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Abstract10

Uncertainties existing in physical and engineering systems can be characterized by different kinds of mathe-11

matical models according to their respective features. However, efficient propagation of hybrid uncertainties12

via an expensive-to-evaluate computer simulator is still a computationally challenging task. In this contribu-13

tion, estimation of response expectation function (REF), its variable importance and bounds under hybrid14

uncertainties in the form of precise probability models, parameterized probability-box models and interval15

models is investigated through a Bayesian approach. Specifically, a new method, termed “Parallel Bayesian16

Quadrature Optimization” (PBQO), is developed. The method starts by treating the REF estimation as a17

Bayesian probabilistic integration (BPI) problem with a Gaussian process (GP) prior, which in turn implies18

a GP posterior for the REF. Then, one acquisition function originally developed in BPI and other two19

in Bayesian global optimization are introduced for Bayesian experimental designs. Besides, an innovative20

strategy is also proposed to realize multi-point selection at each iteration. Overall, a novel advantage of21

PBQO is that it is capable of yielding the REF, its variable importance and bounds simultaneously via22

a pure single-loop procedure allowing for parallel computing. Three numerical examples are studied to23

demonstrate the performance of the proposed method over existing methods.24

Keywords: Hybrid uncertainties, Response expectation function, Bayesian probabilistic integration,25

Bayesian global optimization, Bayesian experimental design, Parallel computing26

1. Introduction27

Uncertainty quantification (UQ) is a hot topic and even research frontier in a broad range of modern28

science and engineering fields. UQ is primarily aimed at the quantitative characterization and consequent29
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reduction of uncertainties in both physical and engineering systems. Uncertainties occur when all or some30

aspects of the system under consideration are not exactly known. Examples of such aspects include, e.g., sys-31

tem parameters and operating conditions. These uncertainties generally originate from a variety of sources32

such as inherent variation, manufacturing error, modelling assumptions or a combination hereof. In terms33

of the origin of uncertainties, they are typically classified into either aleatory or epistemic types [1, 2].34

Aleatory uncertainty refers to the uncertainty due to the intrinsic randomness or variability, and thus is35

irreducible in nature. As such, aleatory uncertainty is an inherent property of the system under consider-36

ation. Epistemic uncertainty, on the other hand, is associated with a lack of knowledge (or information)37

on the side of the analysts, and hence can be potentially reduced or even eliminated by acquiring more38

knowledge. Commonly, these two types of uncertainties occur together in both science and engineering, and39

many different uncertainty models might appear simultaneously in just one single problem. In addition to40

characterizing these uncertainties with appropriate mathematical models, uncertainty propagation through41

a computational model has also been of central interest from both academia and industry.42

Many approaches have been indeed developed to quantitatively describe uncertain phenomena, which43

can be broadly categorized into three major groups: probabilistic approach, non-probabilistic approach and44

imprecise probability approach. The probabilistic approach is rooted in classical probability theory, and is45

the most traditional way to quantify uncertainties. Following this approach, non-determinism is modelled46

by a precise probability distribution on the basis of a set of probability axioms [3]. Despite its rigor in theory47

and popularity in practical applications, it is often criticized that the probabilistic approach indispensably48

relies on very fine information, e.g., a large amount of high-quality data, which is not always available.49

Alternatively, the non-probabilistic approach, including interval models [4], fuzzy sets [5] and convex models50

[6], is emerging for characterizing uncertainty with limited information, where the variation bounds need51

to be specified, instead of a precise probability distribution. However, it is argued that these methods52

are mostly suitable to deal with epistemic uncertainty. In recent years, the imprecise probability approach53

has gained increasing attention as a promising framework to quantify complex uncertainties, particularly54

when the available information or data is not sufficient to identify a unique probability distribution [7]. In55

essence, it is an extension to classical probability theory where the the uncertainty is characterised by a set of56

probability measures, rather than a single one. Therefore, it allows for modelling both aleatory uncertainty57

and epistemic uncertainty separately within a uniform framework. Typically, the aleatory uncertainty is58

characterized by the traditional probabilistic models, and the epistemic uncertainty is handled by the non-59

probabilistic models. Representative techniques include the probability box (p-box) [8], evidence theory [9]60

and fuzzy probability [10] among others.61

As for uncertainty propagation, great efforts have been made along each line of uncertainty characteriza-62

tion over the past several decades. The existing approaches for propagating precise probabilistic uncertainty63

can be roughly divided into five categories: stochastic simulation methods [11–13], approximate analytical64
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methods [14, 15], surrogate-assisted methods [16–18], numerical integration methods [19–23] and probability65

conservation-based methods [24, 25]. Differently, the propagation of non-probabilistic uncertainty follows66

another district philosophy, more relaying on, e.g., interval arithmetic [26], optimization methods [27, 28],67

perturbation methods [29, 30] and etc. Also advanced sampling approaches for interval analysis have been68

introduced [31, 32]. One can refer to [5] for a good review on recent trends in propagation of non-probabilistic69

uncertainty. For imprecise probability propagation, however, the above two kinds of methods are not suit-70

able, and hence new developments are necessary. The most common way to address the problem involves a71

double-loop procedure that uses the aforementioned two types of methods in a nested way, such as optimized72

parameter sampling [33] and interval Monte Carlo simulation [34], which often suffers from a heavy com-73

putational burden. To improve the computational efficiency, decoupled strategies have recently attracted74

increasing attention, and representative works include the augmented subset simulation [35], non-intrusive75

imprecise stochastic simulation [36, 37], operator norm theory [38], active learning augmented probabilistic76

integration [39], non-intrusive imprecise probabilistic integration (NIPI) [40], and collaborative and adaptive77

Bayesian optimization (CABO) [41]. For an review of the computation methods for propagating p-boxes,78

the reader is referred to [42]. Besides, some progress has also been made in the context of hybrid uncertainty79

propagation, e.g., surrogate modelling-based methods [43–48], stochastic simulation-based methods [49–51]80

and others [52, 53]. For propagating probabilistic-interval hybrid uncertainty, one can refer to the review81

[54]. Overall, propagation of hybrid uncertainties poses a more significant computational challenge in UQ82

community, and the existing mythologies are far from desirable for general practical applications.83

In this paper, a novel method is presented to propagate hybrid uncertainties in the form of precise84

probabilistic models, parameterized p-box models and interval models, where the response expectation85

function (REF), its variable importance and bounds are of concern. The method belongs to the class of86

Bayesian probabilistic numerical methods [55], and can also be seen as an important extension to the NIPI87

[40] and CABO [41] methods originally developed for propagating parameterized p-box models. The main88

contributions of the present work can be summarized as follows:89

• A general Bayesian framework is presented for propagating hybrid uncertainties, which is non-intrusive90

and fully decoupled in nature;91

• Posterior means and variances of the REF and its random-sampling high-dimensional model represen-92

tation (RS-HDMR) decomposition are analytically derived in closed form;93

• Parallelized Bayesian experiment design is realized so as to take advantage of parallel computing at94

each iteration;95

• A Matlab implementation of our methodology is freely available to the public 1.96

1to be released upon acceptance of the paper
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The remaining of this paper is organized as follows. We start by stating the problem to be solved in this97

study in Section 2. Section 3 presents the theoretical basis and numerical implementation procedure of the98

proposed method, with the relationship to the existing NIPI and CABO methods being discussed. How to99

extend the proposed method to a relatively more general case of hybrid uncertainties is briefly explained in100

Section 4. In Section 5, three numerical examples are studied to demonstrate the proposed method. The101

paper ends with some concluding remarks and perspectives in Section 6.102

2. Problem statement103

In this work, three kinds of uncertainty characterization models are considered to model non-deterministic104

inputs of a computer simulator, i.e., precise probability models, parameterized p-box models and interval105

models. The precise probability models that are deeply rooted in probability theory are assumed to be used106

for describing pure aleatory uncertainty. As a representative of imprecise probabilities, the parameterized p-107

box models are able to account for both aleatory uncertainty and epistemic uncertainty simultaneously. The108

interval models serve as a representative of non-probabilistic models and are useful to model the constant-109

but-unknown epistemic uncertainty. As such, the developed method is expected to work in the following110

four cases:111

Case I: Precise probabilistic models and parameterized p-box models coexist in the model inputs;112

Case II: Only parameterized p-box models exist in the model inputs;113

Case III: Precise probabilistic models and interval models coexist in the model inputs;114

Case IV: Precise probabilistic models, parameterized p-box models and interval models coexist in the115

model inputs.116

Among the four cases, Case IV constitutes a more general situation of hybrid uncertainties. For117

notational clarity, however, we only take Case III as an example to illustrate the proposed method in118

the following, and when it comes to the general case (i.e., Case IV) one can refer to Section 4. Let119

X = [X1, X2, . . . , Xd1 ] ∈ X ⊆ Rd1 and A = [A1, A2, . . . , Ad2 ] ∈ A ⊆ Rd2 denote a d1-dimensional vector120

of precise random variables and a d2-dimensional vector of interval variables, respectively. The random121

variables are said to be ‘precise’ when their distribution types and distribution parameters are exactly122

known, and we assume that the joint probability density function (PDF) of X exists, denoted as fX(x).123

The interval variables refer to the uncertain parameters with limited information, and can only be specified124

by their lower and upper bounds, i.e., A = [α,α], where α = [α1, α2, . . . , αd2 ] and α = [α1, α2, · · · , αd2 ]. As125

such, A represents a d2-dimensional hyper-rectangle. In this study, these d1+d2 variables are assumed to be126

independent just for the convenience of describing our method. The computer simulator is represented by127

a deterministic, continuous and real-valued function g : Rd1+d2 7→ R, {x, α} → z, with Z = g(X,A) being128

a scalar quantity of interest. Due to the existence of interval variables, Z is no longer a random variable129
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unless A is fixed at a value α ∈ A. Thus, the expectation of Z, is not a deterministic values anymore, but130

function of the interval variables. More precisely, it only assume a crisp value for a realisation of the input131

intervals. To formalize, the definition of the so-called REF is given as follows:132

m(α) =

∫
X

g(x,α)fX(x)dx, (1)

The lower and upper bounds of m(α) can be defined as:133

ml = min
α∈[α,α]

m(α) = min
α∈[α,α]

∫
X

g(x,α)fX(x)dx, (2)

134

mu = max
α∈[α,α]

m(α) = max
α∈[α,α]

∫
X

g(x,α)fX(x)dx. (3)

The REF can provide complete information about how the response expectation changes with its argu-135

ment α, whereas the interval [ml,mu] measures the amount of epistemic uncertainty present in the response136

expectation. Besides, the analyst may also concern the variable importance of the REF. Intuitively, the137

bounds and variable importance analysis of the REF can be proceeded straightforwardly once the REF138

is available. However, it is still a non-trivial task to compute the REF in an efficient manner since each139

evaluation of the response function g(x,α) can be prohibitively expensive for a real-world problem.140

3. Parallel Bayesian quadrature optimization141

As the REF defined in Eq. (1) is given in the form of an integral, the Bayesian probabilistic integration142

(BPI) [23] can be applied to efficiently obtain an estimate for the REF. If we assign a Gaussian process (GP)143

prior for the integrand g(x,α), the induced posterior of the REF is also a GP. Following this, the lower and144

upper bounds defined in Eqs. (2) and (3) may be further solved by the Bayesian global optimization (BGO)145

[56]. In this section, a novel Bayesian approach combining the BPI and BGO, called Parallel Bayesian146

Quadrature Optimization (PBQO), is presented to produce the REF, its variable importance and bounds147

simultaneously in an efficient manner.148

3.1. Variable transformation149

Before introducing our method, a pre-processing step should be performed to transform the original input150

variable vector {X,A} to a new one so as to make the proposed method analytically tractable. In this study,151

the random variable vector X is transformed to be a standard normal one by a certain transformation (e.g.,152

isoprobabilistic transformation), which is denoted as U = T1(X). In contrast, we consider transforming153

the interval vector A to be a standard one (i.e., [0, 1]d2) by a simple linear transformation such that V =154

T2(A). For convenience, the two transformations can be written in a uniform form W = T (X,A), where155

W = {U ,V }. The REF with respect to v is defined as:156

M(v) =

∫
U

G(w)fU (u)du, (4)
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where G(w) = g(T (x,α)), fU (u) is the joint PDF of U . Once M(v) is available, m(α) can be easily157

obtained as m(α) =M(T2(α)). Note that the T1 transformation is necessary for the analytical tractability158

of the proposed method, while T2 transformation is not. However, we introduce the T2 transformation only159

for the purpose of producing concise analytical expressions.160

3.2. Prior Gaussian process161

In the proposed PBQO method, we first place a GP prior over the space G of functions: G : W → R,162

denoted as Ĝ(w) ∼ GP(µ0(w), k0(w,w′)), where µ0(w) and k0(w,w′) are the prior mean and covariance163

functions, respectively. The prior mean function reflects the general trend of the GP, and can be assumed to164

be, e.g., zero, constant or a linear polynomial. The covariance function is a more crucial ingredient of the GP165

since it encodes our basic assumptions about the function to be inferred, e.g., smoothness and periodicity.166

In this study, the prior mean function adopts a constant, i.e., µ0(w) = β, and the prior covariance function167

takes the squared exponential kernel:168

k0(w,w′) =s20 exp

[
−1

2
(w −w′)Σ−1 (w −w′)T

]
=s20 exp

[
−1

2
(u− u′)Σ−1u (u− u′)T

]
exp

[
−1

2
(v − v′)Σ−1v (v − v′)T

]
,

(5)

where s20 is the process variance, Σ = diag
{
l21, l

2
2, · · · , l2d1+d2

}
with li being the characteristic lengthscale in169

i-th dimension, Σu = diag
{
l21, l

2
2, · · · , l2d1

}
and Σv = diag

{
l2d1+1, l

2
d1+2, · · · , l2d1+d2

}
; Throughout the paper,170

the symbol diag {·} means to create a square diagonal matrix with the elements of its argument when its171

argument is a vector or to get a column vector of the diagonal elements of its argument when its argument172

is a matrix. The parameters β, s0, l1, l2, · · · , ld1+d2 are called hyperparameters. Note that the analytical173

tractability of the proposed method relies on using the squared exponential kernel.174

3.3. Bayesian posterior inference175

Suppose that we have evaluated the G-function at n points. Let a n× (d1 + d2) matrix W = (U ,V) =176 {
w(j)

}n
j=1

denote the n points at which the G-function are evaluated, and a n × 1 matrix Z =
{
z(j)
}n
j=1

177

denote the corresponding G-function values at W . Given D = {W ,Z}, the hyperparameters involved in178

the prior mean and covariance functions can be determined by, e.g., maximum likelihood estimation [57].179

Besides, conditioning on the data D, we can arrive at a posterior GP over functions G ∈ G , which is denoted180

as GP(µn(w), kn(w,w′)). According to [57], the posterior mean µn(w) and posterior covariance function181

kn(w,w′) can be given by:182

µn(w) = µ0 (w) + k0 (w,W)
T
K−10 (Z − µ0 (W)) , (6)

183

kn(w,w′) = k0 (w,w′)− k0 (w,W)
T
K−10 k0 (w′,W) , (7)
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where µ0 (W) = [µ0(w(1)), µ0(w(2)), · · · , µ0(w(n))]T is the mean vector at W ; k0 (w,W) = [k0
(
w,w(1)

)
,184

k0
(
w,w(2)

)
, · · · , k0

(
w,w(n)

)
]T is the covariance vector between w and W ; k0 (w′,W) = [k0

(
w′,w(1)

)
,185

k0
(
w′,w(2)

)
, · · · , k0

(
w′,w(n)

)
]T is the covariance vector between w′ and W ; K0 is the covariance matrix186

of W with entry [K0]ij = k0(w(i),w(j)).187

3.3.1. Bayesian inference of REF188

As an extended result of BPI [58], the posterior distribution of REF (denoted as M̂(v)), i.e., integrating189

Ĝ(w) with respect to u under the Gaussian weight fU (u), still follows a GP. By repeated application190

of Fubini’s theorem, one can derive the analytical expressions of the posterior mean function µM̂(v) and191

posterior variance function σ2
M̂(v) such that:192

µM̂(v) = ED

[
M̂(v)

]
= Πu [µ0(w)] + Πu

[
k0 (w,W)

T
]
K−10 (Z − µ0 (W)) , (8)

193

σ2
M̂(v) = VD

[
M̂(v)

]
= ΠuΠu′ [k0(w, (u′,v))]−Πu

[
k0 (w,W)

T
]
K−10 Πu [k0 (w,W)] , (9)

where ED [·] and VD [·] refer to the expectation and variance operators taken with respect to the posterior194

distributions of their arguments given data D; Πu[·] denotes the integral operator taken with respect to u195

under Gaussian weight fU (u); Πu′ [·] is similarly defined; ΠuΠu′ [·] is the integral operator taken respect to196

both u and u′ under Gaussian weights fU (u) and fU (u′); The term Πu [µ0(w)] can be easily obtained as197

Πu [µ0(w)] = β; The other terms can be derived as:198

Πu [k0 (w,W)] = s20
∣∣Σ−1u + I

∣∣−1/2 exp

[
−1

2
diag

{
U (Σu + I)

−1 UT − (v − V)Σ−1v (v − V)
T
}]

, (10)

199

ΠuΠu′ [k0(w,w′)] = s20
∣∣2Σ−1u + I

∣∣−1/2 , (11)

where |·| means the determinant of its argument; I is a identity matrix of size d1.200

Note that the expressions for µM̂(v) and σ2
M̂(v) are similar in form to those of NIPI and CABO, but201

essentially different due to the fact that the proposed method is established on the basis of the joint space202

of standard normal variables and standard interval variables, while both NIPI and CABO are cast in the203

standard normal space. The posterior mean function µM,n(v) can be used as an estimate of M(v) and204

the posterior variance function σ2
M̂(v) measures our uncertainty of the estimate after n observations have205

been available. By using the linear transformation, one can easily obtain the posterior mean function206

µm̂(α) = µM̂(T2(α)) and posterior variance function σ2
m̂(α) = σ2

M̂(T2(α)) for m̂(α).207

3.3.2. Bayesian inference of RS-HDMR component functions of REF208

In addition to the REF m̂(α), the analyst may also be concerned about, e.g., identifying key variables209

among A that are more important for m(α). For this propose, the RS-HDMR is first employed to express210
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M(v) as the summation of a set of component functions with increasing dimensions [59]:211

M(v) =M0 +

d2∑
i=1

Mi(vi) +
∑

1≤i<j≤d2

Mij(vi, vj) + · · ·+Mij...d2(v1, v2, · · · , vd2), (12)

where the zeroth-order component function M0 is a constant representing the average value of M(v) over212

the entire domain V, the first-order component function Mi(vi) represents the independent contribution of213

vi acting alone toM(v), the second-order component functionMij(vi, vj) denotes the cooperative effects of214

vi and vj upon M(v), etc. The last term Mij...d2(v1, v2, · · · , vd2) describes any residual cooperative effects215

of all input variables acting together to influence M(v). The component functions up to the second-order216

can be defined as:217

M0 =

∫
V
M(v)dv =

∫
V

∫
U
G(w)fU (u)dudv, (13)

218

Mi(vi) =

∫
V−i

M(v)dv−i −M0 =

∫
V−i

∫
U
G(w)fU (u)dudv−i −M0, (14)

219

Mij(vi, vj) =

∫
V−ij

M(v)dv−ij−Mi(vi)−Mj(vj)−M0 =

∫
V−ij

∫
U
G(w)fU (u)dudv−ij−Mi(vi)−Mj(vj)−M0,

(15)

where V−i and v−i denote the space V and the vector v excluding the i-th dimension, respectively; V−ij220

and v−ij are similarly defined.221

As high-order component functions have small contributions for many realistic systems, the second-order222

truncated RS-HDMR expansion is often considered [36, 40]. For this reason, only the component functions up223

to the second-order are provided in the following via Bayesian inference. If necessary, high-order component224

functions can also be derived similarly.225

Zeroth-order RS-HDMR component. As defined in Eq. (13), the zeroth-order RS-HDMR component M0226

is actually an integral of G(w) with respect to w. From a Bayesian quadrature perspective, the posterior227

distribution of M0 (denoted as M̂0) is Gaussian with posterior mean µM̂0
and posterior variance σ2

M̂0
228

being:229

µM̂0
= ED

[
M̂0

]
= Πw [µ0(w)] + Πw

[
k0 (w,W)

T
]
K−10 (Z − µ0 (W)) , (16)

230

σ2
M̂0

= VD

[
M̂0

]
= ΠwΠw′ [k0(w,w′)]−Πw

[
k0 (w,W)

T
]
K−10 Πw′ [k0 (w′,W)] , (17)

where Πw [µ0(w)] = β, and other terms can be derived as:231

Πw [k0 (w,W)] =Πw′ [k0 (w′,W)]

=s20
∣∣Σ−1u + I

∣∣−1/2 exp

[
−1

2
diag

{
U (Σu + I)

−1 UT
}]

·
(π

2

)d2/2
prod2

{[
erf
(

(1− V) (2Σv)
−1/2

)
− erf

(
−V (2Σv)

−1/2
)]
Σ1/2
v

}
,

(18)
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232

ΠwΠw′ [k0(w,w′)] =s20
∣∣2Σ−1u + I

∣∣−1/2
· 2d2prod1

{
diag

{
Σv

[
−1 + exp

[
−(2Σv)−1

]
+ (2π−1Σv)−1/2erf

(
(2Σv)

−1/2
)]}}

,

(19)

where prod1 {·} means to return the product of the elements of its argument; prod2 {·} is to get a column233

vector containing the products of each row of its argument; erf (·) stands for the error function. Note that234

in Eq. (18) the argument in prod2 {·} is an n-by-d2 matrix, while in Eq. (19) the argument in prod1 {·} is235

a d2-by-1 vector.236

First-order RS-HDMR component. The first-order RS-HDMR component function Mi(vi) defined in Eq.237

(14) is an integral (i.e, integrating G(w) with respect to w excluding vi) minus M0, and thus its posterior238

distribution M̂i(vi) should follow a one-dimensional GP.239

The posterior mean function µM̂i
(vi) of the first-order RS-HDMR component function M̂i(vi) can be240

expressed as:241

µM̂i
(vi) = ED

[
M̂i(vi)

]
= Π−vi [µ0(w)] + Π−vi

[
k0 (w,W)

T
]
K−10 (Z − µ0 (W))− µM̂0

, (20)

where Π−vi [·] denotes the integration of its argument taken overw except vi; it is obvious that Π−vi [µ0(w)] =242

β; the term Π−vi [k0 (w,W)] can be derived as:243

Π−vi [k0 (w,W)] =s20
∣∣Σ−1u + I

∣∣−1/2 exp

[
−1

2
diag

{
U (Σu + I)

−1 UT
}]

·
(π

2

)(d2−1)/2
prod2

{[
erf
(

(1− V ,−i)
(
2Σv−i

)−1/2)− erf
(
−V ,−i

(
2Σv−i

)−1/2)]
Σ1/2
v−i

}
· exp

[
−1

2
diag

{
− (vi − V ,i)Σ

−1
vi

(vi − V ,i)
T
}]

,

(21)

in which V ,i is the i-th column of V , V ,−i represents the matrix generated by removing V ,i from V , Σvi244

denotes the (i, i)-th element of Σv, and Σv−i
stands for the matrix generated by removing the i-th column245

and i-th row of Σv.246

For the posterior variance function σ2
M̂i

(vi) of the first-order RS-HDMR component function M̂i(vi),247

one can refer to Appendix A.248

Second-order RS-HDMR component. Similarly, the second-order RS-HDMR component functionMij(vi, vj)249

defined in Eq. (15) is an integral (i.e., integrating G(w) with respect to w excluding vi and vj) diminished250

byMi(vi),Mj(vj) andM0, and thus its posterior distribution M̂ij(vi, vj) should follow a two-dimensional251

GP.252

The posterior mean function µM̂ij
(vi, vj) of the first-order RS-HDMR component function M̂ij(vi, vj)253
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can be given by:254

µM̂ij
(vi, vj) =ED

[
M̂ij(vi, vj)

]
=Π−vij

[µ0(w)] + Π−vij

[
k0 (w,W)

T
]
K−10 (Z − µ0 (W))− µM̂i

(vi)− µM̂j
(vj)− µM̂0

,

(22)

where the term Π−vij
[µ0(w)] is equal to β, and the term Π−vij

[k0 (w,W)] is derived as:255

Π−vij
[k0 (w,W)] =s20

∣∣Σ−1u + I
∣∣−1/2 exp

[
−1

2
diag

{
U (Σu + I)

−1 UT
}]

·
(π

2

)(d2−2)/2
prod2

{[
erf
(

(1− V ,−ij)
(
2Σv−ij

)−1/2)− erf
(
−V ,−ij

(
2Σv−ij

)−1/2)]
Σ1/2
v−ij

}
· exp

[
−1

2
diag

{
− (vij − V ,ij)Σ

−1
vij

(vij − V ,ij)
T
}]

.

(23)

For the posterior variance function σ2
M̂ij

(vi, vj) of the second-order RS-HDMR component function256

M̂ij(vi, vj), one can refer to Appendix B. �257

One should note that the above results are essentially different from those in NIPI. Once these RS-HDMR258

component functions of M̂(v) are properly inferred, they can be transformed by a linear transformation to259

yield the RS-HDMR component functions for m̂(α).260

3.3.3. Bayesian inference of extrema of REF261

If we stop after obtaining n observations of the G-function, a risk-neutral choice for the minimum or262

maximum of the REF would be the minimum or maximum of the posterior mean function µm̂(α). As263

µm̂(α) has been derived in a closed-form, the extrema of the REF can be inferred from µm̂(α) by simply264

applying a global optimization algorithm such that:265

m̂l = min
α∈[α,α]

µm̂(α), (24)

266

m̂u = max
α∈[α,α]

µm̂(α). (25)

Besides, since the posterior variance function σ2
m̂(α) is also available, the prediction errors regarding the267

minimum and maximum estimators in Eqs. (24) and (25) can be measured by the posterior variances:268

Var [m̂l] = σ2
m̂(α−), (26)

269

Var [m̂u] = σ2
m̂(α+), (27)

where α− = arg minα∈[α,α] µm̂(α) and α+ = arg maxα∈[α,α] µm̂(α) are the minimum point and maximum270

point, respectively.271
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3.4. Parallel Bayesian experimental design272

Another significant advantage of the above framework is that it offers the possibility for incorporating273

our prior knowledge and developing a Bayesian experimental design strategy. This advantage is also realized274

in both NIPI and CABO. These two methods, however, are in a pure sequential manner to acquire the G-275

function. That is, at each iteration only one point is allowed to be selected and a single G-function evaluation276

is subsequently performed. The sequential experimental strategies would be less efficient and flexible when277

parallel computing architectures are available. Besides, the one for NIPI is specifically designed for inferring278

RS-HDMR component functions, whereas the one for CABO is only developed for inferring the extrema279

of the REF. Based on these considerations, a novel contribution here is to present a multi-point selection280

criterion that can support parallel evaluations of the G-function and also enable us to estimate the REF, its281

RS-HDMR component functions and bounds at the same time. In this study, the preferred number of CPU282

cores or workers in a parallel pool is assumed to be an even number, denoted by c.283

Stage 1: Global improvement. Supposing that we have only obtained a small set of initial observations,284

the first stage of our strategy aims to improve the global accuracy of the REF. The key lies in three main285

aspects: (1) how can we measure the global accuracy of the REF? (2) how to select c points at each iteration286

that are expected to improve the global accuracy of the REF? (3) when to stop the iteration at this stage?287

As the zero-th order RS-HDMR componentM0 is defined as an integral of the REFM(v) with respect288

to v (called augmented expectation), its accuracy may reflect the global accuracy of the REF to some289

extent. Therefore, the accuracy of M̂0 is taken as a global accuracy measure of M̂(v) in this study, which290

can be quantified by the posterior variance σ2
M̂0

. Inspired by [23, 40, 41], a new acquisition function, called291

posterior variance contribution to the augmented expectation (denoted as PVCA), is given by:292

PVCA(w) = Πw′ [kn(w,w′)]× fW (w) =
{

Πw′ [k0(w,w′)]− k0 (w,W)
T
K−10 Πw′ [k0 (w′,W)]

}
× fW (w),

(28)

where the closed-form expression of Πw′ [k0 (w′,W)] has been given in Eq. (18); Similarly, the term293

Πw′ [k0(w,w′)] can be derived as:294

Πw′ [k0(w,w′)] =s20
∣∣Σ−1u + I

∣∣−1/2 exp

[
−1

2
diag

{
u (Σu + I)

−1
uT
}]

·
(π

2

)d2/2
prod2

{[
erf
(

(1− v) (2Σv)
−1/2

)
− erf

(
−v (2Σv)

−1/2
)]
Σ1/2
v

}
.

(29)

The acquisition function in Eq. (28) is said to be ‘new’ because it is essentially not the same as those295

in the cited references. It should be noted that σ2
M̂0

=
∫
W PVCA(w)dw holds, which implies that the296

PVCA function can measure the contribution of our epistemic uncertainty at w to σ2
M̂0

. For this reason, by297

selecting w(n+1) = arg maxw∈W PVCA(w) as the best next point to evaluate the G-function, it is expected298

that the posterior variance of the augmented expectation will decrease the most, and hence the accuracy of299
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the posterior mean of the augmented expectation will be improved the most. However, adding one single300

point at a time may waste other useful information and cannot allow to make use of parallelization, and301

hence it could be inefficient especially when parallel evaluations are possible.302

In this study, we propose a novel strategy to parallelize the developed PBQO method by providing c303

points at each iteration. This strategy is motivated by the fact that the PVCA function (defined in Eq.304

(28)) only explicitly depends on the sampled locations, not on function values at these points. For this305

reason, we can rewrite the PVCA function as PVCA(w,W). Therefore, it is possible to select c points306

ahead of observing their G-function values based on the PVCA(w,W) function. Specifically, each point307

can be selected sequentially, with the PVCA function modified by considering the newly selected points at308

the current iteration. The assumption behind this strategy is that the hyper-parameters will not change,309

and hence the PVCA function remains the same during the process of identifying the next c − 1 points.310

In fact, the hyper-parameters do change if we update immediately the GP after each point is chosen and311

its G-function value is computed, which, however, corresponds to the single-point selection strategy. Our312

idea is expected to work since the hyper-parameters may not vary too much within the next few steps.313

The pseudocode of the proposed multi-point selection strategy is given in Algorithm 1. Until c points are314

obtained, evaluating the G-function at these points can be run in parallel, and the GP model can be updated315

subsequently. This iteration process is repeated until a stopping criterion is reached, which is defined as316

the posterior coefficient of variation (COV) of the augmented expectation less than a pre-specified tolerance317

εBPI, i.e.,
σM̂0

|µM̂0
| < εBPI. To avoid possible premature convergence, the stopping criterion is required to318

be satisfied several (e.g., two) times in successive iterations. It should be noted that the proposed multi-319

point selection strategy is computationally inexpensive and can usually produce a batch of c diverse points320

according to our computational experience, which are thus effective and informative for parallelization.321

Algorithm 1 Proposed multi-point selection strategy based on the PVCA(w,W) function

1: Input: c and PVCA(w,W)

2: for i = 1→ c do

3: w(n+i) = arg maxw∈W PVCA(w,W)

4: W = W ∪w(n+i)

5: end for

6: Output: w(n+1),w(n+2), · · · ,w(n+c)

Stage 2: Local improvement. After stage 1, it is expected that the general trend of the REF has been322

captured. However, the local features of the REF, e.g., minimum and maximum, may still be inaccurate.323

In this regard, the second stage of our strategy attempts to further improve the accuracy of the resulting324

REF from stage 1, with special emphasis on its extrema.325
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As the posterior distribution of the REF follows a GP, the expected improvement criterion originally326

introduced in BGO [56] could be adopted for our purposes. Let M̂l(v
−) denote the current minimum, and327

v− the minimum point, i.e., v− = arg minv∈V µM̂(v). The improvement for the current minimum at the328

point v can be defined as I(v) = max
(
M̂l(v

−)− µM̂(v), 0
)

. The acquisition function, called expected329

improvement for the minimization (abbreviated as EIMIN), is to simple take the expected value of I(v), i.e.,330

EIMIN(v) = E [I(v)]. The closed-form expression of EIMIN can be written as [56]:331

EIMIN(v) =
(
M̂l(v

−)− µM̂(v)
)
Φ

(
M̂l(v

−)− µM̂(v)

σM̂(v)

)
+ σM̂(v)ϕ

(
M̂l(v

−)− µM̂(v)

σM̂(v)

)
, (30)

where ϕ (·) and Φ (·) are the PDF and and cumulative distribution function (CDF) of the standard normal332

distribution, respectively. The EIMIN function actually measures how much improvement for the minimum333

is expected to achieve by sampling at v. Thus, the next best point for v can be selected by maximizing the334

EIMIN function, i.e., v? = arg maxv∈V EIMIN(v). The first summation term in Eq. (30) is the exploitation335

term encouraging to sample where µM̂(v) is small, whereas the second summation term is the exploration336

term encouraging to sample where σM̂(v) is large. At this stage, the associated stopping criterion can be337

given as [60]:338

|maxv∈V EIMIN(v)|
maxZ −minZ < εBGO, (31)

where εBGO is a user-defined tolerance. Similarly, the stopping criterion also needs to be met for two times339

in succession. Once v? is identified, the best next point for u can also be specified. In order to improve340

the accuracy of µM̂(v?), an acquisition function measuring the posterior variance contribution to σ2
M̂(v?)341

(abbreviated as PVCMIN), can be defined:342

PVCMIN(u) = Πu′ [kn((u,v?) , (u′,v?))]× fU (u)

=
{

Πu′ [k0((u,v?) , (u′,v?))]− k0 ((u,v?) ,W)
T
K−10 Πu′ [k0 ((u′,v?) ,W)]

}
× fU (u),

(32)

where the term Πu′ [k0 ((u′,v?) ,W)] can be generated as Eq. (10) by replacing v by v?, and the term343

Πu′ [k0((u,v?) , (u′,v?))] can be derived as:344

Πu′ [k0((u,v?) , (u′,v?))] = s20
∣∣Σ−1u + I

∣∣−1/2 exp

[
−1

2
diag

{
u (Σu + I)

−1
uT
}]

. (33)

In analogy to PVCA criterion (see Algorithm 1), c/2 points for u can be selected sequentially by maximizing345

the PVCMIN function, denoted as u(n+i) (i = 1, 2, . . . , c/2). The stopping criterion is defined as
σM̂(v?)

|µM̂(v?)| <346

εBPI, which should be sissified two times in succession. The identified points for w can be simply formed347

as: (u(n+1),v?), (u(n+2),v?), · · · , (u(n+c/2),v?).348

Similar to Eqs. (30) and (32), the expected improvement and posterior variance contribution for maxi-349

mization can also be defined, which are denoted as EIMAX and PVCMAX, respectively. To limit the paper350

length, however, we will not give them in detail. The next point for v can be determined by maximizing351
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the EIMAX function, i.e., v? = arg maxv∈V EIMAX(v). Then, based on the PVCMAX function, one can352

sequentially identify c/2 points for u, denoted as u(n+i) (i = 1, 2, . . . , c/2). The remaining c/2 points for w353

can be generated as: (u(n+1),v?), (u(n+2),v?), · · · , (u(n+c/2),v?)354

As a result, a total number of c points for w can be obtained, and the corresponding G-function values355

can be computed at the same time by running on c cores simultaneously. After that, the GP model can be356

updated based on the past observations. Once pre-defined stopping criteria are reached, these quantities of357

interest can be extracted from the finial GP model.358

3.5. Numerical implementation of PBQO359

For numerical implementation of the proposed PBQO method, the basic procedures are summarized as360

follows, which are also illustrated by Fig. 1.361

362

Step 1: Get initial observations363

The first step consists of generating a small set of n0 initial samples using Latin hypercube sampling364

(LHS), denoted as W = (U ,V) =
{
w(j)

}n0

i=1
. The real G-function is then evaluated at these points to obtain365

corresponding observations, i.e., Z =
{
z(i) = G

(
w(i)

)}n0

j=1
, which can be parallelized straightforwardly. The366

initial training dataset can be constructed: D = {W ,Z}. Let n = n0;367

Step 2: Train a GP model368

Based on data D, train a new GP model GP(µn(w), kn(w,w′)) for the G-function. In this study, the369

fitrgp function in Matlab Statistics and Machine Learning Toolbox is used. The prior mean function and370

covariance function are specified as constant and squared exponential kernel, respectively.371

Step 3: Check the stopping criterion372

From the trained GP model, one can compute the posterior mean µM̂0
and posterior variance σ2

M̂0
of373

the augmented expectation by Eqs. (16) and (17), respectively. If the stopping criterion
σM̂0

|µM̂0
| < εBPI is374

satisfied two times in succession, go to Step 5; else, go to Step 4;375

Step 4: Identify new observations by the PVCA criterion376

At this stage, one can identify c points for W by sequentially maximizing the PVCA function (Eq. (28)),377

denoted as W? = {w?}cj=1. Then, these points are evaluated on the real G-function in parallel to obtain378

corresponding observations, which are denoted as Z? = {z?}cj=1. At last, the training dataset D can be379

enriched with D? = {W?,Z?}. Let n = n+ c and go to Step 2;380

Step 5: Select new points by the quadruplet criteria381

The next best points v? and v? can be selected by v? = arg maxv∈V EIMIN(v) and v? = arg maxv∈V EIMAX(v),382

respectively. Then, one can select c/2 points (u(i) (i = 1, 2, . . . , c/2)) and (u(i) (i = 1, 2, . . . , c/2)) by sequen-383

tially maximizing the PVCMIN function and PVCMAX function, respectively. For convenience, we denote the384
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c/2 points for minimization by W =
{(
v?,u(1)

)
,
(
v?,u(2)

)
, · · · ,

(
v?,u(c/2)

)}
, c/2 points for maximization385

by W =
{(
v?,u(1)

)
,
(
v?,u(2)

)
, · · · ,

(
v?,u(c/2)

)}
, and W? =

{
W ,W

}
;386

Step 6: Judge the stopping criteria387

In this step, four stopping criteria should be judged, i.e., |maxv∈V EIMIN(v)|
maxZ−minZ < εBGO,

σM̂(v?)

|µM̂(v?)| < εBPI,388

|maxv∈V EIMAX(v)|
maxZ−minZ < εBGO and

σM̂(v?)

|µM̂(v?)| < εBPI. If all these stopping criteria are met two times in succession,389

go to Step 9; else, go to Step 7;390

Step 7: Obtain new observations by parallel computing391

Evaluation of the real G-function at these c points W? from Step 5 can be performed in parallel, and392

c observations are obtained Z? = {z?}cj=1. Finally, the training dataset D is updated with the new data393

D? = {W?,Z?}. Let n = n+ c;394

Step 8: Train a GP model395

Train a new GP model GP(µn(w), kn(w,w′)) for the G-function with data D, and go to Step 5:.396

Step 9: Return quantities of interest397

The posterior means and variances of these quantities of interest, such as REF, its RS-HDMR component398

functions and bounds, can be extracted form the trained GP model. The posterior means can serve as399

estimates for these quantities, and the posterior variances measure the epistemic uncertainties (numerical400

errors) about our estimates.401

402

To initialize the algorithm, there parameters n0, εBPI and εBGO need to be specified. The initial sam-403

ple size n0 should not choose too large as we wish to enlarge the sample size sequentially. For the two404

thresholds εBPI and εBGO, proper values are also important as they influence the accuracy and efficiency405

of the proposed method. According to our experience, n0 can take values between 5 and 20 depending406

on the complexity of the problem at hand, and εBPI and εBGO can be set in the orders of 0.01 and 0.001407

respectively. Several optimization problems are involved in the implementation procedures, one can simply408

use the global optimization algorithms (e.g., genetic algorithm) as the objective functions are all in closed409

form.410

411

3.6. Relationship to existing NIPI and CABO methods412

The proposed PBQO method does share some similarities with the NIPI method and CABO method.413

For example, they all rely on the use of the GP model in a Bayesian fashion, and can avoid nested loops.414

However, the differences among the three methods are also significant on several main aspects:415

a) The proposed PBQO method transforms the interval variables (including the interval variables in p-416

boxes) into standard interval ones by a linear transformation. On the contrary, by assuming auxiliary417

15



Start

Generate an initial training dataset D = {W,Z} of size n0 using LHS
and let n = n0

Train a GP model GP(µn(w), kn(w,w′)) for the G-function with D

Stopping criterion satisfied?
Identify new observations D? = {W?,Z?} of size c

by the PVCA criterion, and update D by D = D ∪D?;
let n = n+ c

Select new points W? of size c by the quadruplet criteria

Stopping criteria satisfied?
Obtain new observations Z? of size c and

update D by D = D ∪ {W?,Z?};
let n = n+ c

Train a GP model GP(µn(w), kn(w,w′))
for the G-function with D

Compute quantities of interest from the trained GP model

Stop

No

Yes

No

Yes

Figure 1: Flowchart of the proposed PBQO method.

uniform distributions for the interval variables, the NIPI and CABO methods convert the interval418

variables to standard normal ones by a nonlinear transformation. In conjunction with the squared419

exponential kernel, both of those two strategies can result in analytically tractable results for the REF420

and its HS-HDMR. However, the NIPI and CABO methods introduce an additional assumption and421

artificially added nonlinearity. More importantly, the transformation strategy for NIPI and CABO is422

the cause of poor performance near the bounds of the interval variables. To mitigate this problem,423

one needs to relax the support of the interval variables when applying NIPI and CABO;424

b) Due to the differences in a), the posterior means and variances of the REF and its RS-HDMR com-425

ponent functions are re-derived in the proposed PBQO method, along with some of the acquisition426

functions;427

c) The proposed PBQO method is able to support parallel distributed processing owing to the proposed428

multi-point selection strategy, while both NIPI and CABO cannot. This advantage is desired when429

each evaluation of the G-function is costly and parallel computing facilities are available;430
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d) The proposed PBQO method is capable of yielding the REF, its variable importance and bounds431

simultaneously with a single run. However, the NIPI method and CABO method are only designed432

for evaluating the variable importance and bounds, respectively.433

4. Extending the proposed method to Case IV434

The proposed PBQO method is mainly illustrated in case that hybrid uncertainties present as both435

random variables and interval variables. When parameterized p-boxes are involved, the proposed method436

is also applicable, but needs slight adaptations. In this section, we will show how to extend the proposed437

PBQO method established in Section 3 to Case IV.438

Let Y = [Y1, Y2, · · · , Yd3 ] denote an imprecise random vector containing d3 variables. These variables439

are assumed to be characterized by parameterized p-boxes, and their joint PDF is denoted as fY |Θ(y|θ),440

which depends on a set of d4 interval variables Θ = [Θ1, Θ2, · · · , Θd4 ] with lower and upper bounds θ =441

[θ1, θ2, · · · , θd4 ] and θ = [θ1, θ2, · · · , θd4 ], respectively. In Case IV, the response function is represented by442

Z = g(X,Y ,A). In analogy to Case III, an augmented response function Z = g(X,Y ,A,Θ) needs to be443

artificially constructed to account for Θ like A. Then, we map the random vector {X,Y } to a standard444

normal one U , while the interval vector {A,Θ} to a standard interval one V . Accordingly, the response445

function is changed to be Z = G(W ), where W = {U ,V }. See, e.g., [39–41], for the details of how to use446

an augmented response function when parameterized p-boxes are involved. Note that this does not mean447

that the original g-function has to be modified, but only for numerical implementation. By doing so, the448

remaining procedures are similar to those given in Section 3.449

5. Numerical examples450

In this section, three numerical examples are investigated to demonstrate the proposed method. For451

comparison purposes, the NIPI and CABO methods are mainly implemented in all examples. These methods452

are used in a similar way as the proposed PBQO method since they are originally developed for only453

propagating parameterized p-boxes. Besides, in both methods the support of interval variables has been454

increased by 10% and the stopping tolerances are specified in accordance with the proposed method.455

5.1. Example 1: A test function456

Consider a test function of the form:457

Z = g(X,A1, A2) = X2 +A1 +A3
2, (34)

where X, A1 and A2 are three uncertain input variables, as listed in Tab. 1.458
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Table 1: Uncertainty characterization of input variables for Example 1.

Notation Type Mathematical model

X Random variable N (0, 12)

A1 Interval variable [1 2]

A2 Interval variable [1 2]

Note: N stands for normal distribution.

We first consider the REF m(α1, α2), the closed-form expression of which is obtained as m(α1, α2) =459

1 + α1 + α3
2. The proposed PBQO method can be implemented to yield a numerical estimate of m(α1, α2).460

In this example, we set c = 2, n0 = 5, εBPI = 0.02 and εBGO = 0.002. Fig. 2(a) depicts the REF estimated461

by PBQO v.s. its analytical solution, which coincide almost perfectly. Besides, as shown in Fig. 2(b) the462

coefficient of variation (COV) of the PBQO estimate is quite small, indicting that the estimate is highly463

reliable. In order to compare with other existing methods, we also employ the NIPI and CABO methods464

in this example. It can be seen from Figs. 2(c) and 2(e) that both NIPI and CABO methods give poor465

estimates for the ERF, especially in the boundary area. In addition, Figs. 2(d) and 2(f) show that the466

results by these two methods also process relatively large variability.467

Second, the RS-HDMR component functions of the REF are of concern. For limiting the paper length,468

we just show the first-order RS-HDMR component functions as an illustration. The analytical expressions469

of m1(α1) and m1(α2) can be derived as: m1(α1) = − 3
2 + α1 and m2(α2) = − 15

4 + α3
2. From Fig. 3, one470

can observe that for both component functions: (1) the proposed PBQO method is able to yield very close471

estimates to analytical solutions; (2) the 99% confidence intervals (CIs) of PBQO estimates are very narrow;472

(3) the NIPI and CABO methods are shown to be less accurate than the proposed method; (4) the 99%473

CIs of both NIPI and CABO estimates are obviously wider than these by the proposed method. These474

observations demonstrate the accuracy of the proposed method against both NIPI and CABO methods.475

Besides, through the first-order RS-HDMR component functions it is easy to know that α2 has significantly476

larger influence on the REF than α1. Therefore, if one would like to reduce the epistemic uncertainty in the477

REF (i.e., narrow the interval), a more rational way is to shrink A2 by collecting more data of it.478

Third, we discuss the results of the response expectation bounds. The analytical lower and upper bounds479

of the REF are 3 and 11, respectively. Tab. 2 compares the numerical estimates given by the PBQO, NIPI480

and CABO methods to the analytical solutions. It can be seen that for both lower and upper bounds:481

(1) PBQO and CABO methods are capable of producing close estimates to the analytical solutions, and482

restively small posterior COVs; (2) NIPI method gives poor estimates with large posterior COV.483

At last, the efficiency and accuracy of these three methods should be emphasized. As listed in Tab. 2,484

the number of response function evaluations for the PBQO, NIPI and CABO is 13, 8 and 22, respectively.485
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Figure 2: Response expectation function for Example 1 by different methods.
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Figure 3: First-order RS-HDMR component functions for Example 1 by different methods.

However, the PBQO method can support for parallel computing, and hence its number of calls to the486

response function for each CPU core is only 6.5 on average. To this end, the number of effective response487

function evaluations required by the proposed PBQO method is close to that of the NIPI method, but488

less than the CABO method. Besides, the proposed PBQO method is able to produce the REF, its RS-489

HDMR component functions and bound simultaneously with reasonable accuracy, while the NIPI method490

may perform worse in all these three aspects and the CABO method could be reliable only in capturing the491

REF bounds.492

Table 2: Response expectation bound for Example 1.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

Analytical 3 - 11 - - -

PBQO (c = 2) 2.9820 0.22 11.0027 0.00 5+8=13 6.5

NIPI (c = 1) 2.6795 8.11 10.0148 2.26 5+3=8 8

CABO (c = 1) 3.0033 0.08 10.9966 0.00 5+17=22 22

Note: N is the total number of response function evaluations; c is the number

of points selected at each iteration, and hence the number of CPU cores used

in parallel; and N/c is referred to as the number of effective respone function

evaluations.
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5.2. Example 2: A non-linear oscillator493

The second example considers a nonlinear undamped single degree-of-freedom (SDOF) oscillator sub-494

jected to a rectangular pulse load (as shown in Fig. 4), which was extensively studied in context of reliability495

analysis (see, e.g., [39, 61, 62]). The response function is defined as the maximum displacement of the oscil-496

lator:497

Z = g(c1, c2,m, F1, t1) =

∣∣∣∣∣ 2F1

c1 + c2
sin

(
t1
2

√
c1 + c2
m

)∣∣∣∣∣ , (35)

where c1, c2,m, F1, t1 are five uncertain input variables, detailed description of which can be found in Tab.498

3. For notational clarity, we denote the three intervals as A1 = [1 2], A2 = [0.1 0.3] and A3 = [0.5 1.5] in499

what follows.500

Figure 4: A nonlinear SDOF oscillator subjected to a rectangular pulse load.

Table 3: Uncertainty characterization of input variables for Example 2.

Notation Type Mathematical model

c1 Random variable N (1, 0.12)

c2 Random variable N (0.1, 0.012)

m Random variable N (1, 0.12)

F1 P-box variable LN ([1 2], [0.1 0.3]2)

t1 Interval variable [0.5 1.5]

Note: LN stands for Lognormal distribution.

In this example, the REF, its RS-HDMR component functions and bounds are also of our interest. Due501

to the complexity of the response function, the corresponding analytical solutions are not available, and502

thus we use Monte Carlo simulation (MCS) or double-loop MCS (DL-MCS) [63] to provide reference results.503

The initial parameters of the proposed PBQO method are specified as: c = 4, n0 = 15, εBPI = 0.01 and504

εBGO = 0.001. It should be noted that the REF is three-dimensional, and hence we simply set α3 = 1 in505

order to visualize the results. As can be seen from Fig. 5(b), the COV of the MCS estimate is extremely506

small, indicting that we can take the MCS estimate as a reference result. From Figs. 5(a), 5(c) and 5(e),507

it is obvious that the proposed PBQO method can produce a much better REF estimate than the NIPI508
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and CABO methods. Besides, the posterior COV of the PBQO estimate is also much smaller than those509

by NIPI and CABO methods, as shown in Figs. 5(b), 5(d) and 5(f). As for the RS-HDMR component510

functions of the REF, we only give three first-order RS-HDMR component functions m̂1(α1), m̂2(α2) and511

m̂3(α3) as an illustration. It can be seen from Fig. 6 that for all the three component functions the proposed512

PBQO method can produce fairly good results, in comparison to these given by MCS. However, the NIPI513

and CABO methods perform much worse than PBQO, especially for m̂2(α2). Tab. 4 compares the lower514

and upper bounds of the REF by different methods. As can be seen, the PBQO and CABO methods are515

able to yield desirable estimates with relatively small posterior COVs, while the NIPI method does not work516

well. It should be noted that the proposed method only requires 7.75 effective response function evaluations517

to produce the above results, which are less than those by NIPI and CABO.518

Table 4: Response expectation bound for Example 2.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

DL-MCS 0.4953 0.87 2.5766 0.37 106 -

PBQO (c = 4) 0.4583 0.35 2.5935 0.07 15+16=31 7.75

NIPI (c = 1) 0.4160 15.94 2.6343 3.04 15+3=18 18

CABO (c = 1) 0.4721 0.25 2.5866 0.08 15+24=39 38

5.3. Example 3: A 56-bar spatial truss structure519

The third example consists of a 56-bar spatial truss structure, as shown in Fig. 7. Nine vertical loads520

are applied to the structure at joints 1-9, which are denoted as P1 ∼ P9. The external loads P1 − P9 are521

assumed to be uncertain, together with the elastic modulus E and cross-sectional area A. These uncertainties522

are characterized by three kinds of models, which are summarized in Tab. 5. It can be seen that four523

intervals are involved and we denote them as A1 = [20 30] kN, A2 = [30 40] kN, A3 = [200 220] Gpa and524

A4 = [150 250] mm2. The response of concern is selected as the vertical displacement of joint 1, which can525

implicitly expressed as a function of P1 ∼ P9, E and A, i.e., Z = g(P1 ∼ P9, E,A).526

Table 5: Uncertainty characterization of input variables for Example 3.

Notation Type Unit Mathematical model

P2 ∼ P9 Random variable kN LN (20, 42)

P1 P-box variable kN LN ([20 30], [30 40]2)

E Interval variable GPa [200 220]

A Interval variable mm2 [150 250]

The proposed PBQO method is initialized with c = 4, n0 = 20, εBPI = 0.02 and εBGO = 0.002. Fig. 8527

depicts the REF estimates by three methods and their corresponding posterior COVs, where we fix α3 and528
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Figure 5: Response expectation function for Example 2 by different methods (α3 = 1).
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Figure 6: First-order RS-HDMR component functions for Example 2 by different methods.

α4 at their midpoints, i.e., α3 = 210 Gpa and α4 = 200 mm2. It is shown that the posterior COV of the529

PBQO estimate is much smaller that those by both NIPI and CABO methods, indicating that the proposed530

PBQO method is more reliable for capturing the REF. The results of four first-order HDMR component531

functions in Fig. 9 also imply that the proposed method has better accuracy than the NIPI and CABO532

methods. Besides, it is easy to know from Fig. 9 that the four intervals can be ranked as A4 > A1 > A3 > A2533
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Figure 7: A 56-bar spatial truss structure.

in terms of their first-order importance to the REF. Through Tab. 6, one can find that for both lower and534

upper bounds of the REF the PBQO and CABO can yield better estimates than the NIPI, indicating by535

their posterior COVs. It should be emphasized that by taking advantage of parallel computing the effective536

response function calls required by the proposed PBQO method are much less than that of CABO.537

Table 6: Response expectation bound for Example 3.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

DL-MCS 11.1793 2.11 35.2535 1.64 104 -

PBQO (c = 4) 11.8785 0.23 35.4109 0.08 20+12=32 8

NIPI (c = 1) 12.5791 4.74 34.4007 2.36 20+2=22 22

CABO (c = 1) 11.5818 0.12 35.3302 0.07 20+23=43 43
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Figure 8: Response expectation function for Example 3 by different methods (α3 = 210 Gpa and α4 = 200 mm2).
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Figure 9: First-order RS-HDMR component functions for Example 3 by different methods.

6. Conclusions and perspectives538

In this work, propagation of hybrid uncertainties in the form of precise random variables, parameterized539

p-boxes and interval variables is studied via Bayesian numerical analysis. The main contribution lies in540

the development of a novel method, termed ‘Parallel Bayesian Quadrature Optimization’, for estimation of541

response expectation function, its RS-HDMR component functions and bounds simultaneously. Compared542

to the state-of-the-art methods for propagating hybrid uncertainties, the proposed method has several sig-543

nificant advantages. First, the proposed method breaks the double-loop paradigm that typically propagates544
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aleatory and epistemic uncertainty separately in a nested way. That is, it can propagate both types of545

uncertainties simultaneously, and is a fully-decoupled procedure in nature, yielding a major improvement546

in computational efficiency. Second, the proposed method is able to exploit prior knowledge thanks to its547

Bayesian nature, and it also supports parallel computing, further leading to much higher computational548

efficiency. Third, the estimators (i.e., posterior means) of the response moment function and its RS-HDMR549

component functions are analytically derived, together with their posterior variances for indicating numerical550

errors.551

While these advantages are encouraging, there are still some issues that need further study. For example,552

one should note that the analytical tractability of the proposed method is based on using the squared553

exponential kernel that is appropriate for modelling smooth and moderately nonlinear functions. This,554

however, is not always justified for a general practical problem. Besides, the proposed method relies on a555

total number of five acquisition functions, which could be reduced by developing more efficient Bayesian556

experimental design strategies. The proposed method could be extended to evaluate the second-order raw557

moment function, while more research efforts may still be required.558
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Appendix A. Derivation of the posterior variance for the first-order RS-HDMR component567

function568

The posterior variance function σ2
M̂i

(vi) for the first-order RS-HDMR function M̂i(vi) can be given by:569

σ2
M̂i

(vi) = VD

[
M̂i(vi)

]
= VD [Π−vi [G(w)]] + σ2

M̂0
− 2COVD

[
Π−vi

[
Ĝ(w)

]
,M̂0

]
, (A.1)

where COVD [·, ·] refers to the covariance taken with respect to the posterior distributions of its arguments570

given data D; the term σ2
M̂0

has been given in Eq. (17).571
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The term VD [Π−vi [G(w)]] in Eq. (A.1) can be further deduced by applying Fubini’s theorem such that:572

VD [Π−vi [G(w)]] = Π−viΠ−vi

[
k0

(
w,
(
w′−v′i , vi

))]
−Π−vi

[
k0 (w,W)

T
]
K−10 Π−vi [k0 (w,W)] , (A.2)

where the term Π−vi [k0 (w,W)] has been given in Eq. (21); the term Π−viΠ−vi

[
k0

(
w,
(
w′−(d1+i), vi

))]
573

can be derived as:574

Π−viΠ−vi

[
k0

(
w,
(
w′−(d1+i), vi

))]
=s20

∣∣2Σ−1u + I
∣∣−1/2

· 2(d2−1)prod1

{
diag

{
Σv−i

[
−1 + exp

[
−(2Σv−i)

−1]+ (2π−1Σv−i)
−1/2erf

((
2Σv−i

)−1/2)]}}
.

(A.3)

Likewise, the term COVD

[
Π−vi

[
Ĝ(w)

]
,M̂0

]
in Eq. (A.1) can be formulated as:575

COVD

[
Π−vi

[
Ĝ(w)

]
,M̂0

]
= Π−viΠ [k0 (w,w′)]−Π−vi

[
k0 (w,W)

T
]
K−10 Π [k0 (w,W)] , (A.4)

where576

Π−viΠ [k0 (w,w′)]

=s20
∣∣2Σ−1u + I

∣∣−1/2
· 2(d2−1)prod1

{
diag

{
Σv−i

[
−1 + exp

[
−(2Σv−i)

−1]+ (2π−1Σv−i)
−1/2erf

((
2Σv−i

)−1/2)]}}
·
(π

2

)1/2
prod2

{[
erf
(

(1− vi) (2Σvi
)
−1/2

)
− erf

(
−vi (2Σvi

)
−1/2

)]
Σ1/2
vi

}
.

(A.5)

Appendix B. Derivation of the posterior variance for the second-order RS-HDMR component577

function578

The posterior variance function σ2
M̂ij

(vi, vj) for the second-order RS-HDMR component function M̂ij(vi, vj)579

can be formulated as:580

σ2
M̂ij

(vi, vj) =VD

[
M̂ij(vi, vj)

]
=VD

[
Π−vij

[G(w)]
]

+ σ2
M̂i

(vi) + σ2
M̂j

(vj) + σ2
M̂0

− 2COVD
[
Π−vij

[G(w)] ,Π−vi [G(w)]
]
− 2COVD

[
Π−vij

[G(w)] ,Π−vj [G(w)]
]

+ 2COVD
[
Π−vij

[G(w)] ,Π [G(w)]
]

+ 2COVD
[
Π−vi [G(w)] ,Π−vj [G(w)]

]
− 2COVD [Π−vi [G(w)] ,Π [G(w)]]− 2COVD

[
Π−vj [G(w)] ,Π [G(w)]

]
,

(B.1)

where the terms σ2
M̂i

(vi) and σ2
M̂j

(vj) can refer to Eq. (A.1); the term σ2
M̂0

has been derived in Eq. (17);581

the last two covariance terms COVD [Π−vi [G(w)] ,Π [G(w)]] and COVD
[
Π−vj [G(w)] ,Π [G(w)]

]
has been582

given in Eq. (A.4).583

The term VD
[
Π−vij

[G(w)]
]

in Eq. (B.1) can be derived as:584

VD
[
Π−vij [G(w)]

]
= Π−vijΠ−vij

[
k0

(
w,
(
w′−v′ij ,vij

))]
−Π−vij

[
k0 (w,W)

T
]
K−10 Π−vij [k0 (w,W)] ,

(B.2)
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where the term Π−vij
[k0 (w,W)] has been given in Eq. (23); the term Π−vij

Π−vij

[
k0

(
w,
(
w′−v′ij

,vij

))]
585

can be derived as:586

Π−vijΠ−vij

[
k0

(
w,
(
w′−v′ij ,vij

))]
=s20

∣∣2Σ−1u + I
∣∣−1/2

· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij

)−1
]

+ (2π−1Σv−ij
)−1/2erf

((
2Σv−ij

)−1/2)]}}
.

(B.3)

The term COVD
[
Π−vij [G(w)] ,Π−vi [G(w)]

]
in Eq. (B.1) is formulated as:587

COVD
[
Π−vij

[G(w)] ,Π−vi [G(w)]
]

= Π−vij
Π−vi

[
k0

(
w,
(
w′−v′i , vi

))]
−Π−vij

[
k0 (w,W)

T
]
K−10 Π−vi [k0 (w,W)] ,

(B.4)

where the terms Π−vij [k0 (w,W)] and Π−vi [k0 (w,W)] have been given in Eq. (23) and Eq. (21) respec-588

tively; the term Π−vijΠ−vi

[
k0

(
w,
(
w′−v′i

, vi

))]
can be derived as:589

Π−vij
Π−vi

[
k0

(
w,
(
w′−v′i , vi

))]
=s20

∣∣2Σ−1u + I
∣∣−1/2

· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij )−1

]
+ (2π−1Σv−ij )−1/2erf

((
2Σv−ij

)−1/2)]}}
·
(π

2

)1/2
prod2

{[
erf
(

(1− vj)
(
2Σvj

)−1/2)− erf
(
−vj

(
2Σvj

)−1/2)]
Σ1/2
vj

}
.

(B.5)

Note that the term COVD
[
Π−vij [G(w)] ,Π−vj [G(w)]

]
in Eq. (B.1) can be similarly derived as the term590

Π−vij
Π−vi

[
k0

(
w,
(
w′−(d1+i), vi

))]
given in Eq. (B.4).591

The covariance term COVD
[
Π−vij

[G(w)] ,Π [G(w)]
]

in Eq. (B.1) can be formulated as:592

COVD
[
Π−vij [G(w)] ,Π [G(w)]

]
= Π−vijΠ [k0 (w,w′)]−Π−vij

[
k0 (w,W)

T
]
K−10 Π [k0 (w,W)] , (B.6)

where the terms Π [k0 (w,W)] and Π−vij
[k0 (w,W)] have been given in Eq. (18) and Eq. 23 respectively;593

the term Π−vijΠ [k0 (w,w′)] can be derived as:594

Π−vijΠ [k0 (w,w′)]

=s20
∣∣2Σ−1u + I

∣∣−1/2
· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij

)−1
]

+ (2π−1Σv−ij
)−1/2erf

((
2Σv−ij

)−1/2)]}}
·
(π

2

)2/2
prod2

{[
erf
(

(1− vij)
(
2Σvij

)−1/2)− erf
(
−vij

(
2Σvij

)−1/2)]
Σ1/2
vij

}
.

(B.7)

The covariance term COVD
[
Π−vi [G(w)] ,Π−vj [G(w)]

]
in Eq. (B.1) can be formulated as:595

COVD
[
Π−vi [G(w)] ,Π−vj [G(w)]

]
= Π−viΠ−vj

[
k0

(
w,
(
w′−v′j , vj

))]
−Π−vi

[
k0 (w,W)

T
]
K−10 Π−vj [k0 (w,W)] ,

(B.8)
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where the terms Π−vi [k0 (w,W)] and Π−vj [k0 (w,W)] have been given in Eq. (21); the term Π−viΠ−vj

[
k0

(
w,
(
w′−v′j

, vj

))]
596

is actually equal to Π−vij
Π [k0 (w,w′)] as given in Eq. (B.7).597
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