

Author Accepted Manuscript (AAM).

This manuscript has been peer reviewed and accepted for publication but has not undergone Springer Nature copyediting or typesetting.

The final published version is available at SpringerLink via DOI: <https://doi.org/10.1007/s40194-023-01519-1>

© Springer Nature. This manuscript is shared in accordance with Springer Nature's accepted manuscript terms of use.

A machine learning approach for efficient and robust resistance spot welding monitoring

Lars Bogaerts^{1*}, Arnout Dejans¹, Matthias Faes² and David Moens¹

¹Department of Mechanical Engineering – LMSD division, KU Leuven, Jan De Nayerlaan 5, St.-Katelijne-Waver, 2860, Belgium.

²Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Strasse 5, Dortmund, 44227, Germany.

*Corresponding author(s). E-mail(s): lars.bogaerts@kuleuven.be;

Contributing authors: Arnout.dejans@kuleuven.be; matthias/faes@tu-dortmund.de; david.moens@kuleuven.be;

Abstract

The estimation of the weld nugget diameter generated by the resistance spot welding process is a crucial element in the assessment of the overall quality of the weld and plays a major role in in-line process control. The process is crucial to produce end-products in many industries such as aviation, aerospace, automotive and other industrial areas. A modern car body contains typically several thousands of welds produced by resistance spot welding, setting an ideal scene for in-line process control. Current state of the art monitoring methods are based on several features extracted from the dynamic resistance signal. However, the accuracy of those is generally not high. In this work, a method for predicting the nugget diameter based on the combination of unsupervised deep learning and Gaussian process regression is developed. Autoencoders are adopted to extract features from the dynamic resistance curve in a low dimensional representation. These features embodies underlying information on the process, possibly unobservable or not detectable by any other currently existing approach. Next, a Gaussian process regression model is trained to link those features to the target weld nugget diameter. Compared with the currently popular geometrical attributes approach, the results show that the model has a higher prediction accuracy in nugget diameter prediction, whilst remaining a low cost implementation in an industrial setting. These results are supported by several cases, derived directly from common industrial bottlenecks. Both cases indicate a strong potential with the new AE-GPR approach, with consistently improved results compared to the currently popular geometrical attributes approach.

Keywords: Resistance spot welding, Nugget diameter, deep learning, machine learning

¹ 1 Introduction

² Resistance spot welding (RSW) is a highly effi-
³ cient, low cost and easy realisable joining tech-
⁴ nique. The technique has been used extensively
⁵ and is crucial to produce end-products in many

⁶ industries such as aviation, aerospace, automotive
⁷ and other industrial areas. The process employs
⁸ two welding electrodes that press two or more
⁹ overlapping sheet-like workpieces together. The
¹⁰ heat generated by the then-applied electric cur-
¹¹ rent, in correspondence with Joule's law, causes

12 local melting at the workpiece's common faying
 13 surface, leading to joining these workpieces. This
 14 ease of operation contributed vastly to the quality
 15 and automation of the production of modern car
 16 bodies, which contain typically several thousands
 17 of welds produced by RSW. The safety and reli-
 18 ability of current automobile industry is only one
 19 of many examples that notably profited from the
 20 valuable RSW process.

21 To a large extent, this success can be
 22 attributed to the ease of automation of the RSW
 23 process in an assembly line. Further, RSW also
 24 combines high strength joining with production
 25 flexibility, low cost and fast throughput. Thanks
 26 to its wide-spread use, RSW has grown to a
 27 mature joining technique, with literature dating
 28 back to the second half of the 19th century (experi-
 29 mentally oriented) [8] and early 2000's (on-line
 30 monitoring, Finite Element methods) [12, 13].
 31 Yet, in industrial practice, it still suffers from a
 32 high sensitivity to often uncontrollable and vari-
 33 able process conditions. This makes the RSW
 34 process extremely vulnerable to environmental
 35 effects, surface conditions, misalignment, wear,
 36 etc. Inevitably, abnormal welding conditions dra-
 37 matically reduce the consistency of welds, which
 38 generally leads to significant degradation of the
 39 weld quality. Therefore, it is a vital task to con-
 40 trol and monitor the quality of the welding process
 41 [10]. Also, in order to increase productivity and
 42 achieve a robust final assembly, an attempt to
 43 minimise the number of required spot welds is
 44 made. This is only possible when consistent and
 45 sufficient weld quality can be guaranteed [23, 32].
 46 For the latter, a common technique remains non-
 47 destructive testing, based on a random subset of
 48 the workpieces on the production site. However,
 49 these weld quality estimations can only be exam-
 50 ined off-line, making it impossible to receive brisk
 51 and pertinent information. Furthermore, it is very
 52 cost inefficient for mass production environments,
 53 where RSW is vastly present.

54 In the context of process monitoring, real-time
 55 weld quality estimation based on data-driven tech-
 56 niques are becoming ever more common [3, 11, 21].
 57 These approaches typically link process parame-
 58 ters and on-line measurements to product quality
 59 metrics in order to guard the process. In this
 60 respect, machine learning approaches yield very
 61 fast black-box models enabling on-line application
 62 for process control. However, multiple problems

63 arise with these black-box models: (a) These mod-
 64 els are known to have only limited value when
 65 extrapolation is required. Their use is most rel-
 66 evant for well-confined and -controlled processes
 67 that enable the generation of a clear, industri-
 68 ally representative and comprehensive data set for
 69 the model training. There are large discrepancies
 70 between a lab-environment or numerically-made
 71 data-set and an industrial data-set, which is prone
 72 to inaccuracy due to changing variables or bound-
 73 ary conditions that come with the large change in
 74 environment. (b) Quantitative measurement capa-
 75 bilities for the process response are limited in
 76 the RSW process, hence eliminating the indus-
 77 trial applicability of data-hungry algorithms such
 78 as most supervised deep-learning toolboxes [20].

79 Various in-line measurement techniques for the
 80 RSW process are investigated in literature, and
 81 can be classified based on the quantity of mea-
 82 surement (e.g., force, current, time) and their
 83 corresponding measurement device. Some of these
 84 techniques show promising results regarding in-
 85 line prediction of the weld nugget diameter, which
 86 is usually the primary choice for the Quality Indi-
 87 cator (QI) of the process [4]. A first class of
 88 prediction models makes use of mechanical mea-
 89 surements, e.g., displacements [24], forces [31] or
 90 acoustic emission [7]. While these are possible
 91 sources of valuable process information, and state
 92 of the art technology for measurement of the
 93 required quantities is proven achievable on indus-
 94 trial scale, the reliability, accuracy and flexibility
 95 of these models remain a challenge [25], leading
 96 to their limited use in an industrial context.
 97 A second class of techniques focuses on moni-
 98 toring through electrical signals. In this context,
 99 dynamic resistance (DR) measurements are widely
 100 investigated and implemented in industrial prac-
 101 tice [9, 22, 29]. There are several milestones in
 102 the progress of monitoring the dynamic resistance.
 103 In 2002, Cho and Rhee [5] calculated dynamic
 104 resistance based on current and voltage from the
 105 primary part of the transformer. Further break-
 106 throughs include quality estimators by means of
 107 a Hopfield network, presented in [6], Artificial
 108 Neural Networks (ANN) [17], welding quality clas-
 109 sifiers by means of Probabilistic Neural Networks
 110 (PNN) [27] and a random forest model based on
 111 features of the dynamic resistance curves [25].
 112 Measurement of dynamic resistance has become

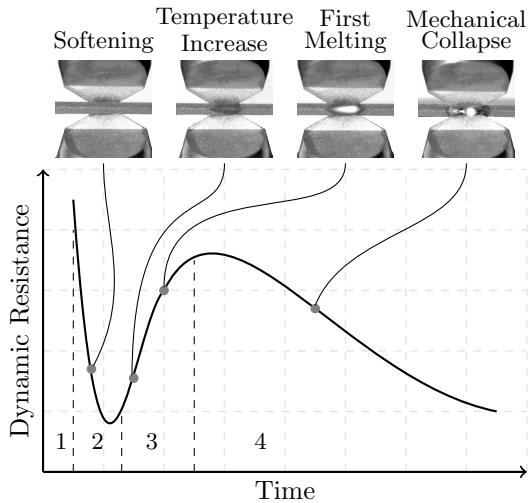


Fig. 1: Theoretical dynamic resistance curve interpretation and characterisation. Top images illustrate the evolution of the weld nugget at the given phase and are made by a phantom VEO 640 ultra high speed camera. Based on the original graph of D.W. Dickinson et al. [8]

the accepted paradigm in industry [1, 15, 30], and has been implemented in several commercially available power sources as a quality monitoring and evaluation tool. For this reason, it is selected as primary feature in this work. Furthermore, there is a clear link between the evolution of the weld nugget and the dynamic resistance, as illustrated in figure 1. For more detail on the subject, the reader is referred to [8].

1.1 Motivation

While extensive literature exists regarding the online monitoring and the quality assessment of the spot welding process based on dynamic resistance and alternative measurements, many challenges remain. Many of the aforementioned techniques suffer from drawbacks that hinder their optimal cost-effective and fully automated application for RSW processes in industrial practice. These shortcomings are the following.

1. Current dynamic resistance based techniques fail to establish an accurate prediction when variations on the input signal are present, either due to process parameter alterations or inherent randomness in the process.

2. The dynamic resistance curve is containing information that is not necessarily observable in a time signal, and therefore lost by currently existing techniques. Consequently, the widely investigated techniques based on the geometric attributes of the dynamic resistance measurement (see section 3.2) are not fully exploiting their potential.
3. Alternatives for the measurement of dynamic resistance are lacking robustness, mainly due to the type of measurement. This leads to either economical or infrastructural burdens, which render them less interesting for industrial application.

In an effort to remedy these shortcomings, this paper investigates a weld quality monitoring approach based on the underlying parametric dependencies of the dynamic resistance during the RSW process. The weld nugget diameter serves as the main driving Quality Indicator (QI) for this research. The capability of predicting the weld nugget diameter by means of limited measurements is an important aspect of the developed approach. This is important to keep the number of man-hours required to measure the data-set feasible. Furthermore, the technique should be able to cope with variations, re-calibrations or other possible variability within industrial application.

We propose deep learning autoencoders to discover a low dimensional representation that captures the underlying causes of the resistance in the secondary circuit of the welding machine during the RSW process. This allows for a sparse representation that can be leveraged towards in-line prediction of the weld nugget diameter. The method is demonstrated on an experimental data-set to clarify the technique and to compare it with the geometrical attributes approach (elaborated in section 3), by means of computational performance, prediction accuracy, advantages and disadvantages.

Next, the method is demonstrated on several example problems, showing that the technique has large potential on diverse problems.

The paper is structured as follows:

- Section 2 elaborates on the conducted experiments, as well as the required hardware both for experiments, measurements and processing the data,

- Section 3 discusses the geometrical attributes approach, which serves as a reference for the novel methods developed in the next sections,
- Section 4 introduces the autoencoder based approach,
- Section 5 applies the introduced method to two case studies to illustrate its application and performance,
- Section 6 lists the most important conclusions of this manuscript.

2 Experimental setup

Experiments described in this work are performed on an ARO servo-driven RSW machine with a 1000 Hz, 90 kVA DC power source, as depicted in figure 2. The machine is equipped with water cooled electrode caps with an ISO 5821:2009 FE-15.8-5.5-30 geometry. Three experiments were conducted using process parameters as summarised in table 1. For each experiment, the complete set of process parameters and the number of realisations n is provided. Experimental set 1 represents a limited run in a production setup under ideal conditions, where variations are only generated due to randomness in the process and systematic uncertainty due to measurement accuracy. Experimental set 2 is a set of multiple experiments, with each subset having a different value for a selected process parameter. For this work, the current is adjusted, which is one of the most influential process parameters of the process [8]. The rationale behind this case study is to prove the flexibility of the technique over a wide range of machine parameters. Experimental set 3 is a set of multiple experiments, with each subset having a geometrical adjustment of the electrode clamp, causing a variation in the static electrode bulk resistance (EBR), which is part of the secondary circuit. This is realised by adding custom build raisers (*shims*) between the electrode and its holder. Due to the principle of stacking multiple thin shims, the conductivity decreases significantly, causing the resistivity to increase with only a minor increase in extra material required. For the three examined cases, the resistance between two predetermined points, one above the added shims and one below the added shims, is measured to be 11.9, 108.4 and $371.5\mu\Omega$ respectively. This case is included to illustrate the

performance of the technique for a common problem in an industrial setting, where the change of welding electrodes or welding clamps inherently causes a variation in the overall resistance of the machine's electrical circuit. The welded specimens are low carbon steel samples of 20 by 70 mm and thickness of 1 mm and are welded in as-delivered condition. Data is acquired by a Dewetron DEWE2-a4L data acquisition system at a sampling rate of 2 MHz. Acquired signals include (1) electrical voltage over the welding electrodes and (2) electrical current in the welding circuit, measured by a PEM RFT 300S Rogowski coil and preamplifier.

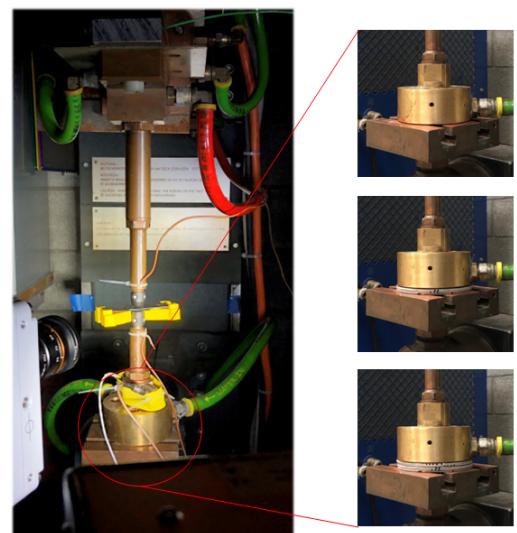


Fig. 2: Setup of the machine (left), with location of shims for experimental set 3 (right), top-down: zero, 3 and 5 shims.

All samples are labelled by physical measurements of the weld nugget diameters according to ISO 10447:2015 (*specifies the procedures and recommended tooling to be used for peel and chisel testing of resistance spot and projection welds. ISO 10447:2015 applies to welds made in two or more sheets in the thickness range of 0,5 mm to 3,0 mm*). The process parameters are chosen such that the nominal nugget diameters correspond to the welding lobe diagram according to ISO 14327:2004, $3.5\sqrt{t}$, with t the thickness of a single plate. Furthermore, the weld time and force differ greatly between the conducted experiments.

261 This is deliberately determined as such, to provide 296
 262 a demonstration on a case where the weld is gen- 297
 263 erated in a short time window as well as a case 298
 264 where a weld nugget is formed slower. 299
 300

265 3 Dynamic resistance based 301 266 monitoring 302

267 This section describes, discusses and illustrates 305
 268 the geometrical attributes regression model as pre- 306
 269 sented in literature. It serves as a reference for the 307
 270 developments in the remainder of this work. 308

271 The geometrical attributes regression model 309
 272 is currently the most commonly adopted pre- 310
 273 diction model in industry. The model is based 310
 274 on input-output pairs, respectively from on-line 310
 275 measurements and nugget diameter measurements 310
 276 stemming from destructive testing (as elaborated 310
 277 in section 2). Figure 3 visualises the main flow of 310
 278 the approach. It consists of k welds being gener- 310
 279 ated and measured by means of an experimental 310
 280 campaign. The samples are *peeled*, a destructive 310
 281 testing method (ISO 10447:2015) for determin- 310
 282 ing the diameter of the weld nugget. When the 310
 283 demanded samples k are generated, the data is 310
 284 subjected to a training algorithm based on the 310
 285 input-output pairs. All additional samples ($i \geq k$) 310
 286 are then predicted based on the trained model. 310

287 3.1 Feature extraction

Measurement of dynamic resistance is one of the most effective techniques for quality monitoring and estimation, aided by the fact that measurements are straightforward, including electrical current and voltage in the secondary circuit. Next, the dynamic resistance signal is obtained according to Ohm's law, i.e.

$$288 R(t) = \frac{U(t)}{I(t)}, \quad (1)$$

289 with $R(t)$ the dynamic resistance, $U(t)$ the the
 290 voltage, $I(t)$ the welding current and t the welding
 291 time.

292 During the process, the welding machine forms
 293 a closed circuit with the secondary circuit of a
 294 transformer, ensuring a solid mechanical assem-
 295 bly between tooling and work pieces. The closed
 296 circuit is modelled in terms of their individual

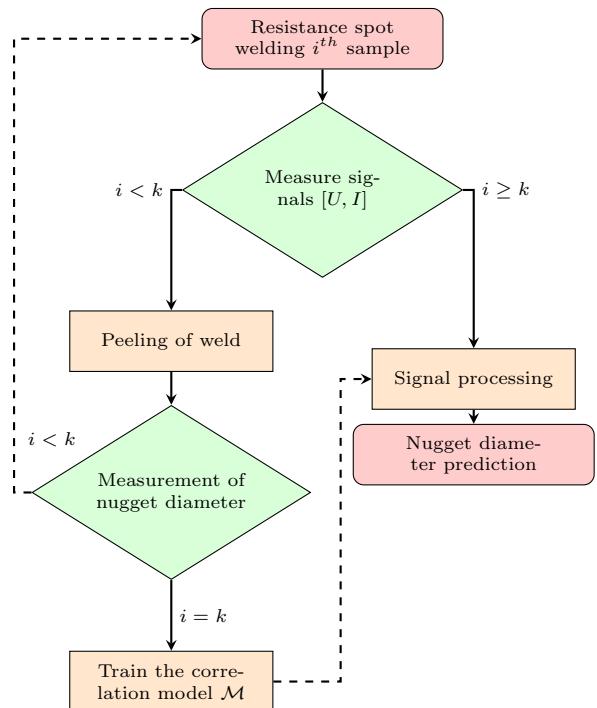
297 resistances. In this resistance model, the electrical 298 resistances of the transformer, the mechanical 299 assembly, and the work pieces are represented as 300 respectively R_t , R_m and R_l . The resistances R_t 301 and R_m are assumed constant during the process. 302 The resistance of the work pieces is split into three 303 components:

- 303 1. the bulk resistance of the sheet metal (R_b),
- 304 2. the interface resistance between electrodes and 305 sheet metal (R_c),
- 306 3. the contact resistance of the parts surfaces 307 (R_f).

308 For the general case of two pieces of sheet 309 metal, assumed equal in properties and dimen- 310 sions, the resistance of the work pieces is:

$$R_l = 2R_b + 2R_c + R_f. \quad (2)$$

311 As illustrated in figure 1, there are multiple 312 stages during the process, causing a large fluctua- 313 tion of R_l . The geometrical attributes approach,



298 **Fig. 3:** Workflow a. General prediction model 299
 299 structure for RSW 300

Table 1: Overview of conducted experiments and their process parameters used in this paper. *EBR*: *Electrode bulk resistance setup*, *n*: *amount of welds*

No.	Current (kA)	Force (kN)	Time (ms)	EBR	N
1	7.2	5	210	cte	174
2	6.0 - 6.6 - 7.2	2.5	70	cte	50 - 50 - 50
3	7.6	2.5	80	var.	50 - 50 - 50

elaborated in section 3.2, refers to several points that characterise the dynamical resistance curve. Extracted points from the curve are based on e.g., peaks and slopes. Figure 4 illustrates several key points of the curve, respectively the initial peak R_0 in phase 1, the pit R_α in phase 2, the peak at the beginning of phase 4, also commonly known as the beta peak R_β and the last value of the DR curve R_γ , also respectively the times t_0 , t_α , t_β and t_γ . Next, several critical derivatives are selected, the mean value R_m , the slopes m_1 and m_2 and the resistance variance $dR1 = R_\beta - R_\alpha$ and $dR2 = R_\gamma - R_\beta$

Table 2: Overview of correlations between derived features and the QI, based on experimental case 1

feature (f_i)	%	feature (f_i)	%
t_0	1.68	R_0	3.06
t_α	-31.37	R_α	33.36
t_β	-30.60	R_β	20.62
t_γ	-20.43	R_γ	-8.56
m_1	8.60	m_2	6.30
dR_1	-4.45	dR_2	49.73
R_m	44.29		

study, the concept of the moving average filtering is selected to eliminate the interference of periodic signals effectively [33].

3.2 Geometrical attributes model

Post-filtering the dynamic resistance signal provides a noise-free curve where the features described in section 3.1 (Figure 4) are observable. Table 2 gives an overview of the correlations between the features according to figure 4 and the QI, based on case 1 from table 1. This table shows that correlations between inputs and the QI are present. This confirms the applicability of the geometrical attributes approach, as discussed by [9]. The ensemble of these, or similarly derived, correlations, superseded with generic regression analysis, are current state of the art methods for RSW quality indication. This is visualised as the left part in figure 5. Part A, the feature selection, yields the aforementioned features of the dynamic resistance curve. Next, in part B, a multiple linear regression model describes the relationship between the features and the QI. The selection of features is case dependent, and relates to the most significant features of the curve, with a minimum of six points, without significantly affecting the model performance [9]. The regression model is described as

$$q = \beta_0 + \beta_1 f_1 + \beta_2 f_2 + \dots + \beta_k f_k + \varepsilon \quad (3)$$

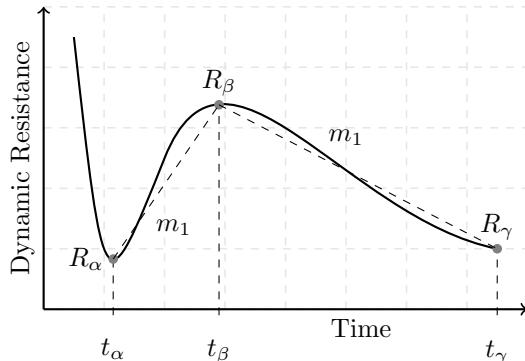


Fig. 4: Theoretical dynamic resistance curve, with selected features for the geometrical attributes approach, adopted from [9].

However, one drawback of this technique is that these measured parameters fluctuate heavily during a single weld due to the time-varying current generated by a mid frequency direct current (MFDC) power supply. The dynamic resistance, derived according to Eq. 1, is subjected to a signal filter in order to obtain the main trend. *Zhang et al.* [26] evaluated the raw signals and acknowledged, based on Fourier spectrum analysis, that periodic features are key to the large fluctuations. They applied a fourth-order digital low pass filter with a cut-off frequency of 50 Hz. For this

340 with q the QI response, f the regressor variable,
 341 β the regression coefficients and ε the error term.

342 This overall workflow makes it possible to
 343 project new data-points onto the regression model
 344 and predict (interpolate) an estimate for the QI.

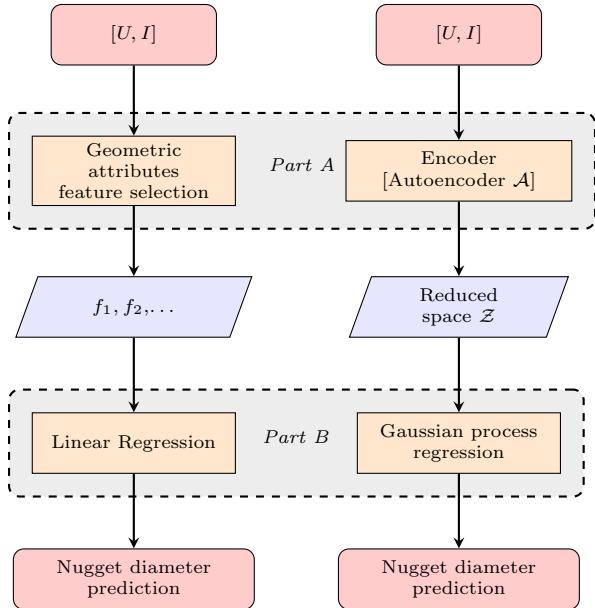


Fig. 5: Workflow b. Technical

points, recent advances in deep learning methodologies are proven to be very efficient in gathering interesting features in the data, which are possibly unobservable or not detectable to the engineer during manual evaluation of the data. However, especially for this application, this poses specific challenges regarding the architecture of the network. Indeed, with a sampling rate of 2Mhz and the process yielding $> 200\text{ms}$ of welding time, a very high amount of data is gathered on multiple channels, which serves as the input of the network. The main problem is that the computational cost of the neural network scales exponentially with the data, by cause of a connection that is required to each neuron in the next layer, according to:

$$z_j^l = \varphi(v_j) = \varphi \left(\sum_{i=0}^k w_i \cdot z_i^{l-1} \right), \quad (4)$$

355 where z_j^l is the value z for neuron number j in layer
 356 l , φ represents the activation function, usually a
 357 sigmoid function ranging from -1 to 1 , $\varphi(v_j) =$
 358 $\frac{2}{(1+\exp(-2 \cdot v_j))} - 1$, z_i^{l-1} representing neuron number
 359 i from layer $l-1$, w_i the weight assigned
 360 to each connection with the previous layer, k the
 361 number of neurons in layer $l-1$ and $z_0 = \pm 1$ for
 362 adding a bias $b = w_0$ to the summation operator,
 363 yielding v_j . Evaluating this key equation is
 364 computationally not a large effort. However, due to the
 365 architecture of neural networks, it has to be solved
 366 numerous times during training. As such the total
 367 training effort is increased drastically. This is often
 368 referred to as the curse of dimensionality, referring
 369 to problems that occur when dealing with data in
 370 high-dimensional spaces. It prevents strategies to
 371 work efficiently, while creating problems concerning
 372 computational expenses, which do not occur
 373 in low-dimensional spaces.

374 Multiple techniques for dimensionality reduction
 375 exist. They can be divided into convex and
 376 non-convex techniques, where convex techniques
 377 optimise an objective function that does not con-
 378 tain any local optima, e.g., Principal Component
 379 Analysis (PCA), Kernel PCA, Isomaps, Local
 380 Linear Embedding (LLE) and non-convex techniques
 381 optimise objective functions that do contain local
 382 optima, e.g., Locally Linear Coordination (LLC),
 383 manifold charting or autoencoders [14, 28]. For a
 384 competent model, capable of being deployed in an
 385 on-line context, a marginal computation cost is

345 4 Autoencoder based weld 346 quality monitoring

347 This section discusses the main innovation of this
 348 study, replacing both part A and part B of the
 349 technique elaborated in section 3.2, as also illus-
 350 trated in the right part of figure 5. In the following,
 351 the method is introduced and discussed, as well as
 352 illustrated based on experimental set 1 (table 1).

353 4.1 Part A: Feature extraction

354 4.1.1 The curse of dimensionality

Part A in this work focuses on improving the
 amount of information that is extracted from the
 dynamic resistance curve. For this, an efficient
 coding is required that is capable of learning a
 low dimensional representation for a set of data.
 Opposed to the method of manually selecting

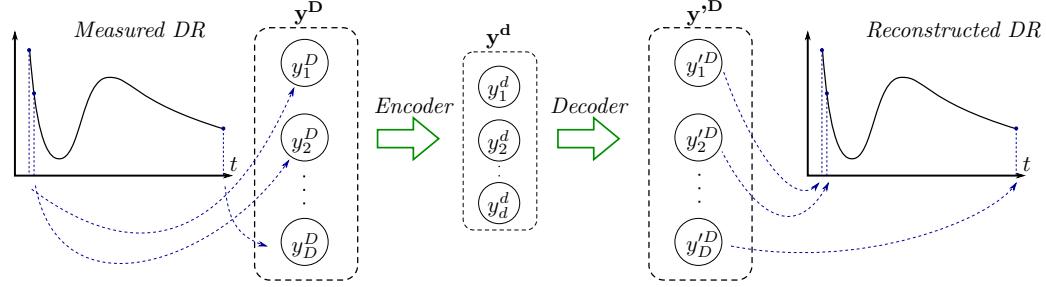


Fig. 6: Autoencoder topology

envisaged for the projection of a series of points to the low dimensional space, but also the ability to embed new high-dimensional data points into an existing low-dimensional data representation is important. For these reasons, autoencoders have been selected for the dimension reduction in this work.

4.1.2 Autoencoder based dimension reduction

Autoencoders, a type of artificial neural network, are the proposed solution for this work, based on their efficiency, non-linear transformation and intuitive nature [2].

These feed-forward networks have an odd number of hidden layers hL_i , with $i = 1 \dots n_l$ and n_l the amount of layers, where the hidden layers are dimensioned such that the layer in the middle has a lower amount of neurons than the first and last layer. This separates the autoencoder in an input layer, an encoder part, the middle layer with $d \leq D$, a decoder part and the reconstructed layer:

$$\mathbf{y}^D \xrightarrow{\text{Encoder}} \mathbf{y}^d \xrightarrow{\text{Decoder}} \mathbf{y}'^D, \quad (5)$$

where \mathbf{y}^D is the measured data, D the number of time-steps in the input data, and d the amount of neurons in the middle layer. The objective of the autoencoder is to generate this neural network architecture such that $\mathbf{y}'^D \approx \mathbf{y}^D$. The autoencoder is an unsupervised learning technique, since its goal is to minimise an error in reconstructing \mathbf{y}^D . The input layer \mathbf{y}^D has D neurons, where each neuron represents an individual parameter from the dataset. This data is reconstructed in the final layer \mathbf{y}'^D of equal dimension D , as illustrated in figure 6.

The centre layer in the network \mathbf{y}^d represents the original data in a lower dimension d , while preserving as much structure as possible from the dataset \mathbf{y}^D . The resulting low dimensional representation in this centre layer functions as the input for further processing, which has the benefit of working with far less data without losing essential information.

Mapping from the input vector to another vector by means of an encoder, based on the general equation of a neural network topology (eq 4) gives:

$$y^d = \varphi(W^1 y^D + b^1) \quad (6)$$

and for the reconstruction through a decoder:

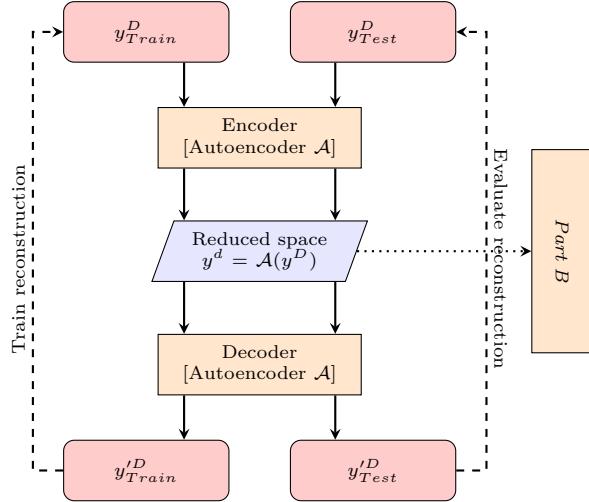
$$y'^D = \varphi(W^2 y^d + b^2). \quad (7)$$

The network is trained by minimising a loss function, which includes regularisation terms. Apart from the mean squared error function, an L2 regularisation term $\lambda * \Omega_{weights}$ and sparsity regularisation term $\beta * \Omega_{sparsity}$ are added to the loss function. The L2 regularisation term forces the weights to remain small, by adding a penalty to the loss function when weights are increasing. The sparsity regularisation term attempts to enforce a constraint on the sparsity of the output from the hidden layer. The cost function for training the autoencoder based on N samples yields

$$\begin{aligned} \mathcal{L}(y^D, y'^D) = & \frac{1}{N} \sum_{n=1}^N \sum_{j=1}^D (y_{jn}^D - y'_{jn}^D)^2 \\ & + \lambda * \Omega_{weights} + \beta * \Omega_{sparsity} \end{aligned} \quad (8)$$

422 with λ the coefficient for the L2 regularization term and β the coefficient for the sparsity regularization term.

423 The workflow for applying this metric for the 424 dynamic resistance curve is illustrated in figure 7.



425 **Fig. 7:** Workflow c. Autoencoder training principle

426 In this figure, there is a clear distinction 427 between the data for training and testing. It also 428 indicates the main workflow, where eq. 8 is used 429 to train the reconstruction of the measured signal 430 and to evaluate the reconstruction of test data. 431 Furthermore, the figure illustrates that part B is 432 connected to the low dimensional layer, in the 433 centre of the autoencoder. 434

435 4.1.3 Illustration

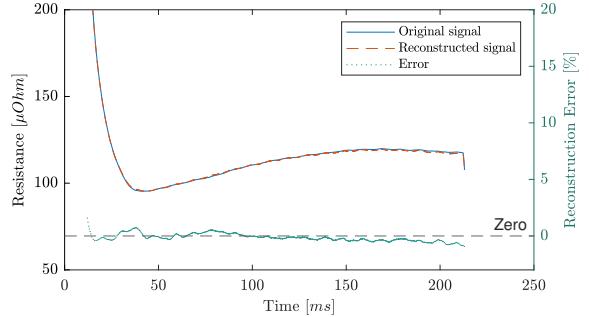
436 The autoencoder based dimension reduction is 437 now illustrated based on experimental case 1 from 438 table 1. Out of 174 experiments, 90 % serves 439 as training data, whereas the remaining 10 % is 440 test-data to evaluate the performance.

441 Figure 8 illustrates the performance of the 442 network for one sample from y_D^Test , where one 443 dynamic resistance curve is plotted next to its 444 reconstructed counterpart. Since the error is 445 nearly negligible, the instantaneous reconstruction

446 error ϵ_{AE} is given, defined as:

$$\epsilon_{AE} = \frac{y'^D - y^D}{y^D} \cdot 100. \quad (9)$$

447 In this example, the signal is compressed from 448 $D = 450.000$ data-points into a middle layer of 449 the autoencoder, represented by y^d , where $d = 450$. 451 The hyper-parameters for the network are 452 summarised in table 3.



453 **Fig. 8:** Measured and reconstructed signal with 454 means of an autoencoder network, with topology 455 450k – 15 – 450k

456 Note that the reconstruction is only required 457 for training of the autoencoder. For the purpose of 458 dimensionality reduction, the encoder projection, 459 resulting in the reduced space y^d is an important 460 step to come to an efficient regression model, as 461 illustrated in figure 7.

462 At this point, it can be concluded that the 463 presented method is capable of projecting the 464 measured dataset into a reduced space y^d , which 465 acts as a low dimensional space. The reconstructed 466 projected data, by means of the autoencoder, 467 performs approximately equal to the measured data, 468 as the error is nearly negligible. Furthermore, the 469 projected data contains nearly all information to 470 reconstruct the data in a low dimensional space, 471 thus possessing at least as valuable information as 472 the manually determined points, as described in 473 section 3.2. Therefore, the reduced space y^d can 474 serve as an input to current the QI prediction step 475 using generalised techniques, e.g., multiple regression. 476 It should be noted that the projected data 477 has no physical meaning in the process, opposed 478 to the selected features from section 3.2. The 479 added benefit of this method is the robustness of 480

Table 3: Hyperparameters for training Autoencoder

Encoder-TF	<i>Sigmoid</i>
Decoder-TF	<i>Sigmoid</i>
d	15
L2 weight coef. $[\lambda]$	0.009
Sparsity Proportion $[\rho_i]$	0.719
Sparsity Regularization $[\beta]$	1.08
Normalised data	Yes

the algorithm, which is unlikely to suffer abnormalities, e.g, where expulsion could cause an effect in the curve, resulting in misjudgement or wrong interpretation of the data. Additionally, the measured signal is prone to various effects like time shift, originated during the processing of the data, caused by the required filtering techniques of the signal. The presented approach is also insensitive to these effects.

4.2 Part B: QI prediction

Part B of the novel prediction model (see figure 5) requires an algorithm capable of giving a robust regression between input-output, respectively the measured signals during the welding process projected on a reduced space \mathcal{Z} by means of an autoencoder, and the measured nugget diameter of the weld (QI). Due to the low amount of available labelled data, training a neural network based on input-output pairs tends to be troublesome, in particular overfitting is a main concern. This should not be confused with the neural network on which the autoencoder from section 4.1 is based, as the latter is an unsupervised technique, which does not require labelled data.

4.2.1 Gaussian Process Regression

A powerful tool, ideal for this problem is Gaussian Process Regression (GPR). In its original form, Gaussian Process modelling is a statistical interpolation method that exploits Gaussian processes to interpolate a series of complex functions. The technique works well on small datasets, and has the capability to provide uncertainty metrics on the predictions. Gaussian process modelling, also known as Kriging, was introduced in the context of meta-modelling in the works of Sacks et al. [19], in which the original form of Kriging, as developed in the Master's thesis of D. Krige [16], served as a backbone to represent an input/output mapping

of an expensive computational model. For application in machine learning, Kriging has evolved as both regression and classification tool, and has proven to be a treasured algorithm [18].

The required dataset \mathcal{D} with N observation is presented as

$$\mathcal{D} = \{(y_i^d, q_i) | i = 1, \dots, N\} \quad (10)$$

with y_i^d the vector with multiple input variables and q_i as a measure for the QI, which is continuous, as this is a regression case.

In essence, GPR serves as an interpolation model for a regression problem mapping the QI on the variables.

The key equation of GPR is presented as:

$$q = \mathcal{M}(y) + \varepsilon, \quad (11)$$

with $\mathcal{M}(x)$ the GP model. It is assumed that the observed responses are noisy and the noise ε follows a zero-mean Gaussian distribution

$$\varepsilon \sim \mathcal{N}(0, \sum_n), \quad (12)$$

where \sum_n is the covariance matrix of the noise term. For this work, the noise variance is identified as general heteroscedastic, in which the noise can differ for each observed response. For a more in depth study of GPR, the reader is referred to the citations in previous section.

An important feature of this type of model is the applicability of K-fold cross-validation. The main idea of this is to re-evaluate the model with a subset of the training data. This allows to optimise the hyper-parameters of the model, based on evaluating the model with each subset of data, thus minimising a cross-validation error. This yields a model, capable of working under limited data, and providing efficient predictors with minimal effort, unlikely to suffer from overfitting. Performance-wise, training this model takes significantly longer than linear regression. However, as elaborated in the introduction, the computational requirement for training is irrelevant for an in-line paradigm. What is of interest is the required time to evaluate a single sample. This will be studied for the illustrative data set in the next section.

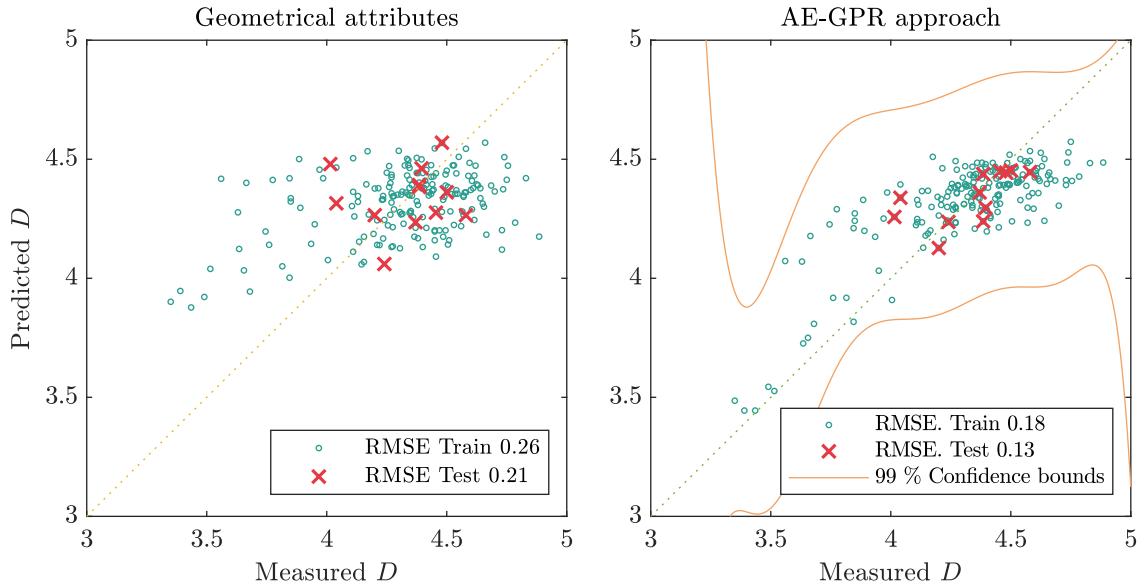


Fig. 9: Predicted vs. actual QI based on the AE-GPR approach (*right*) compared to the Geometrical attributes approach (*left*) for the reference case

4.2.2 Illustration

The methodology is presented on the data resulting from section 4.1.3. Computation experiments and the training of the proposed algorithms are performed on a server, consisting of 2 AMD Epyc 7601 32-core CPU's, 512 GB memory and an NVIDIA Tesla V100 - 32 GB graphical accelerator. For benchmarking computational effort of the proposed algorithm, the system is limited to only 1 core, while GPU acceleration is disabled.

The summary of computational costs for both the reference and the newly developed approach are given in table 4. Comparison of the required time for the regression approaches clearly reveals that the GPR technique is more expensive. This is due to the fact that substantially more time is required to determine the optimal hyperparameters, compared to the key, and only equation required for multiple linear regression 3. Apart from that, the table also shows that especially the training of the unsupervised deep learning based dimension reduction technique into an autoencoder (AE) necessitates a high performance computational device. However, the cost for training is only a small investment for a continuously guarded process. Table 4 also summarises the computational costs for training and propagating a single

Table 4: Computational costs for the framework, *AE*: *Autoencoder based dimension reduction*, *GPR*: *Gaussian Process Regression*

		Training	1 Sample
<i>Part A</i>	Geom. attributes	1.8×10^3 s	0.46 s
	AE	5×10^4 s	0.83 s
<i>Part B</i>	Linear regression	1.01 s	0.03 s
	GPR	91 s	0.04 s

sample. This shows that propagating a single experiment through the full AE-GPR framework requires only a marginally higher cost compared to the approach based on the geometrical attributes.

In order to assess the performance of the developed method, figure 9 illustrates the correlation between the predicted QI and the measured QI, both for the geometrical attributes approach (*left*) and the novel AE-GPR approach (*right*).

A clear improvement over the geometrical approach is noticeable. Not only does the Root Mean Squared Error (RMSE) improve vastly, from 0.26 to 0.18, it is also clearly visible that the geometrical approach fails to predict the overall nugget diameter. Specifically, the graph based on the geometrical approach shows a horizontal scatter, indicating a larger spread on the measured QI, but a small spread on the predicted

586 QI. Furthermore, in addition to the continuous 633
 587 mean regressor estimate by the GPR model, also 634
 588 confidence bounds are provided, based on the 635
 589 available training data and known variance of the 636
 590 GPR model. For this case, the 99 % bounds are 637
 591 provided, showing a narrow band encapsulating 638
 592 the data. As a final verification, the algorithm 639
 593 is subjected to several testing points, which were 640
 594 excluded from the training. The latter is rep- 641
 595 resented by 10 % of the available data and is 642
 596 visualised by the red crosses. The RMSE for the 643
 597 test points improves from 0.21 to 0.13 for the test 644
 598 data, which emphasises the performance of the 645
 599 model by resulting in a prediction well within the 646
 600 bounds predicted by the algorithm. 647
 648

601 5 Verification of the proposed 649 602 method

603 To benchmark the accuracy and robustness of the 650
 604 introduced approach, the algorithm is subjected to 651
 605 two more cases. Compared to case 1 of section 3.2 652
 606 for which an experimental set with fixed process 653
 607 parameters was used (thus only yielding process 654
 608 variability on both input and output), the next 655
 609 two cases include highly relevant industrial events 656
 610 representing common process variations. 657
 658

611 5.1 Current variation

612 This case (table 1, No.2) is a dataset combin- 660
 613 ing data from three consecutive experimental runs 661
 614 with respectively altering the current as described 662
 615 in table 1. The goal of this case is to determine 663
 616 the robustness of the AE-GPR approach based on 664
 617 a broader set of input signals, as could be the 665
 618 case in an industrial setup where low- and flexible 666
 619 production is key and in-line monitoring is envis- 667
 620 aged. First, applying a dimension reduction on the 668
 621 measured signals reduces the dataset from 450.000 669
 622 samples to 15, while only losing < 1 % of infor- 670
 623 mation, based on mean-squared error estimates. 671
 624 This is illustrated in figure 11, where the origi- 672
 625 nal curve, the reconstructed curve and the error 673
 626 are illustrated. Analysing the measured and pre- 674
 627 dicted data, illustrated in figure 10, clearly reveals 675
 628 several meaningful results. 676
 629

630 First, no separate data clusters can be dis- 677
 631 tinguished according to the difference in welding 678
 632 currents. Yet, the three datasets are separated 679
 by colour, which reveals the difference in nugget

diameter in function of process parameters. Sec- 649
 ond, the measured results with 6.0kA and 7.2kA 650
 have a wider spread of data compared to the 651
 set welded with 6.6kA. Third, advancing to the 652
 results of the prediction model, there is a clear 653
 improvement of the AE-GPR method over the 654
 geometrical approach. The RMSE is improved , 655
 from 0.39 to 0.13. It is clearly visible that the 656
 predictions based on the AE-GPR approach are 657
 more confined than the predictions based on the 658
 geometrical approach. Furthermore, the predictor 659
 based on the geometrical approach fails clearly in 660
 determining the measured nugget diameter on the 661
 samples stemming from the subset yielding the 662
 smallest nugget diameter. The provided 99 % 663
 confidence bounds show a narrow band encapsulating 664
 the data. 665

666 As a final verification, the algorithm is sub- 667
 668 jected to several testing points which were 669
 669 excluded from the training. The latter is rep- 670
 670 resented by 10 % of the available data and is 671
 671 visualised by the red crosses. The RMSE for the 672
 672 test points improves from 0.62 to 0.13 for testing 673
 673 data. Both the RMSE and graphical representa- 674
 674 tion of the predicted value indicate a prediction 675
 675 well within the predicted bounds of the algorithm. 676
 677

678 5.2 EBR variation

679 For the final example, a highly relevant industrial 680
 680 case is elected. One of the advantages of many 681
 681 state-of-the-art welding controllers is their ability 682
 682 to monitor themself and intervene during a single 683
 683 weld. This is required to achieve a certain thresh- 684
 684 old of total current flow and is often realised by 685
 685 extending the weld time or increasing the current. 686
 686 An important reason why this threshold is often 687
 687 not achieved is the variation in the closed loop 688
 688 resistance in the secondary circuit. These varia- 689
 689 tions affect the welding process and potentially the 690
 690 reaction of the controller, causing a variation in 691
 691 the weld nugget diameter. Also, it is well known 692
 692 within RSW industry that the weld nugget dia- 693
 693 meter is negatively affected by variation in the closed 694
 694 loop resistance in the secondary circuit. The latter 695
 695 is often a consequence of machine disturbances, 696
 696 e.g., maintenance, re-torquing or swapping tools. 697
 697 Thus re-calibration is required when adjustments 698
 698 are made to the welding heads to counter this 699
 699

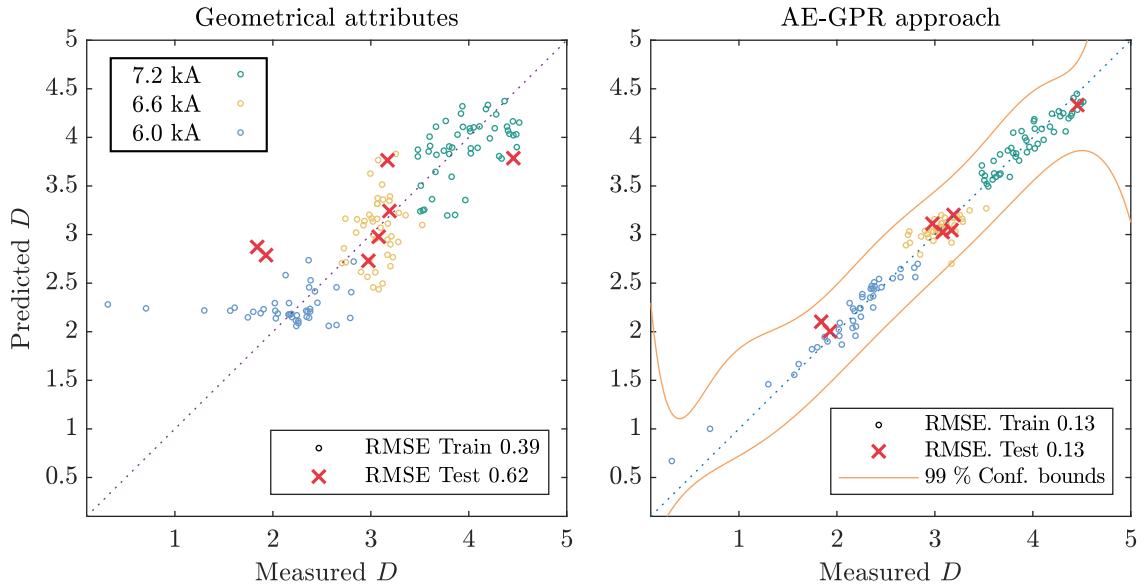


Fig. 10: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical attributes approach (left) for the current variation case

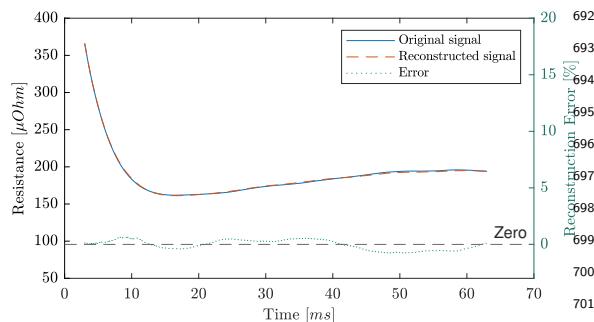


Fig. 11: Measured and reconstructed signal with means of an autoencoder network, with topology 450k – 15 – 450k for the current variation case

effect. The goal of this third case is to demonstrate the potential of our approach when the aforementioned effects are present.

The dataset is a combination of three consecutive experimental runs altering the resistance of the secondary circuit by means of custom shims between the welding head and electrode holder, while the compensation of the controller is disabled. The resistance between two fixed points in the mechanical assembly is respectively measured to be 11.9, 108.4 and 371.5 $\mu\Omega$. This is achieved by respectively zero, 3 and 5 shims, as illustrated

in figure ???. This variation is a constant resistance during the process and is part of R_m , as elaborated in section 3.1.

Analysing the measured and predicted data, illustrated in figure 12, clearly reveals several meaningful results. First, the influence of the change from 11.9 to 108.4 $\mu\Omega$ has an almost negligible effect on the measured nugget diameter with respectively an average of 4.24 and 4.09 mm and equal standard deviation of 0.18 mm. The experiments where the resistance is increased to 371.5 $\mu\Omega$ indicate a noticeably smaller nugget diameter, with an average of 3.18 mm and standard deviation of 0.33 mm. Second, applying the proposed dimension reduction by means of a trained autoencoder reduces the dataset from 140.000 samples to 30, while only losing < 1% of information, based on mean-squared error estimates.

Third, advancing to the results of the prediction model, there is a clear improvement over the geometrical approach. For the set with 11.9 and 108.4 $\mu\Omega$, the variation in nugget diameter is rather low, yet the AE-GPR is capable of predicting the nugget diameter more accurate compared to the geometrical approach. The nugget diameters for the set with 371.5 $\mu\Omega$ range from 2.7

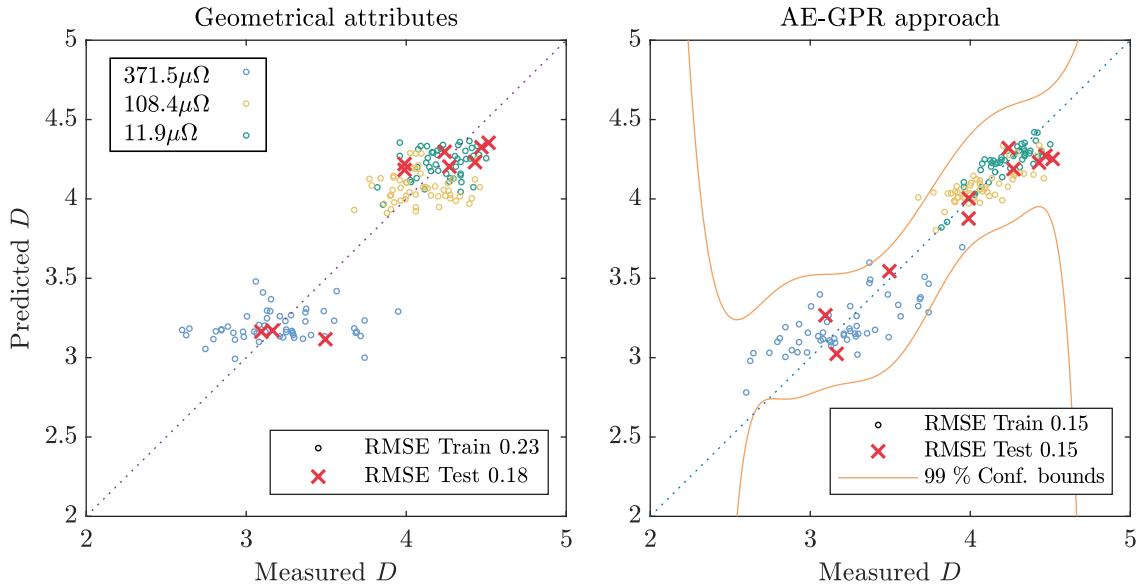


Fig. 12: Predicted vs. actual QI based on the AE-GPR approach (*right*) compared to the Geometrical attributes approach (*left*) for the EBR variation case

to 4.1 mm, while the geometrical approach predicts only between 3.0 and 3.5 mm. The AE-GPR approach predicts this set, both for the training and test points. The RMSE of the predictions improves clearly, from 0.23 to 0.15. For this case, the 99% bounds are provided, showing a narrow band encapsulating the data.

The test points are represented by 10 % of the available data. The RMSE for the test points improves from 0.18 to 0.15, resulting in a prediction well within the predicted bounds of the algorithm.

underlying information on the process, possibly unobservable or not detectable by any other currently existing approach. The underlying information is transformed into a low dimensional space, which is an ideal scene for a Gaussian process regression model linking the input data through the autoencoder to the measured nugget diameter. The model is trained on a limited set of data, leading to a low cost implementation in an industrial setting. The technique is presented in an example case which clearly indicates that it leads to an improved QI prediction compared to the state of the art geometrical attributes approach. The technique is presented on two additional cases, each pinpointing a specific bottleneck within industry related to the RSW process. Both cases are analysed and indicate very promising results, where the new AE-GPR approach has consistently improved results over the geometrical approach. It should be noted that the time to train the proposed model is substantially higher. However, the investment cost is rather low compared to the benefit in an in-line monitoring system. We conclude that the proposed method can be readily applied to an in-line context for quality assessment in industrial RSW applications, as the

6 Conclusion

This paper presents a novel approach for an effective predictor for the nugget diameter, i.e., the main quality indicator (QI) of a resistance spot welding process, based on on-line measured process data. The most important feature of the developed methodology is the combination of deep learning for dimension reduction, and the consequent machine learning prediction tool. We demonstrate how to use unsupervised deep learning in the form of an autoencoder to discover a low-dimensional transformation in which the parameters characterise a pattern that embodies

769 time for evaluating in an in-line context is suit- 811
 770 able, and accuracy is vastly improved over existing 812
 771 techniques. 813
 814

772 7 Acknowledgements 815

773 This work was funded by KU Leuven, grant 817
 774 #C24E/21/026. 818

775 **Conflict of interest:** The authors declare no 819
 776 conflict of interest. 820
 821

777 References

778 [1] Almeida FA, De Paula TI, Leite RR, et al 822
 779 (2018) A multivariate GR&R approach to 823
 780 variability evaluation of measuring instru- 824
 781 ments in resistance spot welding pro- 825
 782 cess. *Journal of Manufacturing Processes* 826
 783 36(November):465–479. <https://doi.org/10.1016/j.jmapro.2018.10.030> 827
 784 [2] Bogaerts L, Faes M, Moens D (2019) A fast 828
 785 inverse approach for the quantification of set- 829
 786 theoretical uncertainty. In: 2019 IEEE Sym- 830
 787 posium Series on Computational Intelligence 831
 788 (SSCI), IEEE, pp 768–775 832
 789 [3] Brunton SL, Kutz JN (2019) Data-driven 833
 790 science and engineering: Machine learning, 834
 791 dynamical systems, and control. Cambridge 835
 792 University Press 836
 793 [4] Chen S, Sun T, Jiang X, et al (2016) Online 837
 794 monitoring and evaluation of the weld qual- 838
 795 ity of resistance spot welded titanium alloy. 839
 796 *Journal of Manufacturing Processes* 23:183– 840
 797 191. <https://doi.org/10.1016/j.jmapro.2016.06.003> 841
 798 [5] Cho Y, Rhee S (2002) Primary circuit 842
 801 dynamic resistance monitoring and its appli- 843
 802 cation to quality estimation during resistance 844
 803 spot welding. *Welding Journal (Miami, Fla)* 845
 804 81(6) 846
 805 [6] Cho Y, Rhee S (2004) Quality estimation 847
 806 of resistance spot welding by using pat- 848
 807 tern recognition with neural networks. *IEEE 849
 808 Transactions on Instrumentation and Mea- 850
 809 surement* 53(2):330–334 851

778 [7] Dejans A, Kurtov O, Van Rymenant P 811
 779 (2021) Acoustic emission as a tool for pre- 812
 780 diction of nugget diameter in resistance spot 813
 781 welding. *Journal of Manufacturing Processes* 814
 782 62(September 2020):7–17. <https://doi.org/10.1016/j.jmapro.2020.12.002> 815
 783 [8] Dickinson DW, Franklin JE, Stanya A (1980) 816
 784 Characterization of Spot Welding Behavior 817
 785 By Dynamic Electrical Parameter Monitor- 818
 786 ing. *Welding Journal (Miami, Fla)* 59(6) 819
 787 [9] El Ouafi A, Belanger R, Guillot M (2012) 820
 788 Dynamic resistance based model for on-line 821
 789 resistance spot welding quality assessment. 822
 790 *Materials Science Forum* 706-709:2925–2930. 823
 791 <https://doi.org/10.4028/www.scientific.net/MSF.706-709.2925> 824
 792 [10] Ghaffari B, Mozurkewich G (2010) Non- 825
 793 destructive evaluation of spot-weld quality. 826
 794 In: *Failure mechanisms of advanced welding* 827
 795 processes. Elsevier, p 101–136 828
 796 [11] Gomes GF, Viéville P, Durrenberger L (2017) 829
 797 Dynamic behavior investigation of spot weld- 830
 798 ing machines and its influence on weld cur- 831
 799 rent range by modal analysis. *Journal of the 832
 800 Brazilian Society of Mechanical Sciences and 833
 801 Engineering* 39(3):765–773. <https://doi.org/10.1007/s40430-016-0580-0> 834
 802 [12] Hamed M, Atashparva M (2017) A review 835
 803 of electrical contact resistance modeling 836
 804 in resistance spot welding. *Welding in the 837
 805 World* 61(2):269–290. <https://doi.org/10.1007/s40194-016-0419-4> 838
 806 [13] Hao M, Osman KA, Boomer DR, et al (1996) 839
 807 Developments in characterization of resis- 840
 808 tance spot welding of aluminum. *Welding 841
 809 Journal (Miami, Fla)* 75(1):1–s 842
 810 [14] Hinton GE, Salakhutdinov RR (2006) Reduc- 843
 811 ing the dimensionality of data with neural 844
 812 networks. *science* 313(5786):504–507 845

852 [15] Ighodaro OLR, Biro E, Zhou YN (2017) 896
 853 Study and Applications of Dynamic Resis- 897
 854 tance Profiles During Resistance Spot Weld- 898
 855 ing of Coated Hot-Stamping Steels. Met- 899
 856 allurgical and Materials Transactions A: 900
 857 Physical Metallurgy and Materials Sci- 901
 858 ence 48(2):745–758. <https://doi.org/10.1007/s11661-016-3899-3> 902
 859
 860 [16] Krige DG (1951) A statistical approach 904
 861 to some basic mine valuation problems on 905
 862 the witwatersrand. Journal of the Southern 906
 863 African Institute of Mining and Metallurgy 907
 864 52(6):119–139 903
 865
 866 [17] Ling SF, Wan LX, Wong YR, et al (2010) 909
 867 Input electrical impedance as quality mon- 910
 868 itoring signature for characterizing resis- 911
 869 tance spot welding. Ndt & E International 912
 43(3):200–205 913
 870
 871 [18] Rasmussen CE, Williams CK (2006) Gaus- 915
 872 sian Processes for Machine Learning, vol 1. 916
 873 MIT press 917
 874
 875 [19] Sacks J, Welch WJ, Mitchell TJ, et al (1989) 918
 876 Design and analysis of computer experiments. 919
 877 Statistical science 4(4):409–423 920
 878
 879 [20] Saxe AM, Bansal Y, Dapello J, et al (2019) 921
 880 On the information bottleneck theory of deep 922
 881 learning. Journal of Statistical Mechanics: 923
 882 Theory and Experiment 2019(12):124,020 924
 883
 884 [21] Wan X, Wang Y, Zhao D, et al (2017) Weld 925
 885 quality monitoring research in small scale 926
 886 resistance spot welding by dynamic resistance 927
 887 and neural network. Measurement: Journal 928
 888 of the International Measurement Confed- 929
 889 eration 99:120–127. <https://doi.org/10.1016/j.measurement.2016.12.010> 930
 890
 891 [22] Wang SC, Wei PS (2001) Modeling dynamic 933
 892 electrical resistance during resistance spot 934
 893 welding. Journal of Heat Transfer 123(3):576– 935
 894 585. <https://doi.org/10.1115/1.1370502> 936
 895
 896 [23] Xia YJ, Su ZW, Li YB, et al (2019) Online 937
 897 quantitative evaluation of expulsion in 938
 898 resistance spot welding. Journal of Manufac- 939
 899 turing Processes 46(August):34–43. <https://doi.org/10.1007/s00170-013-4886-0>
 900
 901 [24] Xia YJ, Zhou L, Shen Y, et al (2021) 902
 902 Online measurement of weld penetration in 903
 903 robotic resistance spot welding using elec- 904
 904 trode displacement signals. Measurement: 905
 905 Journal of the International Measurement 906
 906 Confederation 168(September 2020):108,397. 907
 907 <https://doi.org/10.1016/j.measurement.2020.108397>, URL <https://doi.org/10.1016/j.measurement.2020.108397>
 908
 909 [25] Xing B, Xiao Y, Qin QH, et al (2018) 910
 910 Quality assessment of resistance spot weld- 911
 911 ing process based on dynamic resistance sig- 912
 912нал and random forest based. International 913
 913 Journal of Advanced Manufacturing Tech- 914
 914 nology 94(1-4):327–339. <https://doi.org/10.1007/s00170-017-0889-6>
 915
 916 [26] Zhang H, Hou Y, Yang T, et al (2018) 917
 917 Welding quality evaluation of resistance spot 918
 918 welding using the time-varying inductive 919
 919 reactance signal. Measurement Science and 920
 920 Technology 29(5). <https://doi.org/10.1088/1361-6501/aaa830>
 921
 922 [27] Zhao D, Wang Y, Lin Z, et al (2013) An 923
 923 effective quality assessment method for small 924
 924 scale resistance spot welding based on process 925
 925 parameters. Ndt & E International 55:36–41
 926
 927
 928 [28] Zhao D, Bezugans Y, Wang Y, et al (2020) 929
 929 Performances of dimension reduction tech- 930
 930 niques for welding quality prediction based 931
 931 on the dynamic resistance signal. Journal of 932
 932 Manufacturing Processes 58:335–343
 933
 934 [29] Zhao D, Bezugans Y, Wang Y, et al (2021) 935
 935 Research on the correlation between 936
 936 dynamic resistance and quality estimation 937
 937 of resistance spot welding. Measurement 938
 938 168:108,299
 939
 940 [30] Zhou K, Cai L (2013) Online nugget dia- 941
 941 meter control system for resistance spot welding. 942
 942 International Journal of Advanced Manufac- 943
 943 turing Technology 68(9-12):2571–2588. <https://doi.org/10.1007/s00170-013-4886-0>

940 [31] Zhou K, Cai L (2014) Study on effect of elec-
941 trode force on resistance spot welding pro-
942 cess. *Journal of Applied Physics* 116(8):1–7.
943 <https://doi.org/10.1063/1.4893968>

944 [32] Zhou K, Yao P (2019) Overview of recent
945 advances of process analysis and qual-
946 ity control in resistance spot welding.
947 *Mechanical Systems and Signal Processing*
948 124:170–198. <https://doi.org/10.1016/j.ymssp.2019.01.041>, URL <https://doi.org/10.1016/j.ymssp.2019.01.041>

951 [33] Zhou L, Zheng W, Li T, et al (2020) A
952 material stack-up combination identification
953 method for resistance spot welding based
954 on dynamic resistance. *Journal of Manufac-
955 turing Processes* 56(March):796–805. <https://doi.org/10.1016/j.jmapro.2020.04.051>,
956 URL <https://doi.org/10.1016/j.jmapro.2020.04.051>