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Abstract13

Spatial uncertainty of soil parameters has a significant impact on the analysis of slope stability. Interval14

field analysis is emerging as a complementary tool of the conventional random field method that can take15

spatial uncertainty into account, which, however, has not been investigated in slope stability analysis. The16

present paper proposes a new method, named the interval field limit equilibrium method (IFLEM), for17

assessing the stability of slope in the presence of the interval field. In this method, the modified exponential18

function is introduced to characterize the spatial uncertainty of the interval field and the Karhunen-Loève-19

like decomposition is employed to generate the interval field. Then, in a single calculation, the deterministic20

slope stability analyzed by the Morgenstern-Price approach is implemented in order to estimate the safety21

factor. Subsequently, the upper and lower bounds of the interval of safety factor are efficiently evaluated22

by a kind of surrogate-assisted global optimization algorithms, such as Bayesian global optimization used23

in this study. Finally, the effectiveness of the proposed method is verified by two numerical examples.24

The results indicate that the proposed method can provide reasonable accuracy and efficiency, which is25

potentially applicable to a number of geotechnical systems.26
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1. Introduction29

Slope failure is a major threat to people’s lives and property in mountainous areas. Due to the com-30

plex material composition and various deposition conditions, there is considerable spatial uncertainty in the31

properties of geotechnical materials (Phoon and Kulhawy, 1999a). Previous studies have indicated that the32

spatial uncertainty usually has a great impact on the design and analysis of geotechnical structures, hence33

it should be properly taken into account (Länsivaara et al., 2021). The random field theory as one of the34

feasible techniques to characterize the spatial uncertainty (Phoon and Kulhawy, 1999b; Griffiths and Fenton,35

2004). A series of progresses have been emerged in recent decades, particularly a comprehensive overview is36

given (Jiang et al., 2022). Although the random field theory can address the spatial uncertainties, it requires37

a large number of samples to obtain statistical characteristics, such as mean value, coefficient of variation,38

and correlation function. However, it is difficult to estimate these parameters in the presence of sparse mea-39

surement data, particularly the correlation length and correlation function (Cami et al., 2020). To address40

the challenges connected to the statistical inference of the properties of autocorrelation functions, Wang et al.41

(2019) proposed a bootstrap method for statistically inferring the autocorrelation coefficients as well other42

parameters of a random field. However, for sparsely sampled random fields, extra statistical uncertainties43

are introduced when estimating the sampling distribution of the random field parameters (Montoya-Noguera44

et al., 2019).45

Alternatively to random fields, the interval field method proposed by (Moens et al., 2011) only requires46

the upper and lower bounds of material parameters, as well as a description of the spatial dependence for47

modelling the spatial information. These characteristics of interval fields are particularly desirable in cases48

where statistical data are lacking (Beer et al., 2013; Faes and Moens, 2019). This method represents the49

uncertainty of bounded parameters that vary in time or space as a series of deterministic basis functions50

multiplied by a superposition of interval factors. So far, a number of scholars have promoted the interval51

field method in different fields. Faes and Moens (2017, 2020a) presented a novel methodology for the52

identification and quantification of spatial uncertainty modelled as an interval field, including potential53

cross-dependence. Sofi et al. (2015, 2019) introduced an interval finite element method which incorporates54
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the interval field representation of uncertainties by applying an interval extension in conjunction with the55

standard energy approach. Ni and Jiang (2020); Ni et al. (2016) proposed an interval field model to represent56

spatial uncertainties with insufficient information, in which the variation of the parameters at each location57

is quantified by an interval with upper and lower bounds. Callens et al. (2021) presented a method to model58

local explicit interval fields, which are less computationally demanding and less conservative than global59

explicit interval fields.60

It can be seen that the interval field method is receiving growing attention, but its application in geotech-61

nical engineering is rarely reported. Therefore, the present study expands its scope on characterizing the62

spatial uncertainty in geotechnical engineering.63

In practical terms, an interval field can be regarded as a family of dependent interval variables indexed64

by location. When considering this interpretation, the methods developed for propagating interval variables65

could also be applicable to the propagation of interval fields. Over the past several decades, a plethora of66

methods have been developed for interval uncertainty propagation, such as the interval arithmetic (Moens67

and Hanss, 2011), the interval perturbation methods (Wang et al., 2014) and the global optimization ap-68

proach (Deng et al., 2017), etc. It is recommended to refer to (Faes and Moens, 2020b) for a comprehensive69

review on the related computational methods. Among these algorithms, global optimization approaches are70

the standard technique for solving interval problems. The main downside is the computational effort of these71

approaches. To reduce the computational efforts required by heuristic global optimization algorithms (e.g.,72

genetic algorithm), Kriging-assisted global optimization techniques have been investigated in the context of73

interval uncertainty propagation (Catallo, 2004). In this direction, a Bayesian global optimization is also74

presented to obtain the lower and upper response bounds of a computationally expansive model subject to75

multiple interval variables (Dang et al., 2022).76

In this paper, the stability analysis of slopes is analyzed when the spatial uncertainty affecting the slopes77

is modeled by interval fields. The main contributions of this work are summarized as follows: first, the78

interval field is introduced to characterize the spatial uncertainty of slopes. This is a modelling strategy79

complementary to the conventionally used random fields, and it is, to the authors’ best knowledge, applied80
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to slope stability for the first time. In this representation, an expansion over an orthogonal basis, similar81

to the Karhunen-Loève-like decomposition in random field analysis, is used to represent the interval field82

by employing multiple interval variables. Second, a general methodology, called the interval field limit equi-83

librium method (IFLEM), is proposed to propagate interval fields in slopes. This approach estimates the84

resulting lower and upper bounds of the safety factor of the slope stability. Additionally, the Bayesian global85

optimization algorithm is applied to find the lower and upper bounds of the safety factor of a slope char-86

acterized by multiple interval variables, where the Morgenstern-Price method is employed for deterministic87

analysis.88

The rest of this paper is arranged as follows: section 2 introduces the basic knowledge of the interval89

field, and section 3 incorporates the methodology that will be used in this paper. Section 4 illustrates the90

procedure of the interval field limit equilibrium method. Two numerical examples are given to demonstrate91

the effectiveness of the interval field limit equilibrium method in section 5, and conclusions are drawn in92

section 6.93

2. Interval field theory94

An interval field can be understood as a set of dependent intervals indexed by the location through-95

out the model domain and/or time. The interval field model solves the problems of changing mechanical96

parameters with spatial location from a non-probabilistic perspective by measuring the spatial uncertainty97

of the parameters in the form of upper and lower bounds (Sofi et al., 2019). Specifically, the represent98

interval fields are based on spatial dependence functions and Karhunen-Loéve (K-L) like expansions. The99

spatial dependence function is adopted to represent the dependence of interval variables in different spatial100

positions. In addition, the specific expansion form of the interval fields can be obtained through the K-L101

like series expansion.102

2.1. Interval field expansion103

In probability theory, random fields are generally used to quantify the uncertainty of a spatially uncertain104

parameter, in which the quantity at arbitrary location x ∈ Ω ⊂ Rnd is considered as a random variable with105
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a probability distribution, where x is the spatial coordinate in nd dimensions in the physical model domain106

Ω. Different from the random field model, the interval field model employs bounds, namely a pair of upper107

and lower bounds, to describe the spatial uncertainty, which can efficiently perform uncertainty analysis108

based on limited information (Chen et al., 2020). For specific problems, how to represent the interval field109

is the basis of simulation calculations. In this paper, the K-L like expansion is used to represent the interval110

field ψI(x) : Ω× IR 7→ IR, with IR the space of interval valued real numbers. The expansion of an interval111

field is written as:112

ψI(x) = ψI
o(1 + ψI

n(x)), (1)

113

ψI
n(x) =

∞∑
j=1

√
λjfj(x)ζj , (2)

where ψI
o is the center value of the interval field, ψI

n(x) is a dimensionless interval field with unit range,114

λm ∈ [ 0,∞) is them-th eigenvalue of the spatial dependency function, fm : Ω 7→ R is them-th eigenfunction115

of the spatial dependency function, and ζj ∈ IR is the j-th extra unitary interval (Sofi, 2015).116

The extra unitary interval is quite different from the classical unitary interval. It relies on the rules of117

the classical interval analysis. The specific details about the classical interval analysis can be found in (Sofi,118

2015). The extra unitary interval is given by119

ζj ∈ [−1, 1], j = 1, 2, · · · , l. (3)

Besides, the uncertain flexibility of the spatial dependency condition is described by a single interval120

variable constant over the whole range (Sofi, 2015). For that, the following equality holds121

ζj × ζj = [0, 1]. (4)

For numerical implementation, the interval field is represented by l-term expansions. To be specific, the122

l-term expansions of the interval field reads123

ψI(x) = ψI
o(1 +

l∑
j=1

√
λjfj(x)ζj). (5)
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For details of the method, the reader is referred to the work of Sofi et al. (2019). In this process, the124

error of the l-term expansions of the interval field can be represented as:125

εt(ψ
I(x)) = 1−

∑l
j=1 λj∑∞
j=1 λj

, (6)

where εt ∈ [ 0,∞) is the error of the l-term expansions of the interval field, λj is j-th eigenvalue.126

2.2. Spatial dependency function127

The key idea behind the interval field model is to describe the spatial dependency of the uncertain128

property by introducing a real, deterministic, symmetric, non-negative function γ(µ, υ). In analogy with129

the auto-correlation function characterizing a random field, the analytic expression of γ(µ, υ) needs to be130

assumed in a consistent way with the engineering information (Sofi, 2015). That is to say, each realization131

of the interval field may vary arbitrarily within the upper and lower bounds, as sketched in Fig. 1. In this132

figure, we assumed for simplicity that the upper and lower bounds are constant. The function γ(µ, υ) reflects133

the dependency between values of the interval field at different locations. Therefore, the γ(µ, υ) is used to134

characterize spatial uncertainty and has a number of formulations, such as the single exponential model,135

squared exponential model, etc (Cami et al., 2020). Among them, the modified exponential model is differ-136

entiable at the origin, such that the K-L expansion itself exhibits higher computational efficiency (Spanos137

et al., 2007; Faes et al., 2022). Thus, in this paper, we assumed that the spatial dependency function,138

γ(µ, µ′, υ, υ′), has the following modified exponential form:139

γ(µ, µ′, υ, υ′) = exp

(
−|µ− µ′|

lh
− |υ − υ′|

lv

)
(1 +

|µ− µ′|
lh

)(1 +
|υ − υ′|
lv

), (7)

where γ(µ, µ′, υ, υ′) is the spatial dependency function, (µ, υ) and (µ′, υ′) denote two points in a 2-D space,140

exp (·) is the exponential function, lh is the horizontal spatial dependency length which is similar to the141

horizontal correlation distance, lv is the vertical spatial dependency length which is similar to the vertical142

correlation distance, |µ− µ′| and |υ − υ′| respectively denote the horizontal and vertical distances between143

the two points.144

In this paper, an assumed spatial dependency function, the modified exponential function is used for145

illustrative purpose. After the spatial dependency function γ(µ, µ′, υ, υ′) : Ω × Ω 7→ R is determined, the146
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Fig. 1. Sketch of the interval field

spatial uncertainty can then be characterized (Faes et al., 2022). Specifically, the Fredholm integral equation147

of the second kind is solved to obtain the eigenvalues and eigenfunctions of the γ(µ, µ′, υ, υ′) (Atkinson and148

Han, 2009). The Fredholm integral equation of the second kind takes the form:149

∫
Ω

γ(µ, µ′, υ, υ′)fj(µ
′, υ′)dµ′dυ′ = λjfj(µ, υ), (8)

where λj is the j-th eigenvalue of the spatial dependency function, and fj(·) is the j-th eigenfunction of150

the spatial dependency function. In order to numerically solve the Fredholm integral equation of the second151

kind, the interval field is first discretized into a series of points, and the integral Eq. (8) is solved by152

determining the eigenvalues and eigenvectors of the covariance matrix.153

3. Interval field limit equilibrium method154

In this section, the fundamental knowledge and computational formula of the proposed interval field155

limit equilibrium method are introduced. First, a limit equilibrium method, namely the Morgenstern-Price156

method, is introduced to calculate the safety factor of the slope with the interval field of cohesion and157

internal friction angle. Then, the Bayesian global optimization is elaborated to calculate the upper and158

lower bounds of the safety factor of this slope.159
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3.1. Limit equilibrium method and its extension to interval field160

This subsection first introduces the limit equilibrium method for slope stability analysis. Then the161

extension of the interval field into the limit equilibrium method is studied.162

3.1.1. Limit Equilibrium Method163

Soil slope stability analysis refers to the analysis of the mutual balance between sliding factors and164

resistance factors on the sliding surface of a soil slope. Soil slope has the tendency to move downward and165

outward under the action of gravity and other external forces, if the soil inside the slope can resist this166

tendency, then the slope is stable, otherwise sliding will occur (Liu et al., 2015).167

Fig. 2. Schematic diagram of limit equilibrium method

The limit equilibrium method (LEM) used in this paper is the Morgenstern-Price method. The Morgenstern-168

Price method is similar to the Spencer method, but it allows for various user-specified interslice force func-169

tions (Morgenstern and Price, 1965). In the Morgenstern-Price method, it is assumed that170

χl/el = tanβ = λf(u), (9)

where χl is inter-slice vertical force, el is inter-slice horizontal force, λ is a constant, and f is an inter-slice171
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function. In particular, the inter-slice functions in the present implementation is half-sine function.172

According to Fig. 2, the equilibrium equations of the forces in the horizontal and vertical directions are173

derived respectively. The obtained equations are shown as follows:174

t sinα+ n cosα = ∆w +∆v −∆χ, (10)

175

t cosα− n sinα = ∆q −∆e, (11)

176

t cosα = c∆χ secα+ n tanφ, (12)

where t is tangential force at the bottom of the soil strip, n is the normal force at the bottom of the soil177

strip, α is the angle between the tangent line at the bottom of the soil strip and the horizontal direction,178

∆w is the gravity of the soil strip, ∆v is the external force on the soil strip in the vertical direction, ∆χ is179

the difference in vertical force between strips on both sides of the soil strip, ∆q is the horizontal component180

of the soil strip, ∆e is the difference in horizontal force between strips on both sides of the soil strip, c is181

cohesion, and φ is internal friction angle.182

In addition, the equilibrium equation of the moment is derived as follows183

(χ+∆χ)
∆p

2
+χ

∆p

2
+ (e+∆e)∆q − e∆r −∆q∆s = 0, (13)

where χ is the lower soil bar which is subjected to the inter-slice vertical force of the upper soil bar, ∆p is184

the width of the soil strip, e is the lower soil strip is subjected to the horizontal force between the strips of185

the upper soil strip, ∆q is the distance between the position of the force of the lower soil strip on the upper186

soil strip and the center point of the bottom of the strip, ∆r is the distance between the position of the187

force of the upper soil strip on the lower soil strip and the center point of the bottom of the strip, and ∆s is188

the distance between the position of the horizontal component of the soil strip and the center of the bottom189

of the strip.190

Based on the theory of the limiting equilibrium method, the safety factor (fs) of the slope can be obtained191

by equilibrium conditions (Zhu et al., 2005). The fs of the slope can be calculated from Eqs. (14) and (15)192
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by combining Eqs. (10)-(13) according to the equilibrium condition of force and moment, that is,193

−de

dp
(1 + tanφ tanα) +

dχ

dp
(tanφ− tanα) = c sec2 α+

(
dw

dp
+

dv

dp

)
(tanφ− tanα)− dq

dp
(1 + tanφ tanα),

(14)

∫ b

a

[λf(p)e− e tanα] dp =

∫ b

a

dq

dp
∆s dp. (15)

3.1.2. Extension to interval field194

The equilibrium equation of the force is first established. In the process, cohesion and internal friction195

angle are expressed in the form of interval fields. Then the equilibrium equation of the moments is estab-196

lished. Finally, the equilibrium formulas for the forces and moments are combined to calculate the fs for197

the slope. The equilibrium equation of the force is198

t cosα = ψI
c∆p secα+ n tanψI

φ, (16)

where t is the tangential force at the bottom of the soil strip, α is the angle between the tangent line at the199

bottom of the soil strip and the horizontal direction, ψI
c is the interval field of c, and ψI

φ is the interval field200

of φ.201

Combining the equilibrium equations of force and moment yields the equation of the interval field limit202

equilibrium method. Specifically, it is written as203

−de

dp
(1 + tanψI

φ tanα) +
dχ

dp
(tanψI

φ − tanα) = ψI
c sec

2 α+ (
dw

dp
+

dv

dp
)

(tanψI
φ − tanα)− dq

dp
(1 + tanψI

φ tanα),

(17)

where ψI
c is interval field of c, ψI

φ is interval field of φ, χ is the lower soil bar is subjected to the interbar204

vertical force of the upper soil bar, and e is the lower soil strip is subjected to the horizontal force between205

the strips of the upper soil strip.206

3.2. Estimate the safety factor bounds by Bayesian global optimization207

With the development of optimization methods, surrogate models have evolved into methods that incor-208

porate new data points based on historical data and approximate the global optimal solution, i.e., Bayesian209
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global optimization (Jones et al., 1998; Han and Görtz, 2012). In this problem, the optimization problem210

can be formulated as211 

max fs(ζ)

min fs(ζ)

s.t. ζj × ζj = [0, 1],

(18)

where ζ = (ζ1, ζ2, · · · , ζl)T is the l-dimensional vector of interval variables, fs(ζ) : IRl 7→ IR is the objective212

function, and ζj × ζj = [0, 1] is the constraint conditions.213

Bayesian global optimization is a black-box optimization algorithm for solving optimization problems214

for functions with unknown expressions. The algorithm predicts the probability distribution of the function215

values at any point based on the function values at a set of sampled points, which is achieved by Gaussian216

process regression. In this subsection, a Bayesian global optimization method that can simultaneously find217

the minimum and maximum values of the objective function is introduced (Dang et al., 2022). The formula218

for calculating the minimum value is exhibited in this section. The maximum value is calculated in a similar219

way after the minimum value is obtained. From the results of the Gaussian process regression, an acquisition220

function is constructed to measure whether another point is needed to be added, and the extreme value of221

the acquisition function is solved to determine the next sampling point. In the paper, Bayesian global222

optimization is used to obtain the intervals of fs.223

3.2.1. Initial sample selection224

The first step of the optimization algorithm is to select the initial sample points. In the present imple-225

mentation, the initial samples are uniform random samples inside the unit hyper-sphere (Rubinstein and226

Kroese, 2016). Then, the initial surrogate model is built based on the initial samples and the associated227

function values. The Gaussian process regression N [γ̂(ζ), s(ζ)] is used as a surrogate model, in which N [·, ·]228

is a normal distribution, γ̂(ζ) and s(ζ) are mean value and standard value of predict model respectively.229

It’s performed using the fitrgp function in MATLAB.230
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3.2.2. Training dataset enrichment231

For the minimization problem, the objective function improvement θ(ζ) is defined as232

θ(ζ) = max{γmin − γ̂(ζ), 0}, (19)

where γmin is the current optimal objective function value, and γ̂(ζ) is the set of parameters that obey233

normal distribution.234

The expectation value of θ(ζ) is given by (Jones et al., 1998)235

E[θ(ζ)] =


(γmin − γ̂(ζ))Φ

(γmin − γ̂(ζ)

s(ζ)

)
+ s(ζ)ϕ

(γmin − γ̂(ζ)

s(ζ)

)
, s > 0

0, s = 0,

(20)

where E[·] is the expectation operator, Φ is the standard normal cumulative distribution function, ϕ is236

the standard normal distribution probability density function, γ̂(ζ) and s(ζ) are the mean and standard237

deviation of the normal distribution of the Kriging model predictions, respectively.238

The new sample points are found by solving the following suboptimization problem which maximize the239

value of E[θ(ζ)]:240 
max

ζ
E[θ(ζ)]

s.t. ζj × ζj = [0, 1].

(21)

3.2.3. Convergence criterion for Bayesian global optimization241

The convergence criterion is an essential element for the optimization algorithm. It is determined by242

controlling the ratio of the maximum expected value of θ(ζ) to the current optimal objective function value.243

The convergence criterion of the present paper is defined as244

|max E[θ(ζ)]|
|γmin|+ δ

≤ ϵ, (22)

where max E[θ(ζ)] represents the maximum value of E[θ(ζ)], γmin represents the minimum value of γ245

observed so far, δ is an extreme small positive value, ϵ is the threshold value. In this case, δ is 1e-6 and ϵ246

is 0.001. The optimization process is terminated when the ratio of the maximum expected value of θ(ζ) to247

the current optimal objective function value is less than ϵ for three successive iterations.248
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4. Implementation procedure of IFLEM249

By combining the limit equilibrium method, the interval field model, and Bayesian global optimization250

method, IFLEM is proposed to efficiently estimate the upper and lower bounds of the fs of a slope. The251

basic procedure for the numerical implementation of the proposed method (shown in Fig. 3) includes the252

following five steps:253

Fig. 3. Flowchart of the proposed IFLEM method

1. An initial sample points are first generated as a scattering set of samples by the method in Section254

3.2. The interval field is generated from Eq. (1) based on the selected interval vector.255

2. The parameters of the interval field are input into the slope model. The fs of the slope is evaluated256

by Eq. (17) according to the interval fields of c and φ.257

3. Select the vector samples required for the next calculation according to the optimal additive point258

criterion by Eq. (19).259

4. Determine the termination condition of the optimization by Eq. (22). If the condition is satisfied, the260

upper and lower bounds of the fs are obtained according to the calculation. Otherwise, additional261
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points are required and steps (2) to (4) are repeated until the condition is satisfied.262

5. After calculating the fs, the stability of the slope is evaluated. If the minimum value of the fs is263

greater than 1, the slope is in a totally safe state. If the maximum value of the fs is less than 1, the264

slope is in a high risk state. If 1 is within the interval of the fs, the stability of the slope is unsure.265

5. Illustrative examples266

In order to demonstrate the accuracy and effectiveness of the proposed method, two examples are shown267

in this section. The first one is a one-stage slope and the second one is a two-stage slope. The purpose of268

the first case is to show the accuracy and efficiency of this approach. The second one is to show that this269

method applies to complex problems.270

5.1. Example 1: Interval field analysis of a single-stage slope271

5.1.1. Description of the problem272

To illustrate, a single-stage slope is used to demonstrate the generation of the interval field, and then273

the interval of the fs is calculated according to the proposed method. This slope has a height of 28 m and274

an angle of 36.9°, in which the height of the lower floor is 4 m and the height of the upper floor is 24 m,275

as shown in Fig. 4. In order to generate interval fields for the slope, 489 elements are discrete in the slope.276

In the process, the c and φ are spatially variable described by the interval fields which are generated by277

the method mentioned in Section 2. And we use the parameter of midpoint of the element on behalf of the278

whole element. The minimum value of c is 15 kPa and the maximum value is 21 kPa, and the minimum279

value of φ is 16° and the maximum value is 24°. The horizontal spatial dependency length is set to 30 m,280

and the vertical spatial dependency length is 4 m. The parameters of the slope are shown in Table 1.281

5.1.2. Interval field analysis results and discussion282

First, the interval field of the single-stage slope is generated and the error of the K-L like expansion level283

is analyzed. In this example, the error of the K-L like expansion is controlled within 5% and the K-L like284

expansion term is six (Huang et al., 2001). Then, the eigenfunctions and eigenvalues are solved according285
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Table 1

Material parameters of the single-stage slope in Example 1

Parameters Maximum value Minimum value lh lv

c(kPa) 21 15 30 4

φ(°) 24 16 30 4

Fig. 4. The geometry model of the single-stage slope

to the spatial dependency function in Section 2. The eigenfunctions are shown in Fig. 5 and the eigenvalues286

are shown in Fig. 6.287

The single-stage slope with interval field is calculated and its sliding surfaces (SS) are obtained as shown288

in Fig. 7. To calculate the fs, the sliding surfaces should be selected first. For illustration purposes, three289

typical sliding surfaces are considered. In this figure, three special sliding surfaces are marked according to290

the range of the fs. The red sliding surface in the diagram represents the most dangerous sliding surface,291

while the green sliding surface represents the safest sliding surface. Each sliding surface was analyzed292

respectively. The safety factor bounds of the upper and lower of the single-stage slope with interval field293

are calculated by the Bayesian global optimization method. The interval of fs was obtained as [0.83, 0.994]294

for the sliding surfaces 1, [0.946, 1.132] for the sliding surfaces 2, and [1.107, 1.415] for the sliding surfaces295

3. The calculated interval of fs is represented in Fig. 8. The optimization of the sliding surface 1 to obtain296

the interval of fs required 19 deterministic analyses, the sliding surface 2 required 20 times, and the sliding297

surface 3 required 21 times. In Table 2, the results of the Bayesian global optimization are compared with the298

surrogate optimization method. It can be found that Bayesian global optimization shows great advantages299
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Fig. 5. The first six eigenfunctions of interval fields

in terms of both computational accuracy and efficiency. For the sliding surface 2 of interval field analysis,300

the interval of fs is [0.946, 1.132]. Because the interval of the fs includes one, the slope in this state is301

unsure. Therefore, it is necessary to increase the lower bound of the fs though decreasing the angle of the302

designed slope or enhancing the slope.303

Table 2

Results of the efficiency comparison

Method Result N

Bayesian optimization [1.107, 1.415] 21

Surrogate optimization [1.011, 1.412] 505 + 368

For the same c and φ intervals, the interval field with consideration of spatial uncertainty is compared304

with the interval analysis method for homogeneous materials. The intervals of fs were calculated for the305

interval field and interval analysis, respectively. It can be found in Fig. 8. It can be noticed that the interval306

field method can reduce the interval of fs in comparison with the interval analysis method. Moreover, it is307
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Fig. 6. Eigenvalues of interval fields

Fig. 7. Three typical sliding surfaces for the single-stage slope failure

more consistent with the real situation after considering the spatial uncertainty.308

In order to study the influence of interval field parameters on the calculation results, the influence of309

spatial dependency length on the calculation results of the interval field is analyzed. It’s shown in Figs. 9310

and 10. The interval fields were calculated for the horizontal spatial dependency lengths of 5 m, 10 m, 15 ,311

20 m, 25 m, and 30 m, respectively. The interval fields were calculated for the vertical spatial dependency312

lengths of 2 m, 4 m, 6 , 8 m, and 10 m, respectively. When the horizontal spatial dependency length is 5313

m, the interval of the calculated results is [1.198, 1.341]. And the interval of the calculated results is [1.107,314

1.415] when the horizontal spatial dependency length is 30 m. With the expansion of the input parameter315

interval, the interval of the calculated fs increases rapidly. When the spatial dependency length is greater316

17



Fig. 8. Results of interval field and interval analysis in the single stage slope analysis

than 25m, the percentage of the interval increase of the fs becomes larger. Therefore, more attention should317

be paid to the selection of the spatial dependency length.318

Fig. 9. Influence of the horizontal spatial dependency length on interval field results

In order to explore the influence factors of the interval field, the effect of interval radius is investigated,319

as shown in Figs. 11 and 12. Fig. 11 shows the effect of c interval radius on the interval field results, and320

Fig. 12 shows the effect of φ interval radius on the interval field results. For the interval radius of c, the321

interval field was calculated when it was 1, 2 and 3, respectively. The interval of the calculated results is322
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Fig. 10. Influence of the vertical spatial dependency length on interval field results

[1.127, 1.33] when the c interval radius is 1 kPa. When the radius of the c interval is 3 kPa, the interval323

of the calculated results is [1.107, 1.415]. It is noted that when the radius of the c interval increases, the324

interval of the fs also increases. However, the percentage of its increase is small. For the interval radius325

of φ, the interval field was calculated for its 1, 2, 3, and 4, respectively. When the φ interval radius is 1°,326

the calculated interval is [1.215, 1.314]. And the interval of the calculated results is [1.107, 1.415] when the327

radius of the φ interval is 4°. It can be seen that when the radius of the φ interval increases, the interval328

of the fs also increases. And the percentage of its increase is larger than the radius of the c interval. It329

indicates that the φ interval radius has a greater effect on the interval results of the fs than the c interval330

radius. Therefore, it can be seen that more attention should be paid to the selection interval radius of the331

φ. More detailed results can be obtained using interval sensitivity analysis (Moens and Vandepitte, 2007).332

5.2. Example 2: Interval field analysis of a two-stage slope333

5.2.1. Description of the problem334

For illustration, a two-stage slope is used to demonstrate the generation of the interval field, and then335

the interval of fs is calculated according to the proposed method. This slope has a lower layer height of 10336

m and an upper layer height of 19 m, as shown in Fig. 13. The height of the first slope is 9 m and the angle337
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Fig. 11. Influence of cohesive interval radius on interval field results

is 42°. The height of the second slope is 10 m and the angle is 40°. The c interval of the lower layer is [4,338

6], the φ interval is [28, 30], and the spatial dependency length is 5 m. The c interval of the upper layer is339

[10, 12], the φ interval is [28, 36], and both horizontal and vertical spatial dependency lengths are both 5340

m. The material parameters are shown in Table 3.341

Table 3

Material parameters of the two-stage slope in Example 2

Layers c(kPa) φ(°) lh lh

Lower level [4, 6] [24, 26] 5 5

Upper level [6, 10] [24, 30] 5 5

5.2.2. Interval field analysis results342

First, the interval field of the two-stage slope is generated, as shown in Fig. 14. This figure is a one-time343

realization of the sample values of the interval field. For this two-stage slope, the generated interval fields344

are calculated separately for the upper and lower layers. The two-stage slope with interval field is calculated345

and its slip surface is obtained as shown in Fig. 15. In this figure, three special sliding surfaces are marked.346

Each type of sliding surface represents a typical picture of the minimum fs in that region. And each sliding347
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Fig. 12. Influence of the interval radius of the φ on the interval field results

Fig. 13. The geometry model of the two-stage slope

surfaces is analyzed. The interval of fs was obtained as [1.113, 1.440] for the sliding surface 1, [1.069, 1.117]348

for the sliding surface 2, and [1.505, 1.529] for the sliding surface 3. The calculated interval of the fs is349

represented in Fig. 16.350

The intervals of fs were calculated for the interval field and interval analysis, respectively. The results351

of the interval limit equilibrium method are compared with those of the interval field limit equilibrium352

method, as shown in Table 4. It can be noticed that the interval field method can reduce the interval of353

fs in comparison with the interval analysis method. And it is obvious that the result of the interval field354

is larger than 1 so the slope is safe definitely. But the interval analysis lower bound of the fs at sliding355
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Fig. 14. Sample values realization for the interval field of the two-stage slope

Fig. 15. Three typical sliding surfaces for the two-stage slope failure

surfaces 1 and 2 is less than 1 down to it is unsure in safety state. From this it can be seen that the result of356

the interval analysis method is more conservative. However, the result of the interval field method is more357

realistic since it can reflect the spatial uncertainty.358

Table 4

Results of interval field in the two-stage slope analysis

Type Sliding surface 1 Sliding surface 2 Sliding surface 3

Interval field [1.113, 1.140] [1.069, 1.117] [1.505, 1.529]

Interval analysis [0.953, 1.342] [0.939, 1.306] [1.291, 1.719]
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Fig. 16. Results of interval field in the two-stage slope analysis
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6. Concluding remarks359

The main contribution of this work is the proposal of a new interval field limit equilibrium method,360

IFLEM, for efficiently estimating the interval of the fs of a slope in the presence of spatial uncertainty.361

For our purpose, the IFLEM method first characterizes the interval field by using the Karhunen-Loève362

like expansion. Further, based on the Morgenstern-Price method and the generated interval field (IF),363

a computational method for calculating the fs of slopes is proposed. Then, to efficiently and accurately364

solve the optimization problem for the upper and lower bounds of the fs, a dedicated iterative algorithm365

is developed based on Bayesian global optimization (BGO). Finally, the IFLEM is formed by an elegant366

combination of IF and LEM. The main feature of IFLEM is the ability to obtain the interval of the fs,367

resulting from uncertainties in model parameters and their spatial uncertainty. Two numerical examples368

are presented to illustrate the availability and effectiveness of the proposed approach. The main concluding369

remarks includes:370

1. The numerical results indicate that the proposed method allows to perform the uncertainty analysis of371

slopes in the presence of sparse data. Noting that the upper and lower bounds of the fs are obtained372

with a small number of deterministic analyses, the proposed method seems to be effective and efficient373

for quantitative analysis of slopes with scarce data.374

2. The influences of the spatial dependency length and the interval radius are investigated. The results375

shows that different values of spatial dependency length can result in a large variation of the interval376

of fs. Besides, compared to the interval radius of c, the interval of fs is more sensitive to the interval377

radius of φ. Hence, it is of great significance to reasonably determine the spatial dependency length378

and the interval radius of φ in the interval field analysis of slopes.379

3. The comparison between interval field analysis and interval analysis with homogeneous materials is380

also performed. Evident differences are observed in the results of the two methods, which implies that381

the consideration of spatial uncertainty is necessary in the uncertainty quantification of geotechnical382

engineering structures.383
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4. Since the deterministic analysis participate the interval field analysis in a decoupled manner, any384

existing solvers can be easily incorporated into the computational procedure, which makes the method385

quite general.386

5. Due to the high efficiency and generality of the IFLEM, it shows a great potential for the uncertainty387

quantification of large-scale problems with complicated boundary conditions or practical engineering388

problems in real world.389

Despite the encouraging results of the present study, many further works need to be carried out. In390

the follow-up study, it is hoped that some advanced slope analysis methods can be incorporated into the391

proposed method. The consideration of interval reliability analysis methods and interval field expansion392

methods is another future research effort.393
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