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Abstract

The estimation of the weld nugget diameter generated by the resistance spot welding process is
a crucial element in the assessment of the overall quality of the weld and plays a major role in
in-line process control. The process is crucial to produce end-products in many industries such
as aviation, aerospace, automotive and other industrial areas. A modern car body contains typ-
ically several thousands of welds produced by resistance spot welding, setting an ideal scene for
in-line process control. Current state of the art monitoring methods are based on several fea-
tures extracted from the dynamic resistance signal. However, the accuracy of those is generally
not high. In this work, a method for predicting the nugget diameter based on the combination
of unsupervised deep learning and Gaussian process regression is developed. Autoencoders are
adopted to extract features from the dynamic resistance curve in a low dimensional representa-
tion. These features embodies underlying information on the process, possibly unobservable or not
detectable by any other currently existing approach. Next, a Gaussian process regression model is
trained to link those features to the target weld nugget diameter. Compared with the currently
popular geometrical attributes approach, the results show that the model has a higher predic-
tion accuracy in nugget diameter prediction, whilst remaining a low cost implementation in an
industrial setting. These results are supported by several cases, derived directly from common indus-
trial bottlenecks. Both cases indicate a strong potential with the new AE-GPR approach, with
consistently improved results compared to the currently popular geometrical attributes approach.
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1 Introduction1

Resistance spot welding (RSW) is a highly effi-2

cient, low cost and easy realisable joining tech-3

nique. The technique has been used extensively4

and is crucial to produce end-products in many5

industries such as aviation, aerospace, automotive6

and other industrial areas. The process employs7

two welding electrodes that press two or more8

overlapping sheet-like workpieces together. The9

heat generated by the then-applied electric cur-10

rent, in correspondence with Joule’s law, causes11
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local melting at the workpiece’s common faying12

surface, leading to joining these workpieces. This13

ease of operation contributed vastly to the quality14

and automation of the production of modern car15

bodies, which contain typically several thousands16

of welds produced by RSW. The safety and reli-17

ability of current automobile industry is only one18

of many examples that notably profited from the19

valuable RSW process.20

To a large extent, this success can be21

attributed to the ease of automation of the RSW22

process in an assembly line. Further, RSW also23

combines high strength joining with production24

flexibility, low cost and fast throughput. Thanks25

to its wide-spread use, RSW has grown to a26

mature joining technique, with literature dating27

back to the second half of the 19th century (exper-28

imentally oriented) [8] and early 2000’s (on-line29

monitoring, Finite Element methods) [12, 13].30

Yet, in industrial practice, it still suffers from a31

high sensitivity to often uncontrollable and vari-32

able process conditions. This makes the RSW33

process extremely vulnerable to environmental34

effects, surface conditions, misalignment, wear,35

etc. Inevitably, abnormal welding conditions dra-36

matically reduce the consistency of welds, which37

generally leads to significant degradation of the38

weld quality. Therefore, it is a vital task to con-39

trol and monitor the quality of the welding process40

[10]. Also, in order to increase productivity and41

achieve a robust final assembly, an attempt to42

minimise the number of required spot welds is43

made. This is only possible when consistent and44

sufficient weld quality can be guaranteed [23, 32].45

For the latter, a common technique remains non-46

destructive testing, based on a random subset of47

the workpieces on the production site. However,48

these weld quality estimations can only be exam-49

ined off-line, making it impossible to receive brisk50

and pertinent information. Furthermore, it is very51

cost inefficient for mass production environments,52

where RSW is vastly present.53

In the context of process monitoring, real-time54

weld quality estimation based on data-driven tech-55

niques are becoming ever more common [3, 11, 21].56

These approaches typically link process parame-57

ters and on-line measurements to product quality58

metrics in order to guard the process. In this59

respect, machine learning approaches yield very60

fast black-box models enabling on-line application61

for process control. However, multiple problems62

arise with these black-box models: (a) These mod-63

els are known to have only limited value when64

extrapolation is required. Their use is most rel-65

evant for well-confined and -controlled processes66

that enable the generation of a clear, industri-67

ally representative and comprehensive data set for68

the model training. There are large discrepancies69

between a lab-environment or numerically-made70

data-set and an industrial data-set, which is prone71

to inaccuracy due to changing variables or bound-72

ary conditions that come with the large change in73

environment. (b) Quantitative measurement capa-74

bilities for the process response are limited in75

the RSW process, hence eliminating the indus-76

trial applicability of data-hungry algorithms such77

as most supervised deep-learning toolboxes [20].78

Various in-line measurement techniques for the79

RSW process are investigated in literature, and80

can be classified based on the quantity of mea-81

surement (e.g., force, current, time) and their82

corresponding measurement device. Some of these83

techniques show promising results regarding in-84

line prediction of the weld nugget diameter, which85

is usually the primary choice for the Quality Indi-86

cator (QI) of the process [4]. A first class of87

prediction models makes use of mechanical mea-88

surements, e.g., displacements [24], forces [31] or89

acoustic emission [7]. While these are possible90

sources of valuable process information, and state91

of the art technology for measurement of the92

required quantities is proven achievable on indus-93

trial scale, the reliability, accuracy and flexibility94

of these models remain a challenge [25], lead-95

ing to their limited use in an industrial context.96

A second class of techniques focuses on moni-97

toring through electrical signals. In this context,98

dynamic resistance (DR) measurements are widely99

investigated and implemented in industrial prac-100

tice [9, 22, 29]. There are several milestones in101

the progress of monitoring the dynamic resistance.102

In 2002, Cho and Rhee [5] calculated dynamic103

resistance based on current and voltage from the104

primary part of the transformer. Further break-105

throughs include quality estimators by means of106

a Hopfield network, presented in [6], Artificial107

Neural Networks (ANN) [17], welding quality clas-108

sifiers by means of Probabilistic Neural Networks109

(PNN) [27] and a random forest model based on110

features of the dynamic resistance curves [25].111

Measurement of dynamic resistance has become112
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Fig. 1: Theoretical dynamic resistance curve
interpretation and characterisation. Top images
illustrate the evolution of the weld nugget at the
given phase and are made by a phantom VEO 640
ultra high speed camera. Based on the original
graph of D.W. Dickinson et al. [8]

the accepted paradigm in industry [1, 15, 30],113

and has been implemented in several commercially114

available power sources as a quality monitoring115

and evaluation tool. For this reason, it is selected116

as primary feature in this work.Furthermore, there117

is a clear link between the evolution of the weld118

nugget and the dynamic resistance, as illustrated119

in figure 1. For more detail on the subject, the120

reader is referred to [8].121

1.1 Motivation122

While extensive literature exists regarding the123

online monitoring and the quality assessment124

of the spot welding process based on dynamic125

resistance and alternative measurements, many126

challenges remain. Many of the aforementioned127

techniques suffer from drawbacks that hinder their128

optimal cost-effective and fully automated appli-129

cation for RSW proceses in industrial practice.130

These shortcomings are the following.131

1. Current dynamic resistance based techniques132

fail to establish an accurate prediction when133

variations on the input signal are present,134

either due to process parameter alterations or135

inherent randomness in the process.136

2. The dynamic resistance curve is containing137

information that is not necessarily observable138

in a time signal, and therefore lost by currently139

existing techniques. Consequently, the widely140

investigated techniques based on the geometric141

attributes of the dynamic resistance measure-142

ment (see section 3.2) are not fully exploiting143

their potential.144

3. Alternatives for the measurement of dynamic145

resistance are lacking robustness, mainly due146

to the type of measurement. This leads to147

either economical or infrastructural burdens,148

which render them less interesting for industrial149

application.150

In an effort to remedy these shortcomings,151

this paper investigates a weld quality monitor-152

ing approach based on the underlying parametric153

dependencies of the dynamic resistance during the154

RSW process. The weld nugget diameter serves as155

the main driving Quality Indicator (QI) for this156

research. The capability of predicting the weld157

nugget diameter by means of limited measure-158

ments is an important aspect of the developed159

approach. This is important to keep the number of160

man-hours required to measure the data-set fea-161

sible. Furthermore, the technique should be able162

to cope with variations, re-calibrations or other163

possible variability within industrial application.164

We propose deep learning autoencoders to165

discover a low dimensional representation that166

captures the underlying causes of the resistance167

in the secondary circuit of the welding machine168

during the RSW process. This allows for a sparse169

representation that can be leveraged towards in-170

line prediction of the weld nugget diameter. The171

method is demonstrated on an experimental data-172

set to clarify the technique and to compare it173

with the geometrical attributes approach (elabo-174

rated in section 3), by means of computational175

performance, prediction accuracy, advantages and176

disadvantages.177

Next, the method is demonstrated on several178

example problems, showing that the technique has179

large potential on diverse problems.180

The paper is structured as follows:181

• Section 2 elaborates on the conducted experi-182

ments, as well as the required hardware both for183

experiments, measurements and processing the184

data,185
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• Section 3 discusses the geometrical attributes186

approach, which serves as a reference for the187

novel methods developed in the next sections,188

• Section 4 introduces the autoencoder based189

approach,190

• Section 5 applies the introduced method to two191

case studies to illustrate its application and192

performance,193

• Section 6 lists the most important conclusions194

of this manuscript.195

2 Experimental setup196

Experiments described in this work are per-197

formed on an ARO servo-driven RSW machine198

with a 1000 Hz, 90 kVA DC power source, as199

depicted in figure 2. The machine is equipped200

with water cooled electrode caps with an ISO201

5821:2009 FE-15.8-5.5-30 geometry. Three exper-202

iments were conducted using process parameters203

as summarised in table 1. For each experiment,204

the complete set of process parameters and the205

number of realisations n is provided. Experimen-206

tal set 1 represents a limited run in a production207

setup under ideal conditions, where variations are208

only generated due to randomness in the process209

and systematic uncertainty due to measurement210

accuracy. Experimental set 2 is a set of multiple211

experiments, with each subset having a different212

value for a selected process parameter. For this213

work, the current is adjusted, which is one of the214

most influential process parameters of the pro-215

cess [8]. The rationale behind this case study is216

to prove the flexibility of the technique over a217

wide range of machine parameters. Experimen-218

tal set 3 is a set of multiple experiments, with219

each subset having a geometrical adjustment of220

the electrode clamp, causing a variation in the221

static electrode bulk resistance (EBR), which is222

part of the secondary circuit. This is realised by223

adding custom build raisers (shims) between the224

electrode and its holder. Due to the principle225

of stacking multiple thin shims, the conductivity226

decreases significantly, causing the resistivity to227

increase with only a minor increase in extra mate-228

rial required. For the three examined cases, the229

resistance between two predetermined points, one230

above the added shims and one below the added231

shims, is measured to be 11.9, 108.4 and 371.5µΩ232

respectively. This case is included to illustrate the233

performance of the technique for a common prob-234

lem in an industrial setting, where the change235

of welding electrodes or welding clamps inher-236

ently causes a variation in the overall resistance237

of the machine’s electrical circuit. The welded238

specimen are low carbon steel samples of 20 by239

70 mm and thickness of 1 mm and are welded240

in as-delivered condition. Data is acquired by a241

Dewetron DEWE2-a4L data acquisition system at242

a sampling rate of 2 MHz. Acquired signals include243

(1) electrical voltage over the welding electrodes244

and (2) electrical current in the welding circuit,245

measured by a PEM RFT 300S Rogowski coil and246

preamplifier.

Fig. 2: Setup of the machine (left), with location
of shims for experimental set 3 (right), top-down:
zero, 3 and 5 shims.

247

All samples are labelled by physical measure-248

ments of the weld nugget diameters according to249

ISO 10447:2015 (specifies the procedures and rec-250

ommended tooling to be used for peel and chisel251

testing of resistance spot and projection welds.252

ISO 10447:2015 applies to welds made in two or253

more sheets in the thickness range of 0,5 mm254

to 3,0 mm). The process parameters are chosen255

such that the nominal nugget diameters corre-256

spond to the welding lobe diagram according to257

ISO 14327:2004, 3.5
√
t, with t the thickness of a258

single plate. Furthermore, the weld time and force259

differ greatly between the conducted experiments.260
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This is deliberately determined as such, to provide261

a demonstration on a case where the weld is gen-262

erated in a short time window as well as a case263

where a weld nugget is formed slower.264

3 Dynamic resistance based265

monitoring266

This section describes, discusses and illustrates267

the geometrical attributes regression model as pre-268

sented in literature. It serves as a reference for the269

developments in the remainder of this work.270

The geometrical attributes regression model271

is currently the most commonly adopted pre-272

diction model in industry. The model is based273

on input-output pairs, respectively from on-line274

measurements and nugget diameter measurements275

stemming from destructive testing (as elaborated276

in section 2). Figure 3 visualises the main flow of277

the approach. It consists of k welds being gener-278

ated and measured by means of an experimental279

campaign. The samples are peeled, a destructive280

testing method (ISO 10447:2015) for determin-281

ing the diameter of the weld nugget. When the282

demanded samples k are generated, the data is283

subjected to a training algorithm based on the284

input-output pairs. All additional samples (i ≥ k)285

are then predicted based on the trained model.286

3.1 Feature extraction287

Measurement of dynamic resistance is one of
the most effective techniques for quality mon-
itoring and estimation, aided by the fact that
measurements are straightforward, including elec-
trical current and voltage in the secondary circuit.
Next, the dynamic resistance signal is obtained
according to Ohm’s law, i.e.

R(t) =
U(t)

I(t)
, (1)

with R(t) the dynamic resistance, U(t) the the288

voltage, I(t) the welding current and t the welding289

time.290

During the process, the welding machine forms291

a closed circuit with the secondary circuit of a292

transformer, ensuring a solid mechanical assem-293

bly between tooling and work pieces. The closed294

circuit is modelled in terms of their individual295

resistances. In this resistance model, the electri-296

cal resistances of the transformer, the mechanical297

assembly, and the work pieces are represented as298

respectively Rt, Rm and Rl. The resistances Rt299

and Rm are assumed constant during the process.300

The resistance of the work pieces is split into three301

components:302

1. the bulk resistance of the sheet metal (Rb),303

2. the interface resistance between electrodes and304

sheet metal (Rc),305

3. the contact resistance of the parts surfaces306

(Rf ).307

For the general case of two pieces of sheet
metal, assumed equal in properties and dimen-
sions, the resistance of the work pieces is:

Rl = 2Rb + 2Rc +Rf . (2)

As illustrated in figure 1, there are multiple308

stages during the process, causing a large fluctu-309

ation of Rl. The geometrical attributes approach,310

Resistance spot
welding ith sample

Measure sig-
nals [U, I]

Peeling of weld

Measurement of
nugget diameter

Signal processing

Train the corre-
lation model M

Nugget diame-
ter prediction

i < k i ≥ k

i = k

i < k

Fig. 3: Workflow a. General prediction model
structure for RSW
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Table 1: Overview of conducted experiments and their process parameters used in this paper. EBR:
Electrode bulk resistance setup, n: amount of welds

No. Current (kA) Force (kN) Time (ms) EBR N
1 7.2 5 210 cte 174
2 6.0 - 6.6 - 7.2 2.5 70 cte 50 - 50 - 50
3 7.6 2.5 80 var. 50 - 50 - 50

elaborated in section 3.2, refers to several points311

that characterise the dynamical resistance curve.312

Extracted points from the curve are based on e.g.,313

peaks and slopes. Figure 4 illustrates several key314

points of the curve, respectively the initial peak315

R0 in phase 1, the pit Rα in phase 2, the peak at316

the beginning of phase 4, also commonly known317

as the beta peak Rβ and the last value of the318

DR curve Rγ , also respectively the times t0 tα,319

tβ and tγ . Next, several critical derivatives are320

selected, the mean value Rm, the slopes m1 and321

m2 and the resistance variance dR1 = Rβ − Rα322

and dR2 = Rγ −Rβ323

D
y
n
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ic
R
es
is
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n
ce

Time
tα tβ tγ

Rα

Rβ

Rγm1

m1

Fig. 4: Theoretical dynamic resistance curve, with
selected features for the geometrical attributes
approach, adopted from [9].

However, one drawback of this technique is324

that these measured parameters fluctuate heavily325

during a single weld due to the time-varying cur-326

rent generated by a mid frequency direct current327

(MFDC) power supply. The dynamic resistance,328

derived according to Eq. 1, is subjected to a sig-329

nal filter in order to obtain the main trend. Zhang330

et al. [26] evaluated the raw signals and acknowl-331

edged, based on Fourier spectrum analysis, that332

periodic features are key to the large fluctuations.333

They applied a fourth-order digital low pass fil-334

ter with a cut-off frequency of 50 Hz. For this335

Table 2: Overview of correlations between derived
features and the QI, based on experimental case 1

feature (fi) % feature (fi) %
t0 1.68 R0 3.06
tα -31.37 Rα 33.36
tβ -30.60 Rβ 20.62
tγ -20.43 Rγ -8.56
m1 8.60 m2 6.30
dR1 -4.45 dR2 49.73
Rm 44.29

study, the concept of the moving average filtering336

is selected to eliminate the interference of periodic337

signals effectively [33].338

3.2 Geometrical attributes model339

Post-filtering the dynamic resistance signal pro-
vides a noise-free curve where the features
described in section 3.1 (Figure 4) are observ-
able. Table 2 gives an overview of the correlations
between the features according to figure 4 and
the QI, based on case 1 from table 1. This table
shows that correlations between inputs and the QI
are present. This confirms the applicability of the
geometrical attributes approach, as discussed by
[9]. The ensemble of these, or similarly derived,
correlations, superseded with generic regression
analysis, are current state of the art methods for
RSW quality indication. This is visualised as the
left part in figure 5. Part A, the feature selection,
yields the aforementioned features of the dynamic
resistance curve. Next, in part B, a multiple lin-
ear regression model describes the relationship
between the features and the QI. The selection
of features is case dependent, and relates to the
most significant features of the curve, with a min-
imum of six points, without significantly affecting
the model performance [9]. The regression model
is described as

q = β0 + β1f1 + β2f2 + ...+ βkfk + ε (3)
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with q the QI response, f the regressor variable,340

β the regression coefficients and ε the error term.341

This overall workflow makes it possible to342

project new data-points onto the regression model343

and predict (interpolate) an estimate for the QI.344

Part A

Part B

[U, I] [U, I]

Geometric
attributes

feature selection

Encoder
[Autoencoder A]

f1, f2,. . .
Reduced
space Z

Linear Regression
Gaussian process

regression

Nugget diameter
prediction

Nugget diameter
prediction

Fig. 5: Workflow b. Technical

4 Autoencoder based weld345

quality monitoring346

This section discusses the main innovation of this347

study, replacing both part A and part B of the348

technique elaborated in section 3.2, as also illus-349

trated in the right part of figure 5. In the following,350

the method is introduced and discussed, as well as351

illustrated based on experimental set 1 (table 1).352

4.1 Part A: Feature extraction353

4.1.1 The curse of dimensionality354

Part A in this work focuses on improving the
amount of information that is extracted from the
dynamic resistance curve. For this, an efficient
coding is required that is capable of learning a
low dimensional representation for a set of data.
Opposed to the method of manually selecting

points, recent advances in deep learning method-
ologies are proven to be very efficient in gathering
interesting features in the data, which are possi-
bly unobservable or not detectable to the engineer
during manual evaluation of the data. However,
especially for this application, this poses specific
challenges regarding the architecture of the net-
work. Indeed, with a sampling rate of 2Mhz and
the process yielding > 200ms of welding time, a
very high amount of data is gathered on multiple
channels, which serves as the input of the network.
The main problem is that the computational cost
of the neural network scales exponentially with the
data, by cause of a connection that is required to
each neuron in the next layer, according to:

zlj = φ(vj) = φ

(
k∑

i=0

wi.z
l−1
i

)
, (4)

where zlj is the value z for neuron number j in layer355

l, φ represents the activation function, usually a356

sigmoid function ranging from −1 to 1, φ(vj) =357

2
(1+exp(−2.vj))

− 1, zl−1
i representing neuron num-358

ber i from layer l − 1, wi the weight assigned359

to each connection with the previous layer, k the360

number of neurons in layer l − 1 and z0 = ±1 for361

adding a bias b = w0 to the summation operator,362

yielding vj . Evaluating this key equation is com-363

putationally not a large effort. However, due to the364

architecture of neural networks, it has to be solved365

numerous times during training. As such the total366

training effort is increased drastically. This is often367

referred to as the curse of dimensionality, referring368

to problems that occur when dealing with data in369

high-dimensional spaces. It prevents strategies to370

work efficiently, while creating problems concern-371

ing computational expenses, which do not occur372

in low-dimensional spaces.373

Multiple techniques for dimensionality reduc-374

tion exist. They can be divided into convex and375

non-convex techniques, where convex techniques376

optimise an objective function that does not con-377

tain any local optima, e.g., Principal Component378

Analysis (PCA), Kernel PCA, Isomaps, Local Lin-379

ear Embedding (LLE) and non-convex techniques380

optimise objective functions that do contain local381

optima, e.g., Locally Linear Coordination (LLC),382

manifold charting or autoencoders [14, 28]. For a383

competent model, capable of being deployed in an384

on-line context, a marginal computation cost is385
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Fig. 6: Autoencoder topology

envisaged for the projection of a series of points386

to the low dimensional space, but also the ability387

to embed new high-dimensional data points into388

an existing low-dimensional data representation is389

important. For these reasons, autoencoders have390

been selected for the dimension reduction in this391

work.392

4.1.2 Autoencoder based dimension393

reduction394

Autoencoders, a type of artificial neural network,395

are the proposed solution for this work, based396

on their efficiency, non-linear transformation and397

intuitive nature [2].398

These feed-forward networks have an odd num-
ber of hidden layers hLi, with i = 1 . . . nl and
nl the amount of layers, where the hidden layers
are dimensioned such that the layer in the mid-
dle has a lower amount of neurons than the first
and last layer. This separates the autoencoder in
an input layer, an encoder part, the middle layer
with d ≤ D, a decoder part and the reconstructed
layer:

yD Encoder→ yd Decoder→ y′D, (5)

where yD is the measured data, D the number of399

time-steps in the input data, and d the amount400

of neurons in the middle layer. The objective of401

the autoencoder is to generate this neural network402

architecture such that y′D ≈ yD. The autoen-403

coder is an unsupervised learning technique, since404

its goal is to minimise an error in reconstructing405

yD. The input layer yD hasD neurons, where each406

neuron represents an individual parameter from407

the dataset. This data is reconstructed in the final408

layer y′D of equal dimension D, as illustrated in409

figure 6.410

The centre layer in the network yd represents411

the original data in a lower dimension d, while412

preserving as much structure as possible from the413

dataset yD. The resulting low dimensional repre-414

sentation in this centre layer functions as the input415

for further processing, which has the benefit of416

working with far less data without losing essential417

information.418

Mapping from the input vector to another vec-419

tor by means of an encoder, based on the general420

equation of a neural network topology (eq 4) gives:421

yd = φ(W 1yD + b1) (6)

and for the reconstruction through a decoder:

y′D = φ(W 2yd + b2). (7)

The network is trained by minimising a loss
function, which includes regularisation terms.
Apart from the mean squared error function, an
L2 regularisation term λ ∗ Ωweights and sparsity
regularisation term β ∗ Ωsparsity are added to the
loss function. The L2 regularisation term forces
the weights to remain small, by adding a penalty
to the loss function when weights are increas-
ing. The sparsity regularisation term attempts to
enforce a constraint on the sparsity of the out-
put from the hidden layer. The cost function for
training the autoencoder based on N samples
yields

L(yD, y′D) =
1

N

N∑
n=1

D∑
j=1

(
yDjn − y′Djn

)2
+ λ ∗ Ωweights + β ∗ Ωsparsity (8)
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with λ the coefficient for the L2 regulariza-422

tion term and β the coefficient for the sparsity423

regularization term.424

The workflow for applying this metric for the425

dynamic resistance curve is illustrated in figure 7.

yD
Train yD

Test

Encoder
[Autoencoder A]

Reduced space
yd = A(yD)

Decoder
[Autoencoder A]

y′D
Train y′D
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Fig. 7: Workflow c. Autoencoder training princi-
ple

426

In this figure, there is a clear distinction427

between the data for training and testing. It also428

indicates the main workflow, where eq. 8 is used429

to train the reconstruction of the measured signal430

and to evaluate the reconstruction of test data.431

Furthermore, the figure illustrates that part B is432

connected to the low dimensional layer, in the433

centre of the autoencoder.434

4.1.3 Illustration435

The autoencoder based dimension reduction is436

now illustrated based on experimental case 1 from437

table 1. Out of 174 experiments, 90 % serves438

as training data, whereas the remaining 10 % is439

test-data to evaluate the performance.440

Figure 8 illustrates the performance of the
network for one sample from yDTest, where one
dynamic resistance curve is plotted next to its
reconstructed counterpart. Since the error is
nearly negligible, the instantaneous reconstruction

error ϵAE is given, defined as:

ϵAE =
y′D − yD

yD
.100. (9)

In this example, the signal is compressed from441

D = 450.000 data-points into a middle layer of442

the autoencoder, represented by yd, where d =443

15. The hyper-parameters for the network are444

summarised in table 3.445

Zero

Fig. 8: Measured and reconstructed signal with
means of an autoencoder network, with topology
450k − 15− 450k

Note that the reconstruction is only required446

for training of the autoencoder. For the purpose of447

dimensionality reduction, the encoder projection,448

resulting in the reduced space yd is an important449

step to come to an efficient regression model, as450

illustrated in figure 7.451

At this point, it can be concluded that the452

presented method is capable of projecting the453

measured dataset into a reduced space yd, which454

acts as a low dimensional space. The reconstructed455

projected data, by means of the autoencoder, per-456

forms approximately equal to the measured data,457

as the error is nearly negligible. Furthermore, the458

projected data contains nearly all information to459

reconstruct the data in a low dimensional space,460

thus possessing at least as valuable information as461

the manually determined points, as described in462

section 3.2. Therefore, the reduced space yd can463

serve as an input to current the QI prediction step464

using generalised techniques, e.g., multiple regres-465

sion. It should be noted that the projected data466

has no physical meaning in the process, opposed467

to the selected features from section 3.2. The468

added benefit of this method is the robustness of469
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Table 3: Hyperparameters for training Autoen-
coder

Encoder-TF Sigmoid
Decoder-TF Sigmoid

d 15
L2 weight coef. [λ] 0.009

Sparsity Proportion [ρ̂i] 0.719
Sparsity Regularization [β] 1.08

Normalised data Yes

the algorithm, which is unlikely to suffer abnor-470

malites, e.g, where expulsion could cause an effect471

in the curve, resulting in misjudgement or wrong472

interpretation of the data. Additionally, the mea-473

sured signal is prone to various effects like time474

shift, originated during the processing of the data,475

caused by the required filtering techniques of the476

signal. The presented approach is also insensitive477

to these effects.478

4.2 Part B: QI prediction479

Part B of the novel prediction model (see figure 5)480

requires an algorithm capable of giving a robust481

regression between input-output, respectively the482

measured signals during the welding process pro-483

jected on a reduced space Z by means of an484

autoencoder, and the measured nugget diameter485

of the weld (QI). Due to the low amount of avail-486

able labelled data, training a neural network based487

on input-output pairs tends to be troublesome,488

in particular overfitting is a main concern. This489

should not be confused with the neural network on490

which the autoencoder from section 4.1 is based,491

as the latter is an unsupervised technique, which492

does not require labelled data.493

4.2.1 Gaussian Process Regression494

A powerful tool, ideal for this problem is Gaussian495

Process Regression (GPR). In it’s original form,496

Gaussian Process modelling is a statistical inter-497

polation method that exploits Gaussian processes498

to interpolate a series of complex functions. The499

technique works well on small datasets, and has500

the capability to provide uncertainty metrics on501

the predictions. Gaussian process modelling, also502

known as Kriging, was introduced in the context503

of meta-modelling in the works of Sacks et al. [19],504

in which the original form of Kriging, as developed505

in the Master’s thesis of D. Krige [16], served as a506

backbone to represent an input/output mapping507

of an expensive computational model. For appli-508

cation in machine learning, Kriging has evolved509

as both regression and classification tool, and has510

proven to be a treasured algorithm [18].511

The required dataset D with N observation is
presented as

D =
{(

ydi , qi
)
|i = 1, . . . , N

}
(10)

with ydi the vector with multiple input variables512

and qi as a measure for the QI, which is continu-513

ous, as this is a regression case.514

In essence, GPR serves as an interpolation515

model for a regression problem mapping the QI on516

the variables.517

They key equation of GPR is presented as:

q = M(y) + ε, (11)

with M(x) the GP model. It is assumed that
the observed responses are noisy and the noise ε
follows a zero-mean Gaussian distribution

ε ∼ N (0,
∑
n

), (12)

where
∑

n is the covariance matrix of the noise518

term. For this work, the noise variance is identified519

as general heteroscedastic, in which the noise can520

differ for each observed response. For a more in521

depth study of GPR, the reader is referred to the522

citations in previous section.523

An important feature of this type of model is524

the applicability of K-fold cross-validation. The525

main idea of this is to re-evaluate the model with a526

subset of the training data. This allows to optimise527

the hyper-parameters of the model, based on eval-528

uating the model with each subset of data, thus529

minimising a cross-validation error. This yields a530

model, capable of working under limited data, and531

providing efficient predictors with minimal effort,532

unlikely to suffer from overfitting. Performance-533

wise, training this model takes significantly longer534

than linear regression. However, as elaborated in535

the introduction, the computational requirement536

for training is irrelevant for an in-line paradigm.537

What is of interest is the required time to evalu-538

ate a single sample. This will be studied for the539

illustrative data set in the next section.540
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Fig. 9: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical
attributes approach (left) for the reference case

4.2.2 Illustration541

The methodology is presented on the data result-542

ing from section 4.1.3. Computation experiments543

and the training of the proposed algorithms are544

performed on a server, consisting of 2 AMD Epyc545

7601 32-core CPU’s, 512 GB memory and an546

NVIDIA Tesla V100 - 32 GB graphical accelera-547

tor. For benchmarking computational effort of the548

proposed algorithm, the system is limited to only549

1 core, while GPU acceleration is disabled.550

The summary of computational costs for both551

the reference and the newly developed approach552

are given in table 4. Comparison of the required553

time for the regression approaches clearly reveals554

that the GPR technique is more expensive. This555

is due to the fact that substantially more time556

is required to determine the optimal hyperparam-557

eters, compared to the key, and only equation558

required for multiple linear regression 3. Apart559

from that, the table also shows that especially the560

training of the unsupervised deep learning based561

dimension reduction technique into an autoen-562

coder (AE) necessitates a high performance com-563

putational device. However, the cost for training is564

only a small investment for a continuously guarded565

process. Table 4 also summarises the computa-566

tional costs for training and propagating a single567

Table 4: Computational costs for the frame-
work, AE: Autoencoder based dimension reduc-
tion, GPR: Gaussian Process Regression

Training 1 Sample
Part A Geom. attributes 1.8 x 103 s 0.46 s

AE 5 x 104 s 0.83 s
Part B Linear regression 1.01 s 0.03 s

GPR 91 s 0.04 s

sample. This shows that propagating a single568

experiment through the full AE-GPR framework569

requires only a marginally higher cost compared to570

the approach based on the geometrical attributes.571

In order to assess the performance of the devel-572

oped method, figure 9 illustrates the correlation573

between the predicted QI and the measured QI,574

both for the geometrical attributes approach (left)575

and the novel AE-GPR approach (right).576

A clear improvement over the geometrical577

approach is noticeable. Not only does the Root578

Mean Squared Error (RMSE) improve vastly, from579

0.26 to 0.18, it is also clearly visible that the580

geometrical approach fails to predict the over-581

all nugget diameter. Specifically, the graph based582

on the geometrical approach shows a horizontal583

scatter, indicating a larger spread on the mea-584

sured QI, but a small spread on the predicted585
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QI. Furthermore, in addition to the continuous586

mean regressor estimate by the GPR model, also587

confidence bounds are provided, based on the588

available training data and known variance of the589

GPR model. For this case, the 99 % bounds are590

provided, showing a narrow band encapsulating591

the data. As a final verification, the algorithm592

is subjected to several testing points, which were593

excluded from the training. The latter is rep-594

resented by 10 % of the available data and is595

visualised by the red crosses. The RMSE for the596

test points improves from 0.21 to 0.13 for the test597

data, which emphasises the performance of the598

model by resulting in a prediction well within the599

bounds predicted by the algorithm.600

5 Verification of the proposed601

method602

To benchmark the accuracy and robustness of the603

introduced approach, the algorithm is subjected to604

two more cases. Compared to case 1 of section 3.2605

for which an experimental set with fixed process606

parameters was used (thus only yielding process607

variability on both input and output), the next608

two cases include highly relevant industrial events609

representing common process variations.610

5.1 Current variation611

This case (table 1, No.2) is a dataset combin-612

ing data from three consecutive experimental runs613

with respectively altering the current as described614

in table 1. The goal of this case is to determine615

the robustness of the AE-GPR approach based on616

a broader set of input signals, as could be the617

case in an industrial setup where low- and flexible618

production is key and in-line monitoring is envis-619

aged. First, applying a dimension reduction on the620

measured signals reduces the dataset from 450.000621

samples to 15, while only losing < 1 % of infor-622

mation, based on mean-squared error estimates.623

This is illustrated in figure 11, where the origi-624

nal curve, the reconstructed curve and the error625

are illustrated. Analysing the measured and pre-626

dicted data, illustrated in figure 10, clearly reveals627

several meaningful results.628

First, no separate data clusters can be dis-629

tinguished according to the difference in welding630

currents. Yet, the three datasets are separated631

by colour, which reveals the difference in nugget632

diameter in function of process parameters. Sec-633

ond, the measured results with 6.0kA and 7.2kA634

have a wider spread of data compared to the635

set welded with 6.6kA. Third, advancing to the636

results of the prediction model, there is a clear637

improvement of the AE-GPR method over the638

geometrical approach. The RMSE is improved ,639

from 0.39 to 0.13. It is clearly visible that the640

predictions based on the AE-GPR approach are641

more confined than the predictions based on the642

geometrical approach. Furthermore, the predictor643

based on the geometrical approach fails clearly in644

determining the measured nugget diameter on the645

samples stemming from the subset yielding the646

smallest nugget diameter. The provided 99 % con-647

fidence bounds show a narrow band encapsulating648

the data.649

As a final verification, the algorithm is sub-650

jected to several testing points which were651

excluded from the training. The latter is rep-652

resented by 10 % of the available data and is653

visualised by the red crosses. The RMSE for the654

test points improves from 0.62 to 0.13 for testing655

data. Both the RMSE and graphical representa-656

tion of the predicted value indicate a prediction657

well within the predicted bounds of the algorithm.658

5.2 EBR variation659

For the final example, a highly relevant industrial660

case is elected. One of the advantages of many661

state-of-the-art welding controllers is their ability662

to monitor themself and intervene during a single663

weld. This is required to achieve a certain thresh-664

old of total current flow and is often realised by665

extending the weld time or increasing the current.666

An important reason why this threshold is often667

not achieved is the variation in the closed loop668

resistance in the secondary circuit. These varia-669

tions affect the welding process and potentially the670

reaction of the controller, causing a variation in671

the weld nugget diameter. Also, it is well known672

within RSW industry that the weld nugget diame-673

ter is negatively affected by variation in the closed674

loop resistance in the secondary circuit. The latter675

is often a consequence of machine disturbances,676

e.g., maintenance, re-torquing or swapping tools.677

Thus re-calibration is required when adjustments678

are made to the welding heads to counter this679
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Fig. 10: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical
attributes approach (left) for the current variation case

Zero

Fig. 11: Measured and reconstructed signal with
means of an autoencoder network, with topology
450k − 15− 450k for the current variation case

effect. The goal of this third case is to demon-680

strate the potential of our approach when the681

aforementioned effects are present.682

The dataset is a combination of three consec-683

utive experimental runs altering the resistance of684

the secondary circuit by means of custom shims685

between the welding head and electrode holder,686

while the compensation of the controller is dis-687

abled. The resistance between two fixed points in688

the mechanical assembly is respectively measured689

to be 11.9, 108.4 and 371.5 µΩ. This is achieved690

by respectively zero, 3 and 5 shims, as illustrated691

in figure ??. This variation is a constant resistance692

during the process and is part ofRm, as elaborated693

in section 3.1.694

Analysing the measured and predicted data,695

illustrated in figure 12, clearly reveals several696

meaningful results. First, the influence of the697

change from 11.9 to 108.4µΩ has an almost negli-698

gible effect on the measured nugget diameter with699

respectively an average of 4.24 and 4.09 mm and700

equal standard deviation of 0.18 mm. The experi-701

ments where the resistance is increased to 371.5µΩ702

indicate a noticeably smaller nugget diameter,703

with an average of 3.18 mm and standard devia-704

tion of 0.33 mm. Second, applying the proposed705

dimension reduction by means of a trained autoen-706

coder reduces the dataset from 140.000 samples to707

30, while only losing < 1% of information, based708

on mean-squared error estimates.709

Third, advancing to the results of the pre-710

diction model, there is a clear improvement over711

the geometrical approach. For the set with 11.9712

and 108.4 µΩ, the variation in nugget diameter is713

rather low, yet the AE-GPR is capable of predict-714

ing the nugget diameter more accurate compared715

to the geometrical approach. The nugget diam-716

eters for the set with 371.5 µΩ range from 2.7717
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Fig. 12: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical
attributes approach (left) for the EBR variation case

to 4.1 mm, while the geometrical approach pre-718

dicts only between 3.0 and 3.5 mm. The AE-GPR719

appraoch predicts this set, both for the training720

and test points. The RMSE of the predictions721

improves clearly, from 0.23 to 0.15. For this case,722

the 99% bounds are provided, showing a narrow723

band encapsulating the data.724

The test points are represented by 10 % of725

the available data. The RMSE for the test points726

improves from 0.18 to 0.15, resulting in a pre-727

diction well within the predicted bounds of the728

algorithm.729

6 Conclusion730

This paper presents a novel approach for an effec-731

tive predictor for the nugget diameter, i.e., the732

main quality indicator (QI) of a resistance spot733

welding process, based on on-line measured pro-734

cess data. The most important feature of the735

developed methodology is the combination of736

deep learning for dimension reduction, and the737

consequent machine learning prediction tool. We738

demonstrate how to use unsupervised deep learn-739

ing in the form of an autoencoder to discover740

a low-dimensional transformation in which the741

parameters characterise a pattern that embodies742

underlying information on the process, possibly743

unobservable or not detectable by any other cur-744

rently existing approach. The underlying informa-745

tion is transformed into a low dimensional space,746

which is an ideal scene for a Gaussian process747

regression model linking the input data through748

the autoencoder to the measured nugget diam-749

eter. The model is trained on a limited set of750

data, leading to a low cost implementation in751

an industrial setting. The technique is presented752

in an example case which clearly indicates that753

it leads to an improved QI prediction compared754

to the state of the art geometrical attributes755

approach. The technique is presented on two addi-756

tional cases, each pinpointing a specific bottleneck757

within industry related to the RSW process. Both758

cases are analysed and indicate very promising759

results, where the new AE-GPR approach has760

consistently improved results over the geometrical761

approach. It should be noted that the time to train762

the proposed model is substantially higher. How-763

ever, the investment cost is rather low compared764

to the benefit in an in-line monitoring system.765

We conclude that the proposed method can be766

readily applied to an in-line context for quality767

assessment in industrial RSW applications, as the768
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time for evaluating in an in-line context is suit-769

able, and accuracy is vastly improved over existing770

techniques.771
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