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Abstract12

Research on stochastic processes in recent decades has pointed out that, in the context of modelling13

spatial or temporal uncertainties, auto-correlation functions that are differentiable at the origin have14

advantages over functions that are not differentiable. For instance, the non-differentiability of e.g.,15

single exponential auto-correlation functions yields non-smooth sample paths. Such sample paths might16

not be physically possible or may yield numerical difficulties when used as random parameters in partial17

differential equations (such as encountered in e.g., mechanical equilibrium problems). Further, it is known18

that due to the non-differentiability of certain auto-correlation functions, more terms are required in the19

series expansion representations of the associated stochastic processes. This makes these representations20

less efficient from a computational standpoint.21

This paper elucidates some additional appealing features of auto-correlation functions which are

differentiable at the origin. Further, it focuses on enhancing the arguments in favor of these functions

already available in literature. Specifically, attention is placed on single exponential, modified exponential

and squared exponential auto-correlation functions, which can be shown to be all part of the Whittle-

Matérn family of functions. To start, it is shown that the power spectrum of differentiable kernels

converges faster to zero with increasing frequency as compared to non-differentiable ones. This property

allows capturing the same percentage of the total energy of the spectrum with a smaller cut-off frequency,

and hence, less stochastic terms in the harmonic representation of stochastic processes. Further, this point

is examined with reqards to the Karhunen-Loève series expansion and first and second order Markov

processes, generated by auto-regressive representations. The need for finite differentiability is stressed

and illustrated.
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1. Introduction23

Many of the loads on engineering components, structures, and systems, as well as the constitutive24

properties of these assets exhibit a stochastic nature. This assertion is based on the observation that these25

quantities exhibit apparent variability in time and/or space. In this context, the theoretical framework26

of stochastic process, and by extension, of random fields [19] has proven an excellent means for capturing27

inherent (aleatory) uncertainty [6]. Stochastic processes represent in essence jointly distributed random28

variables whose correlation function depends on time and/or space. Throughout literature, efficient meth-29

ods have been introduced to effectively and accurately sample from these potentially high-dimensional30

joint distributions.31

Typically, the auto-correlation of such stochastic process is governed by a pre-defined auto-correlation32

function (also often referred to as ‘kernel’). This function describes the correlation between two random33

variables in the stochastic process as a function of the distance in time/space between them. Alterna-34

tively, in case the process is stationary, the auto-correlation is governed by the relative distance between35

two points. This paper focuses on auto-correlation functions that belong to the Whittle-Matérn family of36

functions. Special attention is given to the single exponential, modified exponential and squared exponen-37

tial auto-correlation functions. The generation of samples from these stochastic processes is usually done38

using the well-known Karhunen-Loève series expansion [13, 21] or the spectral representation method as39

introduced by [7], [8] and later by [6]. Also extended versions of these techniques have been introduced.40

Examples of such methods include the Stochastic Harmonic Function representation by [1].41

The single exponential auto-correlation kernel has been used extensively in engineering applications.42

For instance, [5] applied this kernel to represent a stochastic process to model the permeability in resin43

transfer molding simulation. Further, in [3], Bayesian updating in a geo-technical context was done based44

on a single exponential kernel. In fact, the overview paper of [4] shows that the single exponential model45

is most popular in geotechnical engineering, with a total of 47% of examined papers reporting usage46

of this auto-correlation model. The single exponential kernel is often selected due to the availability of47

analytical solutions to the eigenvalue problem corresponding to the Karhunen-Loève series expansion.48

However, the appropriate selection of the auto-correlation function is of large importance for the correct49

modelling and simulation of the phenomenon or property under consideration.50

More relevantly to the problem discussed herein, [2] studied the effect of the auto-correlation function51

on the probability of failure in several geo-technical examples. In this work, the authors showed that the52

smoothness of a sample path had a significant effect on the probability of failure. This is particularly true53

when no spatial averaging is present in the considered problem capable of smoothing out local variations.54

Further, it was shown that the sample path smoothness depends on the functional form of the auto-55
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correlation function, and, more precisely, on the differentiability of such function at zero-lag. Thus, this56

work clearly illustrated that the auto-correlation function ends up affecting the probability of failure.57

Furthermore in this context, [18] noted that the application of the single exponential auto-correlation58

kernel tends to underestimate the failure risk in the unsaturated slope risk assessment. In addition, they59

pointed out how the differentiability of the auto-correlation function affects the truncation order of the60

Karhunen-Loève series expansion. Also in this regard, [14] showed that square exponential kernels are61

preferable over single exponential kernels, allowing for a highly exact series expansion representation with62

far fewer terms in the expansion. Similar observations were made by [15] in the context of modelling63

stochastic ocean waves. In essence, they showed that fewer stochastic variables are required to describe64

stochastic processes with a narrow spectral bandwidth (i.e., spectra that converge relatively fast to zero65

away from the “central” frequency). A comprehensive study of the convergence of second order statistics66

of KL-simulated stochastic processes in function of the correlation length, functional form of the auto-67

correlation function and solution method is given by [22], indicating similar conclusions. However, the68

modified exponential kernel is not studied in this paper.69

As a final note to this overview of the wide-spread application of single exponential kernels (versus70

less frequently used kernels), examination of the literature showed that non-differentiable auto-correlation71

functions are used to represent a random ‘stiffness’ term in partial differential equations. To address this,72

in [16] the “modified exponential kernel” was introduced to alleviate the shortcomings of the traditional73

single exponential kernel caused by non-differentiability. Further, this kernel maintains the enticing prop-74

erties of the single exponential kernel, such as the availability of analytical solutions and the possibility to75

characterize quickly varying spatial or temporal phenomena. Also, this kernel is more efficient in terms76

of the required number of stochastic quantities as compared to the single exponential kernel. These prop-77

erties are obtained by addressing the issue of non-differentiability at zero-lag in the single exponential78

kernel, while maintaining its functional form to a great extent.79

This paper builds upon the work that was presented in [16] in three ways. First, it provides additional80

explanations of why this particular kernel is highly effective by analytically deriving the energy error81

rate convergence in the frequency domain. Second, it compares the modified exponential kernel to82

another widely used auto-correlation kernel, namely the squared exponential kernel. Finally, it provides83

additional numerical evidence for the effectiveness of the modified exponential kernel in conjunction with84

the Karhunen-Loève series expansion, and auto-regressive model representations. The paper is structured85

as follows. Section 2 starts by introducing some basic concepts related to the modelling and simulation of86

stochastic processes. Section 3 discusses the convergence of the considered auto-correlation kernels both87

in the frequency and time domain and discusses the implications hereof for numerical analysis purposes.88
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Finally, Section 4 briefly comprises the conclusions that can be drawn from this work.89

2. Spectral stochastic process representation90

2.1. Definition and stochastic properties91

A finite-dimensional stochastic process f(t, θ) describes a set of correlated random variables f(θ) that92

are assigned to a countable number of locations t ∈ Ω in the model domain Ω ⊂ Rd with dimension d ∈ N.93

Each such a random variable f(θ) : (Θ, ς, P ) 7→ R, with θ ∈ Θ a coordinate in sample space Θ and ς the94

sigma-algebra, as such maps from a complete probability space to the real domain. This map holds as95

long as f(t, θ) ∈ L2(Θ, P ), with L2(Θ, P ) the Hilbert space of second-order random variables (i.e., finite96

variance). For a given event θi ∈ Θ, f(t, θi) is a realization of the stochastic process. A stochastic process97

is considered Gaussian if the distribution of (f(t1, θ), f(t2, θ), . . . , f(tn, θ)) is jointly Gaussian ∀t ∈ Ω.98

Consider f(t, θ) to be a zero-mean one-dimensional univariate stochastic process (i.e, Ω ⊂ R) with99

constant variance over the domain and auto-correlation function Rff (t, τ) : Ω × Ω 7→ [0, 1] and τ ⊂ Ω100

a lag parameter. The auto-correlation Rff (t, τ) of such a stochastic process represents the correlation101

between two random variables f(t, θ) and f(t+ τ, θ), separated by a lag τ . That is,102

Rff (t, τ) =
CV [f(t, θ)f(t+ τ, θ)]√
V [f(t, θ)]

√
V [f(t+ τ, θ)]

, (1)

with CV [·, ·] denoting an operator that returns the covariance and V [·] an operator returning the variance103

of the argument. In this regard, τ may represent a distance in time or space. In the remainder of this104

paper, only homogeneous auto-correlation functions, i.e., Rff (τ) are considered.105

In practical applications, often analytical models for the auto-correlation are applied [2]. In this106

context, particularly the auto-correlation functions belonging to the family of Whittle-Matérn type of107

functions are popular, the formulation of which is given as:108

Rνff (τ) =
21−ν

Γ(ν)

(√
2ν
τ

b

)ν
Kν

(√
2ν
τ

b

)
, (2)

where ν is the so-called “smoothness” parameter, Γ denotes the Gamma function, Kν is the modified109

Bessel function of the second kind and b is the correlation length. It can be shown that for ν = p+ 0.5,110

with p ∈ N+, the Whittle-Matérn correlation function family can be represented as the product of an111

exponential and of a polynomial of order p. That is,112

Rp+0.5
ff (τ) = exp

(
−
√

2p+ 1τ

b

)
p!

(2p)!

p∑
i=1

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1τ

b

)p−i
. (3)
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From this equation, it is straightforward to show that the cases of p = 0, p = 1 and p → ∞ give113

rise to the so-called single exponential, modified exponential and squared exponential auto-correlation114

functions. Namely, the single exponential auto-correlation function is given as115

R0.5
ff (τ) = exp(−|τ |/b); (4)

the modified exponential auto-correlation function [16] is given as116

R1.5
ff (τ) = exp(−|τ |/b)(1 + |τ |/b); (5)

and the squared-exponential auto-correlation function is given as117

R∞ff (τ) = exp(−τ2/b2). (6)

As a final note, it is worthy to mention that the sample paths of a Gaussian process with a Whittle-118

Matérn kernel are dνe− 1 times differentiable. In the available literature, single and squared exponential119

functions are commonly used in various application domains. As discussed in [2], the main difference120

between these two auto-correlation functions is the smoothness of the resulting sample paths; related121

applications to soil engineering can be found in references such as [9] and [10]. The main advantage122

of a single exponential kernel is the availability of analytical solutions in terms of its Karhunen–Loève123

expansion [20], and the capability to characterize quickly varying phenomena. However, it exhibits non-124

differentiability at zero-lag, which causes non-differentiable sample paths (i.e., C − 0 continuity).125

On the other hand, the squared exponential provides infinitely differentiable sample paths, but does126

not provide analytical solution for the terms of the expansion. Further, as Stein [11] argues, the infinite127

differentiability yields unrealistic results for physical processes, since observing only a small continuous128

fraction of space/time should, in theory, yield the whole process sample [11]. It should be pointed out,129

that for all practical reasons, a Whittle-Matérn function with p = 3.5 can be considered to be almost130

equal to p→∞ [12].131

The modified exponential auto-correlation function aims at combining the strengths of both the afore-132

mentioned kernels, as it provides the temporal/geometric characteristics of the sample paths of a single133

exponential kernel, it solves the problem of the zero-lag discontinuities, and it provides analytical solu-134

tions for its Karhunen-Loève expansion [16]. Further, for many physical processes arising in mechanical135

or civil engineering, first-order differentiability is sufficient , as for instance illustrated in [10] in the case136

of soil mechanics. For instance, taking a practical standpoint, when considering certain input quan-137

tities to a Finite Element model in a quasi-static context, no higher-order differentiability due to the138
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approximations of the functional solution spaces made. In this context, note that Gaussian processes139

that are governed by a Whittle-Matérn kernel are dνe−1 times differentiable in a mean-square sense [17].140

This property makes this family of auto-correlation functions particularly appealing to model physical141

processes in a realistic and mathematically rigorous way.142

Alternatively, the auto-correlation of (f(t1, θ), f(t2, θ), . . . , f(tn, θ)) can be represented in the fre-143

quency domain by means of a two-sided power spectrum Sff (ω) : Γ× Γ 7→ R, with Γ ⊂ R the frequency144

domain. The Wiener-Khintchine theorem allows for the calculation of the auto-correlation function145

Rff (τ) of a stochastic process from its two-sided power spectrum Sff (ω) and vice versa based on the146

following Fourier transforms:147

Sff (ω) =
1

2π

∫ +∞

−∞
Rff (τ)e−iωτdτ, (7)

and148

Rff (τ) =

∫ +∞

−∞
Sff (ω)eiωτdω. (8)

Applying the Wiener-Khintchine theorem to the auto-correlation function defined in Eq. (2) yields149

the form150

Sνff (ω) =
2π0.5Γ(ν + 0.5)(2ν)ν

Γ(ν)b2ν

(
2ν

b2
+ 4π2ω2

)−ν+0.5

(9)

for the corresponding power spectrum.151

The power spectra corresponding to the auto-correlation functions in Eqs. 4–6 can be similarly shown152

to be given by the equations153

S0.5
ff (ω) =

1

π

b

b2ω2 + 1
, (10)

154

S1.5
ff (ω) =

1

π

2b

(b2ω2 + 1)2 , (11)

and155

S∞ff (ω) =
1b

2
√
π

exp
−b2ω2

4
. (12)

Close inspection of Eq. (9) reveals that the “smoothness” parameter, which is also critical for the156

differentiability of Rνff for τ → 0, determines the range over which the energy content of the spectrum157

is spread out. Indeed, since ν determines the order of the denominator, it affects the rate with which158

Sνff (ω) tends to 0 for increasing ω values. Take for instance the case of Eq. 10. It is clear that in this159

case, due to the lack of higher order terms in the denominator, the energy content is broadly distributed160

over ω. Similarly, it can be seen that the energy content of the modified exponential kernel decreases161

quadratically with respect to the term b2ω2+1 in Eq. 11. As such, the bandwidth of the single exponential162

kernel is wider as compared to the modified exponential. Finally, the exp(·) term in Eq. 12 suggests that163
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most of the energy content is located in the lower frequencies for the squared exponential kernel. Thus,164

it is shown that the power-spectra of the zero-lag differentiable kernels, i.e., the modified and squared165

exponential kernel, converge faster to zero as ω →∞.166

2.2. Simulation of stochastic processes167

2.2.1. Spectral representation168

Following the power spectral representation of the auto-correlation of a stochastic process, the simu-169

lation of paths of this process can be done according to [7, 6] using the equation170

f(t, θ) =
√

2

N−1∑
n=0

An cos(ωnt+ ψn(θ)), (13)

where171

An =
√

2Sff (ωn)∆ω, (14)

and ωn is defined as172

ωn = n∆ω, (15)

where n = 1, . . . , N −1 and ∆ω = ωu/N . The phase angles ψn(θ) are considered random and distributed173

as U(0, 2π), with U the uniform distribution. Thus, samples f(t, θi) of the stochastic process can be174

generated by sampling from U(0, 2π). The parameter ωu represents the cut-off frequency, beyond which175

the power spectral density function Sff (ω) may be assumed to be zero for either mathematical or physical176

reasons. In practice, an energy criterion is commonly used. That is,177

∫ ωu

0
Sff (ωn)dω = (1− eS)

∫ ∞
0

Sff (ωn)dω, (16)

with eS a measure for the error, which is typically a small value, e.g., eS = 0.01 or eS = 0.001. In178

this regard, the appropriate selection of ωu is important for the accuracy of the analysis. In essence, it179

represents the degree of approximation of the energy content used in the representation of the stochastic180

process. As such, if ωu is selected too small, a significant fraction of the energy of the modelled signal is181

lost. This might lead to an underestimation of the magnitude of the physical quantity under consideration,182

which can lead to severe limitations, e.g., underestimation of probability of failure. Further, ωu cannot183

be selected arbitrarily larger for numerical reasons. Specifically, extremely high values of ωu require a184

corresponding quite high number of random variables ψn(θ), leading to computationally costly procedures.185

Further, note that while herein attention is focused on the spectral representation, these arguments are186

also pertinent to other simulation methods based in the frequency domain, e.g., the Stochastic Harmonic187
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Function representation [1].188

2.2.2. Karhunen-Loève expansion189

The Karhunen-Loève expansion is a potent tool for representing stochastic processes [20]. Specifically,190

following the Karhunen-Loève (KL) series expansion, a stochastic process f(t, θ) is represented as:191

f(t, θ) = µx(t) + σf

∞∑
i=1

√
λiψi(t)ξi(θ), (17)

where σf is the standard deviation of the random field. The quantities λi ∈ (0,∞) and ψi(t) : Ω 7→ R are192

respectively the eigenvalues and eigenfunctions of the continuous, bounded, symmetric and positive (semi-193

) definite auto-correlation function Rff (τ). The decomposition of Rff (τ) is performed in accordance with194

Mercer’s theorem. That is,195

Rff (τ) =
∞∑
i=1

λiψi(t)ψi(t
′). (18)

These quantities are in practice obtained by solving the homogeneous Fredholm integral equation of196

the second kind. That is,197 ∫
Ω
Rff (τ)ψi(t

′)dt′ = λiψi(t), (19)

with t′ = t+ τ . Analytical solutions to this equation exist only for a limited number of auto-correlation198

functions. In general, discretization schemes are used to solve this equation, as explained in [21]. Since199

Rff (τ) is bounded, symmetric, positive semi-definite, and, in most practical cases, can be even assumed200

positive definite, the eigenvalues λi are non-negative and the eigenfunctions ψi(t) satisfy the orthogonality201

condition202

〈ψi(t),ψj(t)〉 =

∫
Ω
ψi(t)ψj(t)dt = δij , (20)

with δij the Kronecker delta. 〈·, ·〉 : Ω×Ω 7→ R denotes the inner product in the functional space. Hence,203

the eigenfunctions form a complete orthogonal basis on an L2 Hilbert space. In this case, the series204

expansion in Eq. 18 can be shown to be optimally convergent [20].205

For practical reasons, the infinite series expansion in Eq. 17 must be truncated after a finite number206

of terms nKL ∈ N. That is,207

f(t, θ) = σf

nKL∑
i=1

√
λiψi(t)ξi(θ), (21)

where nKL should be selected such that following inequality holds:208

1− 1

|Ω|
1

σ2
f

nKL∑
i=1

λi ≤ eσ, (22)
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with eσ the so-called mean error variance [21] and |Ω| denoting the length of the simulation domain.209

In contrast to eS introduced in Eq. (16), the quantity eσ does not represent some sort of energy loss210

measure. Instead, eσ represents the percentage of the variance of the original process that is captured by211

the truncated Karhunen-Loève expansion. In this respect, if nKL is selected too small, it will lead to a loss212

of the variance in the representation. Hence, the magnitude of the physical quantity under consideration213

will be underestimated. Finally, similarly to the spectral representation, setting nKL too large will214

render the computational cost of the corresponding analysis untractable due to the high dimension of the215

parameter input space.216

2.2.3. Auto-regressive models217

A third commonly used approach to simulate stochastic processes and fields is the auto-regressive218

representation (AR) method [23]. According to the AR framework, the value of a stochastic process219

f(t, θ) at time tk with order m can be computed as220

f(tk, θ) = −
m∑
i=1

aif(tk−i) + b0w(tk, θ), (23)

where ai are the AR parameters and b0 is the gain factor of the AR model. w(tk) is a band limited221

[−ωb, ωb] white-noise process that satisfies222

E
[
w(tk)w(tl)

T
]

= 2ωbInδkl, (24)

where E[•] and •T denotes the operators of mathematical expectation and transpose respectively, ωb is223

the cut-off frequency, In is the identity matrix and δkl the Kronecker delta. The representation in Eq. (23)224

is the best linear estimator of f(tk, θ) by using the m previous values [f(tk), f(tk−1), . . . , f(tk−m)]. The225

corresponding error ε can be expressed as:226

ε =
4t
2π
E

[(
f(tk, θ) +

m∑
i=1

aif(tk−I)

)]
= b20. (25)

The parameters ai in the series expansion defined in Eq. (23) can generally be determined by minimiz-227

ing ε. This leads to the so-called Yule-Walker equations that relate the stationary target auto-correlation228

function Rff (τ) ≡ Rff (tk − ti) to the AR parameters via a Toeplitz system of equations:229

m∑
i=1

Rff (tk − ti)ai = −Rff (tk) k = 1, . . . ,m (26)

Alternative approaches used to fit an AR model to a predefined auto-correlation model interpret230
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Eq. (23) as the response of a discrete linear system to a white-noise excitation. For a thorough explanation231

of the fitting of an AR model to a predefined auto-correlation function or power spectral density, the232

reader is referred to the work of [23] or [24].233

3. Convergence of the stochastic process representations234

In this section analytical expressions are derived for the energy approximation error of the spectral235

stochastic representation of the three considered auto-correlation kernels. Then, the paper provides236

additional illustrations regarding the improved convergence behavior of the modified exponential kernel237

over the single exponential when they are used in the context of a KL expansion. Finally, a comparison238

of AR models for these three auto-correlation functions is included for the sake of completeness.239

3.1. Spectral stochastic representation240

The convergence behavior of the auto-correlation functions in Eqs. 4-6 is studied with respect to241

Eq. 16. In this context, analytical expressions for the approximation error es are derived with respect to242

the cut-off frequency ωu. Note that similar expressions can be derived for all members of the Whittle-243

Matérn class of auto-correlation functions that abide ν = p + 0.5. A general expression of the error in244

function of ν is far from trivial to obtain and falls outside the scope of this paper. To determine the245

cut-off frequency ωu using Eq. (16), the power spectra Sff (ω) in Eqs. 10-12 needs to be integrated. The246

right hand side integral of Sff (ω) w.r.t. ω is obtained by means of substitution and given for these power247

spectra by the equations248 ∫ ∞
0

S0.5
ff (ω)dω =

[
1

π
tan−1(bω)

]∞
0

=
1

2
, (27)

249 ∫ ∞
0

S1.5
ff (ω)dω =

[
1

π
4b

(
ω

2(ω2b2 + 1)
+

1

2b
tan−1(bω)

)]∞
0

= 1, (28)

and250 ∫ ∞
0

S∞ff (ω)dω =

[
erf

(
bω

2

)]∞
0

= 1, (29)

where erf(x) = 1√
π

∫ x
0 e
−t2dt is the error function.251

Similarly, the left-hand side of Eq. (16) for the considered auto-correlation functions can be determined252

as253

∫ ωu

0
S0.5
ff (ω)dω =

[
1
π tan−1(bω)

]ωu

0

= 1
π tan−1(bωu), (30)
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254 ∫ ωu

0
S1.5
ff (ω)dω =

[
1
π4b

(
ω

2(ω2b2+1)
+ 1

2b tan−1(bω)
)]ωu

0

= 1
π4b

(
ωu

2(ω2
ub

2+1)
+ 1

2b tan−1(bωu)
)
, (31)

and255

∫ ωu

0
S∞ff (ω)dω =

[
erf
(
bω
2

)]ωu

0

= erf
(
bωu

2

)
. (32)

Using these equations in conjunction with Eq. (16), and isolating the desired truncation error eS256

provides relations between the error and the cut-off frequency as. Specifically,257

eS,0.5 = 1− 2

π
tan−1(bωu), (33)

258

eS,1.5 = 1− 2

π

(
bωu

b2ω2
u + 1

+ tan−1(bωu)

)
, (34)

and259

eS,∞ = 1− erf

(
ωu
b

2

)
. (35)

Figure 1: Decay of the energy approximation error e as a function of the truncation frequency ωu. Plots for different values
of the correlation length b are given.

Figure 1 shows the decay of the truncation error of the energy eS as a function of the selected ωu for the260

considered auto-correlation models, for several different values of the correlation lengths b = [0.05, 0.5, 2].261

The decay function is calculated according to Eq. (33) to (35). In particular, a zero-mean Gaussian262

stochastic process with unit variance on a domain t ∈ [0, 5] is considered for this purpose. From this263
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Figure 2: Number of terms in the spectral expansion as a function of the smoothness parameter of the Matérn kernel.

Figure, it is clear that this approximation error decays significantly faster in squared and modified264

exponential kernels as compared to a single exponential kernel. Specifically, the squared exponential265

kernel converges super-linearly, the modified exponential kernel converges linearly with a slope of 2.13266

and the single exponential kernel converges linearly with a slope of 0.87. These findings are valid for267

all correlation lengths tested. The difference in the convergence rate between the modified and the268

single exponential kernels originates from the bωu
b2ω2

u+1
-term in Eq. (34). This term ensures that the error269

for the modified exponential kernel decreases faster versus the single exponential case when wu → ∞.270

Nevertheless, note that the shape of the decay of the error with respect to ωu is similar for both single271

and modified exponential curves.272

These considerations are further elucidated in Figure 2, which shows the number of terms in the273

spectral expansion (see also Eq. (13)) that are required to represent 99.9% of the energy of the power274

spectrum. Also from this figure, it is clear that higher ν values and hence, a higher-order differentiability275

of the auto-correlation function at zero lag, yields more efficient representations of the random field. It276

is furthermore clear that the number of terms converges after approx. ν = 10.277

In Figure 3 sample paths of the corresponding Gaussian stochastic processes are shown for different278

values of the truncation error eS . Each sample path is created with all the three correlation structures in279

the time t ∈ [0, 5], but only t ∈ [0, 0.1] is shown to better visualize the local characteristic of the samples.280

This Figure shows how the sample path from the exponential correlation exhibits non-negligible high281

frequency oscillations and noise when compared with the other two correlations when lower values of282

eS are used. This is a direct result of the slower convergence of the single exponential kernel in energy283

content, which in it’s turn is related to the non-differentiability of Rff at zero lag. As pointed out in the284

literature, these high-frequency oscillations potentially impact the engineering analysis affected by the285

properties modeled with this kernel.286
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Figure 3: Sample paths of a one-dimensional Gaussian stochastic process, where the auto-correlation is governed by a
Squared exponential (left), Modified exponential (middle) and Single exponential (right) kernel function, for different values
of the truncation error.

3.2. Karhunen-Loève expansion287

The advantage of using the modified exponential kernel over a single exponential one in terms of288

required terms in the Karhunen-Loève expansion has been illustrated in [16]. In this section, additional289

insights into this topic are attempted. In particular, it is shown that the reduction in the requisite number290

of stochastic terms holds consistently for the entire process series expansion. Further, this property also291

holds for a wide range of correlation length values. Figure 4 shows the convergence of the mean error292

variance as a function of the number of terms that are retained in the KL expansion for the same293

stochastic process considered in Section 3.1. Herein, the solution of the Fredholm integral equation in294

Eq. 19 is obtained using a Galerkin procedure with Legendre basis functions. Clearly, the convergence295

of the mean error variance corresponding to the squared exponential process is the fastest of the three296

considered auto-correlation functions. These results further confirm the findings of [16], namely that the297

modified exponential kernel converges faster than the single exponential kernel when considering the KL298

expansion for a wide range of correlation length values. This can be also explained by the differentiability299

of the auto-correlation function at zero-lag.300

3.3. AR model representation301

For the study of the applicability of the considered auto-correlation functions in conjunction with an302

AR representation, an analytical approach is used. In particular, the required AR models are derived303

based on the considered auto-correlation functions.304

Regarding the single exponential covariance kernel R0.5
ff (τ), it can be shown that an AR(1) process,305

i.e., an AR process with m = 1 is capable of directly representing a Gaussian process with R0.5
ff (τ) [19].306
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Figure 4: Convergence of the mean error variance with respect to the number of terms in the KL Expansion for the three
considered auto-correlation kernels.

To capture this, write out Eq. (23) for m = 1 and subtract f(t, θ) from both sides. That is,307

[f(t+ 1, θ)− f(t, θ)] + (1− a)f(t, θ) = b0w(t, θ). (36)

The associated first-order differential equation to this finite-difference equation is308

d

dt
f(t, θ) + αf(t, θ) = b0w(t, θ), (37)

which can be interpreted as a linear model that links f(t, θ) to a white-noise excitation. In the limit state309

for infinitesimally small τ , the transfer function corresponding to Eq.(37) is310

H(ω) =
1

iω + α
, (38)

that in combination with a constant spectral density S0 gives rise to the power spectral density Sff (ω):311

Sff (ω) =
S0

ω2 + α2
, (39)

for f(, ω). This can be related through Eq. (8) to the auto-correlation function:312

Rff (τ) = 1 exp(−|τ |α), (40)

which corresponds to a single exponential auto-correlation function.313

Following a similar procedure, it can be shown that an AR(1) model of the following form:314

f(t, θ) = a [f(t− 1, θ) + f(t+ 1, θ)] + bo2(t, θ) (41)
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corresponds to a stationary Gaussian process with power spectral density:315

Sff (ω) =
4α3

π(ω2 + α2)2
, (42)

and hence with auto correlation function316

Rff (τ) = exp(−α|τ |)(α|τ |+ 1), (43)

that corresponds to the modified exponential kernel. For the squared exponential auto-correlation func-317

tion, a one-on-one exact relationship with a corresponding AR model is not trivial to establish and318

requires the solution of the Yule-Walker equations. This falls outside the scope of this paper.319

4. Concluding remarks320

In this paper, certain aspects relating to the mathematical behavior of common auto-correlation321

functions have been studied. Specifically, the convergence of the spectral density of the process to zero322

as the frequency tends to infinity has been examined. In particular, attention has been focussed on323

the comparison of the spectral convergence of functions that are differentiable at zero-lag versus those324

that are not-differentiable. In this regard, some selected functions from the Whittle-Matérn family were325

considered: the exponential, modified exponential and squared exponential function. This family has the326

appealing feature that the differentiability of the sample-paths is tuneable by tuning the differentiability327

of the auto-correlation function. The most popular member of this family is the single exponential328

auto-correlation function due to the availability of analytical solutions. However, as explained, the329

resulting sample paths are non-differentiable and the convergence of the stochastic representation is330

conparatively slow when compared to other functions. Of this family of auto-correlation functions, the331

squared exponential auto-correlation function was found to be the most efficient in terms of convergence332

properties. However, both the lack of analytical solutions, as the infinite differentiability of the sample333

paths make its application questionable from an application and physical standpoint.334

It has been shown, both analytically and numerically, that the number of stochastic components335

required to represent a stochastic process with the single exponential kerne is considerably larger when336

compared to a modified or squared exponential kernel. This statement holds for both stochastic spectral337

representation methods, as well as for the well-known Karhunen-Loève series expansion. In this con-338

text, note that the single exponential kernel is not differentiable at zero lag, whereas, the modified and339

squared exponential kernel are completely differentiable. Squared exponential auto-correlation functions340

on the other hand show the fastest convergence. However, their infinite differentiability poses impor-341
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tant limitations with respect to their physical interpretation. It is found that auto-correlations from the342

Whittle-Matérn family with half-integer values pose an interesting trade-off between efficiency and phys-343

ical interpretability. Of this family, the so-called modified exponential auto-correlation function stands344

out due to the availability of analytical solutions to the Fredholm integral equation of the second kind.345

Further, in the paper AR models have been considered, for which it has been shown that for both a346

single and modified exponential kernel, a closed form expression for an AR(1) model can be derived. This347

proves that AR models are highly suited to represent these types of stochastic processes. Further work348

beyond this initial study can explore the relationship between the differentiability of the auto-correlation349

function at zero lag, and the convergence of the corresponding spectral density to zero as the frequency350

tends to infinity.351
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