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Abstract

Design optimization is common practice in engineering where the goal is to find the optimal
combination of design parameters under prescribed constraints. However, some parameters may be
impossible to define in a deterministic sense and may only be known with significant uncertainty.
This limitation has led to an alternative definition of design optimality called robustness, where
attention is payed to the variation around the optimal performance. Straightforward methods to
solve robust optimization problems are usually limited in two ways: (1) the computation burden
of the so-called ‘double-loop’ optimization problem hinders application to realistic models, and
(2) the formalisms are typically limited to probabilistic descriptions of the uncertainty. This
paper presents a formulation of the robust optimization problem under interval uncertainty and
proposes a new approach taking advantage of the so-called adaptive Gaussian processes to solve it
efficiently. The proposed surrogate approach mitigates the computational burden of the resolution,
and a dedicated learning function is proposed to ensure iterative minimization of the surrogate
modelling error and convergence towards the robust optimum. The algorithm uses a stopping
criterion related to the level of confidence associated with the optimality of the solution. The
approach is illustrated on six analytical and engineering benchmark problems.

Keywords: robust optimisation, interval analysis, Gaussian Process modeling, efficient global
optimisation

1. Introduction1

Current engineering practice involves the development and design of products that span an2

ever growing field of applications, while the performance of these products should also be guaran-3

teed under a wide range of circumstances. In other words, the performance of a product should4

be only minimally affected by, e.g., load variations, changing environments, boundary conditions.5

The idea of products and processes that are insensitive to variations, e.g., in manufacturing, was6

pioneered by Genichi Taguchi who first applied his methodology on electrical circuits [1, 2]. How-7

ever, the description of these variations, including the details about their underlying probability8

density functions (PDF’s), is in general a challenging task. The main reasons for this are that9

the corresponding quantities are inherently variable, e.g. wind loads, there is incomplete knowl-10

edge about the quantity, e.g. direct measurement is challenging, or the designer is faced with a11

combination of both [3]. Additionally, in an early design stage, where the fundamental design12

decisions are made, only rough estimations of the quantities influencing the performance might13
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exists. Historically, in engineering practice uncertainties are covered by safety factors. Although14

this approach is very straightforward, these safety factors will not provide information about the15

actual conservatism in the design. Therefore, numerous techniques for uncertainty quantification16

have been introduced during the last decades to account for these uncertainties. Typically, these17

techniques are categorised as probabilistic and possibilistic approaches [4]. The latter includes18

techniques as: interval [5, 6], fuzzy sets [7], information gap methods [8], and imprecise prob-19

abilities [9, 10]. In general, probabilistic methods are best suited for aleatory uncertainties as20

they describe non-determinism via random variables defined by their joint probability distribu-21

tions, while possibilistic approaches are usually well suited to cover both aleatory and epistemic22

uncertainties.23

In addition to the variety of possibilistic methods, different definitions of the robustness are24

proposed in literature; the relevance of which depends on, e.g., the application and the available25

information. For a review of different robustness measures under probabilistic uncertainty the26

reader is referred to the work in [11, 12, 13]. In the context of possibilistic uncertainties, robustness27

definitions have been introduced in the framework of information gap theory [14, 15], convex28

models [16], and for fuzzy sets [17]. The definitions in these works are mainly based on two29

criteria: the first is minimising the variation of the output [17], and the second is to optimise30

simultaneously both the output (e.g. performance) and its variance around the optimal value [18,31

19, 20]. In addition to the definition of robustness, a range of methods have been developed for32

its evaluation, with sampling strategies for most mixed uncertainty problems [17, 21], forward33

or inverse propagation [1], meta-model assisted methods [22], and fully decoupled methods for34

reliability based design optimisation [23].35

This work focuses on developing a meta-model assisted method to determine the robustness36

at different design points. The meta-model that is used is a Gaussian Process (GP) model also37

known as Kriging [24, 25], which is used in this contex as an emulator of the physical model. After38

calibration of the GP-model on a set of evaluated points, i.e., Design of Experiments (DOE),39

the model is fast to evaluate. Based on this easy to evaluate GP model, fast approximations40

can be made about the underlying problem, i.e., numerical model, and this approximation can41

be improved by increasing the calibration points in the DOE. The well-known framework of42

Efficient Global Optimisation (EGO) [26] successfully exploits the GP mean and variance to43

select additional calibration points and improve on the predicted minimum. In the specific case44

of interval uncertainties, the GP is used to estimate the interval width in un-sampled regions,45

including the confidence bounds about this estimate. Hence, the GP estimate can be used in46

place of the actual model for the optimization problem. The estimation will be affected by a47

modeling error but can be bounded by a confidence interval. An improvement function is proposed48

that finds the next point to evaluate as a compromise between its estimated robustness and the49

uncertainty regarding its estimation (high GP variance). The improvement function in this paper50

is based on the work of M. De Munck et al. [27]. However, in this work some adaptions are51

proposed to the improvement function to efficiently perform the robust optimisation. To solve the52

robustness optimisation efficiently two improvement functions are combined: first an improvement53

of the interval width throughout the domain and second an improvement towards the most robust54

design. The combination of these two improvement functions provides a powerful improvement55

function that refines the GP model both globally and locally around the most robust design point.56

The proposed Robustness under Lack-of-Knowledge method is abbreviated as RuLoK.57

This paper is structured as follows: Section 2 describes the terminology and notation that is58

used. In section 3 the robustness measure under interval uncertainty is introduced, while Section59

4 provides the details towards the Gaussian Process model that is used. Section 5 describes the60
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adaptive sampling strategy that is used to calibrate the Gaussian process and the performance of61

this method is demonstrated on a number of cases in Section 6. Finally, in section 7 a discussion62

about the results is held before conclusions are drawn in Section 8.63

2. Terminology and notation64

In this paper, a vector is indicated as lower-case boldface characters x, matrices are expressed as65

upper-case boldface characters X and interval parameters are indicated using apex I: xI . Further,66

a distinction is made between design parameters and uncertain parameters.67

Design parameters: z ∈ Z ⊆ Rnz with Z the set of admissible designs and nz ∈ N, are68

controlled and part of the design problem, e.g., plate thickness, hole diameters.69

Uncertain parameters: x ∈ xI ⊆ IRnx are uncontrollable, purely epistemic parameters with70

nz ∈ N, typically modeled by intervals that represent, e.g., wind loads, electrical resistance,71

transmission parameters. The uncertain parameter vector x is represented as an interval72

vector xI = [xI1, x
I
2, . . . , x

I
nx ], with xIi , i, . . . , nx the ith parameter interval. An interval is73

considered closed when both the upper and lower bounds are a member of the interval. The74

domain of a real-valued interval is denoted as IR.75

3. Robustness under lack-of-knowledge uncertainty76

The uncertainty considered in this work is purely epistemic in nature and results from a lack-77

of-knowledge about the exact value of the parameter. In practice, this kind of uncertainty is78

encountered when the best estimate of a parameter is limited to a range of possible values, even79

when its based on all available data and/or knowledge. The real value of the quantity, be it80

deterministic or variable, is in this case represented by the bounds between which it is deemed to81

lie. Precisely, an interval is defined as:82

xI = [x; x] = {x ∈ Rnx | x ≤ x ≤ x}, (1)

where x denotes the lower bound and x denotes the upper bound. In addition, an interval can be83

represented by the centre point x̂ = x+x
2

and radius ∆x = x−x
2

of the interval.84

3.1. Propagation of interval valued uncertainty85

In this work the model m is a continuous function on R, which is parameterised by a parameter86

vector θθθ. The parameter vector consists out of two parts θθθ = {x, z}, with x the uncertain87

parameters and z the design parameters. The number of elements in the parameter vector are88

indicated by nθθθ = nx+nz. By solving the model m the parameter vector θθθ is transformed Rnθθθ 7→ R89

to a scalar response quantity y ∈ Y ⊂ R, with the set of admissible model parameters Y, defined90

as:91

m : y = m(θθθ). (2)

The main goal of the interval analysis is to identify the extremes of the set of system responses92

ỹ. Since finding the set ỹ is in general computationally intractable, the exact solution set is often93

approximated by a realisation set ỹs defined as [28]:94

ỹs =
{
yj | yj = m(θθθj); xj ∈ xI ; j = 1, . . . , nq

}
. (3)
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The set ỹs is typically constructed by performing nq deterministic evaluations yj = m(θθθj) of the95

numerical model, with yj the response of the jth solution. For each of these nq solutions, a sample96

is taken within the range of the interval xI . The main challenge herein is choosing xj such that97

ỹs is a accurate approximation of ỹ. A first way to obtain such approximation is to follow an98

optimisation approach. Here, the exact solution set ỹ is approximated by an accurate interval for99

the one dimensional case. For the higher dimensional case a conservative approximation is made100

about the hyper-cubic solution set in higher dimensions yI = [yI1 , y
I
2 , . . . , y

I
ny ], with ỹ ⊆ yI . The101

corresponding optimisation problem is defined as:102

y = min
x∈xI

m(θθθ),

y = max
x∈xI

m(θθθ),
(4)

where yI = [y; y] is the solution interval. When a global minimum or maximum is found through103

optimisation, the exact output set bounds are obtained. However, it should be noted that the104

behaviour of the goal function with respect to the uncertain parameters is unpredictable in the105

case of strongly non-linear problems, which makes the computational effort highly problem de-106

pendent [29].107

There is a special case for monotonic problems, where the vertices of the hyper-cubic input108

space are sampled, called the vertex method, introduced by Dong and Shah [30]. Following this109

method the output set is determined exactly within 2nx evaluations. However, the underlying110

assumption is that the model output behaves monotonically with respect to the input parameters,111

which is not true in general. Other approaches are intrusive methods to solve interval problems,112

which have been proposed in [31], and interval arithmetic methods as proposed in [32].113

3.2. Defining robustness in the case of interval valued uncertainty114

As mentioned in the introduction, multiple definitions of robustness exist, depending on the115

context and application. In this work, it is proposed to define robustness as the design with mini-116

mum variation in the performance given a well-defined input uncertainty. Following this definition,117

robustness can be defined as the ratio of input uncertainty to the output uncertainty. However,118

quantifying this uncertainty is non-trivial in general. Therefore, the focus lies on the interval ra-119

dius as a measure for the uncertainty. In this way, this robustness measure can be regarded as an120

interval counterpart to robustness measures that minimize the variance of the performance. For a121

case with one interval valued input parameter, the input and output uncertainty are represented122

respectively by the scalar interval radius ∆x and the associated scalar output interval radius ∆y.123

The output radius is a function of the design parameter z and should be evaluated for multiple124

designs z ∈ Z. The robustness for this case is defined as:125

R(z) =
∆x

∆y(z)
=

x− x
y(z)− y(z)

, (5)

126

Since ∆x is independent of the design z, finding the most robust design z∗ is reformulated to127

the minimisation of the output uncertainty, which can be evaluated for multidimensional cases,128

defined by:129

z∗ = argmin
z∈Z

[y − y] = argmin
z∈Z

[max
x∈xI

m(θθθ)− min
x∈xI

m(θθθ)]. (6)

Figure 1 illustrates the proposed robustness measure R for a point z∗ and shows the associated130

upper bound y(z) and lower bound y(z), in red and blue. The point z∗ is also the point with131
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the maximum robustness R, indicated in orange. As suggested from Equation (6) finding the132

robustness of just one design involves a global optimisation to construct the conservative approx-133

imation of the solution set ỹ, which should be repeated for each of the design points in Z. Thus,134

crude optimisation of the problem described in Equation (6) involves two other optimisation prob-135

lems: first an optimisation that actively looks for the upper-bound y, and second, an optimisation136

that searches the lower bound y, both for the same design z. Therefore, crude optimisation is a137

time consuming effort, as this would involve a large number of evaluations of the model m under138

consideration. In an attempt to alleviate this problem, the next section discusses the use of a139

well-designed Gaussian process model G that could be used in place of the model m.140

y

zi

y(zi)

y(zi)

z∗i

R(z∗i )

Figure 1: Illustration of the optimal robust design points R(z∗) (orange) for the upper and lower bounds y and y
for a specific design parameter zi.

4. Gaussian process model for robustness under interval uncertainty141

This section provides a short theoretical summary of Gaussian Process (GP) models or Krig-142

ing [24][33], an introduction with examples is also available in [34]. A GP model is a stochastic143

meta-model that assumes m(θθθ) to be a realisation of a Gaussian process, which is defined as [35]:144

G = βT f(α) + σ2z(x,Ω), (7)

with the first term being a deterministic regression model with f(α) = {f1(α), . . . , fk(α)} a set145

of arbitrary basis functions, and βT a vector of regression coefficients. The second term consists146

of a zero-mean, unit variance, stationary Gaussian process z(x,Ω) scaled with a constant vari-147

ance of the Gaussian process σ2. The underlying probability space of the Gaussian process is148

represented by Ω and the correlation between two points r and r′ is defined by the covariance149

function K(r, r′, lc), with lc the characteristic length or other hyper-parameters. In general, one150

refers to the covariance matrix K where the covariance is determined for all points in a domain.151

The reader may refer to [36] for details about different covariance functions in Gaussian processes.152

In this paper two well-known covariance functions are used: The Gaussian kernel (also known as153

squared-exponential covariance function) and the Matérn 5
2

kernel.154
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The GP-model is then calibrated on an initial design of experiments xDOE obtained from, i.e.,155

Latin hyper-cube sampling and their observed results yDOE. Conditional on the observed data156

the mean and the variance of the Gaussian process can be estimated [35]:157

µgp = f(x)T β̂ + r(x)TK−1(yDOE − Fβ̂), (8)

σ2
gp = σ2

(
1− rT (x) + uT (x)(FTK−1F)−1u(x)

)
, (9)

with F the matrix of the observed trend, r(x) a vector of cross-correlations between predicted158

points x and observed points, and with:159

β̂ = (FTK−1F)−1FTK−1yDOE, (10)

the general least-squares estimate of β and160

u(x) = FTK−1r(x)− f(x). (11)

Equations (8) and (9) are referred to as the mean and variance of the GP predictor, respectively.161

The GP that is used in this work is an interpolating GP, which means that the prediction of the162

variance at an experimental point x ∈ xDOE tends to zero.163

4.1. Predicting interval bounds with a Gaussian Process model164

In this work a GP-model is used to predict the output of the model m with as input θθθ the set165

of uncertain and design parameters. To this end, µgp is considered to be the best GP-estimate166

and σgp is the confidence over this estimate. For the specific application of estimating an output167

interval based on the GP-model the main interest goes to the maximum and the minimum response168

over the complete range of uncertainty. Therefore, the bounds of the response are estimated by:169

ygp(z) = µgp(z) = max
x∈xI

µgp(θθθ), (12)

y
gp

(z) = µ
gp

(z) = min
x∈xI

µgp(θθθ). (13)

A similar approach can be taken to identify the maximum and minimum of the confidence bounds:170

δµ+σ(z) = max
x∈xI

(µgp(θθθ) + cσgp(θθθ)), (14)

δµ+σ(z) = min
x∈xI

(µgp(θθθ) + cσgp(θθθ)), (15)

δµ−σ(z) = max
x∈xI

(µgp(θθθ)− cσgp(θθθ)), (16)

δµ−σ(z) = min
x∈xI

(µgp(θθθ)− cσgp(θθθ)), (17)

with cσ confidence bounds. The bounds of the response are estimated for each design point z,171

based on Equations (12-17). Figure 2a illustrates a simplification of the GP-model output for172

a single uncertain parameter x ∈ xI and a single design variable z ∈ Z. The upper bound of173

the output interval is determined by Eq. (12), indicated by the red line, and using Eq. (13) the174

lower bound is found, indicated by the blue line. In addition, the bounds based on the mean plus175

variance µgp + cσgp are predicted by Equations (14) and (15), indicated by the red dotted and176

dashed lines. Similarly, the bounds based on the mean minus the variance µgp − cσgp are given177

by Equations (16) and (17) are indicated by the blue dotted and dashed lines. Moreover, two178

designs z∗gp and zpotgp are shown, illustrating the predicted behaviour along the uncertain parameter179
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(a) Illustration of the Gaussian Prosses model spanning the uncertain x, design z and output y space, with the GP mean prediction

µgp in black and the µ± cσ CI in red and blue surfaces; Two potential design points z∗gp and zpotgp are shown as a slice.
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(b) Illustration of the (z)-(y) perspective where the Confidence bounds around the upper-bound ygp(z) and lower-bound y
gp

(z) are

given by the red and blue area’s; and the two designs z∗gp and zpotgp show the difference in mean bound prediction ∆ygp(z∗gp)and the

lowest CI prediction ∆δgp(zpotgp ) of the bounds

Figure 2: Illustration of the domain to determine the robustness based on the GP-model predictions
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x. Note that in general, for one specific design, e.g., z∗gp, the location of x for the predicted upper180

bound ygp(z
∗
gp) and the location of x of the maximum of the CI for the upper bound δµ+σ are181

different.182

In the second illustration, Figure 2b, the estimated interval bounds are shown by the red and183

blue lines, with the CI about these estimates indicated by the red area for the upper bound, and184

blue area for the lower bound. Note that the red area is drawn between the upper bound of185

the minimum prediction and the upper bound of the maximum prediction by the GP-model. In186

addition, two designs z∗gp = 2 and zpotgp = 4 are highlighted to illustrate the robustness measure.187

The robustness in Eq. (5) can be calculated based on these bounds given by the GP-model.188

Specifically, for the design z∗gp the robustness is given by:189

R(z∗gp) =
x− x

y(z∗gp)− y(z∗gp)
(18)

with y(z∗gp) − y(z∗gp) the estimated interval width, which corresponds to 2∆y(z∗gp). Moreover,190

based on the CI it is also possible to estimate the potential interval width for zpotgp , which would191

potentially have a higher robustness. To make this estimate the confidence bounds about the192

mean prediction are used:193

R(zpotgp ) =
x− x

δµ−σ(zpotgp )− δµ+σ(zpotgp )
(19)

with δµ−σ(zpotgp )− δµ+σ(zpotgp ) the estimated interval width, which corresponds to 2∆δgp(z
pot
gp ). The194

difference between these two robustness measures is that R(z∗gp) is estimated on the mean and the195

potential robustness R(zpotgp ) is estimated using the CI. Hence, the learning function introduced196

in Section 5 will exploit this difference, to search for designs with a potential higher robustness.197

Note that changing the constant c in Equations (14) to (17) from, e.g., 2σ to 3σ will enlarge the198

distance between red and blue surfaces.199

In general, identifying the minimum and maximum as stated in Equations (12) until (17) is200

not trivial and involves numerous calls to the GP model. In addition, the mean and variance of201

the GP model are hard to use for optimisation as in the general case the problem is non-convex.202

Therefore, using a GP model is challenging for global optimisation methods. However, a number203

of successful strategies have been proposed to efficiently optimise such problems e.g., using branch204

and bound algorithms as proposed in [26]. In this work, the continuous problem is discretised205

over a grid with a fixed number of points. In that case, the complex problem of identifying the206

maximum and minimum reduces to identifying the highest value in a set of candidates. Note207

that this only works efficiently with a low number of parameters, as the computational burden208

increases exponentially O(nd) with the d-dimensions of the problem for a full grid. In addition,209

an associated disadvantage is the finite accuracy achievable by the discretisation of the problem,210

with a finer discretisation causing a higher computational burden. The effects of discretisation211

can be mitigated in low dimensional problems by using a high number of grid points and changing212

the number of points to check the dependency of the solution on the discretisation.213

5. Adaptive refinement of the Gaussian process model214

To identify the robust design point in a limited number of evaluations of the model m the215

GP-model is adaptively refined with the specific goal of identifying the most robust design point.216

Therefore, the GP-model itself is used to identify regions of interest based on two criteria re-217

lated to the famous compromise between exploration (low prediction confidence) and exploitation218
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(identified areas of possible optimum). The learning function to achieve this is described in this219

section, starting first with an introduction of the maximum improvement function.220

5.1. Maximum improvement function221

The learning function introduced in this paper is based on the maximum improvement function,222

which was introduced in [27]. Before applying this idea to the robustness problem as stated in223

the previous section, the general idea is briefly summarised. The goal of the learning function is224

to determine which sample is the best candidate to enrich the set of calibration samples for the225

GP. This effectively means improving the precision of the GP around the selected sample. Here226

this is illustrated on a general continuous function f(u) : Rnu 7→ R, which is approximated by a227

GP-model g(u). Using the learning function as defined in (20), a compromise is made between228

improving the calibration around the expected minimum using the GP mean (exploitation) and229

in areas of high prediction uncertainty based on the GP variance where a better minimum could230

be found (exploration). By iteratively enriching the calibration of the GP with the best sample231

improves the estimation of the minimum until a stopping criterion is eventually reached. The232

learning function is defined as [27]:233

MI(u) =
min(µg(u))− (µg(u)− cσg(u))

min(µg(u))
, (20)

with µg(u) the GP model prediction at u, min(µg(u)) the current minimum, and cσg(u) represents234

the variance around the prediction of u. Here, the variance is truncated at a certain confidence235

bound with c in Eq. (14). Hence, when the confidence bounds are based on, e.g., 3σ, more effort236

is dedicated to reducing the uncertainty about the approximation. Contrarily, lower confidence237

bounds, e.g., 2σ, reduce the confidence interval and favour improving approximately found maxima238

or minima. To identify the new candidate point unew the maximum MI is identified over the239

domain u ∈ U found by:240

unew = argmax
u∈U

(
min(µg(u))− (µg(u)− cσg(u))

min(µg(u))

)
. (21)

Figure 3 shows the true function f(u) in red and the GP based approximation g(u) in black.241

The black dot is a point that is part of the DOE used to calibrate the GP-model. Furthermore,242

this figure shows how the learning function in Eq. (20) is used to evaluate the point unew ∈ U to243

determine which point should be added to the DOE. When the GP-model is re-calibrated using244

the newly evaluated point unew, the minimum of f(u) is further approximated. If it is unlikely245

that a point ucandidate provides a minimum of f(u) lower than the current min g(u), a negative246

improvement is obtained.247

5.2. Maximum improvement of the robustness248

After the introduction of the maximum improvement, the remainder of section 5 describes how249

this is used in this specific case of robustness. The main goal of the optimisation procedure is to250

identify the most robust design point in z ∈ Z, such that this design provides a minimum variation251

in the output interval for all x ∈ xI . This is enabled by adapting the maximum improvement,252

introduced in Eq. (20), to work directly on the minimum interval width. Specifically, it is adapted253

to:254

MIz(z) =
minz∈zI

(
ygp(z)− y

gp
(z)

)
−
(
δµ−σ(z)− δµ+σ(z)

)
minz∈zI

(
ygp(z)− y

gp
(z)

) , (22)
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y

u

µgp(u)
f(u)
µgp(u) + cσgp(u)

µgp(u)− cσgp(u)
min(µgp(u))

µgp(unew)− cσgp(unew)

unew

MI (unscaled)

Figure 3: Illustration of the learning function where the goal is to approximate the minimum of the true function
f(u) in red, by the GP-model prediction g(u); the black dot is point that is part of the DOE and the next point
unew is selected by the learning function, adapted from [27]

with δµ−σ(z)−δµ+σ(z) the predicted minimum bound 2∆δ(z) with a confidence interval of cσ about255

this bound, and minz∈zI
(
ygp(z)− y

gp
(z)

)
the minimum bound predicted by the mean estimate.256

Note that the mean estimated bounds correspond to 2∆ygp(z
∗
gp) in Figure 2b, and δµ−σ(z)−δµ+σ(z)257

to 2∆δgp(z
pot
gp ) in the same figure. By reaching a MIz(z) ≤ 0, when the two intervals are equal,258

one can state that it is not expected with, e.g, 95% confidence for c = 1.96, that there is a smaller259

bound of ∆y within the current range of design parameters z ∈ Z. Figure 4 illustrates in the260

top graph the improvement function where ∆δ provides a possible smaller bound for the interval261

∆y. In the graph below the value for MIz(z) is given, illustrating that it is likely to improve the262

robustness at min ∆δ.263

y

z

min ∆δ min ∆ygp

MI

z

MIz(z)

ygp(z)

y
gp

(z)

δµ+σ(z)

δµ−σ(z)

Figure 4: Illustration of the predicted mean bound ∆ygp(z) = ygp(z) − y
gp

(z) and the minimum bound based on

the confidence interval ∆δ(z) = δµ+σ(z)− δµ−σ(z)

5.3. Maximum improvement of the predicted bounds264
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The previously introduced improvement function Eq. (22) finds a promising design point, based265

on the estimates of the GP-model. However, to estimate promising design points the overall GP-266

model must be refined as well, especially around these promising design points. Therefore, a267

second improvement function is introduced to increase the confidence of the predicted bounds.268

Here the maximum improvement Eq. (20) is adapted to obtain a best estimate of the minimal269

interval width ∆δmin, which depends on both the upper and lower bound. Figure 5 illustrates270

the idea behind the improvement function used here. In general, the goal is to approximate the271

output set ỹs for each design z ∈ Z. The point that provides the largest improvement of the lower272

bound of this interval is given as:273

MImin(θθθ) = min
x∈xI

[µgp(θθθ) + cσgp(θθθ)]− µgp(θθθ), (23)

and the improvement of the upper bound is given as:274

MImax(θθθ) = µgp(θθθ)−max
x∈xI

[µgp(θθθ)− cσgp(θθθ)] . (24)

Note that unlike the improvement functions in Equations (20) and (22) the one given in (23)275

and (24) are not normalized and calculated for each design in Z. Hence, there is a guaranteed276

possible improvement even if the global minimum and maximum are identified. The improvement277

function is illustrated in Figure 5 for a single point x∗ ∈ xI . In the illustrated case, the improve-278

ment of the minimum bound MImin is unlikely (negative value) while it seems likely to improve279

the upper limit MImax. In the end, only one candidate point can be chosen to be added to the280

design of experiments. Therefore, for each evaluated point the highest improvement value is used,281

which can either improve the lower bound or the upper bound:282

MIx = max(MImin,MImax). (25)

This means that for the illustration in Figure 5 only the value of MImax is saved for the point x∗.283

y

x

MImax(z,x∗)
MImin(z,x∗)

x∗

∆yz
∆δmin

∆δmax

ygp

ygp + cσgp

ygp − cσgp

Figure 5: Illustration of the learning function for a candidate point x∗, showing the MI of the lower and upper
bound; here the improvement of the lower bound is negative

Finally, the candidate point that performs best over the sum of the two improvement functions284

Eq. (22) and Eq. (25) is selected. Hence, the next candidate point θθθcandidate is obtained by:285

θθθcandidate = argmax
z∈Z x∈xI

[MIz(z) +MIx(θθθ)] . (26)

Note that it is possible here to assign weighting factors to the two functions. However, to the286

authors knowledge no advantage is gained in this regard. Hence, these weights are not used in287

this work.288
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5.4. Stopping criterion for adaptive refinement289

The role of a stopping criterion is to indicate when the algorithm reached a desired level of290

convergence. In this work, the stopping criterion is defined on the improvement of the robustness291

MIz, which means that based on the current GP-model it is unlikely to identify a point that is292

more robust than the current best estimate minz∈zI
(
ygp(z)− y

gp
(z)

)
. This point is identified293

with cσ confidence when the maximum improvement MIz ≤ 0. However, this is only achieved294

when the GP-model variance at location z∗ reduces to zero. Although possible in theory, this is295

highly unlikely to be achieved in practice. Hence a small error term ε is defined, which assures296

that when:297

MIz ≤ ε, (27)

there is with 95% confidence no point R within the domain smaller than R(1+ε). Unless explicitly298

specified otherwise, the default value for ε = 1 · 10−3 throughout this work.299

5.5. Overview of the method300

In Figure 6, a flowchart of the method is provided. The flowchart describes in detail the301

steps needed to perform the optimisation as proposed in this paper. The method starts at the302

initialisation where all parameters are selected by the user, i.e., correlation function, size of the303

initial design of experiments, value for ε. After this initialisation is made, the initial design of304

experiments is evaluated by the model m and the GP is calibrated. Hereafter, the adaptive305

refinement starts with finding new potential robust designs points based on the learning function306

in Section 5. For each newly identified point the model is evaluated m(θθθcandidate) and the results307

are added to the Design of Experiments. This loop continues until the stopping criterion Eq. (27)308

is met. Finally, after finishing the optimisation, it is highly recommended to validate and verify309

the results of the GP. A good starting point to check the accuracy of the GP-model is to perform310

Leave-one-Out (LOO) cross-validation with the points already in the Design of experiments.311

6. Case studies312

In this section the RuLoK technique is tested and validated for different problems, which start313

with a set of analytical functions and build up to higher dimensional engineering examples. For the314

first analytical cases a comparison is made with classical optimisation techniques, which require315

direct evaluations of the the numerical model for each of the sample points. Moreover as the316

robustness measure in Eq. (6) requires a double-loop optimisation approach, where the outer-loop317

is focused on the next design point and the inner loop identifies the upper and lower bound of318

the response for a given design z ∈ Z. This optimisation directly uses the expensive to evaluate319

numerical model. Thus, the efficiency is measured in the amount of required function evaluations.320

6.1. Analytical test functions321

To study the basic properties of the proposed method a set of analytical test functions is used.322

Each of the three test functions presents a different challenge in terms of optimisation, starting323

form a convex and smooth function and progressing to non-convex problems. The analytical test324

functions are defined as:325

fa(x1, x2) = x2
1x2 − x2

2, (28)

fb(x1, x2) = x2x1 − sin (x1)x2
2 + x2

1, (29)

fc(x1, x2) = cos(4πx1)− sin(x1x2) + x2, (30)

12



Initiate optimisation

Draw initial samples θθθDOE based on LHS

Evaluate the model y = m(θθθDOE) and obtain yDOE

Calibrate the GP model using yDOE

Calculate MIz using Eq. (22)

Check if MIz ≤ ε

Evaluate the model ycandidate = m(θθθcandidate)

Obtain best candidate point θθθcandidate Eq. (26)

Append yDOE with ycandidate

Calculate the results and verify

Stop

Adaptive refinement of GP

no

yes

Figure 6: Flowchart of the robustness under lack-of-knowledge method

with x1 ∈ [−5, 5] the design parameter and xI2 = [−5, 5] the uncertain parameter. The goal of326

the optimisation is to identify the value for x1 at which the bounds on ∆f are minimal for each327

x2 ∈ xI2. This optimisation is defined as:328

maxR(x1) = min
x1∈xI1

(
max
x2∈xI2

fn(x1, x2)− min
x2∈xI2

fn(x1, x2)

)
, (31)

with n indicating the three functions fa, fb, fc. In these particular cases, without the need for329

optimisation, one can determine that the minimum of the functions fa, fb and fc lies at x1 =330

0;∀x2 ∈ xI2. Nevertheless to demonstrate the additional value of the proposed method two well-331

known optimisation algorithms are used in a comparison. These two optimisation approaches used332

in this work are: Unconstrained Optimisation (UO) where the minimum of a function is searched333

using a quasi-Newton algorithm; an other strategy is to use a Generic Algorithm (GA) to solve334

the outer-loop where the bounds of the response in the inner-loop are identified using UO. The335

population for the GA is set to a default value of 20.336

The results of the method and these of the classical optimisation approaches are compared in337

Table 1. It is noticed that the proposed method outperforms the brute optimisation approaches,338

which is expected with the use of a meta-model. The table also shows that depending on the339

level of confidence the number of iterations increases. Note that the amount of iterations needed340
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to obtain a result is difficult to estimate a priori as this depends on the underlying problem and341

the correctness of the GP model at each iteration. The error term in the table refers to the342

discretization error introduced by using a fixed grid to sample the meta model. For both function343

fa and fb the optimal point is part of the samples in the grid using nsamples = 501. However,344

for function fc this dependence is checked and the optimal point is not part of the grid points345

nsamples = 200 or nsamples = 500. Therefore, the analysis returns the next best point, which is346

the closest to the optimal point. Using a larger number of grid-points will therefore increase the347

accuracy of the estimation at a higher computational cost.348

Function Method Optimum Iterations Evaluations Error∗ confidence

fa analytic 0 - - - -
fa RuLoK 0 36 38 ≈ 0.02 1, 96σ
fa RuLoK 0 42 44 ≈ 0.02 3σ
fa UO -7e-6 3 184 - -

fb analytic 0 - - - -
fb RuLoK 0 28 30 ≈ 0.02 1, 96σ
fb RuLoK 0 49 51 ≈ 0.02 3σ
fb GA 0.099 77 50680 - -

fc analytic 0 - - - -
fc RuLoK -2.5e-2 279 281 0.05 1, 96σ
fc RuLoK 1e-2 172 174 0.02 1, 96σ
fc RuLoK 0 214 216 ≈ 0.02 1, 96σ
fc RuLoK -1e-2 242 244 0.02 3σ
fc GA 4.4e-5 30 2760857 - -

∗ the discretization error of the grid is determined by ∆x/npoints = 10/501 for fa and fb.

Table 1: Results of the analytic test functions

To further illustrate how the method works Figure 7 shows the function value for all three349

functions fa,fb and fc at each design point x1. For each function the true bounds are given by350

the black dashed lines, the evaluated point are indicated with a green cross, and the predicted351

upper- and lower-bound are given in red and blue, including their 95% confidence intervals, and352

the optimal design point is indicated by a circle. Starting at the top of Figure 7 function fa is353

shown where the gradient decreases when moving towards the robust design point x1 = 0. The354

middle sub-figure illustrates the function fb with larger confidence bounds around the predicted355

optimum, shown by the red and blue areas. It is also shown that the confidence interval about the356

upper bound is larger than this of the lower bound, which is exactly the goal during optimisation.357

Finally, the bottom graph of Figure 7 shows the more complex function fc with the optimum358

at x1 = 0. This figure illustrates the additional function evaluations needed to ensure the global359

minimum was found, and not one of the many local minimums. Note that for this case the optimal360

robust point x1 = 0 is not part of the grid as the grid is discretized by an even number of samples,361

which include the end and start point.362

In Figure 8 the meta-model of function fa is plotted with the black surface the mean response,363

the red and blue surfaces the lower- and upper-bound of the 95% confidence intervals, and the364

green dots are the points used to calibrate the GP-model. This figure illustrates the dispersion of365

the evaluation points at the edges of the domain and concentration of points around the optimal366

point, which reduces the variance of the GP-model is this location. Hence, the distance between the367
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Figure 7: The GP predicted bounds of the interval valued uncertainty including the 95% confidence intervals; for
from the top to the bottom function fa,fb and fc, respectively.

bounds increases in locations that are further from the optimal point since there are considerably368

less points evaluated here. Nevertheless, it is possible to use the GP-model further to analyse the369

problem at hand. However, one should be aware that due to the selection of training points an370

overall agreement between the GP-model and the underlying problem is not guaranteed.371

6.2. Plate subjected to a point load372

In this case study, the thickness of a plate with two equal sides of 100mm is chosen within the373

interval t ∈ [3, 6]mm. The uncertain parameter is the Young’s modulus of the material, which374
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Figure 8: GP-model prediction of function A with the black surface the mean response, the red and blue surfaces
the 95% CI on the mean prediction, and the green points indicating the evaluated points

is known to be bounded by the interval: EI = [110, 280]GPa. All degrees of freedom of one375

side of the plate are completely fixed and a point load of 100N is applied to one of the opposite376

corners. The performance of this design is measured by the displacement of the corner node that377

is subjected to the load. The analysis is performed by a finite element model using 1000 shell378

elements.379

At the start of the analysis two initial points are evaluated based on Latin Hyper-Cube sam-380

pling. Figure 9 shows the results that are obtained after just 9 function evaluations, with the381

true bounds of the model in dashed black lines, the GP-model prediction of the upper- and lower-382

bound in red and blue, and the confidence intervals as colored areas. The optimal design point383

trobust = 6mm is as expected, the thickest plate. The rationale behind this simple example is that384

the thickest plate will bend less than a thinner plate under identical uncertainty of the Young’s385

modulus. However, Figure 9 presents an illustration of the refinement around the optimal point,386

with only two evaluation points lower than 4.5mm. The order of the points that are added is fur-387

ther highlighted by the numbers next to the crosses in the plot starting with the initial evaluations388

1 and 2, up to 9, the final point.389

Although the physical interpretation of the problem explains the identified optimum a double-390

loop approach is used to validate this result. Here using CO a total of 82 evaluations of the391

numerical model were needed to identify the optimum trobust = 6mm, which is identical. However,392

with this classical optimisation no additional information is obtained regarding the problem that393

is studied.394

6.3. The borehole function395

The second engineering example is the Borehole function [37], which is a typical test case for396

computer experiments. The borehole function describes the water flow fborehole though a borehole397

between two underground aquifers by the flow rate of the water m3/year:398
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Figure 9: GP predicted bounds of the interval valued uncertainty including the order in which the points within
the DOE where evaluated; including the 95% confidence intervals, evaluated points indicated by crosses, and the
optimal design point indicated by a circle.

fborehole =
2πTu(Hu −Hl)

ln ( r
rw

)

(
1 + 2LTu

ln ( r
rw

)r2wKw+Tu
Tl

) . (32)

It is assumed that the diameter rw ∈ [0.05, 0.15] m, the length of the borehole L ∈ [1120, 1680]m399

of the borehole can be controlled and are therefore the design parameters. All other parameters400

are listed in Table 2. Two cases are considered with this example, first a case where only two401

parameters are uncertain and the others are taken at the midpoint, second a case where all402

parameters are considered uncertain.403

6.3.1. Borehole function with two uncertain parameters404

In this first case only the potentiometric head of the upper aquifer Hu and the hydraulic405

conductivity Kw are regarded as uncertain. The remaining uncertain parameters are taken at406

the midpoint of their interval. The results of the analysis are shown in Figure 10, which shows407

a contour plot of the true interval width on the top, the predicted interval width based on the408

mean of the GP-model below, and the minimal interval width based on the 95% CI next to it.409

In all contour plots of Figure 10 the red circle and green dot indicate the location of the robust410

design point, located at the lower-bound of the diameter and the upper-limit of the length of the411

borehole. In addition the blue dots indicate the points where the original function was sampled.412

The physical interpretation of the location of the robust point is that a borehole with a smaller413

diameter limits the possible flow through the borehole. However, for the length of the borehole414

this observation is not obvious. The results in Figure 10 are obtained with a total of 35 evaluations415

of the borehole function including the four initial evaluations.416
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Figure 10: top: contour plot of the true interval width in function of the design parameters, borehole radius rw and
the borehole length L and only the potentiometric head of the upper aquifer Hu and hydraulic conductivity Kw

are regarded uncertain; bottom: mean GP prediction of the interval width (left) and the minimal interval width
by 95% CI (right)

parameter x x x̂ unit
radius of influence rI 100 50 000 2550 m
transmissivity of upper aquifer T Iu 63 070 50 000 56 535 m2/year
potentiometric head of the upper aquifer HI

u 990 1110 1050 m
transmissivity of lower aquifer T Il 63.1 116 89.55 m2/year
the potentiometric head of the lower aquifer HI

l 700 820 760 m
hydraulic conductivity of the borehole KI

w 9855 12 045 10 950 m2/year

Table 2: Parameters of the borehole function

6.3.2. Borehole function with six uncertain parameters417

In this case all six uncertain- and the two design-parameters of the previously discussed bore-418

hole function Eq. (32) are considered within the ranges as defined in Table 2. The results of the419

analysis are shown in Figure 11, which shows the true interval width on the top and the GP420

prediction on the bottom left and the interval width based on the 95% CI on the right. The421

number of evaluations to obtain these results has only increased slightly to 64, which includes 8422

initial evaluations, while the complexity of the problem is increased by four additional uncertain423

parameters. The location of the robust design point remained at the lower-bound of the diameter424

and the upper-bound of the borehole length. The physical reason for this difference is not directly425

clear from the formulation of the borehole function. However, the additional parameters seem426
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to have little effect to the overall behaviour of the function while the width of the interval has427

increased slightly, which can be seen by comparing Figure 10 and Figure 11. To better under-428

stand the effect of the additional parameters the interval sensitivities are investigated. The reader429

is referred to [38] for a thorough discussion about interval sensitivities. However, note that the430

fundamental difference between the classical sensitivity studies and interval sensitivities is that431

the latter is valid over the full range of the interval, while the former focuses on local sensitivities,432

which are not valid over the full range of the interval. The interval sensitivities for the borehole433

function with six uncertain parameters are provided in Figure 12, which shows that the radius of434

influence r, transmissivity of the upper aquifer Tu, and lower aquifer Tl have an negligible effect435

on the output interval. Moreover, this figure shown that all parameters behave the least sensitive436

around the robust design point. The latter means that with a relative change of input interval437

width only a minimal change in output interval width happens.438
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Figure 11: top: contour plot of the true interval width in function of the design parameters: borehole radius rw,
and the borehole length L; with uncertain parameters: the radius of influence r, transmissivity of upper aquifer
Tu, the potentiometric head of the upper aquifer Hu, transmissivity of lower aquifer Tl, the potentiometric head of
the lower aquifer Hl, the hydraulic conductivity of the borehole Kw; bottom: mean GP prediction of the interval
width (left) and the minimal interval width by 95% CI (right)

Although the obtained results are convincing and could be compared with the true solution,439

this is not always possible especially with the use of complex numerical models. However, one440

can validate the GP-model based on the points that were evaluated in the Design-of-Experiments,441

which provides an indication about the correctness to capture the underlying physical behaviour.442

This validation is accomplished by a number of tests shown in Figure 13 which are based on the443

Leave-One-Out prediction of the points within the DOE. Note that this is a conservative choice444
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Figure 12: Relative interval sensitivity of the uncertain parameters r, Tu, Hu, Tl, Hl and Kw in function of the
borehole diameter rw and length L.
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as the prediction is now made with a GP containing n − 1 training points, which is especially445

conservative with a low number of training points. In Figure 13a the true function response446

and the Leave-One-Out (LOO) response are shown including the r2 value. Figure 13 illustrates447

that most of the points in the DOE are located at the lower-bound of the function output and448

an increasing error towards the upper-bound of the output. The latter is a direct effect of the449

selection of points that are added to the DOE, which results in a GP model that is especially450

good in a specific region. The second Figure 13b the true function value and the standardized451

LOO residual are shown with the two red lines indicating the 95% CI. A similar conclusion can452

be made where the model in correct at lower output values but misses the true function at higher453

output predictions. Finally in Figure 13c the true model quantiles versus the predicted quantiles454

are shown. We can conclude that the GP-model performs well at low flow rates, with an error455

that increases at higher flow rates.456

7. Discussion457

In general the results of the presented method are convincing and show that this method is458

capable of identifying the robust design point with only a limit amount of evaluations of the un-459

derlying expensive function, which is demonstrated in a number of case studies. Nevertheless, a460

few things are noted by the authors that should be addressed for further research and implemen-461

tation. As mentioned before, the obtained results are based on the GP model as implemented in462

UQlab [39] for all case studies. It is noted by the authors that using different implementations of463

the GP can lead to an increase in the number of iterations before convergence is reached. This is464

attributed to the use of a noise parameter in the GP, which is set at a minimum of 1e− 4 for the465

Matlab build-in implementation [40]. Hence, the error term ε in Equation 27 should increase to466

reflect this.467

The number of samples in the initial DOE can effect the convergence and in this paper, as468

a rule of thumb, the number of initial evaluations is kept at the total amount of uncertain- and469

design-parameters. Quantifying the effect of the initial population size on the rate on convergence470

is challenging as this depends on the underlying problem, i.e., that what is resembled by the GP471

model. This rule of thumb is regarded as the minimal amount of initial evaluations needed by the472

GP to make a first estimation. Nevertheless, the number of iterations is difficult to determine a473

priory, as this depends on the complexity of the response surface, the added value of the point474

added at each iteration, and the calibration error of the GP model.475

Finally, as the improvement function is evaluated on a fixed number of equally spaced grid476

points, a limited precision is reached. Although using a large number of grid points the precision477

increased, the computational cost to evaluate all these points increases exponential in d-dimensions478

O(n−d) for a full grid. Hence, in high dimensional cases this becomes a bottleneck without479

sacrificing the resolution of the grid.480

8. Conclusion481

This paper introduces a novel method to design robust structures in an early stage of devel-482

opment under lack-of-knowledge uncertainty. The presented method uses an adaptively refined483

GP-model to perform the global optimisation of the robustness and locate the most promising484

designs, which are the least sensitive to the modelled sources of uncertainty. Based on a set of485

analytical test functions the effectiveness and efficiency of the proposed method is demonstrated486

and compared with typical well-known optimisation algorithms. It is shown that the proposed487
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(a)

(b)

(c)

Figure 13: Validation tests for the borehole function with two uncertain parameters: (a) shows the cross-validated
prediction vs. the true function value, (b) shows the standard normalized residuals of the cross-validated GP model
within the 95% bounds in red, and (c) shows the cross validated quantiles vs. the true quantiles
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method efficiently solves the double-loop problem, which is typically associated with robustness-488

based optimization methods. In addition, three additional case studies: a plate in bending, and489

two times the borehole function are included to demonstrate the applicability to both industrial490

problems and problems in moderately high dimensions. For all of these examples the results are491

obtained with a reasonable number of evaluations of the underlying function or numerical model.492

Future research is aimed at enlarging the application domain of the proposed method, specifically493

for time-dependant problems.494
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