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Abstract12

Line sampling has been demonstrated to be a promising simulation method for structural reliability analysis,13

especially for assessing small failure probabilities. However, its practical performance can still be significantly14

improved by taking advantage of, for example, Bayesian active learning. Along this direction, a recently15

proposed ‘partially Bayesian active learning line sampling’ (PBAL-LS) method has shown to be successful.16

This paper aims at offering a more complete Bayesian active learning treatment of line sampling, resulting17

in a new method called ‘Bayesian active learning line sampling’ (BAL-LS). Specifically, we derive the exact18

posterior variance of the failure probability, which can measure our epistemic uncertainty about the failure19

probability more precisely than the upper bound given in PBAL-LS. Further, two essential components20

(i.e., learning function and stopping criterion) are proposed to facilitate Bayesian active learning, based21

on the uncertainty representation of the failure probability. In addition, the important direction can be22

automatically updated throughout the simulation, as one advantage directly inherited from PBAL-LS. The23

performance of BAL-LS is illustrated by four numerical examples. It is shown that the proposed method is24

capable of evaluating extremely small failure probabilities with desired efficiency and accuracy.25
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1. Introduction29

Structural reliability analysis usually involves calculating the complement of the so-called reliability of a30

structure or component, that is the failure probability Pf , which is formulated as a multiple integral:31

Pf =

∫
X
I(g(x))fX(x)dx, (1)

where X = [X1, X2, · · · , Xd]
T ∈ X ⊆ Rd denotes a set of d basic random variables with known joint32

probability density function (PDF) fX(x); x = [x1, x2, · · · , xd]
T represents a realization of X; g(·) is the33

limit state function (also known as performance function), which takes a value less than zero when a failure34

occurs; I(·) refers to the failure indicator function: I(g(x)) = 1 if g(x) < 0 and I(g(x)) = 0 otherwise.35

Except for some special cases, the failure probability integral, as defined in Eq. (1), is unlikely to be36

analytically solvable due largely to the underlying complexity of the limit state function (usually in an im-37

plicit form) in practice. Therefore, the development of efficient and accurate numerical methods to provide38

approximate solutions is of central interest from researchers and practitioners. Existing numerical methods39

for structural reliability analysis can be roughly divided into five categories [1]: stochastic simulation meth-40

ods, asymptotic approximation methods, methods of moments, probability-conservation based methods and41

surrogate assisted methods. Among these categories, a prominent position is held by stochastic simulation42

techniques. They typically involve randomly simulating a large number of independent performance function43

values and then computing a failure probability estimate via an appropriate estimator. A non-exhaustive44

list of such techniques includes Monte Carlo simulation (MCS) [2], importance sampling [3, 4], directional45

sampling [5, 6], subset simulation [7, 8] and line sampling (LS) [9, 10]. As the most classic class of structural46

reliability analysis approaches, asymptotic approximation methods attempt to derive approximate solutions47

to the failure probability integral by using, e.g., Taylor series expansion. The most representative methods48

in this category are the first- and second order reliability methods (FORM, SORM) [11, 12]. The third49

category consists of methods of moments, in which the failure probability estimate is obtained by estimating50
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the probability distribution of the state variable (i.e., output variable of the performance function) or struc-51

tural response of interest from the knowledge of its moments. In this context, the integer moments-based52

methods [13, 14] and fractional moments-based methods [15–17] are prevalent. As the fourth category,53

probability-conservation based methods also aim at capturing the probability distribution of the state vari-54

able or structural response, but build upon the principle of probability conservation. The probability density55

evolution method [18, 19] and direct probability integral method [20, 21] are two typical examples under this56

category. The search for more efficient and accurate methods for structural reliability analysis also promotes57

the development of surrogate assisted methods, especially combined with active learning. Examples of such58

methods include (but not limited to) efficient global reliability analysis [22] and active learning method59

combining Kriging and MCS (AK-MCS) [23]. For more information about surrogate assisted methods, one60

can refer to, e.g. [24, 25] and references therein. Despite those great efforts over the past several decades,61

no agreement has been reached so far on which method or kind of methods is better than others. In fact,62

each method has its own advantages and disadvantages. For practical applications, one should choose the63

most appropriate method considering the characteristics of both the problem at hand and the candidate64

reliability analysis methods.65

In this study, we shall restrict our attention to LS. As a standard-alone stochastic simulation method,66

LS was originally developed by Koutsourelakis et al. [9]. The basic idea of it is to probe the failure domain67

using lines, rather than random points. Specifically, the failure probability is estimated by an average of the68

conditional failure probabilities corresponding to a set of random lines parallel to an important direction,69

which points towards the failure domain. LS has been demonstrated to be a promising stochastic simulation70

technique that is suitable for assessing small failure probabilities of weakly or moderately nonlinear reliability71

problems [26–29]. However, its performance strongly depends on three main aspects [30]:72

(1) The important direction. A poor important direction will lead to a slow convergence rate of the73

subsequent MCS procedure, and hence unnecessary computational costs in order to achieve an acceptable74

result. On the contrary, an optimal importance direction is always desirable, which in turn requires a good75

knowledge about the limit state surface or many additional g-function evaluations.76
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(2) The numerical integrator. As a representative frequentist approach, the MCS method used in LS77

cannot make use of our prior knowledge on the limit state surface. Besides, it also shows a low convergence78

rate when an improper important direction is adopted and/or the limit surface around the important region79

is rough.80

(3) The line search algorithm. To obtain each conditional failure probability, a root-finding algorithm81

is usually implemented. Therefore, the accuracy and efficiency of the selected root-finding algorithm also82

affect the overall performance of LS.83

The traditional version of LS has been improved by several studies e.g., [31–33]. However, they still rely84

on the direct use of MCS, which can be less efficient, as discussed earlier. To further reduce the computational85

costs, there have been some research efforts to develop surrogate-assisted LS methods, e.g., metamodel LS86

[34] and adaptive Gaussian process regression-LS (AGPR-LS) [35]. More recently, the first author and his87

co-workers also proposed a partially Bayesian active learning LS (PBAL-LS) [30]. In PBAL-LS, estimation88

of the failure probability integral in LS is first interpreted as a Bayesian inference problem, where the89

posterior mean and an upper bound of the posterior variance for the failure probability are derived. Based90

on the uncertainty representation of the failure probability, a learning function and a stopping criterion91

that constitute two critical ingredients of active learning are then proposed to form the PBAL-LS method.92

Besides, the important direction in PBAL-LS can be updated on the fly throughout the simulation. To the93

best of knowledge of the authors, PBAL-LS is the first work that explores the Bayesian active learning (a94

concept originates from machine learning), at least partially, in the context of LS for structural reliability95

analysis.96

The main objective of this work is to present a more complete Bayesian active learning treatment of LS.97

Specially, a full expression of the posterior variance of the failure probability in LS is deduced, which can98

measure our uncertainty about the failure probability more precisely than the upper bound given in [30]. The99

variance amplified importance sampling (VAIS) originally developed in [36] is introduced to approximate the100

posterior mean and variance of the failure probability, due to their analytical intractability. Based on the101

posterior statistics of the failure probability, we further propose a stopping criterion and a learning function102
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to enable active learning. Besides, some advantages of PBAL-LS are also inherited, e.g., the adaption of103

importance direction. We shall refer to this new development as Bayesian active learning LS (BAL-LS).104

It is expected that the proposed BAL-LS method can address the challenge of assessing (extremely) small105

failure probabilities for a class of weakly to moderately nonlinear problems in low to moderate dimensions.106

The remaining of this paper is structured as follows. In Section 2, a general overview of several existing107

LS methods is given, among which two methods, i.e., standard LS and PBAL-LS, are briefly introduced.108

Section 3 presents the proposed BAL-LS method in detail. Four numerical examples are investigated in109

Section 4 to demonstrate the proposed method. Some concluding remarks are given in Section 5.110

2. Literature review111

This section first provides a general overview of several existing LS methods in the literature. Then, two112

of them, which are closely related to the proposed method, are briefly introduced.113

2.1. General overview114

LS has received a lot of attention from the structural reliability analysis community since its inception.115

This has led to the development of many variants of the traditional LS. We will not cover all of them, but116

only select some of the most important developments. The selected methods include the traditional LS117

[9], slime mold algorithm-assisted LS (LS-SMA) [37], advanced LS [31], adaptive LS [32], combination LS118

[33], multidomain LS [38], optimized LS [39], metamodel LS [34], AGPR-LS [35] and PBAL-LS [30]. They119

are compared in Table 1 regarding the important direction, numerical integrator and line search algorithm.120

Several aspects are worth mentioning:121

• Multidomain LS allows for several important directions, while it is only applicable to a special class of122

series systems involving components whose response is linear with respect to a set of Gaussian random123

variables;124

• Optimized LS adopts the ANN regression model as a surrogate of the original system model code,125

which is used only at the stage of determining the important direction. The failure probability is126

5



finally obtained by using the direct MCS (LHS);127

• Metamodel LS formulates the failure probability estimate as a product of a metamodel-based failure128

probability and a correction coefficient. The former is computed from a properly-trained Kriging129

model, while the latter is obtained from both the Kriging model and the original performance function;130

• Overall, existing LS methods are only suitable or advantageous for a certain kind of problems with131

weak to moderate non-linearity.132
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2.2. Brief review of two related methods133

2.2.1. Traditional line sampling134

The failure probability integral defined in Eq. (1) can be reformulated in the standard normal space135

such that:136

Pf =

∫
U
I(G(u))ϕU (u)du, (2)

where U = [U1, U2, · · · , Ud]
T ∈ U ⊆ Rd is a vector of d i.i.d. standard normal variables with joint PDF137

ϕU (u) = (2π)−d/2 exp(−uTu/2); u = [u1, u2, · · · , ud]
T denotes a random realization of U ; G = g ◦ T−1138

can be called a transformed limit state function; T : X → U represents an appropriate operator that can139

transform X to U , e.g., an isoprobabilistic transformation.140

The formulation of the traditional LS method relies on the assumption that an important direction α141

can be identified, which is a unit vector pointing towards the failure domain F = {u ∈ U : G(u) < 0}, as142

shown in Fig. 1. Once α is given, the d-dimensional standard normal vector U can be expressed in a rotated143

coordinate system such that:144

U = RU ′ = αU∥ +QU⊥, (3)

where R is a d×d rotational matrix with its first row being αT and the rest rows being QT; Q is a d×(d−1)145

matrix containing d− 1 orthogonal basis vectors of the hyperplane perpendicular to α; U ′ = [U∥,U⊥T
]T ∈146

U ′ ⊆ Rd is a d-dimensional rotated standard normal vector of U , due to the rotational invariance of standard147

normal vector; U∥ ∈ U∥ ⊆ R is a standard normal variable, while U⊥ = [U⊥
1 , U⊥

2 , · · · , U⊥
d−1]

T ∈ U⊥ ⊆ Rd−1148

is a (d− 1)-dimensional standard normal vector.149

It follows that the failure probability integral defined in Eq. (2) can be reformulated as:150

Pf =

∫
U ′

I(G(Ru′))ϕU ′(u′)du′

=

∫
U⊥

∫
U∥

I(G(αu∥ +Qu⊥))ϕU∥(u∥)ϕU⊥(u⊥)du∥du⊥

=

∫
U⊥

(∫
U∥

I(G(αu∥ +Qu⊥))ϕU∥(u∥)du∥
)
ϕU⊥(u⊥)du⊥

=

∫
U⊥

p(u⊥)ϕU⊥(u⊥)du⊥,

(4)
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where ϕU∥(u∥) and ϕU⊥(u⊥) are the (joint) PDF of U∥ and U⊥; p(u⊥) =
∫
U∥ I(G(αu∥+Qu⊥))ϕU∥(u∥)du∥151

can be interpreted as a conditional failure probability given U⊥ = u⊥, which is associated with a one-152

dimensional reliability problem with performance function G(αU∥ +Qu⊥). In case that the failure domain153

F is a simple half-open domain (as shown in Fig. 1), the conditional failure probability p(u⊥) is equal to:154

p(u⊥) = Φ(−β(u⊥)), (5)

where Φ denotes the cumulative distribution function of the standard normal variable; β(u⊥) is the Euclidean155

distance between u⊥ and the limit state surface G(u) = 0 along the direction α. Using Eq. (5), Eq. (4) is156

simplified as:157

Pf =

∫
U⊥

Φ(−β(u⊥))ϕU⊥(u⊥)du⊥, (6)

Note that Eq. (6) rather than Eq. (4) is commonly considered in the traditional LS method, and also other158

improved LS methods.159

 

Figure 1: Schematic illustration of traditional LS in two dimensions.

In the traditional LS method, the failure probability integral defined in Eq. (6) is solved by the MCS160

method in conjunction with a root-finding technique. A MCS estimator of Pf is given by:161

P̂f =
1

N

N∑
i=1

Φ(−β(u⊥,(i))), (7)
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where
{
u⊥,(i)

}N
i=1

is a set of N random samples generated according to ϕU⊥(u⊥). For each sample u⊥,(i),162

β(u⊥,(i)) is considered as the solution of u∥ subject to G(αu∥+Qu⊥,(i)) = 0 (as illustrated in Fig. 1), which163

can be solved by a suitable root-finding algorithm. The variance associated with P̂f can be estimated by:164

Var
[
P̂f

]
=

1

N(N − 1)

N∑
i=1

(
Φ(−β(u⊥,(i)))− P̂f

)2
. (8)

2.2.2. Partially Bayesian active learning line sampling165

PBAL-LS [30] offers a Bayesian active learning alternative to the traditional LS method and its variants.166

Specifically, the task of estimating the failure probability integral defined in Eq. (6) is first interpreted167

as a Bayesian inference problem. Then, such a task is further framed in an active learning setting based168

on the posterior statistics of the failure probability. Besides, another notable feature of PBAL-LS is that169

the importance direction needs not to be optimal at the very beginning, and it can be updated on the fly170

through the simulation.171

PBAL-LS begins by modeling our uncertainty over the β-function with a Gaussian process (GP):172

β̃0(u
⊥) ∼ GP(mβ̃0

(u⊥), kβ̃0
(u⊥,u⊥′)), (9)

where β̃0 represents the prior distribution of β before seeing any observations; mβ̃0
(u⊥) and kβ̃0

(u⊥,u⊥′)173

are the prior mean and covariance functions, which are specified as a constant value and square exponential174

kernel [30], respectively.175

Suppose that now we have an observation matrix D =
{
U⊥,Y

}
, where U⊥ =

{
u⊥,(i)

}n
i=1

is a (d−1)×n176

matrix consisting of n observed locations on the hyperplane orthogonal to the important direction, and177

Y =
{
y(i)
}n
i=1

is an n× 1 vector with y(i) = β(u⊥,(i)). Conditioning on data D, the posterior distribution178

of β turns out to be another GP of the form:179

β̃n(u
⊥) ∼ GP(mβ̃n

(u⊥), kβ̃n
(u⊥,u⊥′)), (10)

where β̃n denotes the posterior distribution of β conditional on n observations; mβ̃n
(u⊥) and kβ̃n

(u⊥,u⊥′)180

are respectively the posterior mean and covariance functions, which can be expressed in closed form [40]:181

mβ̃n
(u⊥) = mβ̃0

(u⊥) + kβ0
(u⊥,U⊥)TKβ0

(U⊥,U⊥)−1(Y −mβ̃0
(U⊥)), (11)
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182

kβ̃n
(u⊥,u⊥′) = kβ̃0

(u⊥,u⊥′)− kβ0
(u⊥,U⊥)TKβ0

(U⊥,U⊥)−1kβ0
(U⊥,u⊥′), (12)

where mβ̃0
(U⊥) is an n-by-1 mean vector whose i-th element is mβ̃0

(u⊥,(i)); kβ0
(u⊥,U⊥) is an n-by-1 covari-183

ance vector whose i-th entry is kβ̃0
(u⊥,u⊥,(i)); kβ0

(U⊥,u⊥′) is an n-by-1 covariance vector whose i-th entry184

is kβ0(u
⊥,(i),u⊥′); Kβ0(U

⊥,U⊥) is an n-by-n covariance matrix with (i, j)-th entry being kβ0(u
⊥,(i),u⊥,(j)).185

Through some mathematical derivations, we can arrive at the posterior mean and an upper bound of186

posterior variance for the failure probability [30]:187

mP̃f,n
=

∫
Rd−1

Φ

 −mβ̃n

(
u⊥)√

1 + σ2
β̃n

(u⊥)

ϕU⊥(u⊥)du⊥, (13)

188

σ2
P̃f,n

=

(∫
Rd−1

√√√√√Φ

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

− 2T

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)
,

1√
1 + 2σ2

β̃n
(u⊥)


×ϕU⊥(u⊥)du⊥

)2

,

(14)

where σ2
β̃n

(
u⊥) is the posterior variance function of β, i.e., σ2

β̃n

(
u⊥) = kβ̃n

(u⊥,u⊥); T (·, ·) is the Owen’s189

T function. The posterior mean mP̃f,n
can be used naturally as the failure probability estimate, while the190

upper bound of posterior variance σ2
P̃f,n

measures our maximum uncertainty about the estimate.191

On the basis of Eq. (14), a learning function, called ‘upper-bound posterior standard deviation contri-192

bution’ (UPSDC), is proposed in [30]:193

UPSDC
(
u⊥) =

√√√√√Φ

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

− 2T

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)
,

1√
1 + 2σ2

β̃n
(u⊥)

×ϕU⊥(u⊥).

(15)

Note that σP̃F,n
=
∫
Rd−1 UPSDC

(
u⊥) du⊥ holds. In case that the prescribed stopping criterion is not satis-194

fied, the best next point is then selected by maximizing the UPSDC function, i.e., u⊥,(n+1) = argmaxu⊥∈U⊥ UPSDC
(
u⊥).195

In PBAL-LS, the stopping criterion is defined based on judging the upper bound of the posterior coefficient196

of variation of the failure probability [30]:197

COVP̃f,n
=

σP̃f,n

mP̃f,n

< ϵ, (16)
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where ϵ is a user-specified tolerance.198

The interested reader is referred to [30] for theoretical and algorithmic details of PBAL-LS. It is shown199

that PBAL-LS outperforms most, if not all, of the existing LS methods for several benchmark problems.200

Despite this, PBAL-LS still belongs to a kind of PBAL method largely due to unavailability of the posterior201

variance for the failure probability, and a complete Bayesian active learning treatment is worth studying. The202

main reasons are the following. First, the upper bound of the posterior variance for the failure probability203

(Eq. (14)) might be too loose to reflect our real epistemic uncertainty about the failure probability estimate.204

In addition, it is difficult and even impossible for us to know to what extent the real epistemic uncertainty205

is magnified when using Eq. (14). Second, the learning function (i.e., the UPSDC function defined in Eq.206

(15)) could be less effective because it comes from the upper bound of the posterior variance of the failure207

probability (Eq. (14)), which is the result of a very strict assumption. Third, it is difficult to specify a208

proper tolerance ϵ (that is related to the true posterior COV of the failure probability) for the stopping209

criterion. A conservative choice is to set a small ϵ, which may lead to an accurate estimate for the failure210

probability, but usually causes unnecessary computational costs.211

3. Bayesian active learning line sampling212

In the present section, BAL-LS as an enhanced version of the previously developed PBAL-LS is intro-213

duced. First, the posterior mean and variance of the failure probability defined in Eq. (6) are devised so214

as to offer a more complete Bayesian interpretation of the standard LS. The approximate solutions for the215

posterior mean and variance are also given, due to their analytical intractability. Based on the posterior216

statistics of the failure probability, two principal elements, i.e., learning function and stopping criterion, are217

proposed, which enables us to offer a new Bayesian active learning treatment for the standard LS. Finally,218

the numerical implementation procedure of BAL-LS is summarized, where how to adapt the important219

direction and process each line are explained.220
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3.1. Posterior mean and variance of the failure probability221

Proposition 1. If a GP prior is assigned to the β-function (i.e., Eq. (9)), the posterior mean and variance222

of the failure probability defined in Eq. (6) can be expressed as:223

mP̃f,n
=

∫
U⊥

mΦ̃n(−β̃)

(
u⊥)ϕU⊥(u⊥)du⊥, (17)

224

σ2
P̃f,n

=

∫
U⊥

∫
U⊥

kΦ̃n(−β̃)(u
⊥,u⊥′)ϕU⊥(u⊥)ϕU⊥′(u⊥′)du⊥du⊥′ (18)

where mΦ̃n(−β̃)

(
u⊥) and kΦ̃n(−β̃)(u

⊥,u⊥′) are the posterior mean and covariance functions of Φ(−β).225

Proof. Analogy to our previous results (see Eqs. (23) and (24) in [36]), the above proposition is easy to be226

proved by using the Fubini’s theorem. Therefore, the detailed proof is omitted here.227

3.1.1. Posterior mean of the failure probability228

Proposition 2. If a GP prior is placed over the β-function (i.e., Eq. (9)), the posterior mean function of229

Φ(−β) takes the form:230

mΦ̃n(−β̃)

(
u⊥) = Φ

 −mβ̃n

(
u⊥)√

1 + σ2
β̃n

(u⊥)

 . (19)

Proof. The posterior mean function mΦ̃n(−β̃)

(
u⊥) can be further written as:231

mΦ̃n(−β̃)

(
u⊥) =Eβ̃n

[
Φ(−β̃n

(
u⊥))]

=1−
∫ ∞

∞
Φ (−z)

1

σβ̃n
(u⊥)

ϕ

(
z −mβ̃n

(
u⊥)

σβ̃n
(u⊥)

)
dz

=1−
∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥)+ σβ̃n

(
u⊥) v)ϕ (v) dv.

(20)

Note that the following equation holds232 ∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥)+ σβ̃n

(
u⊥) v)ϕ (v) dv = Φ

 mβ̃n

(
u⊥)√

1 + σ2
β̃n

(u⊥)

 , (21)

which has been given repeatedly in the literature, with or without proof. One can refer to, e.g., [41], for a233

proof. Substituting Eq. (21) into Eq. (20), Eq. (19) can be proved.234

235

Substituting Eq. (19) into Eq. (17), the posterior mean of the failure probability can be obtained as in236

Eq. (13).237
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3.1.2. Posterior variance of the failure probability238

Proposition 3. If a GP prior is assumed for the β-function (i.e., Eq. (9)), the posterior covariance function239

of Φ(−β) is formulated as:240

kΦ̃n(−β̃)(u
⊥,u⊥′) =F


 mβ̃n

(
u⊥)

mβ̃n

(
u⊥′)

 ;

 0

0

 ,

σ2
β̃n

(
u⊥)+ 1 kβ̃n

(u⊥,u⊥′)

kβ̃n
(u⊥′,u⊥) σ2

β̃n

(
u⊥′)+ 1




− Φ

 mβ̃n

(
u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n

(
u⊥′)√

1 + σ2
β̃n

(u⊥′)

 ,

(22)

where F denotes the bivariate Gaussian CDF, which does not have a closed form. Alternatively, it can be241

approximated by several existing numerical methods, e.g., [42].242

Proof. The posterior covariance function kΦ̃n(−β̃)(u
⊥,u⊥′) is further expressed as:243

kΦ̃n(−β̃)(u
⊥,u⊥′) =Eβ̃n

[(
Φ
(
−β̃n

(
u⊥))− Eβ̃n

[
Φ
(
−β̃n

(
u⊥))])(Φ(−β̃n

(
u⊥′))− Eβ̃n

[
Φ
(
−β̃n

(
u⊥′))])]

=Eβ̃n

[
Φ
(
−β̃n

(
u⊥))Φ(−β̃n

(
u⊥′))]− Eβ̃n

[
Φ
(
−β̃n

(
u⊥))]Eβ̃n

[
Φ
(
−β̃n

(
u⊥′))]

=Eβ̃n

[(
1− Φ

(
β̃n

(
u⊥)))(1− Φ

(
β̃n

(
u⊥′)))]− Eβ̃n

[
1− Φ

(
β̃n

(
u⊥))]Eβ̃n

[
1− Φ

(
β̃n

(
u⊥′))]

=Eβ̃n

[
Φ
(
β̃n

(
u⊥))Φ(β̃n

(
u⊥′))]− Eβ̃n

[
Φ
(
β̃n

(
u⊥))]Eβ̃n

[
Φ
(
β̃n

(
u⊥′))]

=

∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥)+ σβ̃n

(
u⊥) v)Φ(mβ̃n

(
u⊥′)+ σβ̃n

(
u⊥′)w)ϕ (v)ϕ (w) dvdw

− Φ

 mβ̃n

(
u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n

(
u⊥′)√

1 + σ2
β̃n

(u⊥′)

 ,

(23)

By making use of the result in [43], we have244 ∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥)+ σβ̃n

(
u⊥) v)Φ(mβ̃n

(
u⊥′)+ σβ̃n

(
u⊥′)w)ϕ (v)ϕ (w) dvdw

=F


 mβ̃n

(
u⊥)

mβ̃n

(
u⊥′)

 ;

 0

0

 ,

σ2
β̃n

(
u⊥)+ 1 kβ̃n

(u⊥,u⊥′)

kβ̃n
(u⊥′,u⊥) σ2

β̃n

(
u⊥′)+ 1


 .

(24)

The proof of Eq. (24) is referred to the supplementary materials for [43]. Substituting Eq. (24) into Eq.245

(23), Eq. (22) can be proved.246

247
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The posterior variance of the failure probability can be obtained by substituting Eq. (22) into Eq. (18).248

It is worth mentioning that the upper bound of the posterior variance given in Eq. (14) can be obtained249

from Eq. (18) by using the Cauchy–Schwarz inequality for kΦ̃n(−β̃)(u
⊥,u⊥′). Thus, the upper bound is250

achieved only when the posterior distribution of Φ(−β) between any two locations is linearly dependent.251

This condition is very strict and hence in most practical cases σ2
P̃f,n

< σ2
P̃f,n

holds true. For this reason,252

σ2
P̃f,n

can be considered as a more appropriate measure of the numerical uncertainty behind the failure253

probability.254

3.1.3. Approximation of the posterior mean and variance of the failure probability255

The posterior mean and variance of the failure probability involves two analytically intractable integrals,256

as defined in Eqs. (17) and (18). In PBAL-LS [30], the posterior mean and upper bound of the posterior257

variance (Eqs. (13) and (14)) are evaluated by the crude MCS in a sequential manner. Aside from the258

algorithmic simplicity and wide applicability, one disadvantage of the crude MCS technique is its poor259

sampling efficiency. In order to partially alleviate the problem, this study employs the variance-amplified260

importance sampling (VAIS) developed in [36] to numerically approximate the posterior mean and variance of261

the failure probability. Hereafter, the VAIS method is referred to as standard deviation-amplified importance262

sampling (SDA-IS) to avoid possible misunderstanding.263

The unbiased SDA-IS estimators for mP̃f,n
and σ2

P̃f,n
can be given by:264

m̂P̃f,n
=

1

N

N∑
j=1

Φ

 −mβ̂n

(
u⊥,(j)

)√
1 + σ2

β̂n

(
u⊥,(j)

)
 ϕU⊥(u⊥,(j))

ϕU⊥,λ(u
⊥,(j))

, (25)

265

σ̂2
P̃f,n

=
1

N

N∑
j=1

kΦ̃n(−β̃)(u
⊥,(j),u⊥′,(j))

ϕU⊥(u⊥,(j))ϕU⊥(u⊥′,(j))

ϕU⊥,λ(u
⊥,(j))ϕU⊥,λ(u

⊥′,(j))
, (26)

where
{
u⊥,(j)

}N
j=1

and
{
u⊥′,(j)}N

j=1
are two sets of N random samples drawn from ϕU⊥,λ(u

⊥) and ϕU⊥,λ(u
⊥′),266

respectively; ϕU⊥,λ(u
⊥) is the IS density of the form ϕU⊥,λ(u

⊥) =
∏d−1

i=1 ϕU⊥
i ,λ(u

⊥
i ), in which267

ϕU⊥
i ,λ(u

⊥
i ) =

1

λ
√
2π

exp

(
−u⊥,2

i

2λ2

)
, (27)

where λ > 1 is the SDA factor.268
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The variances associated with the above two estimators are expressed as:269

V
[
m̂P̃f,n

]
=

1

N(N − 1)

N∑
j=1

Φ
 −mβ̂n

(
u⊥,(j)

)√
1 + σ2

β̂n

(
u⊥,(j)

)
 ϕU⊥(u⊥,(j))

ϕU⊥,λ(u
⊥,(j))

− m̂P̃f,n

2

, (28)

270

V
[
σ̂2
P̃f,n

]
=

1

N(N − 1)

N∑
j=1

[
kΦ̃n(−β̃)(u

⊥,(j),u⊥′,(j))
ϕU⊥(u⊥,(j))ϕU⊥(u⊥′,(j))

ϕU⊥,λ(u
⊥,(j))ϕU⊥,λ(u

⊥′,(j))
− σ̂2

P̃f,n

]2
. (29)

Note that even though the SDA-IS method only works with the GP posterior, rather than the typically271

expensive-to-evaluate β function, it can be relatively time-consuming, especially when approximating the272

posterior variance due to the necessity of numerically evaluating the bivariate Gaussian CDF. To guarantee273

the accuracy and efficiency, it is suggested to implement the SDA-IS method in a sequential way. That274

is, we can sequentially increase the sample size (e.g., 1 × 104, 2 × 104, ...) until the two COVs of the275

estimators are respectively smaller than the prescribed tolerances δ1 and δ2, i.e.,
√
V
[
m̂P̃f,n

]
/m̂P̃f,n

< δ1276

and
√
V
[
σ̂2
P̃f,n

]
/σ̂2

P̃f,n
< δ2.277

3.2. Stopping criterion and learning function278

In terms of the second-order statistics, we have so far completed a Bayesian treatment of the failure279

probability integral defined in Eq. (6). That is, once given data D =
{
U⊥,Y

}
, we can make Bayesian280

inference about the failure probability, including the posterior mean and variance. It is noted that U⊥
281

can be arbitrarily chosen without specified restrictions in theory. The Bayesian interpretation also allows282

us to frame the failure probability integral estimation in a Bayesian active learning setting, based on the283

full exploitation of the posterior statistics of the failure probability. This framework consists mainly of a284

stopping criterion and a learning function.285

3.2.1. Stopping criterion286

The stopping criterion can be naturally defined based on the estimated posterior COV of the failure287

probability such that:288

ĈOVP̃f,n
=

σ̂P̃f,n

m̂P̃f,n

< η, (30)

where η is a user-defined threshold. As both σ̂P̃f,n
and m̂P̃f,n

may process some approximation errors to some289

extent, Eq. (30) is required to satisfy twice in a row in order to avoid possible fake convergence. Compared290
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to the upper bound of posterior COV defined in Eq. (16), the posterior COV is a more suitable quality that291

can measure the extent of variability in relation to the posterior mean of the failure probability. This makes292

it easier to specify an appropriate threshold for the stopping criterion before running the method.293

3.2.2. Learning function294

In case that the above stopping criterion is not met, a learning function is needed to suggest the best295

next point to query the β-function, rather than choosing it arbitrarily. Based on the posterior variance of296

the failure probability, a new learning function, termed ‘posterior standard deviation contribution’ (PSDC),297

is proposed:298

PSDC
(
u⊥) = ϕU⊥(u⊥)×

∫
U⊥

kΦ̃n(−β̃)(u
⊥,u⊥′)ϕU⊥′(u⊥′)du⊥′. (31)

It is easy to check that
∫
U⊥ PSDC

(
u⊥) du⊥ = σ2

P̃f,n
holds true. In this respect, the PSDC function can299

be regarded as a measure of the contribution of the numerical uncertainty at site u⊥ to the posterior300

variance (or rather the posterior standard deviation) of the failure probability. It is worth mentioning that301

the UPSDC function (Eq. (15)) is actually an upper bound of the proposed PSDC function. Besides,302

the UPSDC function only includes the posterior variance function of Φ(−β), not the posterior covariance303

function, which can reveal spatial correlation, while the proposed PSDC does. Therefore, the PSDC function304

provides a more informative indicator regarding the degree of contribution of a specific realization in the305

sample space towards the level of epistemic uncertainty associated with the failure probability. By selecting306

the point maximizing the PSDC function as the best next point to evaluate the β function, it is expected307

that σ2
P̃f,n+1

will be reduced the most. This involves an optimization problem, where one should note that308

an analytically intractable integral is involved in the objective function (i.e., the PSDC function).309

In this study, we propose to approximate the integral term in Eq. (31) by a numerical integration310

scheme, called unscented transformation [44]. In this context, the PSDC function can be approximated by311

the following expression:312

P̂SDC
(
u⊥) = ϕU⊥(u⊥)

2(d−1)∑
i=0

wikΦ̃n(−β̃)(u
⊥,u⊥′,(i)), (32)
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where the 2(d− 1) + 1 integration points and weights are given by [44]313

u⊥′,(0) = 0, w0 =
ϱ

d− 1 + ϱ
,

u⊥′,(i) =
√
d− 1 + ϱei, wi =

1

d− 1 + ϱ
,

u⊥′,(i+d−1) = −
√
d− 1 + ϱei, wi+d−1 =

1

d− 1 + ϱ
,

(33)

where ϱ is a free parameter specified as ϱ = (d−1)−3 = d−4 [44]; ei = [0, · · · , 0, 1, · · · , 0], i = 1, 2, · · · , d−1.314

The best next point is identified by maximizing the P̂SDC function such that:315

u⊥,(n+1) = argmax
u⊥∈U⊥

log P̂SDC
(
u⊥) . (34)

It should be pointed out that each evaluation of P̂SDC
(
u⊥) can still be slightly computationally demand-316

ing, though the integral involved in the PSDC
(
u⊥) function is approximated by only using 2(d − 1) + 1317

points. In this work, we apply a commonly-used nature-inspired optimization method, called particle swarm318

optimization, but other more efficient techniques can also be explored.319

Once u⊥,(n+1) is obtained, y(n+1) = β
(
u⊥,(n+1)

)
can be evaluated according the method described in320

the coming subsection. It follows that the previous dataset can be enriched with
{
u⊥,(n+1), y(n+1)

}
, and321

one can make Bayesian inference about the failure probability based on the enriched data.322

3.3. Step-by-step procedure of the proposed method323

The above two subsections only focus on several important ingredients (e.g., the posterior variance,324

learning function and stopping criterion), while there are still some aspects left for implementing the proposed325

method, such as the important direction and evaluation of β function. Due to length limitation, these aspects326

are directly embedded in the numerical implementation procedure of the proposed method in the following.327

The procedure of the proposed BAL-LS method consists of six main steps, as illustrated by the flowchart328

(Fig. 3) and summarized below:329

330

Step 1: Choosing an initial important direction331

The proposed BAL-LS method has to been initialized with an initial important direction α(0). As332

suggested in PAL-LS, a convenient choice is the negative normalized gradient of the G-function at the origin333
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[30]:334

α(0) = − ∇uG(0)
||∇uG(0)||

, (35)

where ∇uG(0) =
[
∂G(0)
∂u1

, ∂G(0)
∂u2

, · · · , ∂G(0)
∂ud

]
; || · || denotes the 2-norm. In case that the gradient information335

of G is not available, one can simply apply the numerical differentiation method at the cost of (d + 1)336

G-function evaluations. After that, the corresponding matrix Q(0) that defines the orthogonal hyperplane337

perpendicular to α(0) can be specified by means of, e.g., the Gram–Schmidt process.338

Step 2: Constructing an initial observation dataset and updating the important direction339

This step involves generating an initial observation dataset D from the β function and updating the340

important direction. First, a small number of samples (say n0 = 5) on the hyperplane orthogonal to α(0)341

are generated according to ϕU⊥,λ(u
⊥) by using the, e.g., Latin hypercube sampling. These samples are342

denoted as Ũ⊥
=
{
ũ⊥,(i)

}n0

i=1
, each of which can form a line parallel to α(0), i.e., α(0)u∥ + Q(0)ũ⊥,(i).343

Second, one has to find the distance between ũ⊥,(i) and the limit state surface G = 0 along α(0), which is344

identical to fining the root of G
(
α(0)u∥ +Q(0)ũ⊥,(i)

)
= 0. In this study, we develop an adaptive inverse345

interpolation (AII) method for solving the aforementioned equation. The idea is to use the cubic spline346

interpolation to approximate the inverse of G along the direction α(0). To get started, two values z(1)347

and z(2) of G
(
α(0)u∥ +Q(0)ũ⊥,(i)

)
at two prescribed points (say u∥,(1) and u∥,(2)) are determined. As a348

convenient rule of thumb, u∥,(1) and u∥,(2) in this study are set to be 3 and 7, respectively. A rough root349

(denote as u∥,(3)) can be found by performing a cubic spline interpolation of the two data points
(
z(1), u∥,(1))350

and
(
z(2), u∥,(2)) at z = 0, and the third value z(3) is obtained by evaluating G

(
α(0)u∥,(3) +Q(0)ũ⊥,(i)

)
. One351

can identify the next approximate root u∥,(4) by interpolating the three data points
(
z(1), u∥,(1)), (z(2), u∥,(2))352

and
(
z(3), u∥,(3)) at z = 0. The process is repeated until the relative distance of two consecutive approximate353

roots is less than a small threshold γ (e.g., 5%), i.e.,
∣∣u∥,(j+1) − u∥,(j)

∣∣ /u∥,(j) < γ, j = 3, 4, · · · . Typically,354

the stopping criterion can be reached after several iterations. The final n0 roots corresponding to Ũ⊥ are355

denoted as Ỹ =
{
ỹ(i)
}n0

i=1
, and each approximate intersection point of the line α(0)u∥ + Q(0)ũ⊥,(i) and356

the limit state surface G = 0 is recorded as α(0)ỹ(i) + Q(0)ũ⊥,(i). Third, a new important direction α(1)357

is identified as the normalized vector of the approximate intersection point with the shortest distance to358
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the origin, and the associated matrix Q(1) can be specified. Fourth, one can obtain the initial observation359

dataset D =
{
U⊥,Y

}
simply by projecting those n0 approximate intersection points on the hyperplane360

orthogonal to α(1). Let n = n0 and q = 1. It is worth mentioning that one does not need to re-evaluate the361

G function, though the important direction is changed in this step. For a schematic illustration of this step,362

one can refer to Fig. 2.363

 
(a) Before changing important direction

 (b) After changing important direction

Figure 2: Schematic illustration of Step 2 of the proposed BAL-LS algorithm in two dimensions (n0 = 3).

Step 3: Making Bayesian inference about the failure probability364

Conditional on the observation dataset D, the posterior mean and variance of the failure probability can365

be inferred. To do so, the posterior mean and covariance functions of the β-function are first obtained by366

Eqs. (11) and (12), and this task can be done by using the fitrgp function in Statistics and Machine Learning367

Toolbox of Matlab. In this study, the prior mean function is assumed to be a constant value and the prior368

covariance function adopts the squared exponential kernel with a separate length scale per dimension. The369

hyper-parameters are determined by the maximum likelihood estimation. The posterior mean and variance370

estimates of the failure probability are then computed by the SDA-IS method in a sequential manner, as371

described in section 3.1.3. The SDA factor λ is set to be 1.5, and two tolerances δ1 and δ2 are specified as372

1% and 10%, respectively.373
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Step 4: Checking the stopping criterion374

If the stopping criterion given in Eq. (30) is satisfied twice in a row, then go to Step 5. Otherwise, go375

to Step 6. In this study, the associated threshold η is taken as 5%.376

Step 5: Enriching the observation dataset and updating the important direction377

The best next point ũ⊥,(n+1) to evaluate the β-function is identified by maximizing the proposed378

P̂SDC function, according to Eq. (34). The β-function value ỹ(n+1) at ũ⊥,(n+1) can be obtained by379

solving the equation G
(
α(q)u∥ +Q(q)ũ⊥,(n+1)

)
= 0. Different from Step 2, the Newton’s method is380

used here with a starting point taken as mβ̃n

(
ũ⊥,(n+1)

)
[30]. Once ỹ(n+1) is solved, a new approxi-381

mate intersection point α(q)ỹ(n+1) + Q(q)ũ⊥,(n+1) is available. As long as the new point is the nearest382

to the origin among all the n + 1 intersection points, the important direction is updated to α(q+1) =383 (
α(q)ỹ(n+1) +Q(q)ũ⊥,(n+1)

)
/||α(q)ỹ(n+1) +Q(q)ũ⊥,(n+1)||. After that, a new matrix Q(q+1) can be speci-384

fied. The enriched observation dataset can be obtained by projecting the n + 1 intersection points on the385

latest hyperplane orthogonal to α(q+1) and let q = q + 1. Otherwise, one can simply enrich the previous386

dataset with (ũ⊥,(n+1), ỹ(n+1)). Let n = n+ 1 and go to Step 3.387

Step 6: Ending the algorithm388

Return the last posterior mean estimate of the failure probability and end the algorithm.389

4. Numerical examples390

The performance of the proposed BAL-LS method is demonstrated in this section by means of four391

numerical examples. The reference result of the failure probability for each example is produced by the392

crude MCS method with a sufficiently large sample size when applicable. For comparison purposes, we also393

implement several existing methods, including sequential quadratic programming (SQP) based FORM [45]394

(denoted as FORM-SQP), SORM [12], traditional LS [9], AGPR-LS [35] and PBAL-LS [30]. All methods395

expcet PBAL-LS are based on the use of FORM-SQP to provide the most probable point (MPP) if applicable.396

Otherwise, FORM-HLRF [11] is applied instead. For repeatability, the initial points of FORM-SQP and397

FORM-HLRF are selected as the origin. For traditional LS, the Newton’s method is adopted for processing398
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Start

Specify an initial important direction α(0) according to Eq. (35)
and the matrix Q(0) using the Gram–Schmidt process

Construct an initial observation dataset Dn0 =
{
U⊥,Y

}
and update the important direction and Q-matrix to α(1) and Q(1).

Let n = n0 and q = 1

Compute the posterior mean and variance estimates of the failure probability
conditional on D using the sequential SDA-IS method

Stopping criterion?

Identify the best next point ũ⊥,(n+1) by Eq. (34),
observe the correspoding β-fucntion value ỹ(n+1).

If possible, update the important direction and Q-matrix,
and let q = q + 1.

Enrich the training dataset D.
Let n = n+ 1

Return m̂P̂f,n
as the estimated failure probability

Stop

No

Yes

Figure 3: Flowchart of the proposed BAL-LS method.

each line. Similar to the proposed BAL-LS, the stopping criterion in PBAL-LS is also required to meet399

twice in succession and the tolerance is set to be 5%. Note that even though the gradient information for400

some numerical examples is easy to solve analytically, we treat them as black-box problems.401

4.1. Example 1: A test function402

The first numerical example takes a test function of the form [30]:403

Z = g(X) = a−X2 + bX3
1 + c sin(dX1), (36)

where X1 and X2 are two i.i.d. standard normal variables; a, b, c and d are four constant parameters, the404

values of which are set as a = 5.5, b = 0.02 and c = 5
6 , d = π

3 .405

The reference value of the failure probability is 3.57×10−7 (with a COV being 0.53%), which is provided406

by MCS with 1011 samples. The proposed method is compared to several other methods, as summarized407
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in Table 2. FORM-SQP only requires 28 performance function evaluations, which, however, produces a408

poor failure probability estimate. The poor accuracy of FORM-SQP can be significantly improved by using409

SORM, with 7 additional performance function calls. The traditional LS method is carried out twice with410

two different numbers of lines (i.e., 100 and 200). In both cases, the traditional LS method is able to yield411

more accurate results than FORM-SQP, but it requires considerably more computational costs. By using412

AGPR-LS, PBAL-LS and BAL-LS, the number of lines and performance function calls can be significantly413

reduced, while maintaining reasonable accuracy. Compared to AGPR-LS and PBAL-LS, the proposed414

BAL-LS method is more efficient in terms of Ncall.415

Table 2: Results for Example 1 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 3.57× 10−7 0.53% - 1011

FORM-SQP 7.19× 10−7 - - 28

SORM 3.53× 10−7 - - 35

Traditional LS
3.36× 10−7 7.56% 100 376

3.70× 10−7 4.66% 200 706

AGPR-LS 3.63× 10−7 2.24% 10 46

PBAL-LS 3.56× 10−7 1.60% 14 40

Proposed BAL-LS 3.56× 10−7 3.40% 8 30

Note: P̂f = failure probability estimate; δP̂f
= COV of P̂f ;

δP̂f
= upper bound of the COV of P̂f , which is only used for

PBAL-LS; Nline = the number of lines; Ntotal = the total

number of performance function calls.

For illustration purposes, Fig. 4 shows some computational details of the proposed BAL-LS method,416

including the initial and final importance directions, and approximate intersections points. It can be seen417
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that the initial importance direction given by Eq. (35) is far from optimal, while the final one is almost418

optimal. This indicates the effectiveness of the proposed learning function for suggesting next best points419

to query, as well as the developed strategy for automatically updating the importance direction. What is420

more, those approximate intersection points are very close to the true limit state line, implying the accuracy421

of the proposed line search algorithm.422
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Figure 4: Illustration of the proposed BAL-LS method for Example 1.

4.2. Example 2: A nonlinear oscillator423

A nonlinear single-degree-of-freedom (SDOF) oscillator under a rectangular pulse load [46] is considered424

as a second example, which is shown in Fig. 5. The limit state function is given by:425

Z = g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

k1 + k2
sin

(
t1
2

√
k1 + k2

m

)∣∣∣∣∣ , (37)

where m, k1, k2, r, F1 and t1 are six random variables, as listed in Table 3.426

 

Figure 5: A nonlinear SDOF oscillator driven by a rectangular pulse load.
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Table 3: Random variables for Example 2.

Variable Description Distribution Mean COV

m Mass Lognormal 1.0 0.05

k1 Stiffness Lognormal 1.0 0.10

k2 Stiffness Lognormal 0.2 0.10

r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20

t1 Load duration Lognormal 1.0 0.20

A reference solution to the failure probability is obtained as 4.01 × 10−8 (with a COV being 0.50%),427

generated by MCS with 1012 samples. The proposed BAL-LS method is conducted to assess the failure428

probability, as well as several other methods, i.e., FORM-SQP, SORM, traditional LS, AGPR-LS and PBAL-429

LS. The key results of these methods are summarized in Table 4. Similar to the first example, FORM-SQP430

still produces an inaccurate failure probability estimate (i.e., 4.88× 10−8) even at the cost of 176 G-function431

evaluations in this example. With more calls to the G-function, SORM can produce an accurate failure432

probability estimate, say 4.08× 10−8. The traditional LS method can improve the accuracy of FORM-SQP433

by using a number of additional lines to probe the failure domain, which in turn leads to the significant434

increase in computational costs. AGPR-LS, PBAL-LS and BAL-LS are able to produce failure probability435

estimates with desirable accuracy. Among them, AGPR-LS requires the most performance function calls436

(say 205), while the proposed BAL-LS method requires the fewest (say 39).437

4.3. Example 3: A reinforced concrete section438

For the third example, we consider the bending limit state of a reinforced concrete section [47, 48], as439

shown in Fig. 6. The limit state function is expressed as:440

Z = g(X) = X1X2X3 −
X2

1X
2
2X4

X5X6
−X7, (38)

where X1 to X7 are seven basic random variables, as detailed in Table 5.441
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Table 4: Results for Example 2 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 4.01× 10−8 0.50% - 1012

FORM-SQP 4.88× 10−8 - - 176

SORM 4.08× 10−8 - - 219

Traditional LS
4.22× 10−8 2.83% 50 376

4.09× 10−8 2.10% 100 576

AGPR-LS 3.93× 10−8 0.81% 21 205

PBAL-LS 4.14× 10−8 3.76% 22 62

Proposed BAL-LS 4.07× 10−8 1.13% 13 39

 

Figure 6: Ultimate stress state for the reinforced concrete section.

As indicated by the reference result from the crude MCS method, this example also constitutes a situation442

where the probability of failure is extremely small, say 1.57 × 10−8. Table 6 reports the main results of443

several selected methods. As seen, the failure probability estimate given by FORM-SQP is less accurate;444

however, it requires a total number of 157 G-function calls. With 214 G-function calls, SORM gives a less445

accurate value of the failure probability estimate, say 1.44 × 10−8. The accuracy of FORM-SQP can be446

further improved by the traditional LS method by generating additional lines, which leads to increased G-447

function evaluations at the same time. AGPR-LS is able to provide an accurate failure probability estimate448

with 8 additional lines, while relying on the MPP provided by FORM-SQP, which requires 157 additional449
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Table 5: Basic random variables for Example 3.

Variable Description Distribution Mean COV

X1 Area of reinforcement Normal 1260 mm2 0.05

X2 Yield stress of reinforcement Lognormal 300 N/mm2 0.10

X3 Effective depth of reinforcement Normal 770 mm 0.05

X4 Stress–strain factor of concrete Lognormal 0.35 0.10

X5 Compressive strength of concrete Lognormal 30 N/mm2 0.15

X6 Width of section Normal 400 mm 0.05

X7 Applied bending moment Lognormal 80 kN·m 0.20

calls to the G-function. Both PBAL-LS and BAL-LS can give desirable results, but BAL-LS requires less450

lines and G-function calls.451

Table 6: Results for Example 3 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 1.57× 10−8 2.53% - 1011

FORM-SQP 1.46× 10−8 - - 157

SORM 1.44× 10−8 - - 214

Traditional LS
1.59× 10−8 1.63% 10 164

1.59× 10−8 1.43% 20 204

AGPR-LS 1.53× 10−8 0.54% 8 173

PBAL-LS 1.58× 10−8 3.72% 15 55

Proposed BAL-LS 1.58× 10−8 0.21% 12 40

4.4. Example 4: A transmission tower structure452

The last example consists of a transmission tower structure subject to horizontal and oblique loads, as453

shown in Fig. 7. Using OpenSees [49], the structure is modeled as a three-dimensional truss with 41 nodes454
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and 148 elements. The geometric dimensions of the model are marked in Fig. 7 (a) and (b). The limit state455

function is defined by:456

Z = g(X) = ∆−H1(F1, F2, F3, F4, F5, θ1, θ2, θ3, θ4, E,A), (39)

where ∆ denotes a threshold, specified as 50 mm; H1 represents the horizontal displacement on x-axis of457

the top node, which is a function of 11 random variables as given in Table 7.458

Table 7: Basic random variables for Example 4.

Variable Description Distribution Mean STD

F1 Oblique load (in xz - plane) Lognormal 50 kN 10 kN

F2 Oblique load (in xz - plane) Lognormal 50 kN 10 kN

F3 Oblique load (in xz - plane) Lognormal 60 kN 12 kN

F4 Oblique load (in xz - plane) Lognormal 60 kN 12 kN

F5 Horizontal load (on x-axis) Lognormal 80 kN 16 kN

θ1 Angle Normal 0◦ 10◦

θ2 Angle Normal 0◦ 10◦

θ3 Angle Normal 0◦ 10◦

θ4 Angle Normal 0◦ 10◦

E Young’s modulus Normal 200 MPa 30 Mpa

A Sectional area Normal 8000 mm2 800 mm2

The crude MCS method is not likely to be affordable for providing a reference solution in this example.459

For this reason, we implement important sampling (IS) [50] as an alternative. The failure probability given460

by IS is 6.04×10−6 with a COV being 1.00%. In this example, FORM-SQP does not converge to the correct461

result, while FORM-HLRF does. The results from IS, FORM-HLRF, SORM, traditional LS, AGPR-LS,462

PBAL-LS and BAL-LS are reported in Table 8. Both FORM-HLRF and SORM give inaccurate failure463

probability estimates. Traditional LS can improve the accuracy of FORM-HLRF by employing additional464

lines to probe the failure domain, while requiring many additional G-function evaluations in order to provide465
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a reliable result. AGPR-LS is able to enhance the accuracy of FORM-HLRF, at the cost of many additional466

computational efforts. PBAL-LS and BALL give reasonably good estimates of the probability of failure.467

However, BAL-LS is much more efficient than PBAL-LS in this example.468

Table 8: Results for Example 4 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

IS 6.04× 10−6 1.00% - 64, 687

FORM-HLRF 4.19× 10−6 - - 288

SORM 4.33× 10−6 - - 421

Traditional LS
5.86× 10−6 5.74% 100 810

6.16× 10−6 3.89% 200 1356

AGPR-LS 6.24× 10−8 3.49% 172 468

PBAL-LS 5.86× 10−6 4.88% 89 272

Proposed BAL-LS 5.95× 10−6 4.65% 23 106
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Figure 7: A transmission tower structure subject to horizontal and oblique loads.
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5. Concluding remarks469

This paper offers a more complete Bayesian active learning treatment of line sampling in the context470

of structural reliability analysis. This treatment leads to a new method, called ‘Bayesian active learning471

line sampling’ (BAL-LS). In this method, we first complete a Bayesian treatment of the standard line472

sampling in terms of the second-order posterior statistics. Specially, the posterior variance of the failure473

probability defined in line sampling is derived, which can measure our epistemic uncertainty about the failure474

probability resulted from a limited number of observations. Then, the Bayesian active learning treatment475

is accomplished by proposing a learning function and a stopping criterion based on the posterior statistics476

of the failure probability. Besides, the proposed method can automatically update the importance direction477

throughout its course without re-evaluating the performance function. From several numerical studies, it is478

shown that the proposed BAL-LS method is able to assess extremely small failure probabilities for weakly479

and moderately nonlinear reliability problems with high efficiency and accuracy. Moreover, BAL-LS exhibits480

a superior performance when compared with our previously developed PBAL-LS in the studied examples.481

The proposed method is only suitable for a class of weakly to moderately nonlinear problems in low to482

moderate dimensions (<20). For highly nonlinear problems, the failure domain can be quite complex in483

geometry, far from being half-open. The Bayesian active learning framework based on the GP model in484

its current form can be quite challenging in high dimensions. These limitations can be addressed in future485

work.486
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