x)466

Let ymin = min1≤j≤n y
(j) denote the minimum value of y observed so far, respectively. Compute the467

maximum of EImin(x) by δy1 = maxx∈xI EImin(x).468

Step A.4: Check stopping criterion for minimization469

if δy1
|ymin|+δ < εmin is satisfied for two successive times, go to Step A.7; Otherwise, go to Step A.5.470

Step A.5: Identify one point by EI-MIN criterion471

Identify the next point to evaluate by x
(n+1)
min = arg maxx∈xI EImin(x).472

Step A.6: Enrich the training dataset473

Compute the corresponding g-function value at the identified point at x
(n+1)
min , i.e., y(n+1) = g(x

(n+1)
min ).474

Enrich the training dataset D with (x
(n+1)
min , y(n+1)). Set n = n+ 1, and go to Step A.2.475

Step A.7: Compute maximum of EImax(x)476

Let ymax = max1≤j≤n y
(j) denote the maximum value of y observed so far, respectively. Compute the477

maxima of EImax(x) by δy2 = maxx∈xI EImax(x).478

Step A.8: Check stopping criterion for maximization479

if
µmax
max

|ymax|+δ < εmax is satisfied for two successive times, go to Step A.12; Otherwise, go to Step A.9.480

Step A.9: Identify one point by EI-MAX criterion481

Identify the next point to evaluate by x
(n+1)
max = arg maxx∈xI EImax(x).482

Step A.10: Enrich the training dataset483

Compute the corresponding g-function value at the identified point at x
(n+1)
max , i.e., y(n+1) = g(x

(n+1)
max ).484

Enrich the training dataset D with (x
(n+1)
max , y(n+1)). Set n = n+ 1.485

Step A.11: Construct a GP model486

Construct a GP model GP(mn(x), kn(x,x′)) based on the initial training dataset D, and go to Step487

A.7.488

Step A.12: End the algorithm489
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Take ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) as approximate solutions to the lower and upper490

bounds of y respectively, and end the algorithm.491

492

In the above steps, TLBO is used for all optimization problems. Besides, for fair comparison the user-493

specified parameters (n0, δ, εmin and εmax) are set according to the proposed method in all numerical494

examples.495
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[22] M. Valdebenito, C. Pérez, H. Jensen, M. Beer, Approximate fuzzy analysis of linear structural systems applying intervening546

variables, Computers & Structures 162 (2016) 116–129. doi:https://doi.org/10.1016/j.compstruc.2015.08.020.547

[23] M. A. Valdebenito, H. A. Jensen, P. Wei, M. Beer, A. T. Beck, Application of a reduced order model for fuzzy analysis548

of linear static systems, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical549

Engineering 7 (2) (2021) 020904.550

[24] J. Wu, Z. Luo, Y. Zhang, N. Zhang, L. Chen, Interval uncertain method for multibody mechanical systems using Chebyshev551

31

https://doi.org/https://doi.org/10.1016/j.cma.2018.12.021
https://doi.org/https://doi.org/10.1016/j.cma.2018.12.021
https://doi.org/https://doi.org/10.1016/j.cma.2018.12.021
https://doi.org/https://doi.org/10.1002/nme.6297
https://doi.org/https://doi.org/10.1016/j.cma.2016.10.047
https://doi.org/https://doi.org/10.1016/j.advengsoft.2018.11.001
https://doi.org/https://doi.org/10.1016/j.advengsoft.2018.11.001
https://doi.org/https://doi.org/10.1016/j.advengsoft.2018.11.001
https://doi.org/https://doi.org/10.1016/j.mechrescom.2012.04.004
https://doi.org/https://doi.org/10.2514/1.J053152
https://doi.org/https://doi.org/10.1016/j.jsv.2005.07.004
https://doi.org/https://doi.org/10.1016/j.probengmech.2011.08.011
https://doi.org/https://doi.org/10.1016/j.probengmech.2011.08.011
https://doi.org/https://doi.org/10.1016/j.probengmech.2011.08.011
https://doi.org/https://doi.org/10.1016/j.jsv.2008.06.006
https://doi.org/https://doi.org/10.1016/j.jsv.2008.06.006
https://doi.org/https://doi.org/10.1016/j.jsv.2008.06.006
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.10.152
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.10.152
https://doi.org/https://doi.org/10.1016/j.applthermaleng.2015.10.152
https://doi.org/https://doi.org/10.1016/j.compstruc.2017.12.001
https://doi.org/https://doi.org/10.1016/j.compstruc.2017.12.001
https://doi.org/https://doi.org/10.1016/j.compstruc.2017.12.001
https://doi.org/https://doi.org/10.1016/j.compstruc.2015.08.020


inclusion functions, International Journal for Numerical Methods in Engineering 95 (7) (2013) 608–630. doi:https:552

//doi.org/10.1002/nme.4525.553

[25] J. Wu, Y. Zhang, L. Chen, Z. Luo, A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Applied554

Mathematical Modelling 37 (6) (2013) 4578–4591. doi:https://doi.org/10.1016/j.apm.2012.09.073.555

[26] W. Dong, H. C. Shah, Vertex method for computing functions of fuzzy variables, Fuzzy sets and Systems 24 (1) (1987)556

65–78. doi:https://doi.org/10.1016/0165-0114(87)90114-X.557

[27] Z. Qiu, Y. Xia, J. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using558

the vertex solution theorem, Computer Methods in Applied Mechanics and Engineering 196 (49-52) (2007) 4965–4984.559

doi:https://doi.org/10.1016/j.cma.2007.06.022.560

[28] R. R. Callens, M. G. Faes, D. Moens, Interval analysis using multilevel quasi-monte carlo, in: International Workshop on561

Reliable Engineering Computing (REC2021), Vol. 9, International Workshop on Reliable Engineering Computing, 2021,562

pp. 53–67.563

[29] R. R. Callens, M. G. Faes, D. Moens, Multilevel quasi-monte carlo for interval analysis, International Journal for Uncer-564

tainty Quantification (Accepted for Publication).565

[30] F. Biondini, F. Bontempi, P. G. Malerba, Fuzzy reliability analysis of concrete structures, Computers & structures 82 (13-566

14) (2004) 1033–1052. doi:https://doi.org/10.1016/j.compstruc.2004.03.011.567

[31] L. Catallo, Genetic anti-optimization for reliability structural assessment of precast concrete structures, Computers &568

Structures 82 (13-14) (2004) 1053–1065. doi:https://doi.org/10.1016/j.compstruc.2004.03.018.569

[32] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global570

Optimization 13 (4) (1998) 455–492. doi:https://doi.org/10.1023/A:1008306431147.571

[33] M. De Munck, D. Moens, W. Desmet, D. Vandepitte, An efficient response surface based optimisation method for non-572

deterministic harmonic and transient dynamic analysis, Computer Modeling in Engineering & Sciences 47 (2) (2009)573

119–166. doi:https://doi.org/10.3970/cmes.2009.047.119.574

[34] Y. Liu, X. Wang, L. Wang, Z. Lv, A bayesian collocation method for static analysis of structures with unknown-but-575

bounded uncertainties, Computer Methods in Applied Mechanics and Engineering 346 (2019) 727–745. doi:https://doi.576

org/10.1016/j.cma.2018.08.043.577

[35] H.-P. Wan, Y.-Q. Ni, A new approach for interval dynamic analysis of train-bridge system based on bayesian optimization,578

Journal of Engineering Mechanics 146 (5) (2020) 04020029. doi:https://doi.org/10.1061/(ASCE)EM.1943-7889.0001735.579

[36] A. Cicirello, F. Giunta, Machine learning based optimization for interval uncertainty propagation, Mechanical Systems580

and Signal Processing 170 (2022) 108619. doi:https://doi.org/10.1016/j.ymssp.2021.108619.581

[37] Z. Deng, Z. Guo, Interval identification of structural parameters using interval overlap ratio and monte carlo simulation,582

Advances in Engineering Software 121 (2018) 120–130.583

[38] M. Imholz, M. Faes, D. Vandepitte, D. Moens, Robust uncertainty quantification in structural dynamics under scarse584

32

https://doi.org/https://doi.org/10.1002/nme.4525
https://doi.org/https://doi.org/10.1002/nme.4525
https://doi.org/https://doi.org/10.1002/nme.4525
https://doi.org/https://doi.org/10.1016/j.apm.2012.09.073
https://doi.org/https://doi.org/10.1016/0165-0114(87)90114-X
https://doi.org/https://doi.org/10.1016/j.cma.2007.06.022
https://doi.org/https://doi.org/10.1016/j.compstruc.2004.03.011
https://doi.org/https://doi.org/10.1016/j.compstruc.2004.03.018
https://doi.org/https://doi.org/10.1023/A:1008306431147
https://doi.org/https://doi.org/10.3970/cmes.2009.047.119
https://doi.org/https://doi.org/10.1016/j.cma.2018.08.043
https://doi.org/https://doi.org/10.1016/j.cma.2018.08.043
https://doi.org/https://doi.org/10.1016/j.cma.2018.08.043
https://doi.org/https://doi.org/10.1061/(ASCE)EM.1943-7889.0001735
https://doi.org/https://doi.org/10.1016/j.ymssp.2021.108619


experimental modal data: A bayesian-interval approach, Journal of Sound and Vibration 467 (2020) 114983.585

[39] C. Jiang, Z. Zhang, Q. Zhang, X. Han, H. Xie, J. Liu, A new nonlinear interval programming method for uncertain586

problems with dependent interval variables, European Journal of Operational Research 238 (1) (2014) 245–253.587

[40] C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learning, Vol. 2, MIT press Cambridge, MA, 2006.588

[41] D. Zhan, J. Qian, Y. Cheng, Pseudo expected improvement criterion for parallel EGO algorithm, Journal of Global589

Optimization 68 (3) (2017) 641–662. doi:https://doi.org/10.1007/s10898-016-0484-7.590

[42] R. V. Rao, V. J. Savsani, D. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical591

design optimization problems, Computer-Aided Design 43 (3) (2011) 303–315. doi:https://doi.org/10.1016/j.cad.592

2010.12.015.593

[43] A. S. Di Perrotolo, A theoretical framework for bayesian optimization convergence, Master’s thesis, KTH Royal Institute594

of Technology (2018).595

[44] M. Schonlau, Computer experiments and global optimization, Ph.D. thesis, University of Waterloo (1997).596

[45] D. Ginsbourger, R. L. Riche, L. Carraro, Kriging is well-suited to parallelize optimization, in: Computational intelligence597

in expensive optimization problems, Springer, 2010, pp. 131–162.598

[46] C. Chevalier, D. Ginsbourger, Fast computation of the multi-points expected improvement with applications in batch599

selection, in: International Conference on Learning and Intelligent Optimization, Springer, 2013, pp. 59–69.600
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