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Abstract10

Numerical methods play a dominant role in structural reliability analysis, and the goal has long been11

to produce a failure probability estimate with a desired level of accuracy using a minimum number of12

performance function evaluations. In the present study, we attempt to offer a Bayesian perspective on13

the failure probability integral estimation, as opposed to the classical frequentist perspective. For this14

purpose, a Bayesian Failure Probability Inference (BFPI) framework is first developed, which allows to15

quantify, propagate and reduce numerical uncertainty behind the failure probability due to discretization16

error. Especially, the posterior variance of the failure probability is derived in a semi-analytical form,17

and the Gaussianity of the posterior failure probability distribution is investigated numerically. Then, a18

Parallel Adaptive-Bayesian Failure Probability Learning (PA-BFPL) method is proposed within the Bayesian19

framework. In the PA-BFPL method, a variance-amplified importance sampling technique is presented to20

evaluate the posterior mean and variance of the failure probability, and an adaptive parallel active learning21

strategy is proposed to identify multiple updating points. Thus, a novel advantage of PA-BFPL is that both22

prior knowledge and parallel computing can be used to make inference about the failure probability. Four23

numerical examples are investigated, indicating the potential benefits by advocating a Bayesian approach24

to failure probability estimation.25
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1. Introduction28

A fundamental problem in structural reliability analysis is to assess the likelihood that a structure29

attains an unsatisfactory performance in the presence of uncertainties. Within a probabilistic framework,30

the primary objective is to compute the so-called failure probability Pf , defined by the following multifold31

integral:32

Pf = Prob [g(X) ≤ 0] =

∫
X
I(x)fX(x)dx, (1)

where Prob [·] denotes the probability operator; X = [X1, X2, · · · , Xd] ∈ X ⊆ Rd is a vector of d random33

variables with known joint probability density function (PDF) fX(x); Y = g(X) : Rd → R is the per-34

formance function (or limit state function) with y = g(x) ≤ 0 indicating a failure state and a safe state35

otherwise; I(x) is the failure indicator function such that:36

I (x) =

 1, g (x) ⩽ 0

0, otherwise

. (2)

Except for some special cases, it is impossible to derive the analytical solution to the failure probability37

(defined by Eq. (1)). Besides, the g-function in practical applications is typically dependent on a simulation38

model (e.g., a finite element model) so that each evaluation can be computationally demanding. Therefore,39

numerical methods that minimize the number of g-function evaluations are highly desirable to approximate40

the failure probability. Even though various methods following different paradigms have been developed41

over the past several decades (e.g., as summarized in [1]), it seems that they never reach the end of being42

efficient while accurate and generally applicable. The present paper is also concerned with developing a new43

reliability analysis method, but putting more emphasis on how to interpret the problem of failure probability44

estimation.45

In fact, the problem of evaluating the failure probability integral (Eq. (1)) can be treated as a statistical46

problem, though it does not mean that all methods must follow this perspective. Specifically, the failure47

probability Pf is an unknown quantity of interest, about which we wish to make inference using a set of48

g-function observations (equivalently, I-function observations), say g(x(1)), g(x(2)), · · · , g(x(n)). Further, a49

statistical inference rule approximates Pf as a function of those observations.50

In the classical frequentist viewpoint, the sample x(1),x(2), · · · ,x(n) might be supposed to draw at51

random from a population distributed according to fX(x). Taking the Monte Carlo simulation (MCS)52
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method as an example, the MCS estimator for the failure probability is given by the sample mean:53

P̂MCS
f =

1

n

n∑
i=1

I(x(i)). (3)

The law of large numbers implies that P̂MCS
f converges to Pf with probability 1 as n → ∞. The estimator54

is viewed as a random variable since x(i) is random. Besides, by the central limit theorem, P̂MCS
f asymp-55

totically follows a normal distribution for a large n. In practical applications, one can only afford a finite56

sample size to approximate the failure probability. Hence, the uncertainty associated with P̂MCS
f due to57

the sampling variability may not be neglected. Such uncertainty can be measured by the variance of the58

estimator [2]:59

V
[
P̂MCS
f

]
=

P̂MCS
f (1− P̂MCS

f )

n
, (4)

where V [·] denotes the variance operator. Despite its conceptual and algorithmic simplicity, the MCS60

method is often criticized by many authors for its unreasonable effectiveness and theoretical unsoundness61

[3, 4]. In addition, some variants of the MCS method, e.g., subset simulation [5, 6], importance sampling62

[7, 8, 9, 10], have been developed and are able to offer improved efficiency. These methods, however, can63

still be regarded as more advanced frequentist approaches, and hence may be subject to the same criticism64

as MCS.65

In contrast to the classical frequentist perspective, we seek to interpret the problem of failure probability66

integral estimation as a Bayesian inference problem. For this context, a central role is played by numerical67

integration (also known as quadrature) that is widely encountered in scientific computing. The study of68

numerical integration from a point of view of Bayesian dates back to at least the work of Diaconis [11]69

and has led to the commonly known Bayesian quadrature, Bayesian cubature or probabilistic integration70

[12, 13, 14, 15]. In such methods, our uncertainty about the true integral value resulted from a limited71

number of integrand observations (i.e., discretization error) is regarded as a kind of epistemic uncertainty,72

which can be modelled following a Bayesian approach. The Bayesian approach to numerical integration has73

demonstrated many promising advantages with respect to the classical approach (e.g., see [11, 16]). However,74

only a few studies have investigated the Bayesian approach to failure probability estimation, which requires75

a slightly different treatment compared to a common quadrature problem. Loosely speaking, the popular76

active learning reliability methods [17, 18], e.g., efficient global reliability analysis [19] and AK-MCS [20],77

have almost reached the idea of being Bayesian. That is, the surrogate models (e.g., Kriging) used in78
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those methods allow a Bayesian interpretation. In spite of that, the existing methods do not count as79

fully Bayesian in the strict sense because they provide no probabilistic uncertainty measure over the failure80

probability. A truly Bayesian interpretation was, to the best of our knowledge, first clearly reported in the81

work [21], where the Bayesian Monte Carlo method developed in [13] was applied. However, it is challenging82

to directly place a Gaussian process (GP) prior over the failure indicator function with a large discontinuity.83

The first author and his co-workers continued the idea of re-interpreting the failure probability integral84

estimation with Bayesian inference in a recent work [22], and then it was further improved in [1]. In [22],85

the posterior mean and an upper-bound of the posterior variance of the failure probability were derived,86

given that a GP prior was assigned to the performance function. Nevertheless, the posterior variance and87

posterior distribution of the failure probability are still not available, which are undoubtedly of interest and88

importance in a Bayesian framework.89

This paper aims to present a Bayesian perspective on failure probability estimation, complementing90

the work in [22, 1]. The main contributions of this work are summarized as follows. First, to the best of91

the authors’ knowledge, a complete and principled Bayesian framework for failure probability estimation92

is developed for the first time. The framework is termed ‘Bayesian Failure Probability Inference’ (BFPI),93

in which the posterior variance of the failure probability is derived in a semi-analytical form. Besides, the94

posterior distribution of the failure probability is also empirically investigated by several numerical examples.95

Second, we illustrate how the BFPI framework can be used to make inference about the failure probability96

in an adaptive scheme. The resulting method is called ‘Parallel Adaptive-Bayesian Failure Probability97

Learning’ (PA-BFPL). In the PA-BFPL method, a variance-amplified importance sampling (VAIS) method98

is proposed to approximate the posterior mean and variance of the failure probability and an adaptive parallel99

learning strategy based on the concepts of expected misclassification probability contribution (EMPC) and100

k-means clustering is presented to enable multipoint selection (hence parallel distributed processing). In101

addition, we also suggest a new stopping criterion in order to achieve a desired level of accuracy for the102

failure probability estimate.103

The rest of this paper is organized as follows. The proposed BFPI framework is introduced in Section104

2. Section 3 presents the proposed PA-BFPL method. Four numerical examples are investigated in Section105

4 to demonstrate the proposed method. The Gaussianity of the posterior failure probability is numerically106

studied in Section 5. The paper is closed with some concluding remarks in Section 6.107
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2. Bayesian failure probability inference108

In this section, the problem of failure probability estimation is interpreted as a Bayesian inference109

problem, leading to a framework of Bayesian failure probability inference (BFPI). As shown in Fig. 1,110

the proposed BFPI framework begins with a prior distribution over the g-function. Conditional on the111

observations that arise from evaluating the g-function at some points, we arrive at a posterior distribution112

over g. This in turn implies a posterior distribution over the failure indicator function I, as well as the113

failure probability Pf .114

 

Figure 1: A schematic illustration of the proposed BFPI framework.

2.1. Prior distributions115

A convenient way of putting a prior over the g-function is through GP. A GP can be viewed as a116

collection of random variables indexed by time or space, any finite number of which have a multivariate117

Gaussian distribution.118

Let (Ω,F ,P) be a probability space, where Ω is a sample space, F is a set of events equipped with119

σ-algebra and P is a probability measure. A GP can be defined as Z(ϖ,x): Ω × X → R. For a fixed120

location x ∈ X , Z(ϖ, ·) is Gaussian. Conversely, for every fixed elementary event ϖ ∈ Ω, Z(·,x) is a121

realization of the GP. As a GP can be completely characterized by its mean and covariance functions, our122

prior assumption is thus rewritten as follows:123

ĝ0(ϖ,x) ∼ GP(mĝ0(x), cĝ0(x,x
′)), (5)

where ĝ0 denotes the prior distribution of g before any observations are obtained; the prior mean function124

mĝ0(x) : X → Z and prior covariance function cĝ0(x,x
′) : X × X → Z are respectively defined as:125

mĝ0(x) = Eϖ [ĝ0(ϖ,x)] , (6)
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cĝ0(x,x
′) = Eϖ [(ĝ0(ϖ,x)−m(x)) (ĝ0(ϖ,x′)−m(x′))] , (7)

in which Eϖ [·] denotes the expectation operation taken over Ω. The prior mean function reflects the general126

trend of the GP prior, whereas the prior covariance function encodes our key beliefs on the similarity of127

the g-function between two points. Among many options available in the literature, this study adopts the128

commonly used constant mean and squared exponential kernel functions:129

mĝ0(x) = β, (8)

130

cĝ0(x,x
′) = s2 exp

[
−1

2
(x− x′)Σ−1 (x− x′)

T
]
, (9)

where β is a constant; s2 denote the process variance; Σ = diag(l21, l
2
2, ..., l

2
d) is a diagonal matrix, whose131

i-th diagonal entry is l2i with li > 0 being the length scale in the i-th dimension. Note that the choice of132

the prior and covariance function does not affect the generality of our developments, and other forms can133

also be employed. In Eqs. (8) and (9), there exist d + 2 hyper-parameters to be determined (collected in134

ϑ = [β, s, l1, l2, · · · , ld]) in total.135

Remark 1. Corresponding to the GP prior for g, this also implies implicitly prior distributions for136

the failure indicator function I(x), and the failure probability Pf . They are not given here because our137

main concern is their posterior distributions. However, one still can easily obtain these prior distributions138

referring to Subsection 2.3.139

2.2. Learning the hyper-parameters140

Suppose that now we observe the g-function at some locations. Let XXX =
{
x(i)

}n

i=1
denote a n × d141

matrix containing n design points. The corresponding g-function values at XXX are collected in a n × 1142

vector YYY =
{
y(i)

}n

i=1
with y(i) = g(x(i)). The hyper-parameters should be learned from the given data143

DDD = {XXX ,YYY }, and three approaches are typically considered [23]: (1) maximum likelihood estimation144

(MLE); (2) maximum a posteriori (MAP) estimation; (3) fully Bayesian approach. In this study, we use the145

MLE method as follows.146

Under the GP prior, the marginal likelihood of YYY is a multivariate normal density:147

p(YYY |XXX ,ϑ) =
1√

(2π)n|C ĝ0 |
exp

[
−1

2
(YYY − β)C−1

ĝ0
(YYY − β)T

]
, (10)
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where C ĝ0 is a n-by-n covariance matrix, whose (i, j)-th entry is [C ĝ0 ]ij = cĝ0(x
(i),x(j)); | · | is the deter-148

minant operator. The hyper-parameters are tuned by minimizing the negative log marginal likelihood:149

ϑ̂ = argmin
ϑ

− log [p(YYY |XXX ,ϑ)] , (11)

where150

log [p(YYY |XXX ,ϑ)] = −1

2

[
(YYY − β)C−1

ĝ0
(YYY − β)T + log |C ĝ0 |+ n log 2π

]
. (12)

2.3. Posterior distributions151

Conditional on the data DDD , the induced posterior distribution of g is also a GP:152

ĝn(ϖ,x) ∼ GP(mĝn(x), cĝn(x,x
′)), (13)

where ĝn denotes the posterior distribution of g given n observations; mĝn(x) and cĝn(x,x
′) are the posterior153

mean and covariance functions respectively, which can be analytically derived as:154

mĝn(x) = mĝ0(x) + cĝ0(x,XXX )C−1
ĝ0

(YYY −mĝ0(XXX )), (14)

155

cĝn(x,x
′) = cĝ0(x,x

′)− cĝ0(x,XXX )C−1
ĝ0

cĝ0(XXX ,x′), (15)

where mĝ0(XXX ) is n-by-1 vector with i-th element being mĝ0(x
(i)); cĝ0(x,XXX ) is a 1-by-n covariance vec-156

tor with i-th element being cĝ0(x,x
(i)); cĝ0(XXX ,x′) is a n-by-1 covariance vector with i-th element being157

cĝ0(x
(i),x′). It should be pointed out that: (1) For any x(i) ∈ XXX , the posterior GP is an exact predictor.158

This means that if a prediction is carried out at an observed point x(i), the posterior mean is exactly equal159

to the corresponding observation (i.e., mĝn(x
(i)) = y(i)) and the posterior variance is equal to zero (i.e.,160

σ2
ĝn
(x(i)) = cĝn(x

(i),x(i)) = 0). (2) For any x /∈ XXX , the posterior GP at x is Gaussian. In this case,161

the posterior mean mĝn(x) is a natural estimate of the g-function value, whereas the posterior variance162

σ2
ĝn
(x) = cĝn(x,x) can measure our uncertainty of the estimate.163

The posterior distribution of the failure indicator function I has the following relationship with ĝn:164

În(ϖ,x) =

 1, ĝn (ϖ,x) ⩽ 0

0, otherwise

, (16)
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where În denote the posterior distribution of I conditional on DDD . Based on Eqs. (13) and (16), the induced165

posterior distribution În should follow a generalized Bernoulli process 1 (GBP):166

În(ϖ,x) ∼ GBP(mÎn
(x), cÎn(x,x

′)), (17)

where mÎn
(x) and cÎn(x,x

′) are the posterior mean and covariance functions, respectively. They can be167

derived as follows:168

mÎn
(x) = Eϖ

[
În(ϖ,x)

]
= P [ĝn(ϖ,x) ≤ 0]

= Φ

(
−mĝn(x)

σĝn(x)

)
,

(18)

169

cÎn(x,x
′) =Eϖ

[(
În(ϖ,x)−mÎn

(x)
)(

În(ϖ,x′)−mÎn
(x′)

)]
=Eϖ

[
În(ϖ,x)În(ϖ,x′)

]
− Eϖ

[
În(ϖ,x)

]
Eϖ

[
În(ϖ,x′)

]
=P [ĝn(ϖ,x) ≤ 0, ĝn(ϖ,x′) ≤ 0]−mÎn

(x)mÎn
(x′)

=F ([0 0];mĝn(x,x
′),C ĝn(x,x

′))− Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
−mĝn(x

′)

σĝn(x
′)

)
,

(19)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution; F is the joint170

CDF of a bivariate normal distribution; The terms mĝn(x,x
′) and C ĝn(x,x

′) are expressed as:171

mĝn(x,x
′) = [mĝn(x),mĝn(x

′)] (20)
172

C ĝn(x,x
′) =

 cĝn(x,x) cĝn(x,x
′)

cĝn(x
′,x) cĝn(x

′,x′)

 =

 σ2
ĝn
(x) cĝn(x,x

′)

cĝn(x
′,x) σ2

ĝn
(x′)

 . (21)

Note that though no closed form is available for F , there are a number of software packages that evaluate173

it numerically.174

The posterior distribution of the failure probability Pf is defined as:175

P̂f,n(ϖ) =

∫
X
În(ϖ,x)fX(x)dx, (22)

where P̂f,n denotes the posterior distribution of Pf,n conditional on DDD . Eq. (22) implies that P̂f is a random176

variable, whose exact distribution is not known yet. To this end, we investigate empirically the posterior177

1In the conventional way, a Bernoulli process is defined as a finite or infinite sequence of binary random variables that are

independent and identical distributed. Here we use ‘generalized’ to indicate that the possible correlation among the sequence

is considered. For more information on this topic, one can refer to, e.g., [24].
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failure probability distribution by several numerical examples in Section 5. By applying Fubini’s theorem,178

the posterior mean and variance of Pf can be derived as:179

mP̂f,n
=Eϖ

[
P̂f,n(ϖ)

]
=

∫
Ω

∫
X
În(ϖ,x)fX(x)dxP (dϖ)

=

∫
X

∫
Ω

În(ϖ,x)fX(x)P (dϖ) dx

=

∫
X
Eϖ

[
În(ϖ,x)

]
fX(x)dx

=

∫
X
Φ

(
−mĝn(x)

σĝn(x)

)
fX(x)dx,

(23)

180

σ2
P̂f,n

=Vϖ

[
P̂f,n(ϖ)

]
=Eϖ

[(
P̂f (ϖ)− Eϖ

[
P̂f (ϖ)

])2
]

=Eϖ

[(∫
X
În(ϖ,x)fX(x)dx−

∫
X
Eϖ

[
În(ϖ,x)

]
fX(x)dx

)2
]

=

∫
Ω

(∫
X

(
În(ϖ,x)− Eϖ

[
În(ϖ,x)

])
fX(x)dx

)2

P (dϖ)

=

∫
Ω

∫
X

∫
X

(
În(ϖ,x)− Eϖ

[
În(ϖ,x)

])(
În(ϖ,x′)− Eϖ

[
În(ϖ,x′)

])
fX(x)fX(x′)dxdx′P (dϖ)

=

∫
X

∫
X

∫
Ω

(
În(ϖ,x)− Eϖ

[
În(ϖ,x)

])(
În(ϖ,x′)− Eϖ

[
În(ϖ,x′)

])
fX(x)fX(x′)P (dϖ) dxdx′

=

∫
X

∫
X
Eϖ

[(
În(ϖ,x)−mÎn

(x)
)(

În(ϖ,x′)−mÎn
(x′)

)]
fX(x)fX(x′)dxdx′

=

∫
X

∫
X
cÎn(x,x

′)fX(x)fX(x′)dxdx′

=

∫
X

∫
X

[
F ([0 0];mĝn(x,x

′),C ĝn(x,x
′))− Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
−mĝn(x

′)

σĝn(x
′)

)]
fX(x)fX(x′)dxdx′

=

∫
X

∫
X
F ([0 0];mĝn(x,x

′),C ĝn(x,x
′)) fX(x)fX(x′)dxdx′ −

(∫
X
Φ

(
−mĝn(x)

σĝn(x)

)
fX(x)dx

)2

=

∫
X

∫
X
F ([0 0];mĝn(x,x

′),C ĝn(x,x
′)) fX(x)fX(x′)dxdx′ −m2

P̂f,n
,

(24)

where Vϖ [·] denotes the variance operation taken over Ω. The posterior distribution P̂f reflects our un-181

certainty about Pf , which arises from the discretization error resulting from the fact that the g-function is182

only observed at a finite number of discrete locations. From this perspective, the proposed BFPI framework183

offers a principled approach to quantifying and propagating the numerical uncertainty behind the failure184

probability. Once given the data DDD , the posterior mean mP̂f,n
is a natural estimate for the failure probability185
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Pf , while the posterior variance σ2
P̂f,n

can measure our uncertainty about the estimate.186

Remark 2. The posterior mean function mÎn
(x) of the failure indicator function I (defined in Eq. (18))187

is the same as that given in our recent work [22]. In that work, we also derived the closed-form expressions188

of the posterior variance function of I and an upper bound of the posterior covariance cÎn(x,x
′) (Eq. (19))189

by using Cauchy-Schwarz inequality.190

Remark 3. The posterior mean mP̂f,n
of the failure probability Pf (defined in Eq. (23)) was previously191

given in [22]. In additional, an upper bound of the posterior variance σ2
P̂f,n

(Eq. (24)) was derived based on192

the upper bound of cÎn(x,x
′).193

Remark 4. Numerical integration techniques are required to evaluate mP̂f,n
and σ2

P̂f,n
due to their194

analytical intractability. It is interesting that in our context the failure probability estimate mP̂f,n
(Eq.195

(23)) is a integral over the whole domain X (both failure and safe domains), which is in contrast to the196

classical definition of failure probability (Eq. (1)) that is essentially a integral over the failure domain only.197

The former could be explained by the fact that Eq. (23) accounts for the numerical uncertainty at any198

x ∈ X no matter where it is. Besides, if we assume that the numerical uncertainty approaches to zero (i.e.,199

σ2
P̂f,n

(x) → 0+ and mP̂f,n
(x) → g(x)), then there exits Φ

(
−mĝn (x)
σĝn (x)

)
→ I(x). In this regard, Eq. (1) can200

be seen as a limiting case of Eq. (23) when the numerical uncertainty disappears.201

Remark 5. From the Bayesian perspective, the computation of failure probability estimate can be202

interpreted as a process aiming at reducing the numerical uncertainty that prevents us from inferring the203

true value. Therefore, an optimal inference about the failure probability requires an optimal decision on204

where to observe the g-function that leads to maximum reduction of the numerical uncertainty on the failure205

probability with as less g-function evaluations as possible.206

3. Parallel adaptive-Bayesian failure probability learning207

This section presents a novel method, termed ‘parallel adaptive–Bayesian failure probability learning’208

(PA-BFPL), to make inference about the failure probability. The proposed method builds upon the BFPI209

framework, and aims at producing a reasonably accurate failure probability estimate using a limited number210

of observations from the g-function. This objective is achieved mainly by developing a variance-amplified211

importance sampling (VAIS) method and an adaptive parallel active learning (APAL) strategy, as described212

in what follows.213
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3.1. Variance-amplified importance sampling214

In the BFPI framework, one open task consists of approximating the analytically intractable integrals215

(mP̂f,n
in Eq. (23) and σ2

P̂f,n
in Eq. (24)). The most straightforward solution would be to use the crude216

MCS due to its broad applicability. However, a considerably large number of samples are needed to achieve217

a reasonable accuracy in certain conditions, which can make each iteration of our method time-consuming218

and even cause the problem of computer memory loss. Taking mP̂f,n
as an example, Φ

(
−mĝn (x)
σĝn (x)

)
might219

be small where fX(x) is large and vice versa. In these cases, directly sampling according to fX(x) could220

be less efficient. If we turn to importance sampling, the optimal sampling density should be proportional221

to Φ
(

−mĝn (x)
σĝn (x)

)
fX(x), but is not practically achievable since it requires knowledge of the quantity we are222

trying to estimate. Similar problems also exist for σ2
P̂f,n

, and we will not repeat too much herein.223

The present study proposes a VAIS technique to assess mP̂f,n
and σ2

P̂f,n
. Let us reformulate mP̂f,n

and224

σ2
P̂f,n

as follows:225

mP̂f,n
=

∫
X
Φ

(
−mĝn(x)

σĝn(x)

)
fX(x)dx

=

∫
X
Φ

(
−mĝn(x)

σĝn(x)

)
fX(x)

hX(x)
hX(x)dx,

(25)

226

σ2
P̂f,n

=

∫
X

∫
X

[
F ([0 0];mĝn(x,x

′),C ĝn(x,x
′))− Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
−mĝn(x

′)

σĝn(x
′)

)]
fX(x)fX(x′)dxdx′

=

∫
X

∫
X

[
F ([0 0];mĝn(x,x

′),C ĝn(x,x
′))− Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
−mĝn(x

′)

σĝn(x
′)

)]
fX(x)fX(x′)

hX(x)hX(x′)
hX(x)hX(x′)dxdx′,

(26)

where hX(x) is the so-called ‘importance sampling density’ (ISD). In this study, we do not intend to227

approach a nearly optimal ISD (whose formulation may be challenging), yet a simple but effective one.228

The concept of increasing the variances of random variables has been used in the different contexts, such as229

[25, 26, 27, 28]. In particular, it has been reported in [29] that such an approach was used within Importance230

Sampling as early as 1983. Following those ideas, the ISD hX(x) is simply constructed by amplifying the231

standard deviations σX (or equivalently variance σ2
X ) of fX(x) (keep the mean mX unchanged), i.e.,232

hX(x) = fX(x;mX , ασX), where α ≥ 1 denotes the amplification factor of standard deviation. Note that233

for any Xi that follows a uniform distribution, its standard deviation does not need to be enlarged. Besides,234

one can use different amplification factors for different random variables, but for the sake of convenience we235

just consider a single amplification factor in this work. The unbiased VAIS estimators of mP̂f,n
and σ2

P̂f,n
236
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are simply given as their sample means:237

m̂P̂f,n
=

1

N1

N1∑
i=1

[
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

hX(x(i))

]
, (27)

238

σ̂2
P̂f,n

=
1

N2

N2∑
j=1

[
F
(
[0 0];mĝn(x

(j),x′,(j)),C ĝn(x
(j),x′,(j))

)
− Φ

(
−mĝn(x

(j))

σĝn(x
(j))

)
Φ

(
−mĝn(x

′,(j))

σĝn(x
′,(j))

)]

× fX(x(j))fX(x′,(j))

hX(x(j))hX(x′,(j))
,

(28)

where
{
x(i)

}N1

i=1
is a set of N1 random samples generated according to hX(x);

{
x(j)

}N2

j=1
and

{
x′,(j)}N2

j=1
239

are two sets of N2 random samples generated according to hX(x) and hX(x′) respectively. The variances240

of the VAIS estimators m̂P̂f,n
and σ̂2

P̂f,n
are given by:241

Var
[
m̂P̂f,n

]
=

1

N1(N1 − 1)

N1∑
i=1

[
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

hX(x(i))
− m̂P̂f,n

]2
, (29)

242

Var
[
σ̂2
P̂f,n

]
=

1

N2(N2 − 1)

N2∑
j=1

{[
F
(
[0 0];mĝn(x

(j),x′,(j)),C ĝn(x
(j),x′,(j))

)
− Φ

(
−mĝn(x

(j))

σĝn(x
(j))

)
Φ

(
−mĝn(x

′,(j))

σĝn(x
′,(j))

)]

× fX(x(j))fX(x′,(j))

hX(x(j))hX(x′,(j))
− σ̂2

P̂f,n

}2

,

(30)

where Var [·] means to take variance of its argument.243

When α = 1, the proposed VAIS method reduces to crude MCS. In case that α > 1, hX(x) can be viewed244

as an auxiliary sampling density formed by redistributing the density of fX(x). Typically, hX(x)(α > 1) is245

more dispersedly distributed than fX(x) over X . As an illustration, Fig. 2 compares the density change of246

a standard normal density ϕ(x) before and after its variance is amplified, where two amplification factors247

are considered, i.e., α = 1.5, 2.0. It is shown that as α increases, hX(x) becomes more flatter than ϕ(x),248

and hence enlarges density where ϕ(x) is small, while lowers the density where ϕ(x) is large. Consequently,249

the variance amplification will have an effect on random sampling. To be specific, the random samples250

generated from hX(x)(α > 1) are more dispersedly distributed than those of fX(x) over X . If we take251

fX(x) ∼ ϕ(x1)ϕ(x2) as an example, the random samples generated before and after variance amplification252

are depicted in Fig. 3, where two cases (i.e., α = 1.5, 2.0) are also considered. As can been seen, as the253

amplification factor increases, the random samples will reach the area where fX(x) is relatively small. Thus,254

sampling from hX(x) instead of fX(x) could alleviate some of limitations discussed at the beginning of this255

subsection. The effect of variance amplification on random sampling is also useful for our adaptive parallel256
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active learning strategy (see next subsection). The optimal α values for m̂P̂f,n
and σ̂2

P̂f,n
could be determined257

by minimizing their corresponding variances (Eqs. (29) and (30)), which, however, is still a tricky task. To258

determine the appropriate sample sizes N1 and N2 for m̂P̂f,n
and σ̂2

P̂f,n
, one can first assign them two small259

values, and then gradually increase the sample sizes until Var
[
m̂P̂f,n

]
and Var

[
σ̂2
P̂f,n

]
are acceptable.260
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Figure 2: Illustration the effects of variance amplification from density change.

(a) (b) (c)

Figure 3: Illustration the effects of variance amplification from random sampling: (a) 106 random samples drawn from fX(x) ∼

ϕ(x1)ϕ(x2) ; (b) 106 random samples drawn from hX(x) (α = 1.5); (c) 106 random samples drawn from hX(x) (α = 2.0).

Remark 6. As a common limitation in Importance Sampling [30], the proposed VAIS method could not261

be directly applied to high-dimensional problems (e.g., larger than 20). Besides, a premise of the proposed262

VAIS method is that all random variables process variances. In case that there exist a random variable263

without variance (e.g., Cauchy distribution), some pre-processing steps are needed in order to apply the264

VAIS method, e.g., transforming it to a random variable with variance if possible.265

Remark 7. In [1], the authors developed a importance ball sampling (IBS) method to approximate266
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mP̂f,n
and an upper bound of σ2

P̂f,n
. However, the method is biased in nature and has to work in the267

standard normal space.268

Remark 8. It is interesting to note that VAIS itself is a purely frequentist approach. As in many269

Bayesian methodologies, the frequentist methods also play a significant role [31].270

3.2. Adaptive parallel active learning strategy271

Another issue to be solved in the BFPI framework is how to select design points XXX , which is commonly272

known as design of experiments (DOE). Although the BFPI framework itself does not impose any restrictions273

on the DOE, an optimal DOE can yield an accurate estimate for the failure probability with a minimum274

number of g-function evaluations. In view of this, we propose an APAL strategy to sequentially select a275

batch of points, which attempts to make the fullest possible use of all previous g-function evaluations and276

parallel computing simultaneously. The core of the APAL strategy is a weighted clustering technique.277

Considering the posterior distribution ĝn defined in Eq. (13), the probability of making a wrong predic-278

tion on the sign of g at x is given by [20]:279

π(x) = Φ

(
−|mĝn(x)|
σĝn(x)

)
. (31)

For simplicity, we refer to π(x) as the probability of misclassification (POM). The well known U function280

[20] (i.e., U(x) =
|mĝn (x)|
σĝn (x) ) is proposed based on the concept of POM, and the best next point to evaluate281

on the g-function is identified by minimizing the U function (equivalently maximizing the POM). However,282

only the misclassification probability at a single point that minimizes the U function is considered, without283

taking other points and the probability distribution information of X into account. This may lead to284

underutilization of useful information and is not suitable for parallel distributed processing.285

To overcome these limitations, a new concept, called ‘expected misclassification probability’ (EMP), is286

first introduced as follows:287

Π = Ex [π(x)] =

∫
X
Φ

(
−|mĝn(x)|
σĝn(x)

)
fX(x)dx, (32)

which is actually defined as an expectation of the POM π(x) under the density fX(x). Hence, the EMP288

can be interpreted as the posterior expected probability that ĝn makes a mistake on the sign of g. In order289

to have an accurate failure probability estimate, an alternative way is to reduce Π instead of the maximum290

value of π(x).291
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Let us rewrite Π with respect to hX(x) as:292

Π =

∫
X
Φ

(
−|mĝn(x)|
σĝn(x)

)
fX(x)

hX(x)
hX(x)dx. (33)

To reduce Π defined in Eq. (33), one potential solution is to find out the locations that contribute the most293

to Π. Here, we introduce a measure (i.e., the proposed learning function), called ‘expected misclassification294

probability contribution’ (EMPC), as follows:295

EMPC(x) = Φ

(
−|mĝn(x)|
σĝn(x)

)
fX(x)

hX(x)
. (34)

It is straightforward to observe that the EMPC function provides a natural measure of the contribution of296

the misclassification probability at x to Π, where x ∼ hX(x). Besides, one should note that the probability297

density fX(x) is properly included in the EMPC function.298

Now, we consider the problem of how to identify a batch of informative points among a set of points299

generated from hX(x), e.g.,
{
x(l)

}N3

l=1
. This objective is realized by developing a weighted clustering algo-300

rithm, called ‘EMPC-weighted k-means clustering’. As its name indicates, the proposed algorithm actually301

combines EMPC with k-means clustering [32]. As mentioned before, the EMPC function can measure the302

contribution of the misclassification probability at x(l) to Π. On the other hand, the k-means clustering303

algorithm can partition a dataset into k clusters that are represented by k centroids. However, the con-304

ventional k-means clustering algorithm does not account for the weight information of data. The proposed305

EMPC-weighted k-means clustering enables to identify k centroids by using the data
{
x(l)

}N3

l=1
while con-306

sidering their EMPC values as weights. The k centroids correspond to the batch of points we wish to select.307

Once the k points are obtained, computation of the corresponding g-function values can be distributed on308

k CPU cores simultaneously. A compact pseudocode of the proposed algorithm is given in Algorithm 1.309

The reason why we introduce the ISD hX(x) to Eq. (33) (and hence in Eq. (34)) is because with310

the same sample size hX(x) can generate much more dispersed samples than fX(x), making it pos-311

sible to reach the failure domain characterized with a small failure probability. Besides, by doing so,312

the random samples generated for evaluating, e.g., m̂P̂f,n
, can be reused in the proposed weighted clus-313

tering algorithm. To illustrate the proposed weighted clustering method, let us consider the case that:314

EMPC(x) = Φ
(
−
(
x2
1 + x4

2 − 4
)2) fX(x)

hX(x) , fX(x) ∼ ϕ(x1)ϕ(x2), α = 1.5, N3 = 106 and k = 5. As shown in315

Fig. 4, the identified points are sparsely located in the region with relatively large EMPC values, and hence316

informative in our context.317

15



Algorithm 1 Proposed EMPC-weighted k-means clustering algorithm

Input: The EMPC function, number of clusters k and dataset
{
x(l)

}N3

l=1

1. Initialization. Randomly choose k points from the dataset
{
x(l)

}N3

l=1
as the initial centroids, denoted

by S =
{
s(i)

}k

i=1
;

2. Assignment step. Assign each point among the dataset
{
x(l)

}N3

l=1
to the nearest cluster: that with

the least squared Euclidean distance. The i-th cluster is denoted as R(i) =
{
r
(i)
j

}N(i)

j=1
, where r

(i)
j is the

j-th point in the i-th cluster and N (i) is the number of points in the i-th cluster;

3. Update step. The i-th centroid is updated by the EMPC-weighted mean of the points belonging to

i-th cluster:

s(i) =

∑N(i)

j=1 EMPC(r
(i)
j )× r

(i)
j∑N(i)

j=1 EMPC(r
(i)
j )

4. Iteration. Repeat steps 2 and 3 until the centroids do not change or the pre-specified number of

iterations is reached.

Output: k centroids

Remark 9. For reducing the numerical uncertainty of P̂f,n(ϖ), one obvious way is to minimize its318

variance σ2
P̂f,n

. However, the variance itself is analytically intractable, in contrast to the proposed EMPC319

function.320

Remark 10. The basic idea of proposed APAL is similar to the one in [1], while different learning321

functions are used.322

3.3. Numerical implementation procedure323

The numerical implementation procedure of the proposed PA-BFPL consists of the following main steps:324

325

Step 1: Generate samples according to the ISD hX(x)326

In order to approximate mP̂f,n
and σ2

P̂f,n
by the proposed VAIS method, random samples need to327

be generated according to the ISD hX(x). First, draw a set of N1 random samples from h
(1)
X (x) (that328

corresponds to α1), denoted by
{
x(i)

}N1

i=1
. Then, draw two sets of N2 random samples from h

(2)
X (x) and329

h
(2)
X (x′) (that correspond to α2) respectively, denoted by

{
x(j)

}N2

j=1
and

{
x′,(j)}N2

j=1
.330

The reason why we introduce two amplification factors α1 and α2 is because σ2
P̂f,n

is much more time331

consuming to evaluate than mP̂f,n
. By doing so, we can use a larger α2 and hence a smaller N2 for σ2

P̂f,n
in332
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Figure 4: Five points identified by the proposed weighted clustering algorithm: the colormap represents the EMPC values and

the pentagrams denote the identified centroids.

order to save computational time. Once α1 and α2 are properly chosen, one can specify N1 and N2 either333

adaptively or as large as possible.334

Step 2: Obtain an initial dataset DDD from the g-function335

To perform the proposed PA-BFPL method, an initial dataset observed from the g-function is required.336

First, generate a set of n0 samples from fX(x) by using Latin hypercube sampling (LHS), which is denoted337

by XXX =
{
x(l)

}n0

l=1
. Then, these points are evaluated on the g-function in parallel, and the corresponding338

observations are denoted by YYY =
{
y(l)

}n0

l=1
with y(l) = g(x(l)). At last, the initial dataset is constructed by339

DDD = {XXX ,YYY }. Let n = n0.340

Step 3: Compute the posterior mean and variance of Pf341

The posterior distribution of g conditional on DDD can be inferred as Eq. (13), which mainly involves342

learning the hyper-parameters using maximum likelihood estimation. This in turn implies posterior distri-343

butions over I and Pf . The posterior mean mP̂f,n
and variance σ2

P̂f,n
are approximated by the proposed344

VAIS method (Eqs. (27) and (28)) using samples
{
x(i)

}N1

i=1
,
{
x(j)

}N2

j=1
and

{
x′,(j)}N2

j=1
, respectively.345

Step 4: Check the stopping criterion346

A stopping criterion that determines when to stop the iteration is needed. In this study, we present347

a hybrid convergence measure consisting of two indices. The first index is defined as the relative error of348
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m̂P̂f,n
between two consecutive iterations:349

e1 =
|m̂(q)

P̂f,n
− m̂

(q−1)

P̂f,n−k
|

m̂
(q−1)

P̂f,n−k

, (35)

where m̂
(q−1)

P̂f,n−k
and m̂

(q)

P̂f,n
are the estimated failure probabilities at the (q − 1)-th and q-th iterations, re-350

spectively. The first index e1 can measure the stability of the estimated failure probability. The estimated351

posterior coefficient of variation (COV) of the failure probability is considered as the second index such that:352

e2 =
σ̂
(q)

P̂f,n

m̂
(q)

P̂f,n

, (36)

where m̂
(q)

P̂f,n
and σ̂

(q)

P̂f,n
represent the estimated posterior mean and standard deviation of the failure prob-353

ability at the q-th iteration. The second index e2 implies the level of epistemic uncertainty of the failure354

probability estimate. Based on these two indices, this step proceeds as follows:355

If both e1 < ϵ1 and e2 < ϵ2 are satisfied twice in succession, go to Step 6; Else, go Step 5. Here ϵ1 and356

ϵ2 are two user-specified thresholds. ‘Twice in succession’ is adopted here to avoid possible fake convergence.357

Step 5: Enrich the dataset by the proposed APAL358

This stage consists of identifying k new points XXX + =
{
x+,(i)

}k

i=1
from

{
x(i)

}N1

i=1
using the proposed359

APAL (i.e., EMPC-weighted k-means clustering). Then, the g-function is evaluated in parallel at XXX + to360

produce the corresponding observations YYY + =
{
y+,(i)

}k

i=1
with y+,(i) = g(x+,(i)). Finally, the previous361

dataset is enriched by DDD+ = {XXX +,YYY +}, i.e., DDD = DDD ∪DDD+. Let n = n+ k, and go to Step 3.362

Step 6: End the algroithm363

The proposed method stops and the last failure probability estimate is considered as the result of the364

method.365

366

There remain several parameters in the proposed algroithm to be specified. In all numerical examples367

of this study, unless otherwise specified these parameters except for k are set to: N1 = 106, N2 = 5 × 104,368

α1 = 1.6, α2 = 2.1, n0 = 10, ϵ1 = 15% and ϵ2 = 5%. The parameter k will be varied to test the performance369

of the proposed method.370
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4. Numerical examples371

The performance of the proposed PA-BFPL method will be illustrated in this section by means of four372

numerical examples. These examples cover a variety of problems with varying dimensions, non-linearity373

and failure probabilities, etc. The reference results for the target failure probabilities are provided by MCS374

when there is no (semi-) analytical solution. For comparison, AK-MCS [20], Active Learning Probabilistic375

Integration (ALPI) [22], Active learning Kriging Markov Chain Monte Carlo (AK-MCMC) [33] and other376

methods are also considered if applicable. In particular, the active learning reliability (ALR) method in377

UQLab (version 2.0.0) [34], denoted as ALR in UQLab 2.0.0, is compared to the proposed method in all378

four numerical examples. If not further specified, the ALR method runs with its default setting [35]. The379

efficiency of these methods is measured by the number of iterations Niter, the total number of g-function380

calls Ncall, while the accuracy is measured by the failure probability estimate P̂f and its COV denoted by381

COV
[
P̂f

]
. Except for MCS and the (semi-) analytical method, these performance measures are estimated382

from the average results over 10 independent runs unless otherwise specified.383

4.1. Example 1: A test problem with four beta points384

The first example considers a test problem with multiple beta points, which is modified from [36]. The385

performance function is given by:386

Y = g (X1, X2) = β2 − |X1 ·X2|, (37)

where β is a constant parameter, specified as 3; X1 and X2 are two standard normal variables. It is easy to387

know that the limit state surface g (x1, x2) = 0 has four beta points: (β, β), (−β, β), (β,−β) and (−β,−β).388

Another characteristic of the problem is that the semi-analytic formula of the failure probability can be389

derived as:390

Pf = 1− 2

π

∫ β2

0

K0 (u) du, (38)

where K0(·) is the modified Bessel function of the second kind of order zero. By applying some numerical391

integration techniques, it is trivial to obtain the result of Eq. (38) with sufficient accuracy.392

The proposed method with different k is implemented to assess the failure probability, together with393

several other existing methods. The results are summarized in Table. 1. It can be seen that the failure394

probability provided by the the semi-analytic formula accords well with that of MCS, and hence we take395
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3.09 × 10−5 as the reference result. The proposed method is able to yield unbiased estimates with COVs396

less than 3%. The two AK-MCS methods are less accurate than the proposed method in terms of the397

average failure probabilities and their COVs. On the other hand, the proposed method greatly outperforms398

the non-parallel counterparts (i.e., AK-MCS+U [20], AK-MCS+EFF [20] and AK-MCMC [33]) in terms399

of Niter, especially compared with AK-MCMC. This implies that the proposed method can be much more400

efficient than those non-parallel counterparts when parallel computing is available. When it comes to the401

parallel counterpart, i.e., ALR in UQLab 2.0.0 [35], the proposed method needs slightly more computational402

efforts than it, regarding both Niter and Ncall. However, the ALR method produces obvious biases for the403

failure probabilities for all three cases (i.e., k = 5, 10, 15). For k = 10, 15, the COVs of the ALR method404

even reach up to 38.32% and 34.06% respectively. The reason for why the biased results are yielded could405

be due to the limitation of subset simulation used in ALR, as has been revealed in [36]. In view of these,406

the proposed method also shows better overall performance than the ALR method in this example.407

Table 1: Results for Example 1 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%

Semi-analytic - - 3.09× 10−5 -

MCS - 109 3.09× 10−5 0.57

AK-MCS+U 1 + 41.50 = 42.50 12 + 41.50 = 53.50 3.13× 10−5 7.15

AK-MCS+EFF 1 + 45.90 = 46.90 12 + 45.90 = 57.90 3.03× 10−5 6.65

AK-MCMC 1 + 100.90 = 101.90 12 + 100.90 = 112.90 3.09× 10−5 0.72

ALR in UQLab 2.0.0

k = 5 1 + 5.20 = 6.20 10 + 26.00 = 36.00 1.64× 10−5 3.80

k = 10 1 + 4.30 = 5.30 10 + 43.00 = 53.00 2.16× 10−5 38.32

k = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 2.19× 10−5 34.16

Proposed PA-BFPL

k = 5 1 + 7.40 = 8.40 10 + 37.00 = 47.00 3.07× 10−5 2.55

k = 10 1 + 5.20 = 6.20 10 + 52.00 = 62.00 3.08× 10−5 1.41

k = 15 1 + 4.80 = 5.80 10 + 72.00 = 82.00 3.07× 10−5 0.97

For illustration purposes, Fig. 5 depicts the identified points resulted from an exemplary run of the408

proposed method (k = 10), along with the true limit state. It is shown that as the iteration goes on,409

the points identified by the proposed method gradually move towards the vicinity of the true limit state.410
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Figure 5: Selected points by the proposed method (k = 10) for Example 1.

Moreover, the selected points, at least most of them, are sparsely distributed in the design space, but slightly411

denser around the true beta points. These results imply that these points are informative for accurately412

inferring the failure probability.413

4.2. Example 2: A series system with four branches414

The second example consists of a series system with four branches, which has been extensively studied415

as a benchmark [20, 9, 22]. The performance function is given by:416

Y = g (X1, X2) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

,

a+ (X1−X2)
2

10 + (X1+X2)√
2

,

(X1 −X2) +
b√
2
,

(X2 −X1) +
b√
2

, (39)

where a and b are two constant parameters, which can be used to adjust the failure probability; X1 and X2417

are normally distributed with zero means and unit variances. In the following, two cases are considered.418

Case I: a = 3 and b = 7419

In this case, the target failure probability is in the order of magnitude 10−3, as indicated by the reference420

result from MCS (i.e., P̂f = 2.22× 10−3 with COV
[
P̂f

]
= 0.21%). The proposed method is also compared421

with several other methods, as listed in Table 2. It is found that all methods can give close average failure422

probabilities to the reference result with COVs less than 5%, except for ALR that processes COVs larger423
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than 10%. The latter is due to the fact that ALR cannot always identify all failure domains. As for Niter, the424

proposed method is significantly advantageous against these non-parallel methods (i.e., AK-MCS+U [20],425

AK-MCS+EFF [20] and ALPI [22]), and still fairly better than these parallel methods (i.e., ISKRA (KB)426

[37], ISKRA (k-means) [37] and ALR [35]). In addition, the average number of g-function calls required427

by the proposed method is also less than the other methods, especially when k is small, say k = 5. These428

results demonstrate the accuracy and efficiency of the proposed method in this case.429

Table 2: Results of Example 2 (Case I) by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 108 2.22× 10−3 0.21

AK-MCS+U 1 + 82.20 = 83.20 12 + 82.20 = 94.20 2.22× 10−3 1.35

AK-MCS+EFF 1 + 103.20 = 104.20 12 + 103.20 = 115.20 2.21× 10−3 1.20

ALPI 1 + 70.70 = 71.70 12 + 70.70 = 72.70 2.22× 10−3 2.25

ISKRA (KB) [37] k = 12 1 + 6.68 = 7.68 12 + 80.16 = 92.16 2.23× 10−3 1.50

ISKRA (k-means) [37] k = 12 1 + 8.62 = 9.62 12 + 103.44 = 115.44 2.22× 10−3 1.50

ALR in UQLab 2.0.0

k = 5 1 + 10.90 = 11.90 10 + 54.50 = 64.50 2.05× 10−3 11.95

k = 12 1 + 6.40 = 7.40 10 + 76.80 = 86.80 2.07× 10−3 18.55

k = 15 1 + 5.20 = 6.20 10 + 78.00 = 88.00 1.94× 10−3 17.92

Proposed PA-BFPL

k = 5 1 + 6.50 = 7.50 10 + 32.50 = 42.50 2.13× 10−3 3.07

k = 12 1 + 4.30 = 5.30 10 + 51.60 = 61.60 2.24× 10−3 1.59

k = 15 1 + 3.40 = 4.40 10 + 51.00 = 61.00 2.22× 10−3 1.08

Note: The results of ISKRA (KB) and ISKRA (k-means) are directly taken from [37], and they were averaged over

50 independent runs.

Fig. 6(a) shows the points selected by the proposed method (k = 10) with an exemplary run. It is430

observed that most of the points identified from iterations 1-5 are scattered in the vicinity of true limit431

state, indicating the effectiveness of the proposed APAL strategy.432

Case II: a = 5 and b = 9433

The second case is more challenging than the first one since the target failure probability is relatively434

small, i.e., in the order of 10−6 as provided by MCS with 1010 samples. Table 3 compares the results from435
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MCS, AK-MCMC [33], ALR [35] and the proposed method. As can be seen, fairly accurate results for such436

a small failure probability can still be produced by the proposed method with different k. Besides, the437

proposed method requires far less Niter and Ncall than those of AK-MCMC, especially for Niter. The ALR438

method still produces biased results with considerably large COVs in this case, though it requires similar439

Niter and Ncall than the proposed method. The results indicate that the proposed method is accurate and440

efficient in such a case.441

Table 3: Results of Example 2 (Case II) by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 1010 7.09× 10−6 0.38

AK-MCMC 1 + 127.50 = 128.50 12 + 127.50 = 139.50 7.10× 10−6 1.37

ALR in UQLab 2.0.0

k = 5 1 + 9.90 = 10.90 10 + 49.50 = 59.50 4.82× 10−6 79.59

k = 10 1 + 6.70 = 7.70 10 + 67.00 = 77.00 4.42× 10−6 81.79

k = 15 1 + 5.30 = 6.30 10 + 79.50 = 89.50 6.50× 10−6 49.85

Proposed PA-BFPL

k = 5 1 + 10.00 = 11.00 10 + 50.00 = 60.00 7.04× 10−6 2.17

k = 10 1 + 5.80 = 6.80 10 + 58.00 = 68.00 7.13× 10−6 2.01

k = 15 1 + 5.10 = 6.10 10 + 76.50 = 86.50 7.06× 10−6 1.20

Once again, we depict the points selected at different stages of the proposed method (k = 10) via442

an exemplary run in Fig. 6(b). One can see that the identified points gradually approach to the four443

important parts of the true limit state that are relatively important for failure probability estimation. This444

demonstrates the effectiveness of the proposed method.445

4.3. Example 3: A slender column446

The third example considers a sufficiently slender column subject to an axial compressive force [38], as447

shown in Fig. 7. The performance function corresponding to the buckling failure is given by:448

Z = g(X) =
π2E

L2

{ π

64

[
(D + T )4 −D4

]}
− P, (40)

where X = [E,D, T, L, P ], as listed in Table 4.449

The proposed method is compared in Table 5 with several other methods, i.e., MCS, AK-MCS+U [20],450

ALPI [22] and ALR [35]. The MCS with 107 samples can produce a failure probability estimate with a very451
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Figure 6: Selected points by the proposed method (k = 10) for Example 1: (a) Case I; (b) Case II.

Table 4: Random variables of Example 3.

Variable Description Distribution Mean Standard deviation

E/Gpa Young’s modulus Normal 203 30.45

D/mm Dimension of the section Normal 23.5 2.0

T/mm Dimension of the section Normal 4 1

L/mm Height of the column Normal 2500 50

P/N Axial load Lognormal 1000 200

small COV, and hence it is taken as a reference. The results of P̂f and COV[P̂f ] show that AK-MCS+U,452

ALPI, ALR and the proposed method have similar accuracy. However, the proposed method is much more453

efficient than AK-MCS+U, ALPI and ALR in terms of Niter. Besides, when k = 5 the proposed method also454

requires less calls to the g-function in average than all those methods being compared. Overall, this example455

demonstrates the potential high-efficiency advantage of PA-BFPL when parallel computing facilities are456

available.457

4.4. Example 4: A transmission tower458

To illustrate the practical applicability of the proposed method, a transmission tower structure subject459

to horizontal loads (Fig. 8) is considered as the last example, which is modified from [39]. The structure is460

modelled as a three-dimensional (3-D) truss using the finite element software OpenSees. The finite element461
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Figure 7: A slender column subject to an axial compressive force.

model consists of 24 joints and 80 truss members. As schematized in Fig. 8(c), the constitute law of the462

material adopts the bi-linear model. Ten horizontal forces along the x-axis are applied to the structure,463

which are shown in Fig. 8(a) and 8(b). The performance function is defined as:464

Y = g(X) = ∆− U(P1, P2, P3, P4, P5, E,A, b, Fy), (41)

where U(·) denotes the horizontal displacement at the top of the structure along the x-axis, which is a465

function of nine random variables (see Table 6); ∆ is the threshold of U , specified as 50 mm in this study.466

In this example, the reference failure probability is 6.25× 10−4 with COV being 1.26%, which given by467

MCS with 107 samples. As summarized in Table 7, the proposed method is compared with several other468

methods, i.e., AK-MCS+U [20], ALPI [22], and ALR [35]. One can see that AK-MCS+U, ALPI and the469

proposed method can produce fairly good average failure probability estimates with small COVs (say less470

than 4%). However, the ALR method produces biased results for k = 5, 10, 15. When it comes to the471

computational efficiency, the proposed method outperforms other methods in terms of the average number472

of iterations Niter. In addition, when k is small (e.g., 5), the average total number of calls Ncall required by473

PA-BFPL is also slightly less than that of ALPI, and far less than that of AK-MCS+U and ALR.474

475

4.5. Final remarks476

As can be seen from the above numerical studies, the parameter k greatly affects the performance of the477
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Table 5: Reliability results of Example 3 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 107 5.80× 10−3 0.41

AK-MCS+U 1 + 68.00 = 69.00 12 + 68.00 = 80.00 5.76× 10−3 1.74

ALPI 1 + 40.50 = 41.50 12 + 40.50 = 42.50 5.71× 10−3 1.56

ALR in UQLab 2.0.0

k = 5 1 + 17.10 = 18.10 10 + 85.50 = 95.50 5.97× 10−3 1.79

k = 10 1 + 10.20 = 11.20 10 + 102.00 = 112.00 5.90× 10−3 3.08

k = 15 1 + 6.90 = 7.90 10 + 103.50 = 113.50 5.94× 10−3 2.08

Proposed PA-BFPL

k = 5 1 + 5.40 = 6.40 10 + 27.00 = 37.00 5.71× 10−3 1.05

k = 10 1 + 3.70 = 4.70 10 + 37.00 = 47.00 5.74× 10−3 1.50

k = 15 1 + 3.00 = 4.00 10 + 45.00 = 55.00 5.77× 10−3 0.97

proposed PA-BFPL method, especially for efficiency. Typically, the average number of iterations decreases,478

while the average number of g-function evaluations when k increases from 5 to 15. However, this should not479

be regarded as a general conclusion because we only investigated three cases for k in each example. As a rule480

of thumb, one can choose a small k for non-parallel computing, whereas a large k when parallel computing481

is available.482

5. Numerical investigation on the posterior distribution of failure probability483

In addition to the posterior mean and variance, the posterior distribution of failure probability could484

be of interest for a complete Bayesian framework. For example, one can offer a confidence interval for the485

failure probability when the posterior distribution is available. However, it cannot be obtained analytically486

according to its definition (Eq. (22)). In this section, we attempt to numerically investigate the posterior487

distribution of failure probability through the four numerical examples given in the preceding section.488

According to the proposed VAIS method, Eq. (22) can be rewritten as follows:489

P̂f,n(ϖ) =

∫
X
În(ϖ,x)

fX(x)

hX(x)
hX(x)dx. (42)

The reformulation actually allows us to evaluate the above integral numerically as:490

P̂f,n(ϖ) ≈ 1

N4

N4∑
i=1

În(ϖ,x(i))
fX(x(i))

hX(x(i))
hX(x(i)), (43)
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Figure 8: A transmission tower subject to horizontal loads: (a) 3-D finite element model; (b) Schematic diagram of load

direction; (c) Schematic diagram of bi-linear constitute law.

where
{
x(i)

}N4

i=1
is a set of N4 random samples generated according to hX(x). Given that N4 is sufficiently491

large, we can approximately generate random numbers for the posterior failure probability P̂f (ϖ) via Eq.492

(43). The key is to sample from correlated Bernoulli random variables
{
În(ϖ,x(1)), În(ϖ,x(2)), · · · , În(ϖ,x(N4))

}
493

defined by Eq. (17). Nevertheless, this task is still challenging, especially when N4 is large. For simplicity,494

the Bernoulli random variables are assumed to be independent and it is shown from some numerical ex-495

periments that this assumption does not affect our finial conclusion. Under these settings, posterior failure496

probability samples can be generated at each step of the proposed PA-BFPL method. To limit the length497

of the paper, only the results from the last step of the proposed method (an exemplary run, k = 10) are498

reported for those four numerical examples. The number of posterior failure probability samples is set to499

be 103. Other parameters are specified as: α = 2 and N4 = 5× 105.500

The results of the normality tests for the simulated data of the posterior failure probabilities are depicted501
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Table 6: Random variables of Example 4.

Variable Description Distribution Mean COV

P1/kN Horizontal load Lognormal 100 0.20

P2/kN Horizontal load Lognormal 80 0.20

P3/kN Horizontal load Lognormal 60 0.20

P4/kN Horizontal load Lognormal 40 0.20

P5/kN Horizontal load Lognormal 20 0.20

E/GPa Young’s modulus Normal 200 0.15

A/mm2 Cross-sectional area Normal 5000 0.15

Fy/MPa Yield stress Normal 400 0.15

b Strain-hardening ratio Normal 0.02 0.10

in Fig. 9. It is shown that the posterior failure probability samples can be well-modelled by normal502

distributions for all the cases studied. The results indicate that the posterior distribution of the failure503

probability might be approximated by a Gaussian distribution N (mP̂f,n
, σ2

P̂f,n
).504
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Table 7: Reliability results of Example 4 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 107 6.25× 10−4 1.26

AK-MCS+U 1 + 68.00 = 69.00 12 + 113.80 = 125.80 6.17× 10−4 1.83

ALPI 1 + 46.60 = 47.60 12 + 46.60 = 58.60 6.12× 10−4 4.28

ALR in UQLab 2.0.0

k = 5 1 + 37.30 = 38.30 10 + 186.50 = 196.50 2.27× 10−3 225.88

k = 10 1 + 18.80 = 19.80 10 + 188.00 = 198.00 2.50× 10−2 215.52

k = 15 1 + 12.50 = 13.50 10 + 187.50 = 197.50 7.20× 10−4 25.03

Proposed PA-BFPL

k = 5 1 + 6.80 = 7.80 10 + 34.00 = 44.00 6.32× 10−4 3.34

k = 10 1 + 4.90 = 5.90 10 + 49.00 = 59.00 6.30× 10−4 2.09

k = 15 1 + 4.70 = 5.70 10 + 70.50 = 80.50 6.25× 10−4 1.78

Note: For most runs, the ALR method cannot converge even for Ncall > 200. For this reason, the maximum

value of Ncall is set to be 200 for k = 5, 10, while 205 for k = 15.

(a) (b)

(c) Case II of Example 2 (d) Example 3 (e) Example 4

Figure 9: Normality tests of the simulated data from the posterior failure probabilities: (a) Example 1; (b) Case I of Example

2; (c) Case II of Example 2; (d) Example 3; (e) Example 4.
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6. Concluding remarks505

In the present paper, the task of failure probability estimation is interpreted from a perspective of506

Bayesian inference, in contrast to the classical frequentist inference. The proposed Bayesian failure proba-507

bility inference (BFPI) framework regards the discretization error as a kind of epistemic uncertainty, and508

allows it to be properly modelled. To be specific, a prior Gaussian process is assumed for the performance509

function, a posterior distribution is then derived for the performance function, failure indicator function and510

failure probability conditional on observations arising from evaluating the performance function at a set of511

points. Numerical investigation indicates that the posterior failure probability could be approximated by512

a normal distribution. In addition, the parallel adaptive Bayesian failure probability learning (PA-BFPL)513

method is developed to make inference about the failure probability within the Bayesian framework in a514

parallel adaptive scheme. The proposed PA-BFPL enables to make the fullest possible use of prior evalua-515

tions on the performance function evaluation, and can take advantage of parallel computing. Compared to516

several existing methods, the proposed method shows improved performance for structural reliability anal-517

ysis regarding robustness, accuracy and efficiency. The advantage in computational efficiency is significant518

especially when parallel computing facilities are available.519

The proposed PA-BFPL method is supposed to work well in linear, weakly nonlinear and moderately520

nonlinear problems with up to medium-dimensional random variables. For highly nonlinear and/or high-521

dimensional problems, additional research efforts are still needed in the future.522
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