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Abstract10

First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems is a significant task to11

be solved in many science and engineering fields, but remains still an open challenge. The present paper develops a12

novel approach, termed ‘fractional moments-based mixture distribution’, to address such challenge. This approach is13

implemented by capturing the extreme value distribution (EVD) of the system response with the concepts of fractional14

moment and mixture distribution. In our context, the fractional moment itself is by definition a high-dimensional15

integral with a complicated integrand. To efficiently compute the fractional moments, a parallel adaptive sampling16

scheme that allows for sample size extension is developed using the refined Latinized stratified sampling (RLSS).17

In this manner, both variance reduction and parallel computing are possible for evaluating the fractional moments.18

From the knowledge of low-order fractional moments, the EVD of interest is then expected to be reconstructed. Based19

on introducing an extended inverse Gaussian distribution and a log extended skew-normal distribution, one flexible20

mixture distribution model is proposed, where its fractional moments are derived in analytic form. By fitting a set21

of fractional moments, the EVD can be recovered via the proposed mixture model. Accordingly, the first-passage22

probabilities under different thresholds can be obtained from the recovered EVD straightforwardly. The performance23

of the proposed method is verified by three examples consisting of two test examples and one engineering problem.24

Keywords:25

First-passage probability, Stochastic dynamic system, Extreme value distribution, Fractional moment, Mixture26

distribution27

1. Introduction28

Stochastic dynamic systems which involve the randomness in internal system properties and/or external dynamic29

loads are widespread in various science and engineering fields, such as meteorology, quantum optics, circuit theory and30

structural engineering [1]. To assess the effects of input randomness on the system performance, dynamic reliability31

analysis has drawn increasing attention. Generally, dynamic reliability analysis for stochastic dynamic systems can be32
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classified as the first-passage probability evaluation and the fatigue failure probability estimation [2]. In the literature,33

the first-passage probability evaluation has been extensively studied over the past several decades. However, finding34

efficient and accurate solutions to the first-passage problem still remains challenging. The reason is twofold: (1) the35

high-dimensional input randomness and strongly nonlinear behavior of stochastic dynamic systems may be encountered36

simultaneously; (2) the first-passage probabilities of such systems under certain thresholds may be relatively small.37

The existing approaches for first-passage probability estimation can be broadly divided into four kinds: the out-38

crossing rate approaches, the diffusion process approaches, the stochastic simulation approaches and the extreme39

value distribution (EVD) estimation approaches. For the out-crossing rate approaches, the first-passage probability40

is evaluated considering the time of out-crossing within a time duration on the basis of Rice’s formula [3–6]. Such41

approaches are based on the Poisson assumption that level-crossing events are mutually independent and each happens42

at most once, or the Markovian assumption that the next crossing event only relates to the present event [7]. Although43

these solutions can be accurate in some special cases, they may be not applicable for general cases. Besides, it is44

hard to derive the joint probability density function (PDF) and its derivatives of the system response of interest when45

complicated nonlinear stochastic dynamic systems are encountered. The diffusion process approaches evaluate the46

first-passage probability by solving a partial differential equation, such as the Kolmogorov backward equation [8] or47

the Fokker Planck equation [9]. Solutions to such equations could be derived via the path integration method [10–12],48

stochastic average technique [13, 14], ensemble-evolving-based generalized density evolution equation [2, 15], etc.49

Nevertheless, this kind of approach is mostly applicable for nonlinear stochastic dynamic systems enforced by white50

noise. For the stochastic simulation approach, the extensively used Monte Carlo simulation (MCS) [16] is able to51

address problems regardless of their dimensions and nonlinearities. However, MCS is inefficient and even infeasible52

to assess a small probability for an expensive-to-evaluate model since a considerably large number of simulations53

are required. Although some variants of MCS have been developed, such as important sampling [17–20] and subset54

simulation [21–23], they still suffer their respective limitations concerning efficiency, accuracy and applicability, etc.55

Recently, the EVD estimation approaches have attracted lots of attention. This is because once the EVD of system56

response of interest is obtained, the first-passage probability can be straightforwardly and conveniently evaluated [24].57

Nevertheless, the analytical solution to the EVD is difficult and even impossible to be obtained for a general nonlinear58

stochastic dynamic system. Therefore, various approximation methods have been developed to estimate the EVD, which59

can be roughly classified as probability conservation-based methods and moments-based methods. According to the60

principle of probability conservation, the probability density evolution method (PDEM) [7, 24] and direct probability61

integral method (DPIM) [25] are derived, which can be used for the purpose of EVD estimation. However, since such62

methods are typically dependent on the partition of random variable space, their application for high-dimensional63

problems may be challenging. Moment-based methods, on the other hand, estimate the first-passage probability by64

fitting an appropriate parametric distribution model to the EVD, and the free parameters of the distribution model are65

obtained from the estimated moments of the EVD. The integer moments-based methods can be adopted to recover the66

EVD [26, 27], where high-order integer moments, i.e., skewness and kurtosis, need to be considered. Yet it is difficult67

to evaluate such high-order integer moments using a small sample size, due to their large variability [28]. To alleviate68

such difficulty, a series of methods based on non-integer moments, such as fractional moments and linear moments,69

have been developed. The fractional moments-based maximum entropy methods [29–32] can estimate the first-passage70

probabilities of nonlinear stochastic dynamic systems from low to high dimensions. However, it is difficult to solve the71

non-convex optimization problem that is typically encountered, and the obtained results can be easily trapped into local72
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optimum. Besides, due to the polynomials involved in the maximum entropy density, the recovered EVD can have73

unexpected oscillating distribution tail, which then leads to an inaccurate evaluation of the first-passage probability. Two74

mixture parametric distribution methods in conjunction with fractional moments [33] or moment-generating function75

[34] are developed. These methods enable to evaluate first-passage probabilities of high-dimensional and strongly76

nonlinear stochastic dynamic systems from a small number of simulations. Furthermore, a fractional moments-based77

shifted generalized lognormal distribution method [35] is utilized to assess seismic reliability of a practical bridge78

subjected to spatial variate ground motions. Besides, the linear moments-based polynomial normal transformation79

distribution method [36] is developed to analyze high-dimensional dynamic systems with deterministic structural80

parameters subjected to stochastic excitations.81

Overall, the fractional moments-based methods offer the possibility to deal with both high-dimensional and strongly82

nonlinear stochastic dynamic systems from a reduced number of simulations, even with small first-passage probabilities.83

In view of this, the present paper mainly focuses on such methods. Despite those attractive features, the fractional84

moments-based methods still have two main problems to be solved. On one hand, the sample size for evaluating85

fractional moments is usually empirically fixed. This is primarily because the sampling-based schemes adopted86

by the existing methods do not allow for the sample size extension. However, the optimal sample size should be87

problem-dependent. With a predetermined sample size, the adopted sampling methods may encounter over-sampling or88

under-sampling, leading to a waste of over-all computational efforts or unsatisfactory accuracy of estimated fractional89

moments. On the other hand, the success of fractional moments-based methods for first-passage probability evaluation90

also depends on the selection of an appropriate distribution model. Although the existing distribution models are91

capable of representing EVDs for some problems, their flexibility and applicability are limited. Hence, for a wide92

range of problems, they may still lack the ability to accurately recover the EVDs over the entire distribution domain,93

especially for the tails.94

In this paper, we propose a fractional moments-based mixture distribution approach to estimate the first-passage95

probabilities of high-dimensional and strongly nonlinear stochastic dynamic systems. It is worth mentioning that the96

randomness from both internal system properties and external excitations is taken into account. The main contributions97

of this study are summarized as follows. First, a parallel adaptive sampling scheme is proposed for estimating the98

fractional moments, as opposed to the traditional fixed sample size scheme. Such a new scheme enables to extend99

the sample size sequentially, i.e., one at a time or several at a time. The optimal sample size for fractional moment100

estimation is determined by introducing a convergence criterion. In fact, a sequential sampling method with the ability101

to effectively reduce variance in high-dimensional problems, named Refined Latinized stratified sampling (RLSS) [37],102

is suitable for achieving our purposes and is employed within the proposed scheme. Second, one novel and versatile103

mixture distribution model is proposed to reconstruct the EVD with the knowledge of its estimated fractional moments.104

This model is based on the extension of the conventional inverse Gaussian distribution and the log transformation of the105

extended skew-normal distribution. The analytical expression of the fractional moments for such mixture distribution is106

derived, and a fractional moments-based parameter estimation technique is developed.107

The remainder of this paper is organized as follows. Section 2 outlines the first-passage probability estimation of a108

stochastic dynamic system from the perspective of EVD. In section 3, the proposed fractional moments-based mixture109

distribution approach is described in detail, including a parallel adaptive scheme for fractional moments evaluation and110

a flexible mixture distribution model for EVD reconstruction. Three examples are given in section 4 to demonstrate the111

performance of the proposed method. The paper is closed with some concluding remarks in section 5.112
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2. First-passage probability estimation of stochastic dynamic systems113

2.1. Stochastic dynamic systems114

Consider a stochastic dynamic system that is governed by the following state-space equation:115

Ẏ (t) = Q (Y (t) ,U, t) , (1)

with an initial condition116

Y (0) = y0, (2)

where Y = (Y1, Y2, ..., Ynd
) is a nd-dimensional state vector; Q = (Q1, Q2, ..., Qnd

) is a dynamics operator vector;117

U = (U1, U2, ..., Uns
) is a ns-dimensional random parameter vector with a known joint probability density function118

(PDF) pU (u); u = (u1, u2, ..., uns) denotes a realization of U; t denotes the time. Note that Eq. (1) can be strongly119

nonlinear, which may be caused by material, geometrical, or contact nonlinearities inherent in the stochastic dynamic120

system. In addition, hundreds or thousands of random variables can be included in the vector U due to the randomness121

from system properties and external excitations.122

For a well-posed stochastic dynamic system, the solution to Eq. (1) is unique and depends on the vector U, which123

can be assumed to be:124 [
Y (t) , Ẏ (t)

]
=

[
HY (U, t) ,

∂HY (U, t)

∂t

]
, (3)

where HY and ∂HY

∂t are the deterministic operators.125

If we consider the system responses of interest for reliability analysis, say W (t) = {W1 (t) ,W2 (t) , ...,Wnd
(t)},126

they can be evaluated from their relations to the state vectors:127

W (t) = Ψ
[
Y (t) , Ẏ (t)

]
= H (U, t), (4)

where Ψ is the transfer operator; and H denotes the mapping relation from U and t to W (t). Accordingly, the q-th128

component of W (t) is denoted by Wq (t) = Hq(U, t), q = 1, ..., nd. For notational simplicity, the subscript q is129

omitted hereafter, and only a component W (t) is considered in the following.130

2.2. First-passage probability estimation by EVD131

For a stochastic dynamic system, the first-passage probability is the probability that the system response of interest132

exceeds a certain safe domain for the first time within a given time range. Accordingly, assuming T is the time duration,133

we have134

Pf = Pr {W (t) /∈ Ωsafe,∃t ∈ [0, T ]} , (5)

where Pf is first-passage probability; Pr is probability operator; Ωsafe denotes the safe domain. According to different135

application backgrounds, the boundary of Ωsafe can be different, such as one boundary, double boundary, and circle136

boundary [7]. In the case of symmetric double boundary problem, the first-passage probability can be further written137

as:138

Pf = Pr {|W (t)| > blim,∃t ∈ [0, T ]} , (6)

where blim is the given threshold that limits the symmetric bounds of Ωsafe, and |·| is the absolute value operator. In the139

present study, the first-passage probability defined by Eq. (6) is of concern.140
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Note that if the system response in the time period [0, T ] remains below the boundary of Ωsafe, the first-passage141

probability will be equal to zero. From this perspective, once the extreme value of system response exceeds the142

boundary, the system fails. Accordingly, Eq. (6) can be rewritten as143

Pf = Pr {max {|W (t)|} > blim,∀t ∈ [0, T ]} = Pr {Z > blim} , (7)

where Z = max
t∈[0, T ]

{|W (t)|}. Note that Z is always positive, and depends on the random parameter vector U. If we de-144

note the functional relationship between Z and U as G, then we have Z = G (U) and Pf = Pr {Z = G (U) > blim}.145

According to classical probability theory, once the probability distribution of Z , which is also referred to as extreme146

value distribution (EVD), is obtained, Eq. (7) can be straightforwardly calculated from the EVD. Let fZ (z) and FZ (z)147

be the PDF and cumulative distribution function (CDF) of Z . Then the first-passage probability reads148

Pf =

∫ +∞

blim

fZ (z)dz = 1− FZ (blim) . (8)

It should be pointed out that the first-passage probability is easy to be obtained from Eq. (8) once the PDF or CDF149

of Z is known. However, how to estimate the EVD of Z is quite challenging. This is because deriving an analytical150

expression for the EVD is intractable even for some simple stochastic responses, not to mention the stochastic responses151

of high-dimensional and strong-nonlinear stochastic dynamic systems. Therefore, to tackle such challenge, an EVD152

estimation method is proposed in the following section.153

Remark 1. The above-mentioned first-passage probability estimation method can also be applied to evaluate154

the system failure probability for the first-passage problem considering multiple responses. According to the155

theory of equivalent extreme-value event [38], the system failure probability for a first-passage problem can be156

equivalent to the probability of an extreme-value event. Such extreme-value event is defined in terms of the157

logical relationships between multiple inequalities corresponding to multiple responses. Besides, the correlation158

information between each components is inherent in the equivalent extreme-value event. To illustrate, suppose159

Z1 = maxt∈[0, T ] {|W1 (t)|} and Z2 = maxt∈[0, T ] {|W2 (t)|}. Then, we can derive Pr {(Z1 > b1) ∪ (Z2 > b2)} =160

Pr
{(

Z1 − b1 > b̂
)
∪
(
Z2 − b2 > b̂

)}
= Pr

{
max1⩽q⩽2 {Zq} > b̂

}
, where b1 and b2 are the thresholds corre-161

sponding to Z1 and Z2, and b̂ is the common threshold obtained by a linear transformation. Accordingly, similar162

to Eq. (8), the first-passage system probability can be computed as Pf = Pr
{
Ẑ > b̂

}
=

∫ +∞
b̂

fẐ (ẑ)dẑ, where163

Ẑ = max1⩽q⩽2 {Zq}.164

3. A fractional moments-based mixture distribution approach165

In this section, we propose a novel fractional moments-based mixture distribution approach to approximate the166

EVD in an efficient and accurate way. The proposed method consists of two main parts. First, a parallel adaptive167

scheme is proposed for fractional moments estimation, which allows sequential sample size extension until a prescribed168

convergence criterion is satisfied. Second, from the knowledge of estimated fractional moments, an eight-parameter169

mixture distribution model with increased flexibility is developed to capture the main body and distribution tail of the170

EVD.171
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3.1. Characterizing EVD by fractional moments172

The analytical expression of EVD can not be directly obtained for a general high-dimensional and nonlinear173

stochastic dynamic system, as discussed earlier. To this end, we have to resort to some indirect methods that can174

approximate the EVD from a limited number of sample data. The fractional moment, as a generalization of the175

traditional integer moment, has received a growing interest to characterize a positive random variable in many fields.176

More recently, it has also been introduced to the area of EVD characterization [31–33, 35].177

3.1.1. Concept and properties of fractional moments178

The r-th fractional moment of the positive random variable Z is defined as [33]179

Mr
Z = E [Zr] =

∫ +∞

0

zrfZ (z) dz, (9)

where r can be any real number and E [·] denotes the expectation operator. Note that when r takes an integer value,180

Eq. (9) yields the r-th integer moment of Z . Therefore, for any positive random variable, the integer moment of the181

variable is a special case of its fractional moment.182

If one expands Zr around its mean value µZ = M1
Z using the Taylor series expansion, we have183

Zr =

∞∑
k=0

(
r

k

)
µr−k
Z (z − µZ)

k
, (10)

where the fractional binomial coefficient
(
r
k

)
can be computed as

(
r
k

)
= r(r−1)···(r−k+1)

k(k−1)···1 , and k can be any non-negative184

integer. Taking the expectation of both sides of Eq. (10) yields:185

E [Zr] =

∞∑
k=0

(
r

k

)
µr−k
Z E

[
(z − µZ)

k
]
. (11)

It can be seen that the right-hand side of Eq. (11) contains an infinite number of integer moments, i.e., E
[
(z − µZ)

k
]
,186

and the left-hand side of Eq. (11) is exactly the r-th fractional moment. Hence, Eq. (11) implies that a single r-order187

fractional moment can embody statistical information of numerous integer moments. Further, as observed from Eq.188

(11), when r is fixed, the value of coefficient
(
r
k

)
µr−k
Z decreases as k increases; when k is fixed,

(
r
k

)
µr−k
Z increases189

as r increases. This indicates that the higher the fractional order, the greater the contribution of higher-order integer190

moments. Since higher-order integer moments can provide more information about the shape of EVD, higher-order191

fractional moments reflect more statistical features of EVD than lower-order fractional moments. In addition, it192

should be mentioned that higher-order fractional moments have higher variability and are more difficult to obtain than193

lower-order fractional moments [28, 33]. Note that one is able to generate any number of fractional moments given the194

range of fractional orders. However, one can only generate a fixed number of integer moments if the maximum integer195

order is given. As a compromise, a set of fractional moments up to second order, as adopted in Ref. [33], is used in this196

work.197

3.1.2. Parallel adaptive estimation of fractional moments198

According to the principle of probability conservation, Eq. (9) can be rewritten in the random variable space of U:199

Mr
Z =

∫
ΩU

Gr (u) pU (u) du, (12)
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where ΩU denotes the random variable space of U. For a general stochastic dynamic system, a considerably large200

number of random variables are collected in U, and strong nonlinearity exists in G (U). In addition, the expression of201

G (U) cannot be explicitly given. Hence, a high-dimensional integral with a complex and implicit integrand is involved202

in Eq. (12), which is impossible to solve analytically.203

Alternatively, we can resort to the sampling methods to approximate the high-dimensional integral involved in Eq.204

(12). In the literature, various variance reduction sampling methods with fixed sample sizes are employed to facilitate205

the estimation of fractional moments. Under this setting, Mr
Z can be approximated as:206

M̂r
Z =

N∑
k=1

ϖk ·Gr (uk), (13)

where N denotes the sample size; ϖk represents the k-th sample weight, k = 1, ..., N ; uk is the k-th sample of random207

variables U. Note that most variance reduction sampling methods do not allow sample size extension, and thus require208

N to be specified in advance from experience. However, for estimating fractional moments, an “optimal sample size”209

is desired, which is problem-dependent, and cannot be known in advance for a specified first-passage problem. The210

optimal sample size enables the estimation to strike a balance between accuracy and computational efficiency. However,211

with a predefined sample size, the fractional moment estimation may lose such balance, and may be trapped into212

over-sampling or under-sampling situations. Specifically, if an overly conservative sample size is pre-specified, i.e., too213

many samples are taken, oversampling occurs and leads to unnecessary computational waste. On the other hand, if the214

predefined sample size is too small, under-sampling takes place, resulting in inaccurate evaluation of the fractional215

moments.216

To tackle with such dilemma, an adaptive sampling scheme should be developed for estimating fractional moments.217

One feasible strategy is to generate samples one at a time or several at a time, and enrich the sample size progressively218

until a specified convergence criterion is satisfied. In this manner, sample size extension is allowed, and the sample size219

can be obtained adapted to different problems, which enables the estimated fractional moments to achieve both the220

desired accuracy and computational efficiency. In addition, parallel computing technique can be equipped to further221

accelerate the computational speed of such process. As such, we shall name this sampling scheme as parallel adaptive222

sampling scheme. To illustrate the advantages of proposed scheme, Fig. 1 shows the comparison between traditional223

sampling scheme and proposed parallel adaptive sampling scheme. In this figure, l denotes the l-th time of sample224

size extension, and l ∈ Z+. As seen, by the proposed sampling scheme, the sample size for a given first-passage225

problem can be determined in an adaptive way, where fractional moments can be approximated with a desired accuracy.226

In addition, it is quite time-saving to evaluate additional samples of Z only when it is required. In the process of227

estimating the additional samples of Z , the analysis time can be further decreased by adopting parallel computing228

technique.229

By employing the proposed parallel adaptive sampling scheme, M̂r
Z after the l-th sample size extension can be230

computed as follows:231

M̂r
Z =

(l−1)ℏ∑
k=1

ϖ(k) ·Gr
(
u(k)

)
+

lℏ∑
k=(l−1)ℏ+1

ϖ(k) ·Gr
(
u(k)

)
, (14)

where the number of samples added in each time of sample size extension is denoted as ℏ and ℏ ∈ Z+; the cur-232

rent sample size is lℏ; the weight is reallocated in the l-th sample size extension and satisfies
∑lℏ

k=1 ϖ
(k) = 1;233 {

u((l−1)ℏ+1), ...,u(lℏ)} are the newly added samples in the l-th sample size extension, while
{
u(1), ...,u((l−1)ℏ)} are234
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Figure 1: Comparison of traditional sampling scheme and proposed parallel adaptive scheme

samples generated in the previous (l − 1) sample size extensions. Note that when l = 1, initial samples of Z , i.e.,235 {
G
(
u(k)

)}ℏ
k=1

are evaluated. Since
{
G
(
u(k)

)}(l−1)ℏ
k=1

have been already obtained in the previous (l − 1) sample size236

extensions, one only needs to evaluate
{
G
(
u(k)

)}lℏ
k=(l−1)ℏ+1

in the l-th sample size extension.237

In order to achieve the proposed parallel adaptive sampling scheme, the key is to employ a sampling strategy that238

allows sequential sample size extension. Simple random sampling method, i.e., Monte Carlo simulation (MCS), can239

naturally meet such aim. To obtain a better precision of fractional moments with fewer computational efforts, one240

can apply a variance reduction sampling method to the proposed sampling scheme. In addition, sampling methods241

that are applicable to high-dimensional problems are also desired. In fact, one recently developed sequential stratified242

sampling technique, termed refined Latinized stratified sampling (RLSS) [37], is suitable for our purposes. On one243

hand, RLSS is advantageous as it owns the ability to achieve effective variance reduction in terms of both main/additive244

effects and variable interaction that appear in G (U). On the other hand, RLSS is applicable to problems involving low-245

and high-dimensional input random variables. By using the RLSS technique, we can evaluate M̂r
Z according to Eq.246

(14). Since the samples of RLSS are generated in the [0, 1]
ns hyper-rectangular space, we need to transform the RLSS247

sample points to the original distribution domain of random variables U. Denote φ̂(k) and ϖ(k) to be the k-th sample248

point and corresponding weight obtained by RLSS and Γ to be the transformation operator, M̂r
Z by RLSS at the l-th249

sample size extension can be evaluated as:250

M̂r
Z =

(l−1)ℏ∑
k=1

ϖ(k) ·Gr
(
Γ
(
φ̂(k)

))
+

lℏ∑
k=(l−1)ℏ+1

ϖ(k) ·Gr
(
Γ
(
φ̂(k)

))
. (15)

A brief illustration of the RLSS technique is discussed in the following. For more details, the interested readership251

can refer to Appendix A or Ref. [37].252

The first step of RLSS is generating N ≥ 1 samples that follow a so-called Latinized stratifed sampling (LSS)253

scheme [39], which implies that these samples fulfill both the properties of Latin hypercube sampling (LHS) and254

stratified sampling (SS). An schematic diagram of a LSS design is shown in Fig. 2(a), considering N = 4 and ns = 2.255

In this figure, the strata associated with LHS are shown with dashed black line, the strata associated with SS are marked256
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with solid green line, the samples per each dimension of analysis are marked with blue cross marks and the actual257

samples are marked with blue dots. It is readily observed that the strata associated with SS possess the same area, and258

boundaries of the strata associated with LHS match those associated with SS, which are the key properties of LSS.259

The second step of RLSS consists of applying a Hierarchical Latin hypercube sampling (HLHS) design [37] over260

the existing LHS design. This implies applying a refinement of each LHS strata by subdividing it δ times, which is261

illustrated schematically in Fig. 2(b), where δ = 1. The new strata associated with LHS are shown with red dashed line262

and the new candidate samples per each dimension on those strata are marked with orange cross marks. Note that up to263

this point, no new actual samples have been generated. In addition, one identifies candidate strata for refining the SS264

design by dividing the existing strata, which is shown schematically in Fig. 2(b) with blue solid lines.265

The third step involves generating new candidate samples for RLSS. In this sense, candidate samples are those that266

may include the already existing N samples. These candidate samples must be identified following a special procedure267

such that the properties of LSS continue being fulfilled. For materializing this third step, one must identify the strata268

which must contain candidate samples in order to enforce the LSS condition, and the strata where candidate samples269

can be generated randomly. This is illustrated schematically in Fig. 2(c). The pink color indicates those strata that must270

contain candidate samples, while the yellow color shows those strata where a candidate sample may be generated at271

random. With all these considerations, one can generate N δ candidate designs, as shown schematically in Fig. 2(c)272

with 4 orange dots.273

The fourth step of RLSS is to incorporate a batch of ℏ samples to the existing set of N samples. This is performed274

by selecting at random from the existing N δ candidate samples. Note that in this process, it is necessary to update the275

strata associated with SS taking into account the candidate strata defined in the second step. Clearly, in such update,276

one must also update the weights (areas) of the selected strata. Fig. 2(d) illustrates the case where ℏ = 4 and also277

shows the updated strata with green solid line.278

It should be mentioned that the fourth step described above can be repeated as many times as necessary to select279

many batches of ℏ samples as long as there are candidate samples left. In case one runs out of candidate samples,280

it is necessary to return to the second step and perform a new run of HLHS, which implies subdividing the strata281

associated with LHS. Furthermore, after each sample size extension, generated RLSS samples contain not only batches282

of additional samples, but also samples from the initial LSS design. In this work, we take ℏ ≥ N in order to include283

the initial LSS design in the initial RLSS samples when l = 1 in Eq. (15).284

In the proposed sampling scheme, a proper convergence criterion should be developed to determine the desired285

number of sample size extensions. It is found that higher-order fractional moment always exhibits larger variability286

than its lower-order counterpart. Accordingly, if the variability of maximum order fractional moment is controlled,287

the variability of the lower-order ones will be automatically below a desired level. Note that the maximum order of288

fractional moments is set to be 2 in this work, as mentioned in Section 3.1.1. Therefore, a convergence criterion is289

proposed by judging the variability of the second-order fractional moment M̂2
Z evaluated by RLSS. Specifically, the290

coefficient of variation (COV) of the M̂2
Z is compared with a user-defined small value E (e.g., E = 0.02) to determine291

when to stop the sample size extension. The stopping criterion is defined as:292

COV
{
M̂2

Z

}
< E . (16)

Although the expression of COV
{
M̂2

Z

}
is not available for RLSS, the bootstrap resampling technique [40] can be293

alternatively implemented here to estimate it. Note that traditional bootstrap method generates samples with equal294
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Figure 2: Schematic description of the RLSS technique for generating 8 samples in two dimensions

probability of occurrence, which is not the case for RLSS samples. To consider the unequal weight property of295

RLSS samples, the approach proposed in Ref. [41] is adopted here, such that samples with higher weights have more296

probability of being chosen for bootstrap. For more details on this approach, it is referred to Ref. [41].297

With such parallel adaptive scheme above, once the samples of Z that meet the convergence condition are obtained,298

a set of lower-order (only up to 2) fractional moments can be estimated according to Eq. (15), which are then used to299

represent the EVD.300

3.2. Representing EVD by a mixture distribution with fractional moments301

After obtaining the fractional moments of Z , an adequate probability distribution model should be employed for the302

EVD estimation. Generally, the state-of-art distribution models represent the EVD by adopting either maximum entropy303

density [31, 32] or positively skewed distributions such as shifted generalized lognormal distribution [35] and a mixture304

of lognormal distribution and inverse Gaussian distribution [33]. However, their flexibility is still limited for the EVDs305

with heavy tails, leading to the inaccuracy of EVD reconstruction for some first-passage problems. To increase the306

flexibility and enlarge the application scope, we first extend the traditional inverse Gaussian distributions by introducing307

an exponential transformation with an additional shape parameter. Then, we introduce the log transformation to308

the extended skew-normal distribution, to enhance its ability to accommodate fat tails. Further, these two improved309
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distributions are mixed together to produce a more flexible mixture distribution model, whose involved parameters can310

be estimated from the estimated fractional moments.311

3.2.1. Proposed extended inverse Gaussian distribution312

The inverse Gaussian distribution (IGD) is a two-parameter skewed unimodal distribution and applies for positive313

real values [42]. It is a first-passage time distribution for the Brownian motion with positive drift [43]. The PDF of the314

IGD is:315

fIGD (z; a, b) =

√
b

2πz3
exp

[
−b (z − a)

2

2za2

]
, with z > 0, (17)

where a > 0 is the location parameter; b > 0 is the shape parameter.316

Denote the random variable which follows an IGD as ZIGD. The r-th fractional moment of ZIGD is given as:317

Mr
ZIGD

= E [Zr
IGD] =

∫ +∞

0

zrfIGD (z)dz = exp

[
b

a

]√
2b

π
ar−1/2K1/2−r

(
b

a

)
, (18)

where Kα(β) is the modified Bessel function of the second kind.318

In fact, the IGD can be extended to obtain higher flexibility in its shape. Here, we introduce a transformation319

X = Z1/η to extend the original distribution, where η > 0 is a shape parameter. The resulting distribution is called320

extended inverse Gaussian distribution (EIGD). To obtain the PDF and fractional moments of the EIGD, the following321

theorem is first given:322

Theorem 1. Assume X and Z are two continuous and positive real-valued random variables, and fZ (z) is already323

available. Let X = Z1/η where η > 0 , then we have fX (x) = fZ (xη) · η · xη−1. Additionally, the r-th fractional324

moment of X is E [Xr] = E
[
Zr/η

]
.325

Proof. Since X = Z1/η, according to the principle of conservation of probability, it is straightforward to derive326

fZ (z) dz = fX (x) dx. Thus, the PDF of X can be derived as fX (x) = fZ (z) dz
dx = fZ (xη) · η · xη−1. We may also327

derive the relationship between the r-th fractional moment of X and that of Z as E [Xr] = E
[(
Z1/η

)r]
= E

[
Zr/η

]
.328

Therefore, the PDF of EIGD reads:329

fEIGD (x; η, a, b) = η

√
b

2π
x−η/2−1 exp

[
−b (xη − a)

2

2xηa2

]
, with x > 0. (19)

Denote the random variable which follows the EIGD as XEIGD. According to Eq. (18) and Theorem 1, the r-th330

fractional moment of XEIGD can be derived in analytic form:331

Mr
XEIGD

= exp

[
b

a

]√
2b

π
ar/η−1/2K1/2−r/η

(
b

a

)
. (20)

Note that when η = 1, the EIGD reduces to the IGD according to Eq. (19). The limit or special cases of IGD also332

belong to the EIGD, such as the chi-square distribution with single degree of freedom, normal distribution and Lévy333

distribution. Besides, the shape flexibility of the EIGD is illustrated by Fig. 3 under four different sets of parameters.334

In this figure, we make a comparison between the original IGD and the proposed EIGD by changing parameter η and335

fixing a = 1, b = 1 of the EIGD. It can be observed that, the proposed EIGD possesses much more flexibility in shape336

of PDF than the original IGD.337
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Figure 3: PDFs of extended inverse Gaussian distribution under four different sets of parameters

3.2.2. Proposed log extended skew-normal distribution338

The extended skew-normal distribution (ESND) was first introduced by Azzalini [44]. This distribution is a339

four-parameter unimodal asymmetric distribution with support on (−∞,+∞), which generalizes the traditional340

skew-normal distribution and normal distribution. The statistical properties of the ESND are discussed in detail in Ref.341

[45]. The PDF of the ESND of a real random variable X̃ ∈ R is:342

fESND (x̃; c, d, θ, τ) =
1

d
ϕ

(
x̃− c

d

)
Φ
(
τ
√
1 + θ2 + θ x̃−c

d

)
Φ (τ)

, with x̃ ∈ R, (21)

where c ∈ R is the location parameter; d > 0 is the scale parameter; θ ∈ R is the shape parameter; τ ∈ R is the343

truncation parameter; ϕ (·) and Φ (·) denote the PDF and CDF of the standard normal distribution.344

The moment-generating function (MGF) of the ESND is:345

MX̃

(
t̃
)
= E

[
exp

(
t̃X̃

)]
= exp

(
ct̃+

1

2
d2t̃2

) Φ
(
τ + θdt̃√

1+θ2

)
Φ (τ)

, with t̃ ∈ R. (22)

Although the ESND enables to accommodate asymmetry characteristics, its ability to fit heavier tails can be further346

improved by introducing a log transformation to the ESND. We shall refer the newly generated distribution as log347

extended skew-normal distribution (LESND). Denote the random variable which follows a LESND as XLESND. Then,348

we have the relationship between XLESND and X̃ as XLESND = exp
(
X̃
)

. That is, the logarithm of XLESND follows349

the original ESND. Hence, we can get the PDF of the LESND as:350

fLESND (x; c, d, θ, τ) =
1

dx
ϕ

(
log (x)− c

d

) Φ
(
τ
√
1 + θ2 + θ log(x)−c

d

)
Φ (τ)

, with x > 0. (23)

From the relationship between the fractional moment of the LESND and the MGF of the ESND, it is easy to derive351

Mr
XLESND

= E [Xr
LESND] = E

[(
exp

(
X̃
))r]

= MX̃ (r). Hence, the r-th fractional moment of XLESND can be352

given in analytic form as:353

Mr
XLESND

= exp

(
cr +

1

2
d2r2

) Φ
(
τ + θdr√

1+θ2

)
Φ (τ)

. (24)

12



Note that according to Eq. (23), when τ = 0, the LESND reduces to the log skew-normal distribution [46]; and354

when θ = 0, the LESND reduces to the traditional lognormal distribution. It should be mentioned that if θ = 0, the355

shape of LESND will not be affected by changing the value of parameter τ . Besides, to illustrate the flexibility of the356

LESND, Fig. 4 depicts the LESND with four sets of parameters. In this figure, the log skew-normal distribution is357

given for comparison by setting the parameters of LESND as c = 0, d = 1, θ = 3, τ = 0. As can be seen, the LESND358

provides richer distribution shapes compared to the log skew-normal distribution, showing the increased flexibility of359

LESND.360
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Figure 4: PDFs of log extended skew-normal distribution under four different sets of parameters

3.2.3. Proposed mixture distribution361

It is worth mentioning that the first-passage probability estimation is closely associated to the distribution tail362

of EVD. Besides, the EVD is usually asymmetric and possesses heavy tail in many cases. Hence, a highly flexible363

distribution model is needed, which is suitable for fitting distributions with various tail properties, especially the364

heavy-tailed distributions. For accurate EVD estimation, two single-component skewed distributions proposed above,365

i.e., the EIGD and LESND, may still not be flexible enough and their applicability to various first-passage problems is366

limited. To further improve the flexibility, one potential way is to mix the proposed single-component distributions367

together by introducing a weight parameter. Such distribution model enables to incorporate both characteristics of two368

single-component distributions, and can accommodate asymmetry in a more flexible way so as to properly estimate369

the EVD. Therefore, motivated by the above, a novel mixture of the extended inverse Gaussian and log extended370

skew-normal distributions (M-EIGD-LESND) is developed herein.371

The PDF of M-EIGD-LESND is given as:372

fM−EIGD−LESND (x;Υ ) = wfEIGD (x; η, a, b) + (1− w) fLESND (x; c, d, θ, τ)

= wη
√

b
2πx

−η/2−1 exp
[
− b(xη−a)2

2xηa2

]
+ (1− w) 1

dxϕ
(

log(x)−c
d

)
Φ(τ

√
1+θ2+θ

log(x)−c
d )

Φ(τ) , with x > 0,
(25)

where Υ = [w, η, a, b, c, d, θ, τ ] is the set of eight unknown parameters and w ∈ [0, 1] is the weight parameter of373

M-EIGD-LESND.374
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According to Eqs. (20) and (24), the r-th fractional moment of M-EIGD-LESND can be given in analytic form:375

Mr
XM−EIGD−LESND

= E
[
Xr

M−EIGD−LESND;Υ
]
= wE [Xr

EIGD] + (1− w)E [Xr
LESND]

= w exp
[
b
a

]√
2b
π ar/η−1/2K1/2−r/η

(
b
a

)
+ (1− w) exp

(
cr + 1

2d
2r2

) Φ

(
τ+ θdr√

1+θ2

)
Φ(τ) .

(26)

Note that the proposed M-EIGD-LESND can reduce to the mixture of lognormal and inverse Gaussian distributions376

[33] if set η = 1 and θ = 0. To illustrate the flexibility of the proposed mixture distribution model, Fig. 5 shows the377

plot of the PDFs associated with M-EIGD-LESND with different parameters. It can be seen that the proposed mixture378

distribution model is highly flexible with rich shapes and enables to accommodate various heavy tails. In addition, the379

M-EIGD-LESND is able to represent not only unimodal distributions but also bimodal distributions.380
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Figure 5: PDFs of the proposed mixture distribution under four different sets of parameters

3.2.4. Parameter estimation381

The proposed mixture distribution model has the potential to characterize the EVD. Hence, in order to recover the382

EVD of Z , we assume that the EVD follows the proposed mixture distribution model, and determine the free parameters383

of this model in an appropriate way. Note that the proposed distribution contains a set of eight free parameters. To384

estimate these unknown distribution parameters, a natural way is to match the fractional moments of the proposed385

mixture distribution model with the estimated fractional moments of the corresponding orders (hereafter referred to as386

the fractional moment matching technique). Accordingly, the following nonlinear system of equations requires to be387

solved:388 
M̂r1

Z = Mr1
XM−EIGD−LESND

M̂r2
Z = Mr2

XM−EIGD−LESND

· · ·
M̂r8

Z = Mr8
XM−EIGD−LESND

,

(27)

where M̂ri
Z , i = 1, 2, ..., 8 are the ri-th fractional moments estimated by RLSS; Mri

XM−EIGD−LESND
can be obtained by389

Eq. (26); and the fractional order ri takes [r1, r2, ..., r8] = 2
8 × [1, 2, ..., 8]. Here, the equally spaced fractional orders390
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are introduced for convenience, since it is straightforward to take such value without any prior knowledge of fractional391

orders. Besides, as adopted in Ref. [33], the maximum fractional order is set to be 2, since the second-order fractional392

moment can be estimated efficiently from a small number of samples, and it reflects more shape information of EVD393

than lower-order fractional moments, as discussed in Section 3.1.1.394

Solution to Eq. (27) can be obtained in seconds by any appropriate nonlinear solver, such as lsqnonlin in Matlab. To395

facilitate the solving process, initial values for the free parameters are required. Denote the initial values of Eq. (27) as396

w0, η̂0, â0, b̂0, ĉ0, d̂0, θ̂0, τ̂0. w0 is set to be 0.5 to assign an equal initial weights to the two single-component functions.397

The other initial values, i.e., η̂0, â0, b̂0, ĉ0, d̂0, θ̂0, τ̂0, can be obtained by another low-order fractional moment matching398

technique, where a nonlinear system of equations is involved:399 
M̂

1/2
Z = E

[
X

1/2
EIGD; η̂0, â0, b̂0

]
M̂1

Z = E
[
X1

EIGD; η̂0, â0, b̂0

]
M̂

3/2
Z = E

[
X

3/2
EIGD; η̂0, â0, b̂0

]
,

(28)

where η̂0 > 0, â0 > 0, b̂0 > 0; and400 

M̂
1/2
Z = E

[
X

1/2
LESND; ĉ0, d̂0, θ̂0, τ̂0

]
M̂1

Z = E
[
X1

LESND; ĉ0, d̂0, θ̂0, τ̂0

]
M̂

3/2
Z = E

[
X

3/2
LESND; ĉ0, d̂0, θ̂0, τ̂0

]
,

M̂2
Z = E

[
X2

LESND; ĉ0, d̂0, θ̂0, τ̂0

]
,

(29)

where ĉ0 ∈ R, d̂0 > 0, η̂0 ∈ R, τ̂0 ∈ R. Note that the M-EIGD-LESND can reduce to the inverse Gaussian401

distribution (if set w = 0, η = 1) or the lognormal distribution (if set w = 1, θ = 0), and the relationships between402

the parameters and the first two central moments of each reduced distribution are easy to be obtained. Besides, as403

discussed earlier, the value of parameter τ will be irrelevant if θ = 0. Hence, the initial values for Eqs (28) and (29)404

can be determined as: a0 = µ̂Z , b0 = µ̂3
Z/σ̂

2
Z , η0 = 1, c0 = log

(
µ̂2
Z/

√
σ̂2
Z + µ̂2

Z

)
, d0 =

√
log (σ̂2

Z/µ̂
2
Z + 1), θ0 =405

0, τ0 = 0, where µ̂Z = M̂1
Z and σ̂Z =

√
M̂2

Z −
(
M̂1

Z

)2

. The parameter estimation process of proposed M-EIGD-406

LESND is briefly summarized in Algorithm 1.407

Algorithm 1 Parameter estimation for M-EIGD-LESND using the fractional moment matching technique

Input: central moments µ̂Z , σ̂Z , and fractional moments M̂r
Z (r =

[
1
4 ,

1
2 ,

3
4 , 1,

5
4 ,

3
2 ,

7
4 , 2

]
).

Output: estimated distribution parameters Υ = [w, η, a, b, c, d, θ, τ ].

1: Use µ̂Z and σ̂Z to evaluate η0, a0, b0, c0, d0, θ0, τ0 as the initial values of Eqs. (28) and (29);

2: Solve Eqs. (28) and (29) with η0, a0, b0, c0, d0, θ0, τ0 to estimate the initial values η̂0, â0, b̂0, ĉ0, d̂0, θ̂0, τ̂0 of Eq.

(27).

3: Solve the fractional moment matching equations (Eq. (27)) by means of any appropriate nonlinear solver

with η̂0, â0, b̂0, ĉ0, d̂0, θ̂0, τ̂0 and w0 = 0.5, and then obtain the estimated distribution parameters Υ =

[w, η, a, b, c, d, θ, τ ] of M-EIGD-LESND.
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3.3. Procedure of the proposed method408

Once the EVD is reconstructed by the proposed probability distribution model, the first-passage probability can409

be evaluated by Eq. (8) for a given threshold. A flowchart of the proposed method is shown in Fig. 6, and a brief410

procedure is summarized as follows:411

412

Step 1: Initialization. Set the initial sample size N of LSS, the refinement factor δ of HLHS, the number of samples413

ℏ added in each sample size extension and the value of tolerance E . Determine the threshold blim.414

Step 2: Generate ℏ new samples by RLSS. Produce ℏ new samples and update the weights by RLSS method415

according to Algorithm 2 in Appendix A, and then compute the new samples of Z .416

Step 3: Judge the convergence criterion. Evaluate the COV of M̂2
Z by using bootstrap technique. If Eq. (16) is417

satisfied, then turn to step 4; otherwise, return to step 2.418

Step 4: Moment evaluation. Calculate a set of fractional moments M̂r
Z (r =

[
1
4 ,

1
2 ,

3
4 , 1,

5
4 ,

3
2 ,

7
4 , 2

]
) according to419

Eq. (15), and then compute the first-two central moments µ̂Z and σ̂Z by µ̂Z = M̂1
Z and σ̂Z =

√
M̂2

Z −
(
M̂1

Z

)2

.420

Step 5: EVD representation. Represent the EVD by using the proposed distribution model, i.e., M-EIGD-LESND,421

where the involved free distribution parameters are estimated by the low-order fractional moment matching technique422

described in Algorithm 1.423

Step 6: First-passage probability estimation. Evaluate the first-passage probability Pf = Pr {Z > blim} via424

obtained EVD and Eq. (8).425

426

4. Numerical examples427

In this section, three examples, including two test examples and one practical engineering example, will be428

investigated to verify the efficacy of the proposed method. In all examples, the parameters of the proposed method429

are set as N = 1, δ = 1, ℏ = 8 and E = 0.015. The computational efficiency and accuracy of proposed methods430

for first-passage probability estimation are compared with MCS, Subset simulation (SS) [21, 23] and two state-of-art431

mixture distribution methods presented in Ref. [33] and [34]. Note that in SS, the number of samples per layer is432

1000 and the conditional probability is 0.1. Both the existing mixture distribution methods for comparison employ the433

Latinized partially stratified sampling (LPSS) to evaluate fractional moments of Z . The mixture distribution method434

in Ref. [33] develops a mixture distribution combining conventional inverse Gaussian and lognormal distributions435

(MIGLD), and thus this method is referred as LPSS+MIGLD in the following examples. Another existing mixture436

distribution method [34] develops a mixture of two generalized inverse Gaussian distributions (MTGIG), and this437

method is denoted as LPSS+MTGIG in the following examples.438

4.1. Example 1: a Duffing oscillator under Gaussian white noise439

The first example considers a Duffing oscillator with uncertain parameters under Gaussian white noise, which is440

governed by441

Ÿ (t) + γẎ (t) + Y (t) + εY 3 (t) = G (t) , (30)

where Ÿ , Ẏ and Y are the acceleration, velocity and displacement at time t; γ denotes the damping control coefficient;442

ε is the parameter controlling the degree of nonlinearity in the restoring force; and G (t) is the Gaussian white noise.443
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Figure 6: Flowchart of the proposed method

Differential equation solver Ode45 in Matlab is utilized to solve Eq. (30). Both γ and ε follow the lognormal444

distributions with mean values as 0.5 and 0.3, and standard deviation values as 0.2 and 0.1, respectively. The Gaussian445

white noise is expressed as446

G (tk) = θ (tk)
√
2πS/∆t, (31)

where S = 1 is the spectral intensity; ∆t = 0.01 s is the time interval; T = 30 s is the time period; tk = k∆t, k =447

0, 1, ..., nt is the discrete time; and here we consider nt = T/∆t+ 1 = 3001 random variables θ (tk) in the Gaussian448

white noise following the standard normal distributions. Therefore, a total number of 2 + nt = 3003 random variables449

are involved in the present example.450

The maximum absolute extreme value of displacement over time t ∈ [0, T ] , i.e., Z = maxt∈[0, T ] {|Y (t)|}, is of451

interest in this example. First, the proposed parallel adaptive sampling scheme is implemented for fractional moment452

estimation. The proposed scheme performs sample size extension successively until the convergence criterion in453

Eq. (16) is satisfied. In each sample size extension, ℏ = 8 new RLSS samples are firstly generated for deterministic454

dynamic analysis. Then, 8 new samples of Z are produced at a time using parallel computing technique with 8 CPU455

processors. After that, the RLSS weights are redistributed so that the weights produced by all performed sample size456
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extensions sum to 1. Subsequently, Eq. (16) is checked to determine whether to perform a new round of sample size457

extension. Accordingly, a total of N̂ = 520 samples of Z are produced that satisfy the convergence criterion, where the458

corresponding M̂r
Z (r =

[
1
4 ,

1
2 ,

3
4 , 1,

5
4 ,

3
2 ,

7
4 , 2

]
) can be obtained by Eq. (15). Table 1 compares the first-two central459

moments (µ̂Z = M̂1
Z and σ̂Z =

√
M̂2

Z −
(
M̂1

Z

)2

) with the benchmark results given by MCS with 106 runs. In this460

table, relative errors of the first-two moments between proposed method and MCS are also given, i.e., 0.5656% and461

0.7195%, which indicate that proposed parallel adaptive scheme using RLSS enables to obtain accurate low-order462

central moments.463

Table 1: Comparison of first-two central moments by the proposed method and MCS (Example 1)

Method(N̂ ) µ̂Z σ̂Z

Proposed(520) 3.6570 0.6623

MCS(106) 3.6778 0.6671

R.E. 0.5656% 0.7195%
Note: R.E. = Relative error with reference to MCS.

Once the required fractional moments are obtained, eight unknown free parameters involved in the proposed mixture464

distribution (i.e., M-EIGD-LESND) can be determined by the fractional moment matching technique. Specifically, the465

nonlinear system of equations in Eq. (27) is solved according to Algorithm 1, where initial values of free parameters are466

given to speed up the solving process. Afterwards, the EVD could be approximated by the proposed mixture distribution467

model, where the PDF, CDF and probability of exceedance (POE) curves are all plotted in Fig. 7. For comparison,468

the benchmark results by MCS and the results from LPSS+MIGLD and LPSS+MTGIG are also depicted in Fig. 7.469

It can be found that both the PDF and POE curves obtained from the proposed method accord well with the MCS470

results. Although there is almost no difference between the CDF curves obtained by proposed method and those by471

existing mixture distribution methods, larger deviations appear in the POE curves obtained by the LPSS+MIGLD and472

LPSS+MTGIG. Moreover, both of the LPSS+MIGLD and LPSS+MTGIG require 625 LPSS samples to estimate the473

fractional moments used for distribution parameter evaluation, where the number of samples is empirically determined474

in advance and is larger than that required by the proposed method. In this regard, the proposed method shows a475

considerable improvement in both efficiency and accuracy to recover the EVD in this example.476

After obtaining the reconstructed EVD, the first-passage probability can be evaluated by Eq. (8), where the477

safe threshold of this example is set to be blim = 7. Table 2 lists the first-passage probabilities estimated by the478

proposed method, LPSS+MIGLD, LPSS+MTGIG, SS and MCS. In this table, the estimated first-passage probabilities479

are denoted as P̂f . With reference to P̂f obtained by the MCS, i.e., 1.2200 × 10−4, the first-passage probability480

evaluated by the proposed method has acceptable accuracy, which reads 1.2245×10−4. Unfortunately, the first-passage481

probabilities by SS, LPSS+MIGLD and LPSS+MTGIG largely deviate from the reference P̂f by the MCS.482

Table 2: Comparison of first-passage probabilities by different methods (Example 1)

Method MCS SS LPSS+MIGLD LPSS+MTGIG Proposed

N̂ 106 4600 625 625 520

P̂f 1.2200× 10−4 8.3100× 10−5 4.7154× 10−5 4.5286× 10−5 1.2245× 10−4

18



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MCS

LPSS+MIGLD

LPSS+MTGIG

Proposed method

(a) PDF

0 2 4 6 8 10
10

-8

10
-6

10
-4

10
-2

10
0

MCS

LPSS+MIGLD

LPSS+MTGIG

Proposed method

(b) CDF

0 2 4 6 8 10
10

-8

10
-6

10
-4

10
-2

10
0

MCS

LPSS+MIGLD

LPSS+MTGIG

Proposed method

(c) POE

Figure 7: PDF, CDF and POE of Z in Example 1

4.2. Example 2: a 15-storey shear frame structure under fully nonstationary stochastic ground motion483

A 15-storey nonlinear shear frame structure with uncertain structural properties under fully nonstationary stochastic484

ground motion is investigated in this example, shown in Fig. 8. The equation of motion of this structure reads:485

M (Ustr) Ÿ +C (Ustr) Ẏ +K (Ustr) [ãY + (1− ã)V] = −M (Ustr) Iẍg (Uexl, t) , (32)

where Ÿ, Ẏ and Y are the lateral acceleration, velocity and displacement matrices of the structure with respect to486

the ground; M, C and K denote the mass, damping and stiffness matrices, respectively; Term I denotes the unit487

matrix. All of the lumped masses and the corresponding stiffnesses from bottom to top of the structure are assumed to488

be independent random variables, following the lognormal distributions with same coefficients of variation 0.1 and489

different mean values 6 × 104 kg and 7 × 107 N/m, respectively. Hence, ns1 = 30 random variables are involved490

in the system properties, which are denoted as Ustr. The floor slabs are assumed to be rigid. Rayleigh damping is491

implemented as C = α̂M+ β̂K, where α̂ and β̂ are obtained by taking both the damping ratios of the first and second492

modes as 0.05. The Bouc-Wen resilience model [47] is adopted to describe the nonlinear behavior of the structure,493

where the hysteretic displacement V satisfies:494

V̇ = A
(
∆Ẏ

)
− B

∣∣∣∆Ẏ
∣∣∣ |V|ρ−1

V − ξ
(
∆Ẏ

)
|V|ρ , (33)
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in which ∆Ẏ is the relative velocity between two neighboring floors, ã = 0.1, A = 1,B = ξ = 50 and ρ = 1 are495

the dimensionless parameters controlling the hysteretic performance of Bouc-Wen model. The fully nonstationary496

stochastic ground motion ẍg (Uexl, t) is modeled by the second family of spectral representation method (SRM) [48]:497

ẍg (Uexl, t) =
√
2

ns2
−1∑

j=0

√
2Sẍg

(ωj , t)∆ω cos (ωjt+ Uexl,j) , (34)

where Uexl =
[
Uexl,1, Uexl,2, ..., Uexl,ns2

]
denotes the random vector with ns2 = 1600 independent random variables498

uniformly distributed in [0, 2π]
ns2 ; ωj = j∆ω, j = 1, 2, ..., ns2 is the discrete frequency and ∆ω = ωup/ns2 denotes499

the frequency interval with upper cut frequency ωup = 240 rad/s; Sẍg
(ωj , t) is the double-sided evolutionary power500

spectrum density (EPSD) function:501

Sẍg (ω, t) = |A (ω, t)|2 S (ω) , (35)

in which A (ω, t) is the time-frequency modulation function and S (ω) is the power spectrum density represented by502

Clough-Penzien spectrum [49], which are given as503

A (ω, t) = e
−χ0

ωt
ωgT ·

[
t

C0
· e

(
1− t

C0

)]κ
, (36)

504

S (ω) =

[
ω4
g + 4ζ2gω

2
gω

2
]
ω4[(

ω2
g − ω2

)2
+ 4ζ2gω

2
gω

2
] [(

ω2
f − ω2

)2

+ 4ζ2fω
2
fω

2

] ā2max

γ2
0

[
πωg

(
2ζg +

1
2ζg

)] , (37)

where χ0 is the frequency modulation factor; C0 is the approximate arrive time of peak ground acceleration (PGA); κ505

is the shape control coefficient; ωg and ζg are the parameters describing the dominant frequency and damping ratio of506

site soil; ωf and ζf are similar parameters for the second filter that hinders the low-frequency component; γ0 is the507

peak factor; T is the time duration; and āmax denotes the PGA. Values of these involved parameters in EPSD take508

χ0 = 0.15, C0 = 9 s, κ = 2, ωf = 0.1ωg = 4
7π, ζf = ζg = 0.64, γ0 = 2.85, T = 20 s, āmax = 400 cm/s2. Note509

that a total number of ns1 + ns2 = 1630 random variables are involved in this example.510

O

Figure 8: A 15-storey nonlinear shear frame structure
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The maximum absolute extreme value of inter-storey drift on each storey over the time duration is considered as511

the response of interest in this example, which is denoted as Zi, i = 1, 2, ..., 15. Function solver Ode45 in Matlab is512

employed to perform deterministic dynamic analysis. Here, the second-order fractional moment of the maximum value513

of Z of all layers, i.e., M̂2
Zmax

,Zmax = max
1⩽i⩽15

{Zi}, is considered in the convergence criterion (Eq. (16)). Accordingly,514

a total of N̂ = 520 samples of Zi, i = 1, 2, ..., 15 are generated, and the required fractional moments are obtained515

according to Eq. (15). Besides, the speed up factor between the total computing time by using one CPU processor516

T (1) and that by using 8 CPU processors T (8) is computed, which is Sp = T (1) /T (8) = 661 s/246 s = 2.7. This517

shows the benefit of using the parallel computing technique in the proposed parallel adaptive scheme.518

Once the fractional moments are available, the EVDs of Zi, i = 1, 2, ..., 15 are then reconstructed by the proposed519

M-EIGD-LESND. Figs. 9-11 depict the PDFs and POEs of Z1 on the 1st storey, Z7 on the 7th storey and Z15 on520

the 15th storey, respectively. As seen, the proposed mixture distribution model well captures the main parts and tail521

information of the EVDs for selected storeys. Specifically, for all the selected storeys, the proposed method gives522

almost same accurate results of PDF and POE compared to the reference results from MCS. Besides, to further illustrate523

the advantages of the proposed method, a comparison of the PDF and POE curves of Z1 is depicted in Fig. 12, where524

results by LPSS+MIGLD and LPSS+MTGIG and those by the proposed method are given. As observed, with smaller525

sample size, the proposed method is able to capture the tail information more accurately than LPSS+MIGLD and526

LPSS+MTGIG, both of which require 625 samples.527
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Figure 9: PDF and POE of Z1 in Example 2

Further, we estimate the first-passage probabilities of the 1st, 7th and 15th storey of this example by Eq. (8), by528

setting three different thresholds as blim,1st = 95 mm, blim,7th = 80 mm and blim,15th = 67 mm. Table 3 gives the529

comparison results of proposed method, SS and MCS. As seen, with only 520 samples involved, all three first-passage530

probabilities by the proposed method have better accuracy than probabilities by SS.531

4.3. Example 3: a spatial steel frame structure with viscous dampers under fully nonstationary stochastic ground532

motion533

To illustrate the practical applicability of the proposed method, a two-bay four-storey nonlinear spatial steel frame534

structure with three viscous dampers under fully nonstationary ground motion is considered in this example, as shown535
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Figure 10: PDF and POE of Z7 in Example 2
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Figure 11: PDF and POE of Z15 in Example 2

Table 3: Comparison of first-passage probabilities by proposed method and MCS (Example 2)

Method(N̂ )
1st storey 7th storey 15th storey

blim(mm) P̂f blim(mm) P̂f blim(mm) P̂f

M-EIGD-LESND(520) 95 1.5075× 10−4 80 2.1708× 10−4 67 4.2208× 10−4

SS(3700) 95 1.9300× 10−4 80 4.3600× 10−4 67 4.5300× 10−4

MCS(106) 95 1.6300× 10−4 80 2.3300× 10−4 67 3.0000× 10−4

in Fig. 13. The whole structure is modeled and analyzed by the OpenSees software, where the Steel01 model shown in536

Fig. 14 is used to model the nonlinear stress-strain relationship of steel materials. The slab of each floor is supposed to537

be rigid. The IPE270 beam and IPB300 column are adopted, where the column mass takes its self weight, while the538

beam mass is defined by “self weight of beam + dead loads DL + 0.2 × live loads LL”. The viscous dampers are all539

represented by the Maxwell model which includes a linear spring and nonlinear dashpot in series. Three coefficients540
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Figure 12: A comparison between the PDF and POE of Z1 in Example 2

are involved in these viscous dampers, i.e., axial elastic stiffness of linear spring Kd, damping coefficient Cd, and541

velocity exponent αd. The Rayleigh damping is also employed here, where the damping ratios for both the first and542

second modes are taken as 0.03. The fully nonstationary stochastic ground motion takes the same form and parameters543

as employed in Example 2. It should be mentioned that the randomness of this structure comes from its external loads544

(i.e., dead loads, live loads and ground motion) and its structural properties. The statistical information of uncertain545

structural properties is collected in Table 4. In total, 1608 random variables are involved in this example.546

O

Figure 13: A two-bay nonlinear spatial steel frame structure with viscous dampers

We consider the maximum absolute inter-storey drift of the whole structure as the quantity of interest, denoted547

by Z . By adopting the proposed parallel adaptive scheme, N̂ = 1032 samples of Z are generated, where a set of up548

to second order fractional moments can be estimated by Eq. (15). From the knowledge of the estimated fractional549

moments, the EVD is represented by the proposed mixture distribution model, where the corresponding PDF and POE550

curves are depicted in Fig. 15. For comparison, the results by LPSS+MIGLD and LPSS+MTGIG are also provided,551
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Table 4: Statistical information of the uncertain structural properties in Example 3

Parameter Description Distribution Mean Standard variation

DL Dead load Lognormal 10 N/m2 0.5 N/m2

LL Live load Lognormal 10 N/m2 1 N/m2

Fy Yield strength of the steel Normal 250× 106 Pa 375× 105 Pa

Es Young’s modulus of the steel Normal 2× 1011 Pa 3× 1010 Pa

b Strain-hardening ratio Normal 10−3 5× 10−5

Kd Axial stiffness of linear spring Normal 25 Pa 2.5 Pa

Cd Damping coefficient Normal 20.7452 2.07452

αd Velocity exponent Normal 0.35 0.0175

together with the benchmark results from MCS. Good accordance between results by proposed method and MCS552

is readily observed. Admittedly, LPSS+MIGLD and LPSS+MTGIG are more computationally efficient since only553

625 LPSS samples are employed. However, the tail distributions captured by the LPSS+MIGLD and LPSS+MTGIG554

unfortunately deviate from the benchmark results to a large extent. Moreover, we calculate the first-passage probability555

of this example by setting the threshold of Z as 38 mm. The first-passage probabilities by the MCS, SS, LPSS+MIGLD,556

LPSS+MTGIG and proposed method are listed in Table 5. Remarkably, the proposed method yields a probability557

that is quite close to what MCS gives, i.e., 2.2439 × 10−4 by the proposed method, and 2.3600 × 10−4 by MCS.558

The probability by LPSS+MIGLD and LPSS+MTGIG notably deviate from the probability by the MCS, reading559

5.0859× 10−5 and 5.0677× 10−5, respectively. In addition, the first-passage probability by SS is also less accurate,560

reading 2.0400× 10−4, but requires much more model evaluations.561

Table 5: Comparison of first-passage probabilities by different methods (Example 3)

Method MCS SS LPSS+MIGLD LPSS+MTGIG Proposed

N̂ 106 3700 625 625 1032

P̂f 2.3600× 10−4 2.0400× 10−4 5.0859× 10−5 5.0677× 10−5 2.2439× 10−4
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Figure 15: PDF and POE of Z in Example 3

5. Concluding remarks562

This paper proposes a novel fractional moments-based mixture distribution method to estimate the EVD and the563

first-passage probabilities of high-dimensional nonlinear stochastic dynamic systems. Unlike the existing methods,564

a parallel adaptive sampling scheme that allows for sample size extension is first proposed for estimating fractional565

moments. By doing so, the sample size can be determined problem-dependently in conjunction with a proposed566

convergence criterion. Such scheme is realized by a sequential sampling method, i.e., refined latinized stratified567

sampling (RLSS), which also enables to achieve variance reduction in high dimensions. One versatile mixture568

distribution model, namely, M-EIGD-LESND, is proposed to represent the EVD with enhanced flexibility, whose569

free parameters are evaluated from obtained fractional moments. Three examples involving high-dimensional and570

strong-nonlinear stochastic dynamic systems are investigated to demonstrate the efficacy of the proposed method. The571

main conclusions are summarized as follows:572

(1) The studied examples indicate that the proposed method is able to tackle with high-dimensional and strongly573

nonlinear stochastic dynamic systems, where the uncertainties in both internal structural properties and external574

excitations are considered. In addition, the proposed method is capable of accurately estimating small first-passage575

probabilities in the order of 10−4.576

(2) Several byproducts can be obtained by adopting the proposed method, i.e., fractional moments (including577

integer moments such as mean and standard deviation) and EVD. Furthermore, for a general stochastic dynamic system,578

multiple EVDs and first-passage probabilities under different thresholds can be estimated from only a single run of the579

proposed method.580

(3) The proposed method is computational efficient since the proposed parallel adaptive scheme allows to determine581

an optimal sample size for a particular problem at hand. In addition, only additional samples of extreme value need to582

be evaluated in each sample size extension, where parallel computing technique can be adopted to further improve the583

efficiency.584

(4) The proposed eight-parameter mixture distribution model is highly flexible and can adapt to different levels585

of distribution asymmetry. This model generalizes several single-component distributions, such as the lognormal,586

skew-normal, log skew-normal, and inverse Gaussian distribution. In addition, the mixture of lognormal and inverse587
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Gaussian distributions is a special case of the proposed model. As a result, this model enables the proposed method to588

accurately recover a wide variety of EVDs.589
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Appendix A. Refined Latinized stratified sampling604

To generate samples and weights by the Refined Latinized stratified sampling (RLSS) [37], first we need to generate605

candidate samples and candidate strata by the combination of hierarchical Latin hypercube sampling (HLHS) [37] and606

Latinized stratified sampling (LSS) [39].607

Begin with a LSS design with N samples in ns dimensions. First, generate a ns-dimensional Latin hypercube608

sampling (LHS) design with N one-dimensional LHS strata Ωij and samples in each stratum φij , i = 1, ..., ns; j =609

1, ...,N . Denote S as the [0, 1]
ns space. Divide S equally into N mutually exclusive and collectively exhaustive strata610

Ω(k), k = 1, ...,N , where Ω(k)
⋂
Ω(q) = ∅, k ̸= q and

⋃N
k=1 Ω

(k) = S. Note that each Ω(k) is an equal-weighted611

hyper-rectangle and its boundary coincides with the boundary of Ωij . Each Ω(k) can be described by its starting612

coordinate near the origin Λ(k) =
{
Λ
(k)
1 , ..., Λ

(k)
ns

}
and its side length λ(k) =

{
λ
(k)
1 , ..., λ

(k)
ns

}
. The weight of each613

Ω(k) can be calculated as [37]:614

ϖ(k) =

ns∏
i=1

λ
(k)
i , (A.1)

where
∑N

k=1 ϖ
(k) = 1. For each Ω(k), randomly pair each φij without replacement to produce the k-th LSS sample615

φ(k) =
[
φ
(k)
1 , ..., φ

(k)
ns

]
, k = 1, ...,N .616

Afterwards, apply a δ-level refinement of each Ωij based on the idea of HLHS, where δ ∈ Z+ is the refinement617

factor. Specifically, along each dimension, divide Ωij δ times equally to obtain a total of Ñ = N (δ + 1) strata618
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Ωijh, h = 1, ..., Ñ . Produce new candidate samples per each dimension by uniform sampling inside every empty newly619

produced stratum Ωijh. Subsequently, generate the candidate strata of RLSS, denoted as Ω̃(k⋆), k⋆ = 1, ..., Ñ , by620

dividing all the Ω(k) δ times along the LHS stratum boundaries in the dimension of largest side length λ⋆ = max
i

{
λ
(k)
i

}
.621

Then, identify the candidate stratum Ξ
(k⋆)
i =

{
Ωij ∈

[
Λ
(k⋆)
i , Λ

(k⋆)
i + λ

(k⋆)
i

]}
which intersects with Ω̃(k⋆) in each622

i-th dimension. Count the number of Ξ(k⋆)
i as ε(k

⋆)
i , i = 1, ..., ns, and then determine the minimum number of Ξi,(k⋆)623

as ϵ⋆i = min
k⋆

{
ε
(k⋆)
i

}
. The candidate samples of RLSS, denoted as φ̃(k⋆), k⋆ = 1, ..., Ñ , are generated by drawing624

samples to the stratum Ω(k⋆) satisfying ε
(k⋆)
i = ϵ⋆i : if ϵ⋆i = 1, Ω(k⋆) contains only one single candidate LHS stratum,625

one must draw a sample from it; if ϵ⋆i > 1, one can draw samples from Ξ
(k⋆)
i at random without replacement. Repeat626

the sample adding process until all the dimensions of Ω(k⋆) have one related sample.627

Once the candidate samples φ̃(k⋆) and strata Ω̃(k⋆) of RLSS are obtained, we can generate ℏ RLSS samples at628

a time. First, randomly select ℏ RLSS strata Ω̂(l), l = 1, ..., ℏ from the candidate strata Ω̃(k⋆). Then form RLSS629

samples φ̂(l), l = 1, ..., ℏ by drawing corresponding samples from φ̃(k⋆) to Ω̂(l). Update the stratum weight according630

to Eq. (A.1) by specifying the side length of Ω̂(l). Repeat several times to add ℏ RLSS samples continuously until a631

user-defined convergence criterion is met or the number of remaining candidate samples φ̃(k⋆) of RLSS is less than ℏ.632

Note that if the number of candidate samples is insufficient, a new extension of the sample candidate pool is required.633

If ς > 1 extensions of the candidate sample pool can finally produce enough samples and weights of RLSS that meet634

the convergence criterion, then the total number of φ̃(k⋆) and Ω̃(k⋆) at this time will be Ñ = N (δ + 1)
ς . Briefly, the635

procedure of RLSS scheme is summarized in Algorithm 2, where N̂ denotes the obtained optimal sample size.636
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method, Nonlinear Dynamics 85 (3) (2016) 1445–1456.658

[13] P. D. Spanos, I. A. Kougioumtzoglou, Galerkin scheme based determination of first-passage probability of nonlinear system response, Structure659

and Infrastructure Engineering 10 (10) (2014) 1285–1294.660

27



Algorithm 2 Refined Latinized stratified sampling approach [37]
Input: Dimension ns of the random parameter vector U, LSS size N , refinement factor δ and number of samples for

each new sample size extension ℏ.

Output: RLSS samples φ̂ =
{
φ̂(1), ..., φ̂(N̂)

}
and corresponding weights ϖ =

{
ϖ(1), ..., ϖ(N̂)

}
.

1: Initialize with ς = 1. Define a LHS design with N ungrouped LHS sample components φij and corresponding

one dimension LHS strata Ωij , i = 1, ..., ns; j = 1, ...,N .

2: Establish a ns-dimensional stratification Ω(k), k = 1, ...,N to form LSS strata such that each stratum is an

equal-weighted hyper-rectangle and its boundary coincides with the boundary of Ωij . Calculate the stratum weight

of Ω(k) according to Eq. (A.1).

3: Generate LSS samples φ(k) =
[
φ
(k)
1 , ..., φ

(k)
ns

]
, k = 1, ...,N by randomly drawing φij to its related LSS stratum

without replacement.

4: Produce candidate samples per each dimension by applying a δ-level refinement of each φij inherent in Ω(k)

according to HLHS design.

5: Generate candidate strata of RLSS Ω̃(k⋆), k⋆ = 1, ...,N (δ + 1)
ς by dividing all the strata Ω(k) equally δ times

along every dimension with largest side length λ⋆
i .

6: Identify the strata Ξ(k⋆)
i =

{
Ωij ∈

[
Λ
(k⋆)
i , Λ

(k⋆)
i + λ

(k⋆)
i

]}
, k⋆ = 1, ...,N (δ + 1)

ς which intersect with Ω̃(k⋆) in

each i-th dimension. Count the number of Ξ(k⋆)
i in the i-th dimension as ε(k)i , and then calculate ϵ⋆i = min

k⋆

{
ε
(k⋆)
i

}
.

7: Generate candidate samples of RLSS φ̃(k⋆), k⋆ = 1, ...,N (δ + 1)
ς inside the stratum Ω̃(k⋆) satisfying ε

(k⋆)
i = ϵ⋆i :

if ϵ⋆i = 1, draw samples from Ωij ; if ϵ⋆i > 1, draw samples from Ξ
(k⋆)
i at random; repeat sample selection until all

the dimensions are filled.

8: Select ℏ RLSS strata Ω̂(k), k = 1, ..., ℏ randomly from candidate Ω̃(k⋆) and generate ℏ RLSS samples φ̂(k), k =
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