
Combining Data and Physical Models for Probabilistic Analysis: A
Bayesian Augmented Space Learning Perspective

Fangqi Honga, Pengfei Weia,∗, Jingwen Songb, Matthias G.R. Faesc, Marcos A. Valdebenitoc, Michael
Beerd,e,f

aSchool of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China
bSchool of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

cChair for Reliability Engineering, TU Dortmund University, Leonhard-Euler Strasse 5, 44227, Dortmund, Germany
dInstitute for Risk and Reliability, Leibniz Universität Hannover, Hannover 30167, Germany

eInstitute for Risk and Uncertainty, University of Liverpool, Liverpool L69 7ZF, UK
fInternational Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai

200092, China

Abstract

The traditional methods for probabilistic analysis of physical systems often follow a non-intrusive scheme
with, random samples for stochastic model parameters generated in the outer loop, and for each sample,
physical model (described by PDEs) solved in the inner loop using, e.g., finite element method (FEM). Two
of the biggest challenges when applying probabilistic methods are the high computational burden due to
the repeated calls of the expensive-to-estimate computational models, and the difficulties of integrating the
numerical errors from both loops. To overcome these challenges, we present a new framework for transform-
ing the PDEs with stochastic parameters into equivalent deterministic PDEs, and then devise a statistical
inference method, called Bayesian Augmented Space Learning (BASL), for inferring the probabilistic de-
scriptors of the model responses with the combination of measurement data and physical models. With
the two sources of information available, only a one-step Bayesian inference needs to be performed, and
the numerical errors are summarized by posterior variances. The method is then further extended to the
case where the values of the parameters of the test pieces for measurement are not precisely known. The
effectiveness of the proposed methods is demonstrated with academic and real-world physical models.

Keywords: Bayesian learning; Probabilistic analysis; Gaussian process regression; Augmented space;
Parameter identification.

1. Introduction

Uncertainty Quantification (UQ) of physical system responses subjected to non-deterministic model

parameters and excitations is a typical, yet challenging, task in many aspects of engineering practices

(such as structural reliability analysis, structural health monitoring and system identification) and scientific

disciplines (e.g., computational physics and chemistry). UQ informs the analyst about effects of natural

randomness and/or epistemic uncertainties on the physical quantities to be predicted, allowing for robust

and reliable prediction and decision-making. To date, three categories of models, including the probabilistic

model, the non-probabilistic models (e.g., the interval model and fuzzy set theory), and the imprecise
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probabilistic models (e.g., the probability-box model and the evidence theory), have been developed for

meeting alternative distinct scenarios for uncertainty characterization, and one can refer to Refs. [1], [2]

for review and comparison, and also Ref. [3] for review of propagation methods. Thanks to its maturity,

probabilistic techniques benefit from their capability of handling alternative types of uncertainties in a

theoretical rigorous way and plenty of simulation methods for analysis. For simplicity, only the probabilistic

UQ is of concern in this work. For most studies in this aspect, it is assumed that the information available

for probabilistic analysis includes the probability models (of model parameters, external excitations, etc.,

collectively referred to as model inputs) and a physical model (described by PDEs and solved by, e.g., finite

element method, FEM) [4, 5, 6]. The objective of this work is to devise a Bayesian machine learning scheme

to infer the probabilistic characteristics of the model response by combining measured data (generated from,

e.g. experiments) and the physical models described by PDEs. Thus it is assumed that, besides the above

two sources of information, also measured data (either complete or incomplete) on the physical process is

available. For simplicity, only linear PDEs are considered, as the nonlinear problems would demand specific

treatments under this new framework.

A large share of the state-of-the-art developments for probabilistic analysis follow a non-intrusive and

double-loop scheme. Following such a scheme, the physical computational model that describes the physi-

cal behaviour is built by the modellers in the inner loop. Then, this model is treated by the probabilistic

analysts in the outer loop, that is, the physical model is evaluated for different realizations of the uncertain

parameters [7]. The main advantage of the non-intrusive scheme is that the separation of physical and prob-

abilistic analysis makes it easier for the communication between modellers and analysts. The most popular

developments in this aspect are the Monte Carlo simulation and its improved variants [8, 9], such as impor-

tance sampling [10] and Markov Chain Monte Carlo (MCMC) simulation [11]. This popularity is mainly

due to the guarantee of estimation accuracy against the required number of model calls. To alleviate the

corresponding computational effort, many variance reduction techniques for making a better trade-off be-

tween accuracy and required number of model calls (see e.g., [12, 13, 14]) have been developed. Nonetheless,

the double-loop scheme is not broken, and repeated calls of the computational models, each of which can be

expensive, are required. Other non-intrusive techniques, such as the moment based methods [15, 16], poly-

nomial chaos approximation [17, 18], and artificial neural networks [19], have also been developed. However,

such methods may not have the accuracy guarantees as rigorous as the traditional Monte Carlo simulation.

Further, still, repeated calls of the expensive simulators are still unavoidable. These two points can cause

hesitation among analysts to apply these methods in engineering practice. As a final point, it needs to be

pointed out that it is difficult to integrate the numerical errors in the physical analysis loop. As such, in the

probabilistic analysis, inaccurate data might be used to infer results and feed the decision process. It should

be noted that developments of intrusive methods, e.g., based on polynomial chaos approximation [20], are

also available for UQ of physical systems, but generally lack systematic treatments.
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Traditional numerical methods for solving the physical models (described by PDEs) include Finite Ele-

ment Method (FEM), Boundary Element Method (BEM) [21], meshfree and particle methods [22], etc. Each

of these methods can be considered for developing the computational model used in the above mentioned

non-intrusive and double-loop scheme. The past decade has witnessed a new trend of extending the machine

learning algorithms for solving the physical models with a meshfree approach. The state-of-the-art devel-

opments in this context can be grouped as either non-Bayesian or Bayesian methods. As for non-Bayesian

methods, a typical development is the Physics-Informed Neural Network (PINN)[23], which integrates mea-

surement data and physical models, is realized with an artificial neural network model. Improved variants

of this technique can further be trained by minimizing the empirical errors from both measurement data

and (randomly or actively designed) PDE grids. One can refer to Ref. [24] for a comprehensive review of

the state-of-the-art developments on this topic. The PINN framework has also been extended to cope with

the probabilistic analysis of model responses (see, e.g., Ref. [25] for an example). Concerning Bayesian

methods, attempts at solving the governing PDEs with a Bayesian scheme can be regarded as a research

branch of the topic “Bayesian probabilistic numerical methods” [26][27]. This class of methods aims at

constructing (subjective) probability distributions that can summary both the prediction and the prediction

accuracy for a specific numerical task. In this context, the posterior mean produces the estimates of the

model quantity, while the variation of the distributions measure the prediction accuracy. As far as the

ODEs/PDEs are concerned, Bayesian techniques, based on either non-parametric models (e.g., Gaussian

Process Regression, GPR) [28, 29, 30] or parametric models (e.g., Bayesian neural network) [31], have both

been developed. Instead of minimizing the empirical errors, these Bayesian ODEs/PDEs solvers formulate

the problem of interest as a statistical inference one, and then solve it either by a full Bayesian inference

scheme or a Maximum Likelihood Estimation (MLE) procedure. Herein, the numerical error is treated as

epistemic uncertainty and measured by a subjective probability distribution. These schemes also have the

ability to integrate the measurement data and physical model (see e.g., Ref. [32] for an example). In this

work, the Bayesian ODEs/PDEs solver based on GPR model will be utilized.

As stated above, a typical formulation of the probabilistic analysis problem follows a double-loop scheme.

It is expected that breaking this double loop will bring a significant gain in computational efficiency. In-

spired by our previous work of introducing the augmented space for breaking the double loops for imprecise

probabilistic analysis [33, 34], we first introduce a reformulation of the problem as an equivalent determin-

istic PDE. This PDE is then solved by a Bayesian PDE solver with the combination of both the labeled

measurement data (generated by measurement and/or calling high-fidelity models) and PDE grids. This

enables the derivation of the posterior features for any probabilistic characteristic (e.g., statistical moments

and probability distribution functions) of the model responses. As such, also measures of numerical errors

are derived on top. The developed method is named Bayesian Augmented Space Learning (BASL). Finally,

next to this “forward” approach, BASL is further extended to the case where the parameters values of the
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test pieces for measurements are unknown or not precisely known, but measurement data are available. For

this case, the unknown parameters values also need to be inferred (known as “inverse problem”), and the

devised BASL method enables solving the “forward” and “inverse” problems in one step.

The rest of this paper is organized as follows. The following section presents the formulation of problems

to be solved, the motivations of the developments and a review of the GPR model to be utilized for inference.

Section 3 presents the core developments, i.e., the BASL method, for forward probabilistic analysis, followed

by a extension to the inverse problem in section 4. Section 5 presents benchmark studies for demonstrating

the proposed methods, and section 5 gives conclusions and prospects.

2. Problem Statement and Review of Methods

2.1. Problem formulation

For most cases in this paper, we use the notations following Ref. [32]. For reasons of simplicity, only

linear PDEs are considered. Let x = (x1, x2, · · · , xn)
⊤ and θ = (θ1, θ2, · · · , θm)

⊤ denote the n-dimensional

spatio-temporal variables and the m-dimensional random model parameters respectively, and assume that

the response function y (x) of a physical system of interest is governed by a PDE defined as:

FX [y|θ] (x) :=
L∑

i=1

ci (θ,x)∇αi
y (x) = b (θ,x) , (1)

where the differential operator ∇αi , with αi = (αi,1, αi,2, · · · , αi,d) being the orders of partial differentials,

is performed with respect to only the spatio-temporal variables x, and is defined as:

∇αi
y :=

∂αi,1

∂x
αi,1

1

· · · ∂αi,d

∂x
αi,1

d

y, (2)

where ci (θ,x) and b (θ,x) are the linear coefficients and the non-homogeneous term (e.g., a random exci-

tation), respectively, both of which are explicit expressions of the spatio-temporal vector x and the model

parameter vector θ. One notes that the linear differential operator FX [y|θ] (x) in Eq. (1) is taken with

respect to only x on the condition of the value of θ. When the value of θ is precisely known, Eq. (1)

reduces into a regular deterministic PDE. Physically speaking, the model response function is a function of

the spatio-temporal vector x, which is also affected by the values of θ.

The probabilistic analysis problem is then formulated as the evaluation of certain probabilistic descriptors

which synthesize the effect of uncertainty (e.g., distribution function, statistical moments, and the probability

of related events) of the model response y (x), given the probability distribution fΘ (θ) associated with θ and

the PDE in Eq. (1) accompanied with proper initial/boundary conditions and eventually measurement data

on the response y (x). Specifically, we focus on the estimation of the first-order and second-order moments of
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y (x), but indeed, the method also applies to other probabilistic descriptors such as the distribution function

of the response.

As an example, we consider a linear structural system subjected to stochastic dynamical loading. The

displacement of the system at location x and time instant t is in this case governed by the PDE:

M (x)
∂2y (x, t)

∂t2
+ C (x)

∂y (x, t)

∂t
+K (x) y (x, t) = b (x, t, ξ) , (3)

where M (x), C (x) and K (x) are the mass, damping and stiffness functions respectively, and can be

assumed to be random variables. As such, for a specific existing structure, these three are constants, but

for a population of existing structures or a future structure to be built, their values may show randomness

across this population. Further, b (x, t, ξ) refers to a random dynamic excitation indexed by the random

vector ξ. With the above setting, the vector of random model parameters is θ =
(
M,C,K, ξ⊤

)⊤
, and

the spatio-temporal variable vector consists of the spatial variables x and the temporary variable t. Close

inspection reveals that Eq. (3) can be reformulated as the form of Eq. (1).

The state-of-the-art developments for addressing the above problems are mostly implemented in a double-

loop and non-intrusive scheme. Take Monte Carlo simulation as an example, the random samples are

generated for θ in the outer loop, and then for each sample θ(i), the deterministic PDE is solved in the

inner loop by, e.g., FEM, with θ being fixed at θ(i), yielding a set of samples y(i) (x) of the response for

further analysis. Most attempts on this aspect aim at reducing the number of required FEM analysis with

the promise of numerical accuracy of the outer-loop estimation. Despite the great progress in this aspect,

repeated FEM analysis can not be avoided, leading to high computational cost. Even more, it is usually

difficult to monitor the two sources of numerical errors, i.e., the one caused by the numerical PDE solver in

the inner loop and the one caused by the numerical integration in the outer loop, posing an unpredictable risk

to the related analysis and decision making. The aim of this work is to overcome the above two limitations

by introducing a new scheme with Bayesian machine learning in the joint space of the spatio-temporal

variables and the random parameters , and this way to obtain the probabilistic descriptors of the solution

of a stochastic PDE, such as the expectation and variance of response, and two Bayesian numerical analysis

tools will be utilized for numerical implementation.

We assume that the available information for inference includes two sources, i.e., the labeled data

D1 = (ϑ1,X1,Y1) measured at the boundary conditions/initial conditions/physical process, or generated

by calling a high-fidelity computational model, and the PDE data D2 =
(
ϑ2,X2,YF

2

)
generated by ran-

dom sampling or active design. For the measurement data D1, we denote ϑ1 =
(
θ(1)⊤, · · · ,θ(N)⊤

)⊤
and

X1 =
(
x(1)⊤, · · · ,x(N)⊤)⊤, and Y1 is the column vector consisting of the response values measured at θ = ϑ1

and x = X1, i.e., Y1 = yθ=ϑ1 (X1) := y1:N =
(
y(1), y(2), · · · , y(N)

)⊤. In real-world applications, D1 can be

generated by measurements using design-of-experiments or derived from information in operational condi-
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tions, and provides part of the information for inferring the results. For a specific test piece, the response

value at a (or a set of) location(s) can be measured, and the corresponding model parameters for this piece

are deterministic values. It is then logic to assume that, for D1 generated from one unique test piece, the

values of spatio-temporal variables are exactly known, but the exact values of ϑ1 (which is deterministic)

can be (precisely or imprecisely) known or unknown. For example, considering the one-dimensional heat

transfer problem, the random model parameter is assumed to be the heat-transfer coefficient. For a given

test piece, the labeled data D1 is generated by measurement at the boundary condition where x = 0. For

this specific test piece, the heat-transfer coefficient is known to be deterministic, but its value can be either

known (measured) or unknown (unmeasured). For the later case, the estimation of the parameter values for

the test piece under investigation is termed as inverse uncertainty quantification or parameter identification

or model updating [35, 36], which plays an important role for structural health monitoring (SHM).

The second set of data, i.e., the PDE data D2 =
(
ϑ2,X2,YF

2

)
, is directly obtained from the PDEs of

the physical system, where the superscript F indicates the differential operator defined by Eq. (1). Given

the design points ϑ2 =
(
θ(N+1)⊤, · · · ,θ(N+M)⊤

)⊤
and X2 =

(
x(N+1)⊤, · · · ,x(N+M)⊤)⊤, the labels YF

2

are computed from the non-homogeneous term, i.e., YF
2 = b (ϑ2,X2) := yF

N+1:N+M . One notes that, for

the Bayesian inference solution of the stated problem, the data ϑ2 and X2 can generated by either random

sampling or active design [32]. With the above setting, the role of the data set D2 is enforcing that the

physics of the problem are observed when performing Bayesian learning. In this sense, the data set D2 is

actually related with the formulation of the physical problem. In this work, these design points are generated

by a random design strategy such as Latin-hypercube sampling (LHS).

2.2. Review of Gaussian Process Regression

The numerical analysis tasks that need to be treated in this work include a multi-dimensional cubature

and a PDE solution, both of which are driven by the GPR model. Thus, a brief review of the GPR

model is necessary. Given an implicit deterministic model function y (x), the prior assumption is to impose

a Gaussian process on the value of y across the space of x. Denote the prior mean function and prior

covariance function of the Gaussian process as m (x) and κ (x,x′) respectively. Then, the prior assumption

is formulated as ŷ (x) ∼ GP (m (x) , κ (x,x′)). The covariance function κ (x,x′) is also called kernel function,

which is required to be symmetric and positive definite. Many forms of kernel functions, such as the squared

exponential kernel and the Matérn kernel, have been developed. One notes that the form of the kernel

determines the functional behaviour that can be fitted by the GPR model as its eigenfunctions form the

functional basis for regression, and the preselection of kernel form before training also reflects the prior

information imposed on the inference [37, 38]. Without loss of generality, the squared exponential kernel,

expressed as:

κ (x,x′) = σ2
0 exp

(
−1

2
x⊤Σ−1x

)
, (4)
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which is suitable for fitting smooth functions, is utilized throughout this work, where σ2
0 and Σ = diag

(
σ2
1 , · · · , σ2

n

)
are hyper-parameters. One should note that the proposed method is applicable to any form of kernels.

Given a set of labeled data D = (X ,Y) of size N , assume that Y follows N -dimensional Gaussian

distribution, i.e., Y ∼ N (m (X ) ,K), where K = κ (X ,X ) with the (i, j)-th element being the covariance

between the i-th and j-th training points. Further, a likelihood function can be formulated as the N -

dimensional normal joint density function, i.e.,

L (D) =
1

(2π)
N/2 |σ2

0κ (X )|1/2
exp

(
− 1

2σ2
0

(Y −m (X ))
⊤
κ (X )

−1
(Y −m (X ))

)
, (5)

whose hyper-parameters can be evaluated by maximizing this likelihood. With all these ready, the con-

ditional (or posterior) distribution of the response value ŷ (x) given two non-training point x and x′ is

assumed to be Gaussian with mean and covariance expressed as [37]:

µY (x) = ED [ŷ (x)] = m (x) + κ (X ,x)
⊤ K−1 (Y −m (X )) , (6)

and

covY (x,x′) = COVD [ŷ (x) , ŷ (x′)] = κ (x,x′)− κ (X ,x)
⊤ K−1κ (X ,x′) , (7)

respectively, where κ (X ,x) is a N -dimensional column vector with the i-th component being the prior co-

variance of the response between the i-th training point and x, ED [·] and COVD [·] are posterior expectation

and covariance operators with respect to the GPR model trained using data D. Thus, the subscripts D in

these two operators are used for indicating that they are both defined conditioned on D.

3. Statistical Learning in Augmented Space

3.1. Fundamentals

We then go back to the probabilistic analysis problem formulated by Eq. (1). The limitations of the

traditional non-intrusive probabilistic analysis, i.e., the high computational burden and the lack of accuracy

guarantee caused by the incapability of monitoring the FEM errors, are mainly caused by the double-loop

scheme, which needs to be broken.

As has been stated in the last section, the response y is an explicit function of x, but its value is also

affected by the realisation of the random model parameters θ. Imagine now there is a auxiliary function

ya (θ,x) with two arguments, which also meets the PDE in Eq. (1), i.e.,

FX [ya] (θ,x) :=

L∑
i=1

ci (θ,x)∇αiya (θ,x) = b (θ,x) (8)
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One notes that with the problem reformulated by Eq. (8), both x and θ are regarded as spatio-temporal

variables, and the PDE in Eq. (8) can then be interpreted as a deterministic PDE, involving no non-

deterministic parameters, in the augmented space of θ and x. Besides, it can be easily found that, with θ

and x being both taken as spatio-temporal variables, the expression of Eq. (8) is still a linear combination

of a set of partial differential terms, indicating that the linearity of the PDE is preserved despite the above

equivalent transformation. Indeed, even for nonlinear PDE, the equivalent transformation of the problem

into a deterministic PDE still applies, and the mathematical characteristics of the resultant PDE also keep

the same with the original one. This provides a solid foundation for treating the probabilistic analysis of

nonlinear physical systems, although this is beyond the scope of the current contribution. The equivalence

of the probabilistic problem formulated by Eq. (1) and the deterministic PDE solution problem expressed

in Eq. (8) is demonstrated with Lemma 1.

Lemma 1. The probabilistic descriptors (density function, moments, etc.) of y (x) generated by integrating

with respect to θ from ya (θ,x) are the same as those defined by the PDE in Eq.(1) with random parameters,

if the probability distribution of θ is set to be the same in both problems.

Proof. Given a realization θ∗ ∼ f (θ), Eq. (1) degrades into a deterministic PDE, and share absolutely

the same expression and meaning with Eq. (8), thus the solution y (x) of Eq. (1) conditional on θ = θ∗ is

absolutely the same with a cross section of the solution ya (θ
∗,x) of Eq. (8) at θ = θ∗. Therefore,

∫
Ω

y (x) f (θ) dθ =

∫
Ω

ya (θ,x) f (θ) dθ (9)

holds for any subregion Ω of the probability space of θ. If Ω is set to be the probability space of θ, Eq. (9)

is the expectation of y (x); if Ω is set to be (−∞,a], Eq. (9) is the cumulative distribution function (CDF)

of y (x) at a. With the CDFs equalling to each other at all points of θ, it follows by definition of any

probabilistic measure that these are equal too.

For more intuitively illustrating Lemma 1, consider a simple ODE formulated as d2y
dx2 − π2θ2y = 0 with

boundary conditions dy
dx |x=0 = πθ and y|x=0 = 0, where θ denotes the random parameter. Using Lemma

1, the solution of the equivalent deterministic ODE is solved as ya (θ, x) = 0.5 exp (πθx) − 0.5 exp (−πθx),

as schematically shown in Figure 1. For some specific values of θ, such as 0.5 and 1, the solutions of the

stochastic ODE and the sections of ya (θ, x) are displayed in Figure 1 for comparison. As can be seen,

they share exactly the same formulation, indicating the correctness of Lemma 1. Based on Lemma 1, the

probabilistic analysis problem is now transformed into the solution of the deterministic PDE in Eq. (8) in

the augmented space. For probabilistic analysis, we need only to solve the PDE formulated by Eq. (8), and

then integrate with respect to θ. The above idea of transforming the double-loop problem into a single-loop

one by reformulating the problem in the augmented space is inspired by our previous work for propagating
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the imprecise probability models [33, 39], where the two-level analysis caused by the hierarchical structure

of the uncertainty model is decoupled by introducing an augmented space.

Figure 1: The solution of deterministic ODE of the illustrating example, and the comparison of the solution y (x | θ) of stochastic

ODE and the section of ya (θ, x) at θ = 0.5, 1.

There are many numerical procedures available for solving the deterministic linear PDE of Eq. (8). Typ-

ical methods include, e.g., finite element method, physics-informed neural networks (PINN), and Bayesian

PDE solver. In the setting of this work, we assume two classes of information, i.e., the labeled data D1 mea-

sured from sample pieces, and the PDE data D2. For properly informing the numerical error, the Bayesian

PDE solver devised in Ref. [32], with the two groups of data as input information, is utilized, and the

proposed method is termed as Bayesian Augmented Space Learning (BASL).

3.2. Bayesian Augmented Space Learning: Numerical Implementation

The numerical implementation of the BASL procedure, informed by both the measurement data D1 =

(ϑ1,X1,Y1) and the PDE data D2 =
(
ϑ2,X2,YF

2

)
, is introduced in this subsection following Ref. [32]. For

simplicity, we assume in this subsection that the labeled data D1 is complete, which means that the values

of θ for each sample are exactly known. For the case of incomplete information where the values of θ for

each test pieces are not known or not precisely known, the method will be extended in the next subsection.
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The prior assumption for the inference is then that ya (θ,x) follows a Gaussian process in the augmented

space, i.e.,

ŷa (θ,x) ∼ GP
(
m (θ,x) , κ

(
(θ,x) ,

(
θ′,x′))) , (10)

with m (θ,x) = p (θ,x)
⊤
β being the prior mean and κ

(
(θ,x) ,

(
θ′,x′)) being the prior covariance, which

in this work is assumed to be separable, i.e., κ
(
(θ,x) ,

(
θ′,x′)) = σ2

0κΘ

(
θ,θ′)κX (x,x′). Note that p(θ,x)

represents a prescribed vector-valued function which contains a basis for estimating the mean while β is

a vector of unknown coefficients. Both p(θ,x) and β are vectors of dimension q. Both κΘ

(
θ,θ′) and

κX (x,x′) are assumed to be of normalized form without the variance term σ2
0 . For separable kernels, one

can refer to the structured GPR model presented, e.g., in Ref. [40], for details.

Given the above assumption, it is known that a linear differential operation F on ŷa (θ,x) also follows

a Gaussian process, i.e., FX [ŷa] (θ,x) ∼ GP
(
mF (θ,x) , κFF (

(θ,x) ,
(
θ′,x′))), where the prior mean and

covariance are expressed as:

mF (θ,x) = FX [ma] (θ,x) = p⊤
F (θ,x)β, (11)

and

κFF (
(θ,x) ,

(
θ′,x′)) = (FX ×FX′) [κa]

(
(θ,x) ,

(
θ′,x′)) = σ2

0κΘ

(
θ,θ′)FX [FX′ [κX ]] (x,x′) , (12)

respectively, where pF (θ,x) = [FX [p1] (θ,x) , · · · ,FX [pq] (θ,x)]
⊤, and FX × FX′ [·] indicated that the

argument is differentiated with respect to both x and x′.

Following Ref. [32], we also define the identity operator as IX [ya] (θ,x) := ya (θ,x). Then, following

the prior assumption above, it is known that ŷa (θ,x) (or, equivalently, IX [ŷa] (θ,x)) and FX [ŷa] (θ,x) are

jointly correlated Gaussian process, and their cross-covariance function, denoted as κIF (
(θ,x) ,

(
θ′,x′)),

can be formulated as [32]:

κIF (
(θ,x) ,

(
θ′,x′)) = (IX ×FX′) [κ]

(
(θ,x) ,

(
θ′,x′)) = FX′ [κ]

(
(θ,x) ,

(
θ′,x′))

= σ2
0κΘ

(
θ,θ′)FX′ [κX ] (x,x′) .

(13)

Given the Gaussian prior assumption, the vector of the response values Y =
(
Y⊤
1 ,YF⊤

2

)⊤ follows a

(N +M)-dimensional Gaussian distribution, i.e.,

Y =
(
Y⊤
1 ,YF⊤

2

)⊤ ∼ NN+M

(
Pβ, σ2

0K (σ)
)

with P =

 p (ϑ1,X1)

pF (ϑ2,X2)

 and K (σ) =

KII (σ) KIF (σ)

K⊤
IF (σ) KFF (σ)

 ,

(14)
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where KII (σ) = κΘ (ϑ1, ϑ1|σΘ) ⊙ κX (X1,X2|σX), KIF (σ) = κΘ (ϑ1, ϑ2|σΘ) ⊙ FX′ [κX ] (X1,X2|σX),

KFF (σ) = κΘ (ϑ2, ϑ2|σΘ) ⊙ FX [FX′ [κX ]] (X2,X2|σX), ⊙ refers to the Hadamard product, and σ =(
σ⊤

θ ,σ
⊤
x

)⊤ indicates the scale hyper-parameters involved in the (squared exponential) kernels of θ and x.

The likelihood function, with the hyperparameters β, σ2
0 and σ, is formulated as:

L
(
D|β, σ2

0 ,σ
)
=

1

(2π)
(N+M)/2 |σ2

0K (σ)|1/2
exp

(
− 1

2σ2
0

(Y −Pβ)
⊤ K−1 (σ) (Y −Pβ)

)
, (15)

and its negative log is:

logL
(
D|β, σ2

0 ,σ
)
∝ 1

2σ2
0

(Y −Pβ)
⊤ K−1 (σ) (Y −Pβ) +

1

2
log

∣∣σ2
0K (σ)

∣∣ . (16)

Making the partial derivatives of logL
(
D|β, σ2

0 ,σ
)

with respect to β and σ2
0 equal to zero, the estimates of

the hyperparameters β̂ (σ) and σ̂2
0 (σ) are derived as [37]:

β̂ (σ) =
(
P⊤K−1 (σ)P

)−1
P⊤K−1 (σ)Y and σ̂2

0 (σ) =
1

N
(Y −Pβ)

⊤ K−1 (σ) (Y −Pβ) . (17)

Substituting Eq. (17) into Eq. (16), an objective function can be obtained as:

Lobj (σ) = logL
(
D|β̂ (σ) , σ̂2

0 (σ) ,σ
)
. (18)

The minimisation of L yields the optimal estimates σ̂ of the hyperparameters σ. Substituting σ̂ into

Eq. (17), the optimal estimates of the hyperparameters β̂ and σ̂2
0 are also generated. The limited-memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) quasi-Newton approximation method is utilized in this work

for solving the optimisation problem formulated by Eq. (18), and one can refer to Ref. [41] for details.

With the values of the hyperparameters being estimated, the posterior mean µY a (θ,x) and covariance

covY a

(
(θ,x) ,

(
θ′,x′)) for fitting the auxiliary function ya (θ,x) are formulated as:

µY a (θ,x) = ED [ŷa (θ,x)] = p⊤ (θ,x)β + γ⊤ (θ,x)K−1 (Y −Pβ) , (19)

and

covY a

(
(θ,x) ,

(
θ′,x′)) = COVD

[
ŷa (θ,x) , ŷa

(
θ′,x′)]

= σ2
0

[
κΘ

(
θ,θ′)κX (x,x′)− γ⊤ (θ,x)K−1γ

(
θ′,x′)] , (20)

where γ (θ,x) = [κΘ (θ, ϑ1)⊙ κX (x,X1) ;κΘ (θ, ϑ2)⊙FX′ [κX ] (x,X2)]. The posterior mean µY a (θ,x)

can be regarded as the posterior estimate of the auxiliary function ya (θ,x), while the posterior variance

covY a ((θ,x) , (θ,x)) summarises the numerical errors of this estimate.
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3.3. Probabilistic analysis of model response

The purpose of this work is to infer the probabilistic descriptors of the model response y (x). As has

been revealed by Lemma 1, all these features can be inferred from the expression of ya (θ,x). However,

not all probabilistic descriptors can be derived in closed forms. Two methods, a analytical one and a

numerical simulation one, are developed in this subsection to implement probabilistic analysis, such that

each probabilistic descriptor of y(x) can be predicted with a subjective probability distribution.

3.3.1. The analytical method for probabilistic analysis

We take the expectation Ey (x) of y (x) as an example to illustrate the analytical method. Given the

posterior features of ŷa (θ,x) in Eqs. (19) and (20), the estimator of Ey (x) can be expressed as [42, 43]:

Êy (x) =

∫
ŷa (θ,x)fΘ (θ) dθ (21)

, which is also Gaussian as it is expressed as an inner product of the Gaussian process ŷa (θ,x) and the

deterministic function fΘ (θ). The posterior mean and variance of Êy (x) are then formulated as:

µEy (x) = ED [EΘ [ŷa (θ,x)]] = EΘ [ED [ŷa (θ,x)]]

=

[∫
p (θ,x) fΘ (θ) dθ

]⊤
β +

[∫
γ (θ,x) fΘ (θ) dθ

]⊤
K−1 (Y −Pβ)

(22)

, and

σ2
Ey (x) = ED

[
(EΘ [ŷa (θ,x)]− µEY (x))

2
]

= EΘEΘ′
[
ED

[
(ŷa (θ,x)− µY a (θ,x))

(
ŷa

(
θ′,x

)
− µY a

(
θ′,x

))]]
= σ2

0κX (x,x)

∫ ∫
κΘ

(
θ,θ′) fΘ (θ) fΘ

(
θ′) dθ′

−
[∫

γ (θ,x) fΘ (θ) dθ

]⊤
K−1

[∫
γ
(
θ′,x

)
fΘ

(
θ′) dθ′

]
.

(23)

For specific form of kernel and density weight (e.g., squared exponential kernel accompanied with Gaussian

or uniform density), the integrals involved in Eqs. (22) and (23) can be analytically expressed in closed

form, and one can refer to Ref. [14] for a summary. For the squared exponential kernel and standard

Gaussian density assumed in this work, one can refer to our previous work (e.g., Refs. [43] and [44]) for the

closed-form expressions.

For the case with non-Gaussian uncertain model parameters θ, a transformation θ = T (ζ), based on,

e.g., Nataf or Rosenblatt isoprobabilistic transformation [45], can be introduced by reformulating the PDE

in Eq. (1) to be a one with standard Gaussian distributed parameter ζ. Take a one-dimensional random

12



parameter θ as an example. Let FΘ (θ) denote the CDF of θ, then let FΘ (θ) = Φ (ζ) with Φ(·) indicating

the standard Gaussian CDF, a inverse transformation can be obtained as θ = F−1
Θ [Φ (ζ)]. Substituting

the latter expression into Eq. (1), an equivalent PDE with standard Gaussian model parameters can be

obtained.

3.3.2. The simulation method for probabilistic analysis

For other probabilistic descriptors of y(x) except the expectation, as they are defined as nonlinear

projections of ya(θ,x), the resultant posterior probability distribution for these descriptors are not Gaussian,

making it generally intractable to derive the closed-form expressions for their posterior distribution. We

take the variance of y(x) as an example to illustrate a numerical simulation method for filling the above gap.

In our previous work [44], the posterior features of the model response variance, with the model response

function fitted by a GPR model, has been studied. It was concluded that, although the posterior distribution

is not Gaussian, the posterior mean and variance can be derived. One can to refer Ref. [44] for more details.

For the variance of model response, its posterior mean and variance can be formulated as:

µV y (x) = VΘ [µY a (θ,x)] + EΘ

[
σ2
Y a (θ,x)

]
, (24)

and

σ2
V y (x) = 2EΘEΘ′

[
cov2

Y a

[
(θ,x) ,

(
θ′,x

)]]
+ 4EΘEΘ′

[
µY a (θ,x)µY a

(
θ′,x

)
covY a

[
(θ,x) ,

(
θ′,x

)]]
, (25)

where EΘ [·] denotes the expectation operator with respect to θ. One can refer to Ref. [46] for theoretical

proves of the above two formulations. As the above expressions can not be deduced analytically, the MCS

method can be utilized to estimate them. With the MCS samples
{
θ(k)

}
(k = 1, · · · , Nθ) generated by, e.g.,

Latin-hypercube sampling, the corresponding estimators can be formulated as:

µ∗
V y (x) =

1

Nθ

Nθ∑
i=1

µY a

(
θ(i),x

)2

−

[
1

Nθ

Nθ∑
i=1

µY a

(
θ(i),x

)]2

+
1

Nθ

Nθ∑
i=1

σ2
Y a

(
θ(i),x

)
, (26)

and

σ2∗
V y (x) =

2

Nθ

Nθ∑
i=1

cov2
Y a

[(
θ
(i)
1 ,x

)
,
(
θ
(i)
2 ,x

)]
+

4

Nθ

Nθ∑
i=1

µY a

(
θ
(i)
1 ,x

)
µY a

(
θ
(i)
2 ,x

)
covY a

[(
θ
(i)
1 ,x

)
,
(
θ
(i)
2 ,x

)]
,

(27)

respectively.

For the cumulative distribution function of y(x) denoted by FY (y (x)), which can be approximated by

F̂Y (y (x)) =
∫
I [ŷa (θ,x) < y]fΘ (θ) dθ with I (·) being the indicator function, its posterior distribution

13



is also non-Gaussian, but the posterior mean and variance can be numerical evaluated by sampling from

fΘ (θ). For example, the posterior mean of F̂Y (y (x)) can be evaluated as:

ED

[
F̂Y (y (x))

]
=

∫
ED [I (ŷa (θ,x) < y (x))]fΘ (θ) dθ ≃ 1

Nθ

Nθ∑
k=1

Φ

y (x)− µY a

(
θ(k),x

)
σY a

(
θ(k),x

)
, (28)

with θ(k) (k = 1 · · ·Nθ) being a set of random samples generated following fΘ (θ).

4. Extension to Inverse Uncertainty Quantification

We then consider a more complex case where some values in ϑ1 are unknown or not precisely known

[47], due to, e.g., lack of measurement of the model parameters for specific test pieces. Here we assume that

the values of ϑ1 are perfectly identifiable. This is in accordance with the our previous setting that, for a

specific test piece, the model parameters have unknown-but-deterministic values. One notes that, there are

also more general inverse UQ problems where only a manifold where the parameters lay can be identified,

and this is outside the scope of the current paper.

The identification of these unknown parameter values is called inverse UQ or parameter identification.

In this section, the forward and inverse UQ problems will be solved in one step by extending the BASL

method. For simplicity of illustration, it is assumed that all the values of ϑ1 are unknown, and ϑ1 is regarded

as unknown parameters to be identified. In this case, the vector of the label values in D1, and the vector

Y (ϑ1) =
(
Y⊤
1 (ϑ1) ,YF⊤

2

)⊤, with ϑ1 as arguments, still follow a (N +M)-dimensional normal distribution

with the same mean vector and covariance as in Eq. (14), except that the matrices P and K are also functions

of the unknown vector ϑ1, which are rewritten as:

P (ϑ1) =

 p (ϑ1,X1)

pF (ϑ2,X2)

 and K (σ, ϑ1) =

KII (σ, ϑ1) KIF (σ, ϑ1)

K⊤
IF (σ, ϑ1) KFF (σ)

 . (29)

Thus, the likelihood function, with the hyperparameters β, σ2
0 and σ as well as the unknown values ϑ1 as

arguments, is reformulated as:

L
(
D|β, σ2

0 ,σ, ϑ1

)
=

1

(2π)
(N+M)/2 |σ2

0 K (σ, ϑ1)|
1/2

exp

(
− 1

2σ2
0

(Y −P (ϑ1)β)
⊤ K−1 (σ, ϑ1) (Y −P (ϑ1)β)

)
.

(30)

We still use the Maximum Likelihood Estimation (MLE) procedure to estimate the values of both(
β, σ2

0 ,σ
)

and ϑ1. One notes that ϑ1 is a vector of so-called deterministic-but-unknown parameters, and as

such is categorized as epistemically uncertain. The prior belief on the value of ϑ1 can be set to be the same

with the density of θ, and the objective can be set to maximize the product of the likelihood function and
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the prior density (denoted as f (ϑ1)) of ϑ1. While the values of ϑ1 are roughly measured and subjected to

imprecision, the prior density can also be set to be a one with support being the interval representing the

imprecision. Without of loss of generality, we assume that this density is of standard Gaussian type with

zero mean vector and identity covariance matrix. The objective function, proportional to the negative log

of the product of the likelihood function and the density function, is formulated as:

Lobj
(
β,σ2

0,σ, ϑ1

)
=

1

2σ2
0

(Y −P (ϑ1)β)
⊤ K−1 (σ, ϑ1) (Y −P (ϑ1)β) +

1

2
log

∣∣σ2
0K (σ, ϑ1)

∣∣
+

N∑
j=1

1

2
θ(j)θ(j)⊤

, (31)

where θ(j) is the j-th row of ϑ1. The second term of Eq. (31) can be interpreted as a L2 regularisation for

ϑ1, with which, the value of θ with higher density is preferred for ϑ1. Similar to Eq. (17), it can be obtained:

β̂ (σ, ϑ1) =
(
P⊤ (ϑ1)K−1 (σ, ϑ1)P (ϑ1)

)−1
P⊤ (ϑ1)K−1 (σ, ϑ1)Y

σ̂2
0 (σ, ϑ1) =

1

N
(Y −P (ϑ1)β)

⊤ K−1 (σ, ϑ1) (Y −P (ϑ1)β)
, (32)

by substituting which to Eq. (29), the objective function, as only σ and ϑ1 as arguments, is reformulated

as:

Lobj (σ, ϑ1) = Lobj
(
D|β̂ (σ, ϑ1) , σ̂

2
0 (σ, ϑ1) ,σ, ϑ1

)
. (33)

Similarly, the LBFGS algorithm is used for solving this optimisation problem. It should be noted that,

with the above procedure, a MLE estimate ϑ̂1 is also obtained for ϑ1 as a byproduct. In probabilistic UQ,

this is termed as inverse UQ, which aims at inferring the values or the probability distribution of the model

parameters, given the measurements of model response. This problem is mostly treated with Bayesian

model updating [35, 36]. With the developed method in this subsection, the forward and inverse problems

are combined to one problem, and solved in one step.

Besides, the values of ϑ1 can also be inferred in a full Bayesian scheme, following which the estimator

error can be measured by the posterior variance of ϑ1. By substituting the MLE estimations β̂, σ̂2
0 , and σ̂ of

the hyperparameters to Eq. (30), and then multiplying the result by the prior density of ϑ1, a non-normalized

posterior density for ϑ1 can be obtained, and the random samples following this posterior density can be

generated by either rejection sampling or MCMC algorithms [48]. The error analysis for the estimator of

ϑ1 is not the concern of this work, but may be of special interest when applying the BASL method to, e.g.,

structural health monitoring, thus we only show the MLE estimation of ϑ1 in the benchmark study.

The flowchart of the proposed BASL method for probabilistic analysis is given in Figure 2. The stochastic

PDE is first transformed to a deterministic PDE based on Lemma 1. Then, given the prior GP model
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assumption of solution of the deterministic PDE, the measurement data D1 and the PDE data D2, a

Bayesian statistical inference method is applied to derive the posterior distribution for the solution ya(θ,x)

of the deterministic PDE solution. Once, the solution of deterministic PDE is obtained, its probabilistic

descriptors can be computed by analytical or simulation method reported in Subsection 3.3. Further, the

above procedures of BASL can also be extended to identify the deterministic values of the random parameters

for each test piece, i.e., the inverse UQ problem, as reported in Section 4.

 

Figure 2: The flowchart of BASL for probabilistic analysis of stochastic PDE.

5. Benchmark study

In this section, several academic and engineering examples will be introduced for demonstrating the

proposed methods. We assume that the measurement data D1 can be measured in the initial/boundary

condition and/or the process, where the values of ϑ1 can be either known or unknown, leading to two cases

for each example. For simplicity, the expectation and variance of model response are considered for inference,
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where, the posterior features of the expectation of model response are derived with closed-form expressions,

for variance of response, its posterior features are evaluated by MCS. The benchmarks utilized in this section

possesses an analytical solution, and the reference values of expectation and variance are computed by MCS

with 5000 samples. For illustrating the prediction accuracy of all results, in this we report the posterior

confidence intervals (CIs) with the bounds being the posterior mean minus/plus two STDs for both response

expectation and variance.

5.1. A linear ODE with approximately linear response behaviour

Considering the following ordinary differential equation (ODE):

FX [y] (θ, x) := −θy (x) +
∂2y (x)

∂x2
= 2 cos (x+ 1) , (34)

where x ∈ [0, 1] is the spatial variable, and θ ∼ U (0.64, 1.44) is a uniformly distributed model parameter.

The labeled data is measured from two sample pieces with model parameter values being θ(1) = 0.9157 and

θ(2) = 1.1643 respectively.

We then consider the first case where the values of θ(1) and θ(2) are exactly known. We assume that the

measurement is conducted at three locations x = 0, 0.2, 0.4, 0.6, 0.8, and 1 for each sample piece. With the

above setting, we have six labeled training point in D1. To show the performance of the proposed method

against the sizes of the two groups of data, the BASL is implemented first by selecting four points from the

six measured points with the size of D2 varying from zero to eight, and then all the six measured points are

utilized for inference.

The results for the expectation of model response, including the posterior means and CIs, are shown in

Figure 3, together with the analytical solution (the red solid lines) for comparison. It is seen from Figure

3 that, with two measurements at the two end points, the resultant posterior variance always approach

zero, but the posterior mean shows large bias compared to the reference value between the two end points,

even when the number M of the PDE data increases, indicating that the global behavior of the expectation

of model response cannot be recovered with only the four measurement points. When eight measurement

points (N = 8) are utilized, it can be seen from Figure 3 that, with no PDE data, the results have been

improved compared to the case of N = 4, and with M = 4 and M = 8 PDE grid points being added, the

posterior mean of expectation shows perfect match with the reference values, and the posterior CIs are very

narrow. As revealed by the third row of Figure 3, the corresponding results are all improved compared with

the above two cases, indicating the correctness and robustness of the inference.
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Figure 3: Results for case 1 of the first toy example with different settings of training data size: posterior features of expectation

of model response, accompanied with the true curve for comparison.

Next, we check the results for the variance of response, which are reported in Figure 4. It can be seen

that, the reference value of variance approaches zero almost everywhere, and all posterior means of variance

inferred by the proposed method BASL with different size of measurement data and PDE data successfully

capture this kind of performance. Let us start from the first row of Figure 4 with N = 4, when M = 0 and

M = 4, the posterior variances are very small, it could probably be a coincidence as the global performance

is not catched entirely (revealed by the first row of Figure 4). With more measurement data added to the

training set, the posterior variance has been reduced, such as N = 12 with M = 8, indicating effectiveness

of the BASL method.

We then investigate the posterior feature of the auxiliary function ya (θ, x) with N = 12 and M = 8, which

is reported in Figure 5, together with the analytical results for comparison and the two groups of training

data. As can be seen, the posterior mean of ya (θ, x) match well with the true values with small posterior

Standard Deviations (STDs) almost anywhere except the end points of θ, demonstrating the effectiveness

of the proposed methods for inference of the auxiliary function in the augmented space.
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Figure 4: Results for case 1 of the first toy example with different settings of training data size: posterior features of variance

of model response, accompanied with the reference curve for comparison.

Figure 5: Results of the auxiliary function ya (θ, x) for case 1 of the first toy example with N = 12 and M = 8: posterior mean

accompanied with training data (top left), analytical result (top right), absolute error of posterior mean (left bottom), and the

posterior STandard Deviation (STD).
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Next, we consider the second case, where the same twelve measurement data is utilized, but the values

of the θ(1) and θ(2) are assumed to be unknown. The posterior results for the expectation and variance of

model response are then reported in Figure 6 with M = 4 and M = 8 PDE points respectively. It is shown

that the posterior mean of expectation and variance function matches well with the analytical results, but

the posterior variance is a little bit higher than the one for the first case (see the last row of Figure 3 and

Figure 4. This is absolutely reasonable as the information of θ in the training data D1 is missing, resulting

in higher uncertainty for the Bayesian inference of quantities related to such kind of information. A similar

phenomenon exists for the posterior features of the auxiliary function ya (θ, x), as shown by Figure 7.

For case 2, the byproducts, i.e., the MLE estimations of the θ(1) and θ(2) with sample size varying, are

summarized in Table 1. Obviously, the identified values in each of the three implementations match well

with the true values, indicating the effectiveness of the BASL method for identifying the unknown parameter

values for this example.

Table 1: Results of parameter identification for case 2 of the first toy example.

Data size MLE estimations True values

N = 12,M = 0 θ(1) = 0.9554, θ(2) = 1.1612

θ(1) = 0.9157, θ(2) = 1.1189N = 12,M = 4 θ(1) = 0.9152, θ(2) = 1.1589

N = 12,M = 8 θ(1) = 0.9130, θ(2) = 1.1612

Figure 6: Results of the expectation and variance of model response for case 2 of the first toy example, accompanied with the

analytical result for comparison.
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Figure 7: Posterior features of the auxiliary function ya (θ, x) for case 2 of the first toy example with N = 12 and M = 8,

accompanied with analytical results and training data.

5.2. A linear ODE with nonlinear response behaviour

The model response function of the first example shows approximately linear behaviour compared with

respect to the spatial variable. With this toy example, we consider the performance of the BASL method for

problems with nonlinear response function. A physical system described by the following ODE is of interest:

FX [y|θ] (x) := 121y (x) +
1

exp (θ)

∂y (x)

∂x
+

∂2y (x)

∂x2
= 11 cos (11x+ 2) , (35)

where x ∈ [0, 0.5] is a spatial variable, and θ is a random model parameter following standard normal

distribution. For the labeled measurement data D1, it is assumed that the measurement is conducted on

nine sample pieces with the values of parameters being θ = (−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2).

For case 1, the results of the expectation and variance of model response function with varying sizes for

both groups of training data are shown in Figure 8 and Figure 9, together with the analytical solutions for

comparison. One notes that the analytical solution is generated by applying specific boundary conditions,

which are also included in the measurement labeled data D1. We first check the results for the expectation of

response, which are shown in Figure 8. It is seen from the first column of Figure 8 that, with no PDE points

added, the inferred posterior features of the expectation possess large variance, indicating the trained GPR

model fails to capture the behavior of the response expectation. When M = 8 PDE grid points, generated

with LHS, are added, as can be seen from the second column of Figure 8, the prediction accuracy has been

comprehensively improved. When M = 15 PDE points are added, the posterior variance is sufficiently small,

21



and the posterior mean matches well with the analytical solution. The results for the response variance are

reported in Figure 9. As can be seen, in terms of estimation accuracy, these results show similar features

with those for the response expectation, and thus we can then conclude that the BALS method performs

well for the response variance of this example.

Figure 8: Posterior features of the expectation of the response function for case 1 of the second toy example.

Figure 9: Posterior features of the response variance for case 1 of the second toy example.
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The posterior features of the auxiliary function ya (θ, x) inferred with N = 45 and M = 15 are then

displayed in Figure 10, together with the analytical solutions (generated with the same boundary conditions

involved in D1) and the two groups of training data. As shown by the two bottom panels, the gap between

the posterior mean and the analytical solution is small almost anywhere, and the posterior STDs are also

small in almost all areas bounded by θ ∈ [−2, 2] and x ∈ [0, 1], revealing the correctness and robustness

of the BASL method for learning the auxiliary function despite the non-linearity of the model response

function.

Figure 10: Posterior features of the auxiliary function ya (θ, x) for case 1 of the second toy example.

We then implement the BASL method to case 2 where the parameters values θ(1) ∼ θ(9) are unknown.

It is assumed that for each sample piece, five points at specific locations are measured, resulting in totally

N = 45 measurement points for D1. The results with M = 0, M = 8 and M = 15 are then shown in

Figure 11. As can bee seen, given no PDE points, the inferred results for both response expectation and

variance show big difference with the reference solutions, while PDE grid points are added, the results

show much better agreement with the analytical solution. As shown by the last column of Figure 11, with

N = 45 measurement points and M = 15 PDE points, the inferred results for both response expectation

and variance are of high accuracy and high robustness. The results of the auxiliary function ya (θ, x) for

case 2 are reported in Figure 12, which also show good agreement with the analytical solutions with very

small posterior variation.

For case 2, the MLE estimates of the parameters values for the nine test pieces are displayed in Table

2. As shown, with N = 45 measurement points and M = 15 PDE points, the accuracy of the estimates is
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acceptable compared with the reference values.

Table 2: Results of parameter identification for case 2 of the second toy example.

Data size MLE estimations

N = 45,M = 0 θ∗ = (−2.1812,−1.1661,−1.1051,−0.6124, 0.0887, 0.7370, 1.2637, 2.4763, 1.7374)

N = 45,M = 8 θ∗ = (−1.9839,−1.5611,−1.1866,−0.6117, 0.1778, 0.6251, 0.9655, 1.3044, 2.0621)

N = 45,M = 15 θ∗ = (−1.9765,−1.4706,−1.0943,−0.5493, 0.0591, 0.4298, 0.8831, 1.5283, 2.0218)

True value θ = (−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2)

Figure 11: Posterior features of the variance of the response function for case 2 of the second toy example.
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Figure 12: Posterior features of the auxiliary function ya (θ, x) for case 2 of the second toy example.

5.3. A heat transfer problem

Consider the heat transfer process on a one-dimensional bar with length l (m), let x (m) and t (s) denote

the spatial and temporal variables respectively, the governing PDE is formulated as:

∂y (x, t)

∂t
− a2

∂2y (x, t)

∂x2
= f, f = x (l − x) =

f0
c

(36)

, with initial condition y (0, t) = y (1, t) = 0 for t > 0, and boundary condition y (x, 0) = 0 for 0 ⩽ x ⩽ l,

where a = k
cρ with k, c and ρ being the heat conductivity coefficient, specific heat capacity, and material

density respectively, f0 = cx (l − x) is the intensity of heating source which varies with x. The density ρ

(kg/m3), specific heat capacity c (J/ (kg ·K)) and heat conductivity coefficient k (W/ (m ·K)) are random

model parameters follow log-normal distribution, i.e., ln ρ ∼ N
(
9.0936, 0.01802

)
, ln c ∼ N

(
5.8732, 0.40012

)
and ln k ∼ N

(
5.9198, 0.38532

)
. The closed-form solution of this problem can be analytically generated using

Fourier series. We consider the expected temperature in Celsius degree of the bar within time period from

zero to 60 seconds.

The labeled data D1 is generated by measurement on five test pieces, for each of which, at seven spatio-

temporal points. The values of the random parameters for these two pieces are set to be as displayed in

Table 3. With the above setting, N = 35 labeled data are obtained for D1. With M = 20 PDE points

being added, the inferred posterior features of the expectation Ey (x, t) and variance Vy (x, t) generated by

BASL procedure are shown in Figure 13 and and Figure 14 respectively, together with the projections of

the training data in the spatio-temporal space, and the reference solution for comparison. By checking the
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absolute error between the posterior mean and the reference value in the left bottom panel of Figure 13, it

is seen that the result is of high accuracy across almost the full spatio-temporal space. It is also seen from

the right bottom panel that STDs are also very small across the space, indicating the robustness and high

credibility of the inference results. As can be seen from Figure 14, the response variance is also estimated

with high accuracy.

Figure 13: Posterior features of the expectation Ey (x, t) for case 1 of the heat transfer problem.

Figure 14: Posterior features of the variance Vy (x, t) for case 1 of the heat transfer problem.
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We then consider case 2 where all the values of the three parameters for each of the five test pieces

are unknown. The results for the expectation and variance of model response are shown in Figure 15 and

Figure 16, and the byproducts, i.e., the results for parameter identification, are displayed in Table 3 in

comparison with the reference values. Comparing Figure 15 with Figure 13, and Figure 16 with Figure 14,

it is found that, with the same training data, the posterior features for case 2 show higher errors compared

with those for case 1, as revealed by the absolute errors and posterior STDs. This phenomenon is the same

as that in the last two examples, and still due to the loss of parameters information in the training data

D1. However, the results for case 2 are still of high credibility and high robustness. Checking Table 3, it is

seen that, except ρ(1), all the other three parameter values are accurately evaluated by MLE. As for ρ(1),

the estimation shows higher error, but this does not bring much negative effect for probabilistic analysis of

model response, as indicated by the results in Figure 15 and Figure 16.

Table 3: Results of parameter identification for case 2 of heat transfer problem.

Parameters MLE estimations True values

θ(1) =
(
ρ(1), c(1), k(1)

)
(9020.5324, 125.1419, 293.8622) (9029.1307, 124.1629, 283.1316)

θ(2) =
(
ρ(2), c(2), k(2)

)
(8830.6821, 456.3920, 334.5399) (8842.8799, 460.2669, 323.8227)

θ(3) =
(
ρ(2), c(2), k(2)

)
(9121.4572, 339.4032, 375.7894) (8919.0498, 348.2860, 367.4393)

θ(4) =
(
ρ(2), c(2), k(2)

)
(8652.8938, 336.6059, 378.4173) (9136.8939, 341.5234, 389.8148)

θ(5) =
(
ρ(2), c(2), k(2)

)
(8932.1081, 285.2905, 456.9316) (8658.0533, 285.8450, 444.4482)
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Figure 15: Results of the expectation Ey (x, t) of model response for case 2 of the heat transfer problem.

Figure 16: Results of the variance Vy (x, t) of model response for case 2 of the heat transfer problem.
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5.4. Deflection prediction of a plate under uniform pressure load

We then apply the BASL procedure to the deflection prediction of a plate subjected to uniform pressure,

which is adapted from the Matlab PDE toolbox. The governing PDE of this problem is formulated as:

∇2
(
D∇2

)
w = −p (37)

, where w indicates the transverse deflection of the plate, p implies the applied pressure load, and D refer

to the bending stiffness of the plate and can be calculated by D = Eh3/
(
12

(
1− ν2

))
, with E being the

modulus of elasticity, ν being the Poisson’s ratio, and h being the plate thickness. The plate is assumed to

be square with the edge length being 10, and all the four edges clamped. The boundary condition for the

clamped edges are then set to be w = 0 and w′ = 0 with w′ being the gradient of w in the direction normal

to the boundary. All the model parameters and the load are assumed to be deterministic in the Matlab PDE

toolbox, and here, we assume that the three model parameters E, ν and h as well as the uniform pressure p

are all random variables with probability distribution stated in Table 4. The aim of the investigation is then

to estimate the expected deflection EE,ν,h,p [w (x, y, E, ν, h, p)] and its variance VE,ν,h,p [w (x, y, E, ν, h, p)] of

the plate given the four random inputs. To validate the results, the reference solution is computed by the

non-intrusive scheme combining the MCS and FEM analysis, and to ensure the correctness of the reference

solution, the MCS sample size is set to be 105.

We use two test pieces to generate the measurement data D1, and for each piece, 8 points are generated

on the boundary edges with response values known to be zero, and the other five internal training points are

generated by measurement, as partially indicated by the pink star points in the first panel of Figure 17 and

Figure 18. The second group of data, i.e., the PDE data D2 consisting of 16 points, are generated by LHS

design, as shown by the black solid dots in the first panel of Figure 17 and Figure 18. One notes that, for

this example, one more source of information available for Bayesian learning is that, on the four boundary

edges, the gradients of the response w in the direction normal to the boundary equal to zero. We pick 8

training points from such kind of boundary condition to form the third group of training data D3, as shown

by the blue solid blocks in the first panel of Figure 17 and Figure 18. For each point in D3, the label is that

the gradient (normal to the boundary) equals zero.

We then consider the first case where the parameter values for the two test pieces are exactly known.

Based on the Gaussian prior assumption on the response function w (x, y, E, ν, h, p), the response values

contained in D1, D2 and D3 jointly follow multivariate Gaussian distribution, based on which the hyper-

parameters of the GPR model are evaluated with the MLE method. The resultant posterior mean and STD

of the expected deflection EE,ν,h,p [w (x, y, E, ν, h, p)] and its variance VE,ν,h,p [w (x, y, E, ν, h, p)] of the plate

are then reported in the first and fourth panels of Figure 17 and Figure 18 respectively, together with the

reference solution in the top right panel, and the corresponding absolute difference between the posterior
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mean prediction and the reference solution in the bottom left panel. As can be seen from Figure 17, the

relative absolution error of the BASL estimation in most area is less than 10%, and in the central region

around x = y = 5 which is of special concern, the absolute error is less than 5%, and the posterior COV

is also less than 5%, indicating the high accuracy and high robustness of the BASL method for case 1 of

this example. Comparing Figure 18 with 17, it can be found that the estimation accuracy for the response

variance is not as good as that for the response expectation, but is acceptable. If the accuracy for variance

needs to be further improved, one can add more points (either measurement points or PDe points) to achieve

this goal.

Table 4: Distribution information of the input variables of the plate model.

Input variables Distribution type Distribution parameters units

E Lognormal µ = 106, σ = 2× 104 Pa

ν Lognormal µ = 0.3, σ = 0.006 −

h Uniform [0.09, 0.11] m

p Uniform [1.95, 2.05] N/m2

Figure 17: Results of the expected deflection EE,ν,h,p [w (x, y, E, ν, h, p)] for case 1 of the plate model.

We then consider case 2 where the exact values of the two parameters E and ν for the two test pieces
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Figure 18: Results of the deflection variance VE,ν,h,p [w (x, y, E, ν, h, p)] for case 1 of the plate model.

are listed in the last column of Table 5, but not known, and need also to be inferred during the probabilistic

analysis process. The resultant posterior features for the expected deflection are then reported in Figure 19

and Figure 20, together with the reference solution as well as the absolute difference between the posterior

mean prediction and reference solution. As can be seen, the posterior features show similar characteristics

as those for case 1, demonstrating the effectiveness of the BASL method for case 2 of this example. The

MLE estimation of the parameters values, as byproducts of BASL analysis, are also reported in the second

column of Table 5, which show good agreement with the true values reported in the last column. With

the above analysis, it can be concluded that both the probabilistic analysis and parameter identification

problems have been properly addressed with only one run of BASL.

Table 5: Results of parameter identification for case 2 of the plate model.

Parameters MLE estimations True values

θ(1) =
(
E(1), ν(1)

)
(9.8000× 105, 0.3060) (9.8104× 105, 0.3056)

θ(2) =
(
E(2), ν(2)

)
(1.0098× 106, 0.2964) (1.0077× 106, 0.2962)

6. Conclusions and prospects

A one-step Bayesian machine learning method, termed as BASL, has been devised for probabilistic

response analysis of physical models subjected to random inputs. The BASL method combines the labeled

measurement data (generated by measurement or high-fidelity computational models) and the PDE data
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Figure 19: Results of the expected deflection EE,ν,h,p [w (x, y, E, ν, h, p)] for case 2 of the plate model.

(with spatio-temporal points generated randomly or by active design) for inference. The developed method

is devised by first reformulating the PDE with random parameters as an equivalent deterministic PDE

based on the idea of augmented space, posing a Gaussian process prior assumption on the auxiliary function

ya (θ,x) with both the spatio-temporal variables x and random model parameters θ as arguments, and

then inferring the hyper-parameters of the Gaussian process model by maximising the likelihood function

established based on both the measurement and PDE data. With the above procedures, a posterior GPR

model ŷa (θ,x) can be generated, based on which, the posterior features for all probabilistic descriptors

of model response can be derived. The BASL method is further extended to case 2, where some values

of the model parameters of the test pieces used for measurement are unknown or not precisely known,

resulting in the necessity for parameter identification. The extension enables the probabilistic analysis and

parameters identification to be realized in one step. Finally, with the expectation and variance of model

response as examples, the results of the two toy examples and two real-world physical systems demonstrate

the effectiveness of the proposed methods for both cases.

The BASL method brings new opportunities for promoting the probabilistic analysis of physical model

responses in a more efficient way of fusing multi-source information. Compared to the traditional double-

loop and non-intrusive scheme, BASL is more numerically efficient as its main cost is caused by the MLE

procedure for optimizing the hyper-parameters of the GPR model. It also allows to solve the “forward” and

“backward” UQ problems in one step, which is a significant advantage over the traditional scheme. Another

strength is that it merges two types of data for inference. Besides, it also brings opportunity for other types

of applications. For example, developing active design strategy for generating both sources of training data
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Figure 20: Results of the variance of deflection VE,ν,h,p [w (x, y, E, ν, h, p)] for case 2 of the plate model.

can be appealing. For the labeled data D1, if it is generated from measurement, active design of the training

points can be instructive for placing measurement sensors; if it is generated by calling expensive high-fidelity

computational models, the number of model calls can be reduced with active design. For the PDE data

D2, active design can also be of value for reducing the number of training points especially when only some

partial response information (e.g., the maximum stress instead of the full stress field) is of interest.

It should be noted that, given the development in this work, the BASL does have some limitations.

First, it is not suitable for problems with nonlinear PDEs; second, it is not applicable to problems with very

high-dimensional uncertain variables due to the limitation of the GPR model in high-dimensional space;

third, the method may not applicable to very large-scale problems with varying local behaviors. All these

limitations will be specifically treated in our future work. Despite these limitations, the proposed method

opens a door for performing “forward” and “backward” UQ in one step, with the combination of physical

equations and measurement data. This scheme is completely different from the traditional double-loop and

non-intrusive scheme.
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