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Abstract
This work proposes a methodology for the concurrent homogenization-based optimization

of the type and the configuration of the microstructure of the structural domain, based on a
list of pre-defined composite microstructures. The candidate microstructures are represented
on this list by their homogenized mechanical properties, as predicted by means of the 3D
homogenization theory. As such, each candidate property is tied to a specific microstructure -the
one it has been derived from- and is conditioned on its topology, 𝑖.𝑒. the geometric configuration
of its unit cell. Similar to the standard discrete multi-material optimization problem (DMOP),
in order to identify per element/patch in the structural domain the optimal microstructure
from that list, weights are assigned to the candidate homogenized properties, with respect to
which the final discrete microstructure type optimization problem (DMTOP) is posed. The
topology of the optimal microstructure is determined by the volume constraint(s) imposed on
one or more of its material components in the homogenization-based topology optimization
problem (HTOP). The aim of this work is to combine the DMTOP with the HTOP in a unique
mathematical framework in order to determine a unique microstructure type per element/patch
in the structural domain, concurrently optimized in its topology. The proposed methodology is
built step-by-step through the introduction of four microstructure types of two distinct constituent
materials. Upon these auxiliary microstructures, the generalized concurrent homogenization-
based topology and discrete microstructure type optimization problem (HTDMOP) is formulated
for compliance minimization of the structure. Further, it is illustrated how the DMOP can be
perceived as a DMTOP, and hence be combined in a similar fashion with the HTOP for the
concurrent homogenization-based topology and material optimization (HTMO) of the structural
domain. The paper concludes with demonstrating the developed methodology on the benchmark
academic case study of the 3D Messerchmitt-Bölkow-Blohm (MBB) beam for the case where
the auxiliary microstructures are considered as candidates for the domain.

1. Introduction

The employment of composite materials has exponentially expanded over the last decades. Especially in aerospace
and automotive applications, where a combination of high material strength and low structural weight is required, it has
set the scene for many (r)evolutions in current engineering practice (Rana & Fangueiro (2006)). Exploiting the high
specific properties of the material constitutes the core of new design paradigms with composites, making composite
solutions extremely attractive over conventional homogeneous materials and ideal candidates for numerous types of
optimization problems. However, the application of high-end numerical design optimization methods such as topology
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optimization (TO) remains an open question, despite the large potential for further exploiting the specific advantages
of composite materials.

In structural design, optimization is the iterative procedure of constantly adjusting the structure’s design variables
in order to meet a number of initially selected criteria, while satisfying at the same time a set of imposed constraints.
The selection of the design variables varies based on the design criteria to be met, whether the latter involve minimizing
the structural weight, the manufacturing and/or the maintenance cost, etc. The objective of TO is to reduce the
structural mass by removing as much material as required while ending up with an optimized structure still capable of
safely withstanding the imposed loads. The "how" the material can be effectively redistributed throughout the design
domain under these constraints constitutes the objective of TO. To achieve this, TO solution approaches search for
the density field that optimizes a certain physical quantity (𝑒.𝑔. compliance, structural mass, etc.,), called the objective

function of the topology optimization problem (TOP). The objective function to be optimized is subjected to a certain
set of constraints that the candidate designs should satisfy at each iteration of the TO solution procedure. In case
homogeneous, isotropic materials are considered in the TOP, common practice is to employ the state-of-the-art SIMP
method (Bendsøe (1989), Zhou & Rozvany (1991)). The concept of the method is based on the introduction of an
artificial, spatial and dimensionless design variable, called the relative density. The relative density is defined as the
ratio of the existing density of the material at a fixed point in the domain over the density of the same solid material,
as such it is bounded within the [0, 1] range. A relative density value equal to one assigns material within the domain,
while values equal to zero constitute the void regions of the domain. A more comprehensive elaboration of the method
is found in the textbooks by Rozvany & Olhoff (2001), Bendsøe & Sigmund (2004) and Christensen & Klarbring
(2009). Regarding the numerical implementation of the method, in line with the 99-line MATLAB code published in
Sigmund (2001), educational papers providing compact and efficient MATLAB codes have significantly contributed
to a better comprehension and further development of the field (see 𝑒.𝑔. Andreassen et al. (2011); Liu & Tovar (2014);
Ferrari & Sigmund (2020)). An up to date complete list of open- source SIMP based TO algorithms is summarized in
the recent work of Kumar & Suresh (2021).

One of the earliest methods in the field of TO is the homogenization method (Bendsøe & Kikuchi (1988)); via
the homogenization method linking between the two scales is accomplished, where in the first step the macroscopic
properties of the periodical repetitive microstructure are derived under micromechanical considerations, and in the
second step the calculated equivalent properties are considered for the macrostructural analysis. The theory of the
method is found in Bensoussan et al. (1978), Hassani & Hinton (1998c), Bendsøe & Sigmund (2004) and a more in
detail insight is provided in the textbook of Allaire (2002), while several applications of the theory are found in Hassani
& Hinton (1998a,b); Monteiro (2017); Allaire et al. (2019); Wu et al. (2019); Groen et al. (2020).
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Regarding the continuous multi-scale topology optimization framework, two separate cases are distinguished: in the
first case, the macrostructural level is represented by the periodical repetition of only one type of microstructure in the
span of the design domain. In this case, the objective is to find the optimal material distribution in the microstructural
level for the stress field imposed by the macrostructure. Some early work in this field can be seen by Fujii et al. (2001)
and Wang et al. (2016), while in the same framework lies the work of Liu et al. (2008), where the authors employed
the Porous Anisotropic Material with Penalty (RAMP) method for the concurrent but independent optimization of the
microstructural and the macrostructural topology of the design domain. Regarding the second case, each region of
the macrostructure is represented by a different type of periodically repeating microstructure. The objective of this
TOP is to find the optimal material distribution of each microstructure and concurrently optimize the layout of the
macrostructure. In that context, the notable work by Rodrigues et al. (2002) introduced the “separation of scales”
concept (or hierarchical optimization), optimizing concurrently the material distribution as well as the local material
properties of the elements. Implementing the “separation of scales” concept, Yan et al. (2014) proposed a two-scale
topology optimization algorithm by employing the bi-directional evolutionary structural optimization (BESO) (Xia
et al. (2018)) method to concurrently update the macro and microstructures of the domain. Similarly, Chen et al. (2017)
proposed a concurrent topology optimization approach for finding the optimum topologies of the macrostructures
and their corresponding lattice microstructures while imposing the manufacturability constraints that come with the
3D printing process. Da et al. (2017) proposed a multi-phase methodology for concurrent topology optimization of
composite structures when the microstructure of the element consists of more than three material phases. Li et al. (2018)
proposed the multi-patch microstructures concept for cellular structures, where the macro-structure is featured with
the configuration of non-uniformly distributed patches, with each patch consisting of a number of identical material
microstructures. In a similar framework, the authors in Pizzolato et al. (2019) proposed a method for the concurrent
optimization of the material subdomains’ macro-scale layout and their corresponding microstructures, employing the
multi-material level-set method (Wang et al. (2015)) to identify the subdomains and a density approach to represent
their microstructures. Following a different approach, a multi-scale finite element method was presented in Lazarov
(2013), Alexandersen & Lazarov (2015) and a microstructure projection method in Pantz & Trabelsi (2008, 2010).
Finally, 2D and 3D numerical implementations of the concurrent topology optimization for multiscale composite
structures, written in MATLAB, are found in the recent work of Gao et al. (2019).

The methodology proposed in this work is motivated by the field of discrete material optimization (DMO)
(Stegmann & Lund (2005)), which identifies from a list of pre-defined candidate materials the most suitable one
for the structural domain. The candidate materials are represented in the list by their constant mechanical and/or
thermophysical properties, and per element (𝑒) and/or patch (𝑝) in the domain are assigned a specific weight,
𝑤𝑒∕𝑝, 𝑖 ∈ [0, 1], with 𝑖 = 1 ∶ 𝑛𝑐 and 𝑛𝑐 the total number of candidate materials. By that means, the property within
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each element/patch is expressed as the weighted sum of the properties of the candidate materials. The scope of the
material optimization problem (MOP) is to optimize the objective function with respect to these weights and identify
per each element/patch in the domain the most optimal from the list, 𝑖.𝑒. these weights constitute the design variables
of the MOP. Material optimization has been widely used in different applications of laminated composite structures
for optimizing the fiber orientation of the uni-directional (UD) laminae from a list of pre-defined candidate ones. In
this case, each candidate fiber orientation is indirectly represented in the list by the effective (or off-axis) properties of
the corresponding UD lamina.

A less computationally expensive technique compared to DMO when considering 𝑛𝑐 = 2𝑘, with 𝑘 ∈ ℕ+, number
of candidate materials, has been introduced in Bruyneel (2011) and Bruyneel et al. (2011), where as weights for the
candidate materials are employed the shape functions of the 2𝑘−noded quadrangular finite element (FE). According to
this method, labelled as shape function with penalization (SFP), each candidate material is attached to a specific node
on the 2𝑘−noded quadrangular FE and the optimal nodal location amongst them is requested, 𝑖.𝑒. the natural coordinate
system of the quadrangular FE constitutes the design variables of the MOP. Thus, for a number of 𝑛𝑐 = 2𝑘 candidate
materials, 𝑘 = 𝑙𝑜𝑔2(𝑛𝑐) design variables are required to determine the optimal one amongst them, reducing that way
substantially the dimension of the resulting MOP. As an extension of the SFP technique, allowing the interpolation
between 𝑛𝑐 = [2𝑘−1 + 1, 2𝑘] material phases, where 𝑘 = ⌈𝑙𝑜𝑔2(𝑛𝑐)⌉ and 𝑛𝑐 the assumed number of candidate material
phases, the bi-value coding parameterization method (BCP) has been proposed in Gao et al. (2012), removing the
constraint that the number of candidate material phases should be of integer powers of base 2. The computational
advantage of both methods, due to the substantial reduction in the number of design variables has made them preferable
to various material optimization problems.

The scope of this work is to propose a methodology for the concurrent optimization of the type, the material compo-
nents and the topology of the composite microstructure of the structural domain based on a list of pre-defined composite
microstructures. To this end, three structural optimization problems are deployed, that of: (1) the homogenization-based
topology optimization (HTOP), (2) the discrete microstructure type optimization (DMTOP), and (3) the discrete multi-
material optimization (DMOP). The idea is as follows: A catalogue of candidate microstructures considered for the
structural domain is provided. The candidate microstructures are represented in this catalogue by their homogenized
properties, whether these are their mechanical and/or thermophysical properties. In the present work, however, the
homogenization process is carried out only for the mechanical properties of the composite microstructures. The
homogenized properties derived from each candidate microstructure are conditioned on its topology, as it is determined
by the fraction of the material components within its unit cell configuration. The objective is to optimize the type of
the composite microstructure of the structural domain, in accordance with the microstructures listed in the catalogue,
and its topology, in accordance with the global volume constraints imposed on one or more of its material components.
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Optimizing with respect to the type of the composite microstructure forms the objective of the DMTOP, while
optimizing with respect to its topology, under the imposition of global volume constraints, forms the objective of
the HTOP. By that means, two types of design variables are distinguished for the resulting optimization problem: (1)

one that identifies the optimal microstructure type from the given catalogue, and (2) one that determines its optimal
topology (or corresponding unit cell configuration). Regarding the first type of design variables, and purely due to
its computational efficiency, the SFP technique is preferred in this work for interpolating the homogenized properties
within the structural domain, thereby introducing the constraint that the number of candidate microstructures should be
given in integer powers of base 2. Regarding the second type of design variables, the volume fractions of the candidate
microstructures’ material components are selected instead of their geometric features, so as to facilitate the formulation
of the HTOP.

The developed methodology is constrained to composite microstructures of two material components. Neverthe-
less, it is illustrated that this limitation can be circumvented by simply listing on the same catalogue microstructures of
the same type but of different material components. By that means, under the umbrella of the HTOP, the DMTOP
can either be replaced or coexist with the DMOP, while maintaining the same mathematical formulation for the
methodology. The overall objective of the methodology is captured in Figure 1 for the case where 2𝑘 two-component
microstructure types are considered for each element (𝑒) in the structural domain.

To the author’s knowledge, bringing together the three aforementioned structural optimization problems under a
unique mathematical framework is a topic yet to be explored in the literature.

2. Problem statement and structure of the paper

To provide an in-depth insight of the build-out process and the implementation modus of the methodology, it is
built step-by-step through a made-up case study; specifically, in the case where a catalogue of four candidate composite
microstructure types is considered for the structural domain. The four microstructure types are composed of the same
two materials, denoted as 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 and 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2, respectively. The goal is to determine per element (𝑒) in the
structural domain a unique microstructure out of the four, concurrently optimized in its topology, 𝑖.𝑒. the fraction of
the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 and 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 components explicitly defining its unit cell configuration. Both the type and the topology
of the microstructure predicted per element in the domain depend on the formulation of the volume constraint in the
HTOP; that is, on which of the two material components the constraint is to be imposed as well as the fraction of it to be
retained in the final domain. To this end, and to proceed further with the development of the methodology, the (arbitrary)
assumption is made that the volume constraint is imposed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 component. However, by alternating the
properties between the two materials, the volume constraint could as well be imposed on 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2. On the basis of this
assumption, the proper design variables are sought for the HTOP in order to efficiently describe the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume
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Figure 1: The objective of the proposed methodology is to identify from a list of 2𝑘 candidate microstructures considered
for the (𝑒) element in the domain the most optimal one, concurrently optimized in its configuration.

distribution within the structural domain. In terms of computational cost, this translates to identifying amongst the
possible types of design variables that can be considered for the HTOP, the ones posing it in its most computationally
advantageous yet simplest format. As such, the homogenized properties representing the four candidate microstructure
types in the catalogue are expressed in terms of the design variables determined for the HTOP. As a next step, the SFP
technique is employed for interpolating the homogenized properties within the structural domain. The mathematical
formulation of the concurrent homogenization-based topology and discrete microstructure type optimization problem
(HTDMOP) derived from the specific case study is generalized for the case of 2𝑘 candidate microstructures, where
𝑘 ∈ ℕ+.

The remainder of the paper is organized as follows: in (Sec. 3), the four elementary composite microstructures
are presented and the parameters defining their geometric configuration are specified. The homogenization process
is also presented for homogenizing the mechanical properties of the microstructures’ different configurations. For
completeness, in (Sec. 4), the state-of-the-art DMO technique is deployed for interpolating the microstructures’
homogenized properties within the structural domain. However, no further extent to formulating the corresponding
DMO-based HTDMOP is given, due to its higher computational cost compared to the SFP-based HTDMOP. In
(Sec. 5), the SFP technique is employed for interpolating the homogenized properties within the structural domain.
The corresponding SFP-based HTDMOP is posed for the general case of 2𝑘 candidate microstructures for compliance
minimization of the structure, under the assumption that the volume constraint is imposed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 component
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of the candidate microstructures. In addition, it is demonstrated that the mathematical formulation derived for the
SFP-based HTDMOP can be adopted as is for the concurrent homogenization-based topology, microstructure type
and/or multi-material optimization of the structure. In (Sec. 6), the developed methodology is demonstrated on the
academic case study of the 3D MBB beam, in the case where the auxiliary microstructures are considered candidates
for the domain. The same section also discusses different techniques for forcing the solution to converge to the nearest
candidate microstructure (𝑖.𝑒. discrete design). Amongst them, emphasis is given to a metric developed for measuring
the degree of "non-discreteness" in the final design. The paper concludes in (Sec. 7) section where possible extensions
and modifications of the proposed methodology are discussed.

3. Description of the candidate composite microstructures and derivation of their

homogenized mechanical properties

This section describes the pre-processing stage of the methodology, positioned at the microstructural level. The end
goal is to express the homogenized properties of the candidate microstructures as a continuous function of the design
variables determined for the HTOP, given the assumption that a global volume constraint is imposed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1
component. The steps to reach this goal are set out in this section, which is structured as follows: in (Sec. 3.1) the
four auxiliary composite microstructure types are first introduced and the parameters determining their geometric
configuration are mathematically defined. (Sec. 3.2) briefly discusses the homogenization process and, in particular,
homogenizing the mechanical properties of a non-homogeneous unit cell. In (Sec. 3.3), the homogenization process is
carried out for different geometric configurations of the candidate composite microstructures. Following, a regression
analysis is performed as to model the variation in the homogenized property with respect to the geometric configuration
for each microstructure. With a view to facilitating the formulation of the HTOP, the proper design parameters are
sought in order to represent the variation in the geometric configuration in the regression analysis process for all
microstructures. These parameters will constitute the design variables for the HTOP.

3.1. Description of the candidate microstructure types

Four microstructure types composed of 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 and 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 are considered: (1) a ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ one, with the
volume of 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 within the unit cell domain being defined by the radius of the arc 𝑟𝐿 ∈ ℝ+, counting from the
edges of the unit cell (see Figure 2(𝐴)), (2) a ′𝐵𝑜𝑥′ one, where the volume of 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 is defined by the length 𝛼 ∈ ℝ+

of the inner box located at the center of the unit cell, while the rest of the unit cell domain is occupied by 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 (see
Figure 2(𝐵)), (3) a ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ and (4) a ′𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙′ one, with the radius of the cylinder 𝑟𝐶 ∈ ℝ+ across the width
of the unit cell and of the sphere 𝑟𝑆 ∈ ℝ+, both located at its center, defining the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 domain (see Figure 2(𝐶,𝐷)).
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It is noted that in the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ type, the 𝑟𝐿 geometric parameter defines the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 domain within the unit cell,
while the (𝛼, 𝑟𝐶 , 𝑟𝑆 ) geometric parameters define the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 domain of the unit cell.

Without loss of generality, more complex and of more geometric parameters microstructures can be considered
instead. However, the ones considered in this work are preferred due to: (1) their geometric simplicity (𝑖.𝑒. the explicit
definition of each unit cell’s configuration by its uni-variate geometric parameter in combination with the planar and
cubic symmetry they display about their center), and (2) the collateral computational advantage that comes with
considering uni-variate configurations. It is straightforward to extend the method to unit cells with more intricate
parametrizations. This however, falls outside the scope of this paper.

3.1.1. Discretization of the unit cells

Each unit cell is discretized to an equal number 𝑛𝑣 ∈ ℕ+ of FEs per direction, 𝑣𝑜𝑥𝑒𝑙𝑠, resulting in a total of 𝑁𝑣 = 𝑛3𝑣

FEs in the unit cell. Numerically this is equivalent to modelling the unit cell as a 3D cubic matrix [𝑛𝑣 × 𝑛𝑣 × 𝑛𝑣]

containing the indexes "1" or "2", depending on which of the two materials has been assigned to each element of
the matrix; that is, matrix elements indexed as "1" are allocated the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 𝐿𝑎𝑚�́� engineering constants (𝜆1, 𝜇1),
and matrix elements indexed as "2" are allocated the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 𝐿𝑎𝑚�́� engineering constants, (𝜆2, 𝜇2). The case of a
[40 × 40 × 40] discretization mesh (𝑖.𝑒. 𝑛𝑣 = 40) for the microstructure types considered is depicted in Figure 4. Here,
the gray region constitutes the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 domain within the unit cell while the pink region the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 domain.

3.1.2. Definition of the microstructures’ geometric parameters

To sufficiently define the geometric parameter vector of each microstructure type, three quantities are defined first:
its lower and upper bound and its sufficient increment step, a mesh-dependent parameter crucial for avoiding possible
repetitions of the same configuration:

Type 1: ’Lattice’: As depicted in Figure 2(𝐴), the FEs with their center located within the arc of radius 𝑟𝐿, define
the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 domain. The maximum value of the radius equals to: 𝑟𝐿,𝑚𝑎𝑥 =

√

2 ⋅ 0.52 = 0.707 unit cell units, and for
computational stability purposes its minimum value is set equal to 10−9 unit cell units.

Intermediate values of the radius correspond to intermediate configurations of the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ microstructure. In that
way, the radius of the microstructure is expressed in a vector format, with each element in the vector corresponding to a
unique configuration for the microstructure. In order to ensure this one-to-one correspondence between the elements in
the vector and different configurations of the microstructure, the sufficient increment step 𝛿𝑟𝐿 is introduced between two
successive radius values, as illustrated in Figure 3(𝐴); that is, radii increments lower than 𝛿𝑟𝐿 do not suffice to capture the
center of the adjacent FEs forming the next configuration, and will result in repetition of the current one. Repetition of
the current configuration due to an insufficient increment in the radius results in repetition of the homogenized property.
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Figure 2: Sketch representation of the four microstructure types discretized in a [4 × 4 × 4] mesh: (A) FEs within the arc
defined by the radius 𝑟𝐿, constitute the 1𝑠𝑡 material (gray colored region). (B) FEs within the inner box, delimited by the 𝛼

2
length, constitute the 2𝑛𝑑 material (pink colored region). (C) FEs within the cylinder radius 𝑟𝐶 , constitute the 2𝑛𝑑 material
(pink colored region). (D) FEs within the radius of the sphere 𝑟𝑆 , constitute the 2𝑛𝑑 material (pink colored region).

These data operate as "noise" and are identified as plateau regions in the homogenized property versus the geometric
parameter variation graph, diminishing the quality of the regression model to be fitted (discussed in (Sec. 3.3)). As
such, the sufficient increment step 𝛿𝑟𝐿 defined for the radius is set equal to the diagonal of the FE discretizing its unit
cell, 𝑖.𝑒. the direction along which the radius increases. By that means, the geometric parameter vector for the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′

microstructure {𝑟𝐿} is defined as: {𝑟𝐿} = [10−9 ∶ 𝛿𝑟𝐿 ∶ 0.707].
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Figure 3: Definition of the geometric parameter vector for the [4 × 4 × 4] discretized ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ and ′𝐵𝑜𝑥′ microstructures:
(A) {𝑟𝐿} = [10−9 ∶ 𝛿𝑟𝐿 ∶ 0.707]. (B) { 𝛼

2
} = [10−9 ∶ 𝛿 𝛼

2
∶ 0.5]. Increments of the geometric parameter lower than the 𝛿𝑟𝐿

and 𝛿 𝛼
2

step, respectively, will result to repetition of the former unit cell configuration. The parameter 𝑣𝑜𝑥𝑒𝑙𝑠 defines the
number of FEs discretizing the unit cell per direction, 𝑖.𝑒. 𝑣𝑜𝑥𝑒𝑙𝑠 = 4 in the figure.

In the same way, to avoid repetition of the same configuration for the rest of the microstructures, a corresponding
sufficient step is defined as well. The sufficient steps defined for the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ and ′𝐵𝑜𝑥′ microstructures are illustrated
in Figure 3.

Type 2: ’Box’ : Regarding the ′𝐵𝑜𝑥′ microstructure, the FEs with their center located within the inner box
delimited by the [− 𝛼

2 , 𝛼2 ] planes about the unit cell center form the 2𝑛𝑑 material. The maximum value of the 𝛼
2

parameter is bounded to half the unit cell length, and for computational stability purposes its minimum value is
set equal to ( 𝛼2 )𝑚𝑖𝑛 = 10−9 unit cell units. The sufficient step defined for the ′𝐵𝑜𝑥′ microstructure equals to the
length of the FEs discretizing it. As such, the geometric parameter vector for the ′𝐵𝑜𝑥′ microstructure is defined as:
{ 𝛼
2 } = [10−9 ∶ 𝛿 𝛼

2
∶ 0.5]. The { 𝛼

2 } vector is illustrated in Figure3(𝐵).

Types 3, 4: ’Cylindrical’ & ’Spherical’ : Regarding the ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ and ′𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙′ microstructures, the FEs
with their center located within the radius of the inner cylinder 𝑟𝐶 and sphere 𝑟𝑆 , respectively, constitute the 2𝑛𝑑

material. The maximum value for both radii is reached when the surface of the cylinder/sphere reaches the outer
surface of the unit cell. Similar to the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ and the ′𝐵𝑜𝑥′ microstructures, the lower bound of 10−9 unit cell units
is imposed on both radii. As such, the two geometric parameter vectors are defined as: {𝑟𝐶} = [10−9 ∶ 𝛿𝑟𝐶 ∶ 0.5] and
{𝑟𝑆} = [10−9 ∶ 𝛿𝑟𝑆 ∶ 0.5], respectively. The sufficient radius increments 𝛿𝑟𝐶 and 𝛿𝑟𝑆 , equal to the sufficient radius
increment of the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ microstructure 𝛿𝑟𝐿 .
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Table 1: Bounds of the microstructures’ geometric parameters (in unit cell units)
′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′

𝑟𝐿,𝑚𝑖𝑛 = 10−9 ⩽ {𝑟𝐿} ⩽ 𝑟𝐿,𝑚𝑎𝑥 = 0.707
′𝐵𝑜𝑥′

( 𝛼2 )𝑚𝑖𝑛 = 10−9 ⩽ { 𝛼
2 } ⩽ ( 𝛼2 )𝑚𝑎𝑥 = 0.5

′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′

𝑟𝐶,𝑚𝑖𝑛 = 10−9 ⩽ {𝑟𝐶} ⩽ 𝑟𝐶,𝑚𝑎𝑥 = 0.5
′𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙′

𝑟𝑆,𝑚𝑖𝑛 = 10−9 ⩽ {𝑟𝑆} ⩽ 𝑟𝑆,𝑚𝑎𝑥 = 0.5

For notational brevity, the geometric parameters of the microstructures are collected in the unique vector
𝑝 =

[

{𝑟𝐿}; {
𝛼
2 }; {𝑟𝐶}; {𝑟𝑆}

].

3.2. Homogenizing the unit cells: Overview of the homogenization theory

Homogenization averages the properties of discrete components that constitute a composite unit cell, and under
mechanical considerations (𝑖.𝑒. the microstructure is assumed periodically repetitive and the scale ratio 𝜖 → 0) extracts
its macroscopic (or equivalent) properties.

In this study, the property to be homogenized is the elasticity tensor of the non-homogeneous unit cells. According
to homogenization theory, the equivalent elasticity tensor of the unit cell is calculated by the following volume integral:

𝐶𝐻
𝑖𝑗𝑘𝑙 =

1
𝑉𝑢𝑐

⋅ ∫
𝑉𝑢𝑐

𝐶𝑝𝑞𝑟𝑠 ⋅ (𝜖0(𝑖𝑗)𝑝𝑞 − 𝜖(𝑖𝑗)𝑝𝑞 ) ⋅ (𝜖0(𝑘𝑙)𝑟𝑠 − 𝜖(𝑘𝑙)𝑟𝑠 )𝑑𝑉 , (1)

where 𝑉𝑢𝑐 is the volume of the unit cell, 𝐶𝑝𝑞𝑟𝑠 is the elasticity tensor varying within the unit cell domain, 𝜖0(𝑖𝑗)𝑝𝑞 denotes
the macroscopic strain fields applied on the unit cell (𝑒.𝑔. for the 3D case extends to the six components 𝜖0(𝑖𝑗)11 , 𝜖0(𝑖𝑗)22 ,

𝜖0(𝑖𝑗)33 , 𝜖0(𝑖𝑗)12 , 𝜖0(𝑖𝑗)23 and 𝜖0(𝑖𝑗)13 ), and 𝜖(𝑖𝑗)𝑝𝑞 denote the locally varying strain fields. The numerical expression of Eq.(1) is
given as:

𝐶𝐻
𝑖𝑗 = 1

𝑉𝑢𝑐
⋅
𝑁𝑣
∑

𝑒=1
∫
𝑉𝑒

({𝜒0(𝑖)
𝑒 } − {𝜒 (𝑖)

𝑒 })𝑇 ⋅ [𝑘𝑒] ⋅ ({𝜒0(𝑗)
𝑒 } − {𝜒 (𝑗)

𝑒 }) 𝑑𝑉 , (2)

where 𝑉𝑢𝑐 is the volume of the unit cell, 𝑉𝑒 the volume of each FE discretizing it, i and j the indexes of the strain tensor
expressed in Voigt notation (the Voigt notation of the strain field is defined as {𝜖𝑖}, where 𝑖 = 1 ∶ 6 for the 3D case),
{𝜒𝑒

𝑖} is the displacement vector of the element (𝑒) corresponding to the application of the volumetric strain field {𝜖𝑖}

and {𝜒0(𝑖)
𝑒 } is the displacement vector of the (e) element corresponding to the macroscopic strain field {𝜖0𝑖}. The 2D
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and 3D numerical implementation of the homogenization process are provided in Andreassen & Andreasen (2014)
and Guoying et al. (2018), respectively.

3.3. Homogenization of the microstructures’ unit cell configurations

Different configurations of the same microstructure type result to different homogenized properties. Figure 4 depicts
intermediate configurations of the elementary microstructure types along with their homogenized elasticity tensor,
corresponding to intermediate values of their geometric parameter vector. A regression analysis is performed in order
to model the variation in the homogenized mechanical property with respect to the geometric configuration for each
microstructure type. The parameters representing the geometric configurations in the regression analysis process will
constitute the design variables for the HTOP, and are selected based on the computational effect they bear on the HTOP.
The criteria for their selection are discussed in the following section.

Regardless of the type of design variables determined for the HTOP, the regression model to be fitted depends
mainly on three parameters: (1) the length of each microstructure’s geometric parameter vector, which is dependent
on the discretization mesh set for its unit cell, (2) the deviation in the mechanical properties between the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

and 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 components; that is, material components of similar mechanical properties, say [𝜆1, 𝜇1] ≈ [𝜆2, 𝜇2],
will result in small variations in the calculated homogenized elasticity tensors, while in case of material components
of significant difference in their mechanical properties, a more complex regression model might be required, and (3)

the variation in the homogenized property with respect to the microstructure’s configuration. Depending on those
parameters, different regression models may deem more adequate among others, and different fitting quality metrics
such as the 𝑅2, the average and maximum relative error, (ARE) and (MRE) respectively, can be employed to identify
the best amongst them.

Since the scope of this work is to generalize the mathematical framework of the proposed methodology, independent
of the candidate microstructures and their material components, no emphasis to optimizing with respect to the
regression model will be given in this work. Further, the proposed developments are independent from the selected
regression model.

3.3.1. Determining the design variables for the HTOP

In the present case study where two-component microstructures are considered, and with the volume constraint
concerning the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 component, two types of design variables are distinguished for the HTOP. Each type poses
the HTOP differently, and bears a different effect both on its computational efficiency and accuracy in the results
obtained:

(𝟏) The first approach would be to consider the geometric parameters of the microstructures as the design variables
for the HTOP. By that means, the volume constraint imposed on 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 is given as a explicit function of the
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Figure 4: Homogenizing the elasticity tensor of the intermediate configurations of the four microstructures. The superscript
(𝑘) refers to the intermediate configurations of the microstructures, 𝑖.𝑒. at 𝑝(𝑘) =

[

𝑟(𝑘)𝐿 ; ( 𝛼
2
)(𝑘); 𝑟(𝑘)𝐶 ; 𝑟(𝑘)𝑆

]

. Note that, at the
extreme values of their geometric parameters only for the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ and ′𝐵𝑜𝑥′ microstructures the pure 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 and
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 mechanical properties are derived.

13



microstructures’ geometric parameters. This approach also suggests that the regression process discussed in the
previous section, is performed between the homogenized elasticity tensor and the geometric parameter for each
microstructure, 𝑖.𝑒. the regression models to be fitted are of the form𝐶𝐻

𝑖𝑗(𝑟𝐿)
, 𝐶𝐻

𝑖𝑗( 𝛼2 )
, 𝐶𝐻

𝑖𝑗(𝑟𝐶 )
, 𝐶𝐻

𝑖𝑗(𝑟𝑆 )
, with (𝑖, 𝑗) = 1 ∶ 6.

Any large variations in the order of magnitudes among the HTOP constraints constitute a numerical shortcoming for
this approach. This occurs especially in case the design variables are order of magnitudes less than zero, as in the
present case where the order of magnitude is defined by the scale ratio 𝜖 (the design variables are defined in the micro-
scale). As a result, constraints low in magnitude are neglected in the numerical calculations. The standard approach
to minimize the impact of large variations in magnitudes among the constraints is to scale (or normalize) either the
constraint functions or the design variables, which leads to the approach discussed next.

(𝟐) Establishing the monotonicity between the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume and the microstructures geometric parameters,
the more computationally efficient approach would be to consider the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction of the microstructures
as the design variables for the HTOP; that is, optimize their topology with respect to the dimensionless ratios
𝑣(𝑘)𝑡𝑦𝑝𝑒 =

𝑉 (𝑘)
𝑡𝑦𝑝𝑒
𝑉𝑢𝑐

∈ [𝑣𝑡𝑦𝑝𝑒,𝑚𝑖𝑛, 𝑣𝑡𝑦𝑝𝑒,𝑚𝑎𝑥]. Here, the subscript 𝑡𝑦𝑝𝑒 indicates the type of the microstructure, where
𝑡𝑦𝑝𝑒 ∈  =

{′𝐿′, ′𝐵′, ′𝐶 ′, ′𝑆′}. The numerator of the fraction 𝑉 (𝑘)
𝑡𝑦𝑝𝑒, is the𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume within the constant unit

cell volume 𝑉𝑢𝑐 corresponding at its (𝑘𝑡ℎ) unit cell configuration, 𝑖.𝑒. at the (𝑘𝑡ℎ) element of its geometric parameter
vector (see Figure 4), and 𝑣𝑡𝑦𝑝𝑒,{𝑚𝑖𝑛,𝑚𝑎𝑥} is the minimum and maximum volume ratio 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 can occupy within
𝑉𝑢𝑐 . The bounds of the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction for the four microstructures are listed in Table 2. This approach
suggests that the regression process takes place between the homogenized tensor of the microstructures and their
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction, 𝑖.𝑒. the four regression models are of the form 𝐶𝐻

𝑖𝑗(𝑣𝐿)
, 𝐶𝐻

𝑖𝑗(𝑣𝐵)
, 𝐶𝐻

𝑖𝑗(𝑣𝐶 )
, 𝐶𝐻

𝑖𝑗(𝑣𝑆 )
, with

(𝑖, 𝑗) = 1 ∶ 6. Through these regression models the candidate microstructures are represented in the catalogue. An
additional advantage that comes with this approach, beyond that of ending up with scaled side constraints for the HTOP,
is that it significantly simplifies the mathematical formulation of the volume constraint imposed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

(discussed in detail in (Sec. 5.3)). For these reasons, the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions of the individual microstructures
are selected as the design variables for the HTOP. The regression models selected for fitting the homogenized elasticity
tensors to the different 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions are presented along with the numerical examples in (Sec. 6).

Table 2: Bounds of the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction for each microstructure type [-]
′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′

𝑣𝐿,𝑚𝑖𝑛 = 10−9 ⩽ {𝑣𝐿} ⩽ 𝑣𝐿,𝑚𝑎𝑥 = 1
′𝐵𝑜𝑥′

𝑣𝐵,𝑚𝑖𝑛 = 10−9 ⩽ {𝑣𝐵} ⩽ 𝑣𝐵,𝑚𝑎𝑥 = 1
′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′

𝑣𝐶,𝑚𝑖𝑛 = 0.2146 ⩽ {𝑣𝐶} ⩽ 𝑣𝐶,𝑚𝑎𝑥 = 1
′𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙′

𝑣𝑆,𝑚𝑖𝑛 = 0.4764 ⩽ {𝑣𝑆} ⩽ 𝑣𝑆,𝑚𝑎𝑥 = 1
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For notational convenience, and since the scope of this work is to generalize the mathematical framework of the
SFP-based HTDMOP for the case of 2𝑘 candidate microstructures, the numerical index notation is adopted from now
onwards. The notation takes the following form for the four microstructures : {𝑣𝐿, 𝑣𝐵 , 𝑣𝐶 , 𝑣𝑆} → {𝑣1, 𝑣2, 𝑣3, 𝑣4}

4. Interpolating the homogenized properties by means of the DMO technique

Discrete material optimization (DMO) is a technique developed for purposes of material optimization from a list of
pre-defined candidate materials (Stegmann & Lund (2005); Stegmann (2004)). DMO proposes the following scheme
for the interpolation of the mechanical properties of 𝑛𝑐 candidate materials within the (𝑒) element:

[𝐶𝑒{𝑤𝑒}] =
𝑛𝑐
∑

𝑖=1
𝑊𝑒𝑖 ⋅ [𝐶 𝑖], 𝑤ℎ𝑒𝑟𝑒, 𝑊𝑒𝑖 =

(

𝑤𝑝
𝑒𝑖 ⋅

𝑛𝑐
∏

𝑗=1
𝑗≠𝑖

(1 −𝑤𝑒𝑗)𝑝
)

𝑎𝑛𝑑 0 ⩽ 𝑤𝑒𝑖 ⩽ 1, (3)

where, 𝑊𝑒𝑖 is the weight assigned to the (𝑖𝑡ℎ) candidate material, [𝐶 𝑖] its constant elasticity tensor, and 𝑝 ∈ ℝ+ a
penalty factor forcing intermediate values of the weights closer to their {0, 1} bounds. The goal of the DMO-based
MOP is to solve for the 𝑊𝑒𝑖 weights and identify a unique material for each element in the domain.

Adopting the DMO scheme to interpolate the homogenized elasticity tensors of 𝑛𝑐 candidate microstructures within
the (𝑒) element, Eq.(3) reads:

[𝐶𝐻
𝑒({𝑤𝑒},{𝑣𝑒})

] =
𝑛𝑐
∑

𝑖=1
𝑊𝑒𝑖 ⋅ [𝐶𝐻

𝑖(𝑣𝑒𝑖)
], 𝑤ℎ𝑒𝑟𝑒, 𝑊𝑒𝑖 =

(

𝑤𝑝
𝑒𝑖 ⋅

𝑛𝑐
∏

𝑗=1
𝑗≠𝑖

(1 −𝑤𝑒𝑗)𝑝
)

𝑎𝑛𝑑 0 ⩽ 𝑤𝑒𝑖 ⩽ 1, (4)

where the weight 𝑊𝑒𝑖 corresponds now to the (𝑖𝑡ℎ) in order candidate microstructure of 𝑣𝑒𝑖 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction,
and [𝐶𝐻

𝑖(𝑣𝑒𝑖)
] its homogenized elasticity tensor, as derived from the regression process discussed previously. The curly

bracket notation is adopted in Eqs.(3)-(4) to represent all weights 𝑊𝑒𝑖 and 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions 𝑣𝑒𝑖 in a vector
format.

The corresponding DMO-based HTDMOP is optimized with respect to the weights {𝑤𝑒} and the𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume
fractions {𝑣𝑒} of each element (𝑒) in the structural domain. The microstructure type predicted for the element is
determined solely by the optimal {𝑤𝑒}∗ vector. Its configuration is determined by applying the DMO interpolation
scheme on the predicted 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions{𝑣𝑒}∗, as such it is dependent on both the {𝑤𝑒}∗ and the {𝑣𝑒}∗

design variables.
The DMO technique proves to be a very efficient approach when applied on small scale material optimization

problems. However, when considering either a dense mesh for the structure and a short list of candidate materials
assigned per element/patch or a coarse mesh for the structure and an extensive list of candidate materials, the dimension
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of the resulting MOP still remains large. This one-to-one dependency of the DMO-based MOP dimension on both the
number of design variables assigned per element/patch in the structural domain and the discretization mesh set, renders
the resulting optimization problem quite challenging and computationally expensive. For this purpose, the SFP method
is considered in this study as the weight assignment method for the candidate microstructures.

5. Formulation of the SFP-based HTDMOP

The scope of this section is to formulate the SFP-based HTDMOP for compliance minimization of the structure.
The section is structured as follows: in (Sec. 5.1) an overview of the SFP material interpolation technique is given.
Following, the SFP technique is employed for interpolating the candidate homogenized properties within each element
(𝑒) of the structural domain. In (Sec. 5.2), the stiffness matrix and its Jacobian are derived for the (𝑒) element. In (Sec.
5.3) the generalized SFP-based HTDMOP for compliance minimization of the structure is posed. Further, the way it can
be perceived as a concurrent homogenization-based topology, multi-material and/or microstructure type optimization
problem is presented.

5.1. Interpolating the homogenized properties by means of the SFP technique

As an alternative to the DMO techique, the shape function with penalization method (SFP) has been proposed in
Bruyneel et al. (2011) and Bruyneel (2011). This approach utilizes the shape functions of the 2𝑘-noded quadrangular
FE as weights for the candidate materials: Each candidate material is tied to a specific node on the quadrangular FE,
and the solution is optimized with respect to the nodal coordinates configuration. By that means, the number of design
variables is reduced to one for the case of two candidate materials per element in the domain (use of the 1D linear FE),
to 2 for 4 candidate materials (use of the 2D quadrilateral FE), to 3 for 8 (use of the hexahedral FE), and to 𝑘 for the
general case of 2𝑘 candidate materials, with 𝑘 ∈ ℕ+. The shape functions of the 2𝑘-noded quadrangular FE are given
by the product:

𝑁𝑖(𝜉𝑗=1∶𝑘) =
1
2𝑘

⋅
(

𝑘
∏

𝑗=1
(1 + 𝜉𝑗 ⋅ 𝜉𝑗𝑖)

)

𝑤𝑖𝑡ℎ 𝑖 = 1 ∶ 2𝑘, (5)

where 𝜉𝑗 is the (𝑗𝑡ℎ) natural coordinate of the 2𝑘−noded quadrangular FE and 𝜉𝑗𝑖 are the coordinates of the (𝑖𝑡ℎ) node
in the (𝑗𝑡ℎ) direction. Since the design variables of the resulting SFP-based MOP are the natural coordinates of the
2𝑘-noded quadrangular FE, their side constraints are defined within the 𝑘−dimensional hyperrectangle [−1, 1]𝑘.

For the general case of 2𝑘 candidate materials, SFP proposes the following interpolation scheme:

[𝐶𝑒({𝜉𝑒})] =
2𝑘
∑

𝑖=1
𝑁𝑝

𝑒𝑖({𝜉𝑒})
⋅ [𝐶 𝑖], (6)
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where {𝜉𝑒} are the natural coordinates of the 2𝑘 − 𝑛𝑜𝑑𝑒𝑑 quadrangular FE expressed in a vector format , 𝑖.𝑒.

{𝜉𝑒} = [𝜉𝑒1, 𝜉𝑒2,⋯ , 𝜉𝑒𝑘] ∈ [−1, 1]𝑘,𝑁𝑒𝑖({𝜉𝑒}), the shape function corresponding to the (𝑖𝑡ℎ) node, and [𝐶 𝑖] the elasticity
tensor tied to it. The penalty factor 𝑝 forces the shape functions 𝑁𝑒({𝜉𝑒}) towards their {0, 1} bounds so as to ensure
that a unique material is predicted for the element. The penalty factor can be set equal to 1, as in the classical FEM
scheme or be assigned values 𝑝 ≥ 3. Depending on the value assigned to 𝑝 there is a trade-off between achieving a
high computational efficiency and forcing convergence towards a discrete solution (discussed in detail in (Sec. 5.3)).
Figure 5 illustrates the SFP interpolation scheme in the case where four and eight candidate materials are considered
per element (𝑒) in the structural domain.

Figure 5: Illustration of the SFP material interpolation technique: (A) Each of the 4 candidate materials is assigned to a
nodal location (𝜉𝑒1𝑖, 𝜉𝑒2𝑖) on the quadrilateral FE, with 𝑖 = 1 ∶ 4; the optimal coordinate 𝑃(𝜉𝑒1 ,𝜉𝑒2) ∈ [−1, 1]2 is sought. (B)
Each of the 8 candidate materials is assigned to a nodal coordinate (𝜉𝑒1𝑖, 𝜉𝑒2𝑖, 𝜉𝑒3𝑖) on the hexaedral FE, with 𝑖 = 1 ∶ 8; the
optimal coordinate 𝑃(𝜉𝑒1 ,𝜉𝑒2 ,𝜉𝑒3) ∈ [−1, 1]3 is sought. (C) Generalization of the SFP technique for the case of 2𝑘 candidate
materials; here, the optimal coordinate 𝑃(𝜉𝑒1 ,…,𝜉𝑒𝑘) ∈ [−1, 1]𝑘 is sought. (For convenience, the analytical expression of the
element’s elasticity tensor is included for each case.)

Adopting the SFP scheme to parametrize the homogenized elasticity tensors of 2𝑘 candidate microstructures within
the (𝑒) element, Eq.(6) reads:

[𝐶𝐻
𝑒({𝜉𝑒},{𝑣𝑒})

] =
2𝑘
∑

𝑖=1
𝑁𝑝

𝑒𝑖({𝜉𝑒})
⋅ [𝐶𝐻

𝑖(𝑣𝑒𝑖)
]. (7)
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As stated in Eq.(7), the elasticity tensor of the (𝑒) element is dependent both on the type of the candidate
microstructures, now determined by the coordinates of the {𝜉𝑒} vector, and the individual 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions
{𝑣𝑒}. For notational brevity, the {𝜉𝑒} and {𝑣𝑒} vectors of the (𝑒) element are collected in a unique vector denoted as
{𝑑𝑣}𝑒 =

[

{𝜉𝑒}, {𝑣𝑒}
]. The 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 of the {𝑑𝑣}𝑒 vector for the general case when 2𝑘 candidate microstructures are

considered for the element, equals to: 𝑑𝑖𝑚({𝑑𝑣}𝑒
)

= 𝑑𝑖𝑚
(

{𝜉}𝑒
)

+ 𝑑𝑖𝑚
(

{𝑣}𝑒
)

= 𝑘+2𝑘. Thus, for a structural domain
discretized in 𝑁 number of FEs, with each element bearing its own microstructure, the optimal solution {𝑑𝑣}∗ lies
within the ℝ(𝑘+2𝑘)⋅𝑁 Euclidean space, 𝑖.𝑒. {𝑑𝑣}∗ =

𝑁
⋃

𝑒=1
{𝑑𝑣}𝑒∗ ∈ ℝ(𝑘+2𝑘)⋅𝑁 .

Figures 6 & 7 demonstrate the way in which the SFP technique is employed to interpolate the homogenized elasticity
tensors of the candidate microstructures within the (𝑒) element. For instance, considering the case of two candidate
microstructures, as shown Figure 6(𝐴), each of them is assigned to a node on the 1D linear FE. In this case, the optimal of
the two is determined by the optimal coordinate 𝜉∗𝑒 ∈ [0, 1]. The homogenized elasticity tensors of both microstructures
are dependent on their 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction, denoted as 𝑣𝑒1 and 𝑣𝑒2, respectively. The 𝜉𝑒 natural coordinate along
with the 𝑣𝑒1 and 𝑣𝑒2 volume fractions of the two microstructures form the design variable vector for the (𝑒) element, 𝑖.𝑒.
{𝑑𝑣}𝑒 = [𝜉𝑒, 𝑣𝑒1, 𝑣𝑒2]. Considering now the case of four candidate microstructures, as shown in Figure 7(𝐴), each of
them is assigned to a specific node on the 2D quadrangular FE. In this case, the design variable vector of the (𝑒) element
is defined as {𝑑𝑣}𝑒 = [𝜉𝑒1, 𝜉𝑒2, 𝑣𝑒1, 𝑣𝑒2, 𝑣𝑒3, 𝑣𝑒4], and the optimal natural coordinate lies within the quadrangular FE,
𝑖.𝑒. {𝜉𝑒}∗ = (𝜉𝑒1, 𝜉𝑒2)∗ ∈ [−1, 1]2 - ideally, exactly on one of the nodes of the FE-. Figures 7𝐵 & 8 illustrate the way in
which the microstructure type optimization problem can be combined with the multi-material optimization problem by
simply assigning to the nodes of the FE both different microstructure types of the same two material components and
microstructures of the same type but of different 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 components. In this case, the basic precondition is that the
homogenized properties of the latter are also expressed in terms of their 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions. For convenience,
the design variable vector of the (𝑒) element {𝑑𝑣}𝑒 and the analytical expression of its elasticity tensor [𝐶𝐻

𝑒({𝑑𝑣}𝑒)
] are

included in the figures.
In their original work (Bruyneel (2011)), the authors also examined the case where three candidate materials are

considered for the domain. In this case, the shape functions of the 2D triangular FE were employed as weights for the
candidate materials. An additional inequality constraint ensuring that the optimal natural coordinate {𝜉𝑒}∗ lies within
the orthogonal triangle is imposed per element (𝑒) in the structural domain. In particular, it constraints the solution
{𝜉𝑒}∗ = (𝜉𝑒1, 𝜉𝑒2)∗ to lie within the feasible domain  =

{

{𝜉𝑒} ∈ ℝ2
| 0 ⩽ {𝜉𝑒} ⩽ 1, 𝑔𝑒 ∶ 𝜉𝑒1 + 𝜉𝑒2 − 1 ⩽ 0

}, as
depicted in Figure 6(𝐵). To comply with their work, the formulation of the SFP-based HTDMOP for the case of three
candidate microstructures is also listed in (Sec. 5.3).

It is noted that, both the SFP-based MOP and the DMO-based MOP constitute problems of non-linear Discrete
Optimization (DP). However, due to the computational intensiveness of the non-linear DP, the common approach is to
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relax that constraint and treat the design variables as continuous within the design space. After the continuous solution
is found it is rounded to the nearest feasible discrete design. For the SFP-based MOP, this translates to rounding the
solution to the nearest vertex of the 𝑘−dimensional hyperrectangle.

Figure 6: (A) The shape functions of the 1D linear FE are employed as weights for the case of two candidate microstructures.
(B) The shape functions of the orthogonal triangular FE are employed as weights for the case of three candidate
microstructures. The optimal coordinate 𝑃 ∗ = {𝜉𝑒}∗ lies within the feasible domain .

5.2. Derivation of the element’s stiffness matrix

The stiffness matrix of the (𝑒) element is expressed as follows:

[𝐾𝑒({𝑑𝑣}𝑒)] = ∫𝑉𝐸
[𝐵𝑒]𝑇 ⋅

(

2𝑘
∑

𝑖=1
𝑁𝑝

𝑒𝑖({𝜉𝑒})
⋅ [𝐶𝐻

𝑖(𝑣𝑒𝑖)
]
)

⋅ [𝐵𝑒] 𝑑𝑉 =
2𝑘
∑

𝑖=1
𝑁𝑝

𝑒𝑖({𝜉𝑒})
⋅
(

∫𝑉𝐸
[𝐵𝑒]𝑇 ⋅ [𝐶𝐻

𝑖(𝑣𝑒𝑖)
] ⋅ [𝐵𝑒] 𝑑𝑉

)

=
2𝑘
∑

𝑖=1
𝑁𝑝

𝑒𝑖({𝜉𝑒})
⋅ [𝐾𝑒𝑖(𝑣𝑒𝑖)], (8)

where [𝐾𝑒𝑖(𝑣𝑒𝑖)] is the [24 × 24] stiffness tensor of the (𝑖𝑡ℎ) in order candidate microstructure of 𝑣𝑒𝑖 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume
fraction, 𝑉𝐸 is the volume of the element and [𝐵𝑒] is the [6 × 24] Jacobian matrix of the element’s shape functions.
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Figure 7: (A) The shape functions of the quadrilateral FE are employed as the weights for the 4 candidate microstructures.
The optimal coordinate 𝑃(𝜉𝑒1 ,𝜉𝑒2) ∈ [−1, 1]2 is sought. (B) (𝑎) The shape functions of the hexahedral FE are employed as the
weights for the 8 candidate microstructures. The optimal coordinate 𝑃(𝜉𝑒1 ,𝜉𝑒2 ,𝜉𝑒3) ∈ [−1, 1]3 is sought. (𝑏) The methodology
allows for the alternation or combination between the microstructure type and the multi-material optimization problem,
𝑒.𝑔. different microstructure types of the same material components are allocated to the nodes of the Front Face of the
hex element, and different microstructure types of different ′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙′2 components at the nodes of its Back Face.

5.2.1. Calculating the Jacobian of the (𝑒) element’s stiffness matrix

The derivative of the (𝑒) element’s stiffness matrix is split in two parts: one 𝑤.𝑟.𝑡 to the components of the {𝜉𝑒}

design variable vector:

𝑑 [𝐾𝑒({𝑑𝑣}𝑒)]
𝑑𝜉𝑒𝑗

=
2𝑘
∑

𝑖=1

𝑑𝑁𝑝
𝑒𝑖({𝜉𝑒})

𝑑𝜉𝑒𝑗
⋅ [𝐾𝑒𝑖(𝑣𝑒𝑖)] 𝑤𝑖𝑡ℎ 𝑗 = 1 ∶ 𝑘, (9)
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Figure 8: (A) Optimizing with respect to the microstructure type. (B) Optimizing with respect to both the microstructure
type and the ′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙′2 component.

and one with respect to the components of the {𝑣𝑒} design variable vector:

𝑑 [𝐾𝑒({𝑑𝑣}𝑒)]
𝑑𝑣𝑒𝑖

= 𝑁𝑝
𝑒𝑖({𝜉𝑒})

⋅
(

∫𝑉𝑒
[𝐵𝑒]𝑇 ⋅

𝑑 [𝐶𝐻
𝑖(𝑣𝑒𝑖)

]

𝑑𝑣𝑒𝑖
⋅ [𝐵𝑒] 𝑑𝑉

)

𝑤𝑖𝑡ℎ 𝑖 = 1 ∶ 2𝑘. (10)

5.3. Posing the SFP-based HTDMOP for the general case of 2𝑘 candidate microstructures

The common practice in static linear TO is to optimize the compliance of the structural domain. The compliance
minimization problem is subjected to the system’s equilibrium equations, the volume constraint imposed on the
isotropic material, and the side constraints of the relative densities. Similarly is posed the SFP-based HTDMOP for
compliance minimization, under the following two differences: (1) the volume constraint is now imposed on one of
the constituent materials of the candidate microstructures, and (2) the additional constraint of Eq.(14) is imposed as
to enforce the self-complementary property on the penalized shape functions. For the general case of 2𝑘 candidate
microstructures, and with the volume constraint assumed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 component, the SFP-based HTDMOP for
compliance minimization is posed as follows:

{𝑑𝑣}∗ = argmin
{𝑑𝑣} ∈ ℝ𝑁 ⋅(𝑘+2𝑘)

𝐶 =
𝑁
∑

𝑒=1
{𝑈𝑒({𝑑𝑣}𝑒)}

𝑇 ⋅ [𝐾𝑒({𝑑𝑣}𝑒)] ⋅ {𝑈𝑒({𝑑𝑣}𝑒)} (11)

s.t.

∙ [𝐾𝑎𝑙𝑙] ⋅ {𝑈𝑎𝑙𝑙} = {𝐹𝑎𝑙𝑙} ⇒ {𝐻} ∶
(

𝑁
∑

𝑒=1
[𝐾𝑒({𝑑𝑣}𝑒)] ⋅ {𝑈𝑒({𝑑𝑣}𝑒)}

)

− {𝐹𝑎𝑙𝑙} = {0}, (12)
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∙
𝑉𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

𝑉0
⩽ 𝑓 1

𝑣𝑜𝑙𝑓𝑟𝑎𝑐 ⇒ 𝐹({𝑑𝑣}) ∶

∑𝑁
𝑒=1

∑2𝑘
𝑖=1𝑁

𝑝
𝑒𝑖({𝜉𝑒})

⋅ 𝑣𝑒𝑖

𝑁 ⋅ 𝑓 1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

− 1 ⩽ 0, (13)

∙ ℎ𝑒({𝜉𝑒}) ∶
∑

2𝑘
𝑖=1𝑁

𝑝
𝑒𝑖({𝜉𝑒})

− 1 = 0 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁, (14)
∙ {𝑑𝑣}𝑒,𝑚𝑖𝑛 ⩽ {𝑑𝑣}𝑒 ⩽ {𝑑𝑣}𝑒,𝑚𝑎𝑥 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁, (15)

with,

∙ {𝑑𝑣}𝑒,𝑚𝑖𝑛 = [−1,−1,⋯ ,−1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1 × 𝑘

; 𝑣𝑒1,𝑚𝑖𝑛, 𝑣𝑒2,𝑚𝑖𝑛,⋯ , 𝑣𝑒2𝑘,𝑚𝑖𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1 × 2𝑘

] 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁, (16)

∙ {𝑑𝑣}𝑒,𝑚𝑎𝑥 = [1, 1,⋯ , 1
⏟⏞⏞⏟⏞⏞⏟
1 × (2𝑘 + 𝑘)

] 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁, (17)

where {𝑑𝑣}𝑒 is the design variable vector of the (𝑒) element, 𝑁 is the number of the equally-sized FEs discretizing the
structural domain, [𝐾𝑎𝑙𝑙] is the global stiffness matrix, {𝐹𝑎𝑙𝑙} is the external load vector (considered independent of the
design variables, 𝑖.𝑒. 𝑑𝐹𝑎𝑙𝑙𝑗

𝑑({𝑑𝑣}𝑒)
= 0𝑗×𝑁 ⋅(𝑘+2𝑘), with 𝑗 = 1 ∶ 𝑛𝑑𝑜𝑓𝑠 and 𝑛𝑑𝑜𝑓𝑠 the degrees of freedom of the domain),

{𝑈𝑎𝑙𝑙} is the global displacement vector, {𝑈𝑒({𝑑𝑣}𝑒)} the nodal displacement vector of the (𝑒) element, 𝐾𝑒({𝑑𝑣}𝑒) its
stiffness matrix, 𝑉𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 is the total volume of 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 within the domain, 𝑓 1

𝑣𝑜𝑙𝑓𝑟𝑎𝑐 is the fraction of the allowable
total 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume to the volume of the initial domain 𝑉0, and {𝑑𝑣}𝑒,𝑚𝑖𝑛 and {𝑑𝑣}𝑒,𝑚𝑎𝑥 are the side constraints of
the {𝑑𝑣}𝑒 design variable vector (same for all 𝑁 elements in the structural domain).

Figure 9: Elaboration on the volume constraint of Eq.(13): Examining the case where the four elementary microstructure
types are considered for the (𝑒) element, the total 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction within it v𝑒, is calculated by implementing the
SFP interpolation scheme on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions of the individual microstructures. The fraction occupied by
each microstructure type within the element is determined by the numerical value of the (penalized) shape function tied
to it (depicted as the individual colored blocks in the figure).
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The equality constraint set of Eq.(14) is present only when 𝑝 ≠ 1. Indeed, when the penalty factor is set equal
to unity, the equality constraint set is automatically satisfied due to the self-complementary property of the shape
functions 𝑁𝑒𝑖({𝜉𝑒}) in the [−1, 1]𝑘 domain, expressed as follows: ∑2𝑘

𝑖=1𝑁𝑒𝑖({𝜉𝑒}) = 1,∀{𝜉𝑒} ∈ [−1, 1]𝑘. When 𝑝 ∈ ℝ+
≠1,

the equality constraint must hold for all elements in the domain. However, the effect of the penalty factor value is
not limited to the imposition of 𝑁 additional equality constraints on the optimization problem, as it also affects the
degree of non-convexity in the design functions; the higher the penalty factor value is set the higher the degree of
non-linearity of the design functions, rendering standard gradient-based solution algorithms such as MMA (Svanberg
(1987)), insufficient for such optimization problems (since the solution might get trapped in strong local minima within
the design space). To generalize the expression of the equality constraint set, the 𝑝 value condition is introduced as a
Boolean operator (𝑝 ≠ 1), (de-)activating the constraints depending on its value. By that means, Eq.(14) is modified
as follows:

ℎ∗𝑒({𝜉𝑒}) ∶ (𝑝 ≠ 1) ⋅
(

∑

2𝑘
𝑖=1𝑁

𝑝
𝑒𝑖({𝜉𝑒})

− 1
)

= 0 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁. (18)

The above Boolean expression is true when 𝑝 ≠ 1 and false when 𝑝 = 1. Since 𝑝 is independent of the design
variables, the Jacobian of the initial equality constraint set is simply multiplied by the operator.

Table 3: Posing the SFP-based HTDMOP for the cases of 2, 3 and 4 candidate microstructures
{𝑑𝑣}∗ = argmin

{𝑑𝑣} ∈ ℝ𝑁 ⋅(𝑘+2𝑘)
𝐶 =

∑𝑁
𝑒=1{𝑈𝑒({𝑑𝑣}𝑒)}

𝑇 ⋅ [𝐾𝑒({𝑑𝑣}𝑒)
] ⋅ {𝑈𝑒({𝑑𝑣}𝑒)}

s.t.
∙{H}: (

∑𝑁
𝑒=1[𝐾𝑒({𝑑𝑣}𝑒)] ⋅ {𝑈𝑒({𝑑𝑣}𝑒)}

)

− {𝐹𝑎𝑙𝑙} = {0},
where,

2 Microstructures 3 Microstructures 4 Microstructures
{𝑑𝑣}𝑒 ∶ [𝜉𝑒, 𝑣𝑒1, 𝑣𝑒2] [𝜉𝑒1, 𝜉𝑒2, 𝑣𝑒1, 𝑣𝑒2, 𝑣𝑒3] [𝜉𝑒1, 𝜉𝑒2, 𝑣𝑒1, 𝑣𝑒2, 𝑣𝑒3, 𝑣𝑒4]

𝐹({𝑑𝑣}) ∶
∑𝑁

𝑒=1

(

(1−𝜉𝑒)𝑝⋅𝑣𝑒1+𝜉
𝑝
𝑒 ⋅𝑣𝑒2

)

𝑁 ⋅𝑓 1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

− 1
∑𝑁

𝑒=1

(

(1−𝜉𝑒1−𝜉𝑒2)𝑝⋅𝑣𝑒1 +𝜉𝑝𝑒1⋅𝑣𝑒2+𝜉
𝑝
𝑒2⋅𝑣𝑒3

)

𝑁 ⋅𝑓1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

− 1
∑𝑁

𝑒=1

(

∑4
𝑖=1

[

1
4 ⋅(1+𝜉𝑒1⋅𝜉𝑒1𝑖)⋅(1+𝜉𝑒2⋅𝜉𝑒2𝑖)

]𝑝
⋅𝑣𝑒𝑖

)

𝑁 ⋅𝑓 1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

− 1

(∗)ℎ𝑒({𝜉𝑒}) ∶
(

(1 − 𝜉𝑒)𝑝 + 𝜉𝑝𝑒
)

− 1
(

(1 − 𝜉𝑒1 − 𝜉𝑒2)𝑝 + 𝜉𝑝𝑒1 + 𝜉𝑝𝑒2
)

− 1
∑4

𝑖=1

[

1
4 ⋅ (1 + 𝜉𝑒1 ⋅ 𝜉𝑒1𝑖) ⋅ (1 + 𝜉𝑒2 ⋅ 𝜉𝑒2𝑖)

]𝑝
− 1

(∗,∗)𝑔𝑒({𝜉𝑒}) ∶ 𝜉𝑒1 + 𝜉𝑒2 − 1
(∗){𝑑𝑣}𝑒,𝑚𝑖𝑛 ∶ [0, 𝑣𝑒1,𝑚𝑖𝑛, 𝑣𝑒2,𝑚𝑖𝑛] [0, 0, 𝑣𝑒1,𝑚𝑖𝑛, 𝑣𝑒2,𝑚𝑖𝑛, 𝑣𝑒3,𝑚𝑖𝑛] [−1,−1, 𝑣𝑒1,𝑚𝑖𝑛, 𝑣𝑒2,𝑚𝑖𝑛, 𝑣𝑒3,𝑚𝑖𝑛, 𝑣𝑒4,𝑚𝑖𝑛]
(∗){𝑑𝑣}𝑒,𝑚𝑎𝑥 ∶ [1, 𝑣𝑒1,𝑚𝑎𝑥, 𝑣𝑒2,𝑚𝑎𝑥] [1, 1, 𝑣𝑒1,𝑚𝑎𝑥, 𝑣𝑒2,𝑚𝑎𝑥, 𝑣𝑒3,𝑚𝑎𝑥] [1, 1, 𝑣𝑒1,𝑚𝑎𝑥, 𝑣𝑒2,𝑚𝑎𝑥, 𝑣𝑒3,𝑚𝑎𝑥, 𝑣𝑒4,𝑚𝑎𝑥]

(∗) The constraint holds for each element (𝑒) in the domain
(∗,∗) The vector-valued inequality constraint set can be converted into a scalar-valued function by means of the K-S function (Wrenn (1989))

6. Numerical examples

The academic case studies of the 3D cantilever and the MBB beams constitute the extension of the 2D numerical
examples initially presented in Sigmund (2001) and Andreassen et al. (2011), and their numerical implementation
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for the standard TOP in MATLAB can be found in Liu & Tovar (2014). In this section the developed methodology is
demonstrated on two different numerical examples for the case study of the 3D MBB beam. The first example examines
the case where the ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ microstructure of two candidate fiber (inner cylinder) orientations is considered for
the MBB beam. The main goal of this example is to emphasize that the methodology need not necessarily be tied to
the microstructure type optimization problem and that it can be implemented as is in different classes of optimization
problems. The second test example examines the case where all four microstructure types discussed thus far are
considered as candidates for the MBB beam. Here, the issue concerning the level of discreteness in the final design
raises and different alternatives for tackling it are presented.

The design parameters are set the same for both numerical examples: the MBB beam is simply supported on its
lower edges with a vertical unit point load oppositely directed to the 𝑥3 axis being applied at the middle of the bottom
face. The beam follows a [40 × 40 × 20] discretization mesh along the 𝑥1, 𝑥2 and 𝑥3 axis, respectively, and the scale
ratio has been set equal to 𝜖𝑖 = 10−3 per direction 𝑖 ∈ {1, 2, 3}.

The mechanical properties of the two material components are set equal to 𝜆1 = 5.769 and 𝜇1 = 3.846 for𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1
and 𝜆2 = 5.769 ⋅ 10−2 and 𝜇2 = 3.846 ⋅ 10−2 for 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2, and are kept the same in all test examples. The three-
parameter 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function proved to be the most suitable for fitting the homogenized properties to the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

volume fractions for all microstructure types, providing an adjusted 𝑅2
𝑡𝑦𝑝𝑒 ≃ 1 (the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 model displayed a slightly

higher𝑅2
𝑡𝑦𝑝𝑒 than the standard uni-variate 𝑐𝑢𝑏𝑖𝑐 polynomial that was initially considered). Figure 10 depicts the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

fit for all terms of the homogenized elasticity tensor of the ′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ microstructure. The forward finite difference (FFD)
method has been implemented to calculate the first order derivatives of the homogenized elasticity tensor with respect
to the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction for each microstructure. The increment step set per iteration (𝑘) in the FFD process
for each microstructure (𝑖), namely 𝛿𝑣(𝑘)𝑖 , is calculated by subtracting the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions between two of
its successive unit cell configurations corresponding to the (𝑘)𝑡ℎ and (𝑘+1)𝑡ℎ element of its geometric parameter vector
(see Figure 4). The homogenization of the mechanical properties has been performed on a [40×40×40] discretization
mesh for all microstructure types by implementation of the MATLAB code in Guoying et al. (2018).

For computational saving purposes, the penalty factor 𝑝 has been set equal to unity while the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume
fraction equal to 0.3. The maximum number of iterations has been set equal to 𝑚𝑎𝑥𝑙𝑜𝑜𝑝 = 200 and the prescribed
tolerance to 𝑡𝑜𝑙𝑥 = 10−4, which is compared at the end of each optimization loop with the 𝐿∞ norm of the change
in the design vector between two successive iterations (see the pseudo-code listed in Table A1). No filters have been
applied during the optimization process, as such the derivatives of all design functions are calculated with respect to
the true design variables. Finally, it is reported that all optimization problems have been solved by means of the MMA
solution algorithm, although gradient-free solution algorithms when coupling the objective function with the imposed
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Figure 10: The three parameter 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 model is selected for fitting all terms of the homogenized elasticity tensor to
the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions for all microstructure types. The regression process is depicted for the main terms of the
′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′ microstructure (due to the microstructure’s cubic symmetry).

Table 4: The design parameters of the numerical examples
MBB Beam

Discretization mesh [40 × 40 × 20]
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction 𝑓 1

𝑣𝑜𝑙𝑓𝑟𝑎𝑐 = 0.3
Penalty factor 𝑝 = 1

Filter -
Scale ratio 𝜖𝑖 = 10−3, 𝑖 = 1 ∶ 3

Maximum iterations number 𝑚𝑎𝑥𝑙𝑜𝑜𝑝 = 200
𝐿∞ tolerance 𝑡𝑜𝑙𝑥 = 10−4

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 display threshold 0.4
Symmetry conditions Not imposed

constraints, e.g., see the Augmented Lagrangian Method (ALM) (Vanderplaats (1984)), might perform better than the
gradient-based ones.

6.1. Test example 1: Considering the ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ microstructure of two candidate fiber

orientations for the MBB beam

In this test example, of the four microstructure types only the ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ one is examined; two candidate
orientations are considered for the fiber: one with its axis being aligned with the 𝑥2 axis of the global coordinate
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system and one forming a 900 angle with it, as shown in Figure 11. In this case, the design variable vector of the (𝑒) FE
takes the form: {𝑑𝑣}𝑒 = [𝜉𝑒, 𝑣𝑒1, 𝑣𝑒2], where 𝜉𝑒 the natural coordinate of the 1D linear FE, and 𝑣𝑒1, 𝑣𝑒2 the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

volume fractions corresponding the the ′00 𝑟𝑜𝑡𝑎𝑡𝑒𝑑′ and ′900 𝑟𝑜𝑡𝑎𝑡𝑒𝑑′ configurations, respectively. The corresponding
SFP-based HTDMOP is posed as listed in the second column of Table 3. Here, instead of implementing Eq.(5) to
derive the shape functions of the 1D linear FE, their simplified expression listed in Table 3 is preferred. As such, the
𝜉𝑒 design variable is defined within the [0, 1] and not the [−1, 1] range. The bounds concerning the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume
fraction within the ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ microstructure are listed in Table 2.

Figure 11: Test example 1: (A) The optimal microstructure type predicted for the MBB beam. (B) The shape functions
of the 1D linear FE are employed to interpolate the candidate homogenized properties within the (𝑒) element. (C) The
SFP interpolation scheme is adopted for depicting the intermediate configurations.

The optimal microstructure type predicted for the MBB beam at the end of the 200𝑡ℎ iteration is depicted in
Figure 11. The display threshold for the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction has been set equal to 0.4 𝑖.𝑒., only elements of
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction 𝑣𝑒 ≥ 0.4 are displayed. The intermediate values predicted for the 𝜉𝑒 design variables at the
end of the optimization process, namely 𝜉∗𝑒=1∶𝑁 ∈ (0, 1), are visualized in the figure by adopting the SFP interpolation
scheme for the [rgb] colors assigned to the candidate microstructures. In the present case, the 𝜉∗𝑒 values do carry a
physical meaning as they indicate that fiber angles within the (00, 900) range are more optimal than the ones initially
considered. The metric quantifying the deviation of the continuous (or relaxed) solution from its nearest discrete (or
feasible) value is defined as the 𝑛𝑜𝑛−𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑛𝑒𝑠𝑠 of the final design. In this example, one way of reducing the degree
of non-discreteness in the final design is to consider additional ′𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′ microstructures of intermediate fiber
orientations as candidates for each element in the domain, the homogenized properties of which can be interpolated
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within it via the deployment of a higher dimensional 2𝑘−noded FE’s shape functions, 𝑖.𝑒. 𝑘 ∈ ℕ+
≠1. Alternative

techniques for reducing the degree of non-discreteness in the final design are discussed in the next example.

6.2. Test example 2: Considering the {′𝐿𝑎𝑡𝑡𝑖𝑐𝑒′,′ 𝐵𝑜𝑥′,′ 𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙′,′ 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙′} microstructures

as candidates for the MBB beam

In this example, all four microstructure types are considered for the MBB beam. In this case, the {𝑑𝑣}𝑒 design
variable vector takes the form: {𝑑𝑣}𝑒 = [𝜉𝑒1, 𝜉𝑒2, 𝑣𝑒1, 𝑣𝑒2, 𝑣𝑒3, 𝑣𝑒4] where {𝜉𝑒} = (𝜉𝑒1, 𝜉𝑒2) the natural coordinates of
the 4 − 𝑛𝑜𝑑𝑒𝑑 quadrangular FE and 𝑣𝑒𝑖 the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction of the (𝑖𝑡ℎ) in order candidate microstructure.
The respective SFP-based HTDMOP is listed in the last column of Table 3. With regard to the side constraints of
the optimization problem, the {𝜉𝑒} vector is defined within the [−1, 1]2 rectangle, while the bounds of the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1

volume fraction for each microstructure are listed in Table 2. The optimal microstructure type predicted for the MBB
beam at the end of the 200𝑡ℎ optimization loop is depicted in Figure 12.

Figure 12: Test example 2: (A) The optimal microstructure type predicted for the MBB beam. (B) The shape functions of
the 4 − 𝑛𝑜𝑑𝑒𝑑 quadrangular FE are employed to interpolate the candidate homogenized properties within the (𝑒) element.
(C) The SFP interpolation scheme is adopted for depicting the "intermediate" configurations.

Contrary to the previous test example, the predicted "intermediate" microstructure types do not carry any physical
meaning, and it is becoming clear that a high degree of non-discreteness in the final design can quickly become a
bottleneck for the microstructure type optimization problem. In this respect, three techniques are presented aiming to
reduce the degree of non-discreteness in the final design, which can either be combined or applied separately:

(1) Increasing the penalty factor 𝑝: Greater values than that of the unity set for the penalty factor shift the
intermediate values of the shape functions towards their {0, 1} bounds, leading thus to a "more discrete" solution. As
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discussed in (Sec. 5.3), the computational intensiveness that comes with this approach is reflected in the high degree
of non-convexity of the resulting SFP-based HTDMOP. Nonetheless, penalizing design variables that are discrete in
nature but for computational purposes are treated as continuous, is the most popular approach for the majority of
non-linear DP problems. As the effect of the penalty factor on the degree of discreteness in the final design is very
well documented in the literature, from numerical techniques such as SIMP, DMO, SFP, 𝑒𝑡𝑐., it is not explored any
further in this work. Moreover, with regard to the original utilization of the SFP technique in the framework of fiber
orientation optimization for laminated composite structures, the authors have already demonstrated the effect of the
penalty factor on the discreteness of the continuous solution (see Bruyneel (2011)).

(2) Rounding the continuous solution to the nearest discrete design: This process operates as the post-processing
stage of the whole analysis, where the design predicted after solving the SFP-based HTDMOP is rounded to the nearest
feasible one. It is important to point out that the rounding process takes place only for the {Ξ}∗ =

𝑁
⋃

𝑒=1
{𝜉𝑒}∗ design

variables, as they are the only ones defined within a discrete set, namely the set formed by the nodal coordinates of
the 2𝑘−noded quadrangular FE (the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fractions are continuous design variables). For instance, in the
present case where four candidate microstructures are considered per element in the domain, this approach implies
rounding the {𝜉𝑒}∗ continuous solutions to the nearest nodal coordinate of the 4−noded quadrangular FE, 𝑖.𝑒. the
following process take place: {𝜉𝑒}∗ → {𝜉𝑒}𝑑∗ ∈

{

(1,−1), (1, 1), (−1, 1), (−1,−1)
} , with (𝑒) = 1 ∶ 𝑁 .

Generalizing the rounding process for the case of 2𝑘 candidate microstructures translates into rounding the {𝜉𝑒}∗

solutions to the nearest vertex coordinate of the [−1, 1]𝑘 hyper-rectangle. However, rounding the continuous solutions
to the nearest feasible one rises potential issues, such as leading to infeasible design points, where some of the
design constraints may be violated or even lead to feasible designs significantly worse than the best discrete design.
Figure 13 illustrates the effect that rounding the continuous solution {Ξ}∗ =

𝑁
⋃

𝑒=1
{𝜉𝑒}∗ to the nearest discrete one

{Ξ}𝑑∗ =
𝑁
⋃

𝑒=1
{𝜉𝑒}𝑑∗ bears on the volume constraint imposed on the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 component for the current test example.

As shown in the figure, rounding the continuous solution resulted in a 9.52% reduction in the final value of the volume
constraint. This violation is a direct consequence of the constraint’s dependence on the {𝜉𝑒} design variables as stated
in Eq.(13).

(3) Imposing the degree of non-discreteness as an additional constraint on the SFP-based HTDMOP: The idea
of introducing a metric to quantify the non-discreteness in the design is discussed in (Sigmund (2007), Sørensen et al.
(2014)). Similarly, a metric is developed in this work as to quantify the non-discreteness in the final design. Establishing
that the non-discreteness in the design originates solely from the {𝜉𝑒} design variables, implies that the developed
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Figure 13: Rounding the continuous solution to the nearest discrete one may result in violation of the final value of the
design functions.

metric should be a function of them alone. Further, it should predict a 0% non-discreteness in the continuous solution
at the nodal coordinates of the 2𝑘-quadrangular FE, where the discrete designs (𝑖.𝑒. the candidate microstructures) are
allocated, and a 100% non-discreteness at its center, where no discrete designs are assigned. In this respect, the authors
propose the following metric that meets the above conditions:

𝑚𝑒𝑛𝑑({𝜉𝑒}) =
2𝑘
∏

𝑖=1

(1 −𝑁𝑝
𝑒𝑖({𝜉𝑒})

1 − 1
2𝑘⋅𝑝

)

⋅ 100% 𝑤𝑖𝑡ℎ 𝑒 = 1 ∶ 𝑁. (19)

As a reminder, in Eq.(19) 𝑝 is the penalty factor, 𝑘 is the dimension of the hyper-rectangle the {𝜉𝑒} variables are
defined within, and 𝑁 the number of FEs discretizing the structural domain. Calculated at any node of the quadrangular
FE, the above metric returns a 0% non-discreteness in the continuous solution, while calculated at the center of the
quadrangular FE returns a 100% non-discreteness in the solution. The last property holds due to the fact that all shape
functions equal to 1

2𝑘⋅𝑝 at the center of the element, and as a result all fractions in the product are divided out (are equal
to unity). For computational purposes, the 𝑁−dimensional vector of metrics is collapsed into a global, scalar-valued
metric concerning the entire domain as follows:

𝑀𝑔𝑛𝑑({Ξ}) =
1
𝑁

⋅

( 𝑁
∑

𝑒=1
(𝑚𝑒𝑛𝑑)

2

)

= 1
𝑁

⋅

( 𝑁
∑

𝑒=1

2𝑘
∏

𝑖=1

(1 −𝑁𝑝
𝑒𝑖({𝜉𝑒})

1 − 1
2𝑘⋅𝑝

)2
)

⋅ 100%, (20)

where {Ξ} =
𝑁
⋃

𝑒=1
{𝜉𝑒} ∈ [−1, 1]𝑁 ⋅𝑘. Finally, the constraint concerning the permissible degree of global non-

discreteness in the design is expressed as follows:

𝑀𝐺({Ξ}) ∶ 𝑀𝑔𝑛𝑑({Ξ}) −𝑀𝑎𝑙𝑙. = 0, (21)
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where 𝑀𝑎𝑙𝑙. the imposed percentage of global non-discreteness in the design (the above constraint could as well be
posed as an in-equality constraint, as to allow the search of the solution in a larger design space).

In this example, 𝑘 = 2, 𝑝 = 1, and the number of FEs in the domain are 𝑁 = 32 ⋅103. Repeating test example 2 but
now with the constraint of 𝑀𝑎𝑙𝑙 = 2% in the global non-discreteness of the final design added to the initial optimization
problem, the new microstructure type distribution predicted for the MBB beam is as depicted in Figure 14𝑎. For
comparison, Figure 15 illustrates the distribution of the metric stated in Eq.(19) in the final designs corresponding
to the case where the 2% constraint in the global non-discreteness has been omitted and included in the SFP-based
HTDMOP, respectively.

(a) The optimal microstructure type predicted for the MBB beam.

(b) The convergence history of the compliance when omit-
ting and when including the constraint of the global non-
discreteness in the SFP-based HTDMOP (in red continu-
ous and dashed line, respectively). For the latter case, the
convergence history of the global metric 𝑀𝑔𝑛𝑑 is displayed
along. The graph is given in semi-logarithmic scale.

Figure 14: Test example 2 with the addition of the 2% constraint in the global non-discreteness.

7. Extensions of the methodology

The following modifications can be applied to the proposed methodology:
(1) Considering more complex microstructures: The methodology has been built upon simplified (uni-variate)

microstructures, where a single geometric parameter explicitly defines the configuration of the unit cell, 𝑖.𝑒., there has
been assumed a one-to-one correspondence between configuration and geometric parameter of the unit cell. However,
more complex microstructures of more than one geometric parameters can be considered instead, at the unavoidable
computational expense that comes with adding more design variables to the SFP-based HTDMOP. In this case, contrary
to the microstructures considered for this work, the monotonicity of the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction with the geometric
parameters of the unit cell is not guaranteed, since different combinations of their geometric parameters may result to
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Figure 15: Distribution of the non-discreteness metric in the final designs: Left-hand side: Without imposing a constraint
in the global non-discreteness. Right-hand side: When imposing a 2% constraint in the global non-discreteness.

the same 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1 volume fraction. Therefore, it is essential to first establish the monotonicity between the 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙1
volume fraction and the geometric parameters of the unit cell, and then determine which of the two is more efficient
to serve as the design variable in the SFP-based HTDMOP.

(2) Working in patches: In the numerical examples demonstrated a unique microstructure has been assumed
for each element in the structural domain; assigning a group of elements the same candidate microstructures, the
methodology can operate on the level of the so-called ’patches’ rather than on individual elements. The {𝜉𝑒} design
variable vector that was initially tied to each individual element (𝑒), is now tied to each patch 𝑙 of the structural domain,
𝑖.𝑒. the following replacement takes place in the notation: {𝜉𝑒} → {𝜉𝑙} ∈ [−1, 1]𝑘𝑙 ∀ 𝑙 = 1 ∶ 𝐿 where, 𝐿 is the number
of patches the domain is divided into, and each patch 𝑙 is assigned 2𝑘𝑙 candidate microstructures, where 𝑘𝑙 ∈ ℕ+.

(3) Concurrent homogenization-based topology, multi-material and/or microstructure type optimization:

As depicted in Figures 7𝐵 & 8, the methodology can be tailored into the concurrent homogenization-based topology,
multi-material and microstructure type optimization problem, provided that the material the volume constraint is
imposed on constitutes one of the two components for all candidate microstructures. Employing the shape functions
of higher dimension FEs, different candidate microstructure types of the same material components and/or the same
microstructure types of different 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙2 components can be allocated to its nodes.

(4) Deploying a different material interpolation technique: The methodology has been formulated based on
the assumption that the SFP technique is employed to interpolate the candidate homogenized properties within the
structural domain. However, in the framework of discrete material optimization, there is a variety of interpolation
techniques proposed in the literature to select from. To the ones listed in the introduction, the more recent works of
Kiyono et al. (2016), Ypsilantis et al. (2022) are appended.
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8. Replication of results

The pseudo-code for solving the SFP-based HTDMOP posed in (Sec. 5.3) is listed in Table A1. The authors
recommend incorporating random restarts ( 𝑖.𝑒. initial design points) when using gradient-based solution algorithms,
since the returned solution is very likely to be trapped in a local minimum. Further, it is underscored that the SFP-based
HTDMOP is not tied to a specific solution algorithm, as such different solution algorithms can be implemented for
solving it.

9. Concluding remarks

This work proposes a methodology for the concurrent optimization of the type and configuration of the microstruc-
ture of the structural domain from a catalogue of pre-defined candidate microstructures. To this end, the DMOP is
combined with the HTOP for compliance minimization of the structure. The methodology is gradually built up through
the example where four candidate microstructure types of the same two distinct material components are considered for
the structural domain. Based on these auxiliary microstructures the SFP-based HTDMOP is formulated and generalized
for the case of 2𝑘 candidate microstructures, where 𝑘 ∈ ℕ+. Further, it is demonstrated that the mathematical
framework derived for the SFP-based HTDMOP can be implemented as is in different classes of optimization problems,
such as the concurrent homogenization-based topology, multi-material and/or microstructure type optimization of the
structure.
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Table A1: Pseudo-code for solving the SFP-based HTDMOP (Case of 2𝐾 candidate microstructures, 𝐾 ∈ ℕ+)
%% Initialization of the design variables
% Design variable vector of the (e) element:
{𝑑𝑣}(1)𝑒 =

[

− 1 + 2 ⋅ 𝑟𝑎𝑛𝑑(1, 𝐾), 𝑚𝑎𝑥(𝑓 1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐 , [𝑣1,𝑚𝑖𝑛,⋯ 𝑣2𝐾 ,𝑚𝑖𝑛])

]

; ∀ 𝑒 = 1 ∶ 𝑁
% Global Design Variable Vector
{𝑑𝑣}(1) =

[

{𝑑𝑣}(1)1 ,… , {𝑑𝑣}(1)𝑒 ,… , {𝑑𝑣}(1)𝑁
]

; %𝑁 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛
%% Start the Optimization Loop
𝑘 = 1; 𝑡𝑜𝑙(1) = 1 % 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 𝑘 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
while (𝑘 <= 𝑚𝑎𝑥𝑙𝑜𝑜𝑝 || 𝑡𝑜𝑙(𝑘) >= 𝑡𝑜𝑙𝑥)
%% FEA
Calculate the element’s stiffness matrix: [𝐾𝑒({𝑑𝑣}(𝑘)𝑒 )], 𝑒 = 1 ∶ 𝑁 ...(𝐸𝑞.(8))
Calculate the global stiffness matrix: [𝐾𝑎𝑙𝑙](𝑘) =

∑𝑁
𝑒=1[𝐾𝑒({𝑑𝑣}(𝑘)𝑒 )]

Calculate the global displacement vector: {𝑈𝑎𝑙𝑙}
(𝑘) ...(𝐸𝑞.(12))

%% Calculate the Design Functions at the Current Iteration
Calculate the objective function: 𝐶 (𝑘) ...(𝐸𝑞.(11))
Calculate the volume constraint: 𝐹 (𝑘) ...(𝐸𝑞.(13))
Calculate the shape functions summation constraint set (if 𝑝 ≠ 1): ℎ∗(𝑘)𝑒 𝑒 = 1 ∶ 𝑁 ...(𝐸𝑞.(18))
%% Perform Sensitivity Analysis on the Design Functions

( 𝑑𝐶
{𝑑𝑣}𝑒

)(𝑘)
=

⎧

⎪

⎨

⎪

⎩

(

𝑑𝐶
𝑑𝜉𝑒𝑗

)(𝑘)
= −{𝑈

𝑒({𝑑𝑣}(𝑘)𝑒 )
}𝑇 ⋅

(

𝑑 [𝐾𝑒]
𝑑𝜉𝑒𝑗

)(𝑘)
⋅ {𝑈𝑒({𝑑𝑣}(𝑘)𝑒 )}, 𝑗 = 1 ∶ 𝐾 ...(𝐸𝑞.(9))

(

𝑑𝐶
𝑑𝑣𝑒𝑖

)(𝑘)
= −{𝑈

𝑒({𝑑𝑣}(𝑘)𝑒 )
}𝑇 ⋅

(

𝑑 [𝐾𝑒]
𝑑𝑣𝑒𝑖

)(𝑘)
⋅ {𝑈𝑒({𝑑𝑣}(𝑘)𝑒 )}, 𝑖 = 1 ∶ 2𝐾 ...(𝐸𝑞.(10))

𝑒 = 1 ∶ 𝑁

( 𝑑𝐹
{𝑑𝑣}𝑒

)(𝑘)
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑑𝐹
𝑑𝜉𝑒𝑗

)(𝑘)
=

∑ 2𝑘
𝑖=1

( 𝑑𝑁𝑝
𝑒𝑖({𝜉𝑒})
𝑑𝜉𝑒𝑗

)(𝑘)
⋅𝑣(𝑘)𝑒𝑖

𝑁 ⋅𝑓1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

, 𝑗 = 1 ∶ 𝐾

(

𝑑𝐹
𝑑𝑣𝑒𝑖

)(𝑘)
=

(

𝑁𝑝
𝑒𝑖({𝜉𝑒})

)(𝑘)

𝑁 ⋅𝑓 1
𝑣𝑜𝑙𝑓𝑟𝑎𝑐

, 𝑖 = 1 ∶ 2𝐾
𝑒 = 1 ∶ 𝑁

( 𝑑ℎ∗𝑒
{𝑑𝑣}𝑒

)(𝑘)
=

⎧

⎪

⎨

⎪

⎩

(

𝑑ℎ∗𝑒
𝑑𝜉𝑒𝑗

)(𝑘)
= (𝑝 ≠ 1) ⋅

(

∑ 2𝑘
𝑖=1

( 𝑑𝑁𝑝
𝑒𝑖({𝜉𝑒})
𝑑𝜉𝑒𝑗

)(𝑘)
)

, 𝑗 = 1 ∶ 𝐾
(

𝑑ℎ∗𝑒
𝑑𝑣𝑒𝑖

)(𝑘)
= 0, 𝑖 = 1 ∶ 2𝐾

𝑒 = 1 ∶ 𝑁

%% Call the Gradient-based Solution Algorithm
Obtain the next design point: {𝑑𝑣}(𝑘+1)
%% Check Stopping Criteria
𝑡𝑜𝑙(𝑘+1) = ‖{𝑑𝑣}(𝑘+1) − {𝑑𝑣}(𝑘)‖∞ %𝐶ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝐼𝑛𝑓 𝑛𝑜𝑟𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖𝑓 (𝑡𝑜𝑙𝑥 < 𝑡𝑜𝑙(𝑘))

{𝑑𝑣}(𝑘+1) = {𝑑𝑣}(𝑘); 𝑘 = 𝑘 + 1;
𝑒𝑙𝑠𝑒

𝑏𝑟𝑒𝑎𝑘 𝑙𝑜𝑜𝑝;
𝑒𝑛𝑑

end
%% Obtain the Continuous Solution
{𝑑𝑣}∗ =

[

{𝑑𝑣}∗1,⋯ , {𝑑𝑣}∗𝑒 ,⋯ , {𝑑𝑣}∗𝑁}
]

where, {𝑑𝑣}∗𝑒 =
[

𝜉∗𝑒1,⋯ , 𝜉∗𝑒𝐾 ; 𝑣∗𝑒1,⋯ , 𝑣∗
𝑒2𝐾

]
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