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Abstract

The estimation of the weld nugget diameter generated by the resistance spot welding process is
a crucial element in the assessment of the overall quality of the weld and plays a major role in
in-line process control. The process is crucial to produce end-products in many industries such
as aviation, aerospace, automotive and other industrial areas. A modern car body contains typ-
ically several thousands of welds produced by resistance spot welding, setting an ideal scene for
in-line process control. Current state of the art monitoring methods are based on several fea-
tures extracted from the dynamic resistance signal. However, the accuracy of those is generally
not high. In this work, a method for predicting the nugget diameter based on the combination
of unsupervised deep learning and Gaussian process regression is developed. Autoencoders are
adopted to extract features from the dynamic resistance curve in a low dimensional representa-
tion. These features embodies underlying information on the process, possibly unobservable or not
detectable by any other currently existing approach. Next, a Gaussian process regression model is
trained to link those features to the target weld nugget diameter. Compared with the currently
popular geometrical attributes approach, the results show that the model has a higher predic-
tion accuracy in nugget diameter prediction, whilst remaining a low cost implementation in an
industrial setting. These results are supported by several cases, derived directly from common indus-
trial bottlenecks. Both cases indicate a strong potential with the new AE-GPR approach, with
consistently improved results compared to the currently popular geometrical attributes approach.

Keywords: Resistance spot welding, Nugget diameter, deep learning, machine learning

. 1 Introduction ¢ industries such as aviation, aerospace, automotive
_ ) ) _ 7 and other industrial areas. The process employs
> Resistance spot welding (RSW) is a highly effi- | ty, welding electrodes that press two or more

s cient, low cost and easy realisable joining tech- overlapping sheet-like workpieces together. The

4 niqug The'technique has been used ext.ensively 1 heat generated by the then-applied electric cur-
s and is crucial to produce end-products in many ., rent, in correspondence with Joule’s law, causes
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local melting at the workpiece’s common faying
surface, leading to joining these workpieces. This
ease of operation contributed vastly to the quality
and automation of the production of modern car
bodies, which contain typically several thousands
of welds produced by RSW. The safety and reli-
ability of current automobile industry is only one
of many examples that notably profited from the
valuable RSW process.

To a large extent, this success can be
attributed to the ease of automation of the RSW
process in an assembly line. Further, RSW also
combines high strength joining with production
flexibility, low cost and fast throughput. Thanks
to its wide-spread use, RSW has grown to a
mature joining technique, with literature dating
back to the second half of the 19th century (exper-
imentally oriented) [8] and early 2000’s (on-line
monitoring, Finite Element methods) [12, 13].
Yet, in industrial practice, it still suffers from a
high sensitivity to often uncontrollable and vari-
able process conditions. This makes the RSW
process extremely vulnerable to environmental
effects, surface conditions, misalignment, wear,
etc. Inevitably, abnormal welding conditions dra-
matically reduce the consistency of welds, which
generally leads to significant degradation of the
weld quality. Therefore, it is a vital task to con-
trol and monitor the quality of the welding process
[10]. Also, in order to increase productivity and
achieve a robust final assembly, an attempt to
minimise the number of required spot welds is
made. This is only possible when consistent and
sufficient weld quality can be guaranteed [23, 32].
For the latter, a common technique remains non-
destructive testing, based on a random subset of
the workpieces on the production site. However,
these weld quality estimations can only be exam-
ined off-line, making it impossible to receive brisk
and pertinent information. Furthermore, it is very
cost inefficient for mass production environments,
where RSW is vastly present.

In the context of process monitoring, real-time
weld quality estimation based on data-driven tech-
niques are becoming ever more common [3, 11, 21].
These approaches typically link process parame-
ters and on-line measurements to product quality
metrics in order to guard the process. In this
respect, machine learning approaches yield very
fast black-box models enabling on-line application
for process control. However, multiple problems
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arise with these black-box models: (a) These mod-
els are known to have only limited value when
extrapolation is required. Their use is most rel-
evant for well-confined and -controlled processes
that enable the generation of a clear, industri-
ally representative and comprehensive data set for
the model training. There are large discrepancies
between a lab-environment or numerically-made
data-set and an industrial data-set, which is prone
to inaccuracy due to changing variables or bound-
ary conditions that come with the large change in
environment. (b) Quantitative measurement capa-
bilities for the process response are limited in
the RSW process, hence eliminating the indus-
trial applicability of data-hungry algorithms such
as most supervised deep-learning toolboxes [20].
Various in-line measurement techniques for the
RSW process are investigated in literature, and
can be classified based on the quantity of mea-
surement (e.g., force, current, time) and their
corresponding measurement device. Some of these
techniques show promising results regarding in-
line prediction of the weld nugget diameter, which
is usually the primary choice for the Quality Indi-
cator (QI) of the process [4]. A first class of
prediction models makes use of mechanical mea-
surements, e.g., displacements [24], forces [31] or
acoustic emission [7]. While these are possible
sources of valuable process information, and state
of the art technology for measurement of the
required quantities is proven achievable on indus-
trial scale, the reliability, accuracy and flexibility
of these models remain a challenge [25], lead-
ing to their limited use in an industrial context.
A second class of techniques focuses on moni-
toring through electrical signals. In this context,
dynamic resistance (DR) measurements are widely
investigated and implemented in industrial prac-
tice [9, 22, 29]. There are several milestones in
the progress of monitoring the dynamic resistance.
In 2002, Cho and Rhee [5] calculated dynamic
resistance based on current and voltage from the
primary part of the transformer. Further break-
throughs include quality estimators by means of
a Hopfield network, presented in [6], Artificial
Neural Networks (ANN) [17], welding quality clas-
sifiers by means of Probabilistic Neural Networks
(PNN) [27] and a random forest model based on
features of the dynamic resistance curves [25].
Measurement of dynamic resistance has become



113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Springer Nature 2021 ETEX template

Mechanical
Collapse

First
Melting

Temperature
Softening Increase

L e
rﬂﬂ—*&m

Dynamic Resistance

4

Time
Fig. 1: Theoretical dynamic resistance curve
interpretation and characterisation. Top images
illustrate the evolution of the weld nugget at the
given phase and are made by a phantom VEO 640
ultra high speed camera. Based on the original
graph of D.W. Dickinson et al. [8]

the accepted paradigm in industry [1, 15, 30],
and has been implemented in several commercially
available power sources as a quality monitoring
and evaluation tool. For this reason, it is selected
as primary feature in this work.Furthermore, there
is a clear link between the evolution of the weld
nugget and the dynamic resistance, as illustrated
in figure 1. For more detail on the subject, the
reader is referred to [§].

1.1 Motivation

While extensive literature exists regarding the
online monitoring and the quality assessment
of the spot welding process based on dynamic
resistance and alternative measurements, many
challenges remain. Many of the aforementioned
techniques suffer from drawbacks that hinder their
optimal cost-effective and fully automated appli-
cation for RSW proceses in industrial practice.
These shortcomings are the following.

1. Current dynamic resistance based techniques
fail to establish an accurate prediction when
variations on the input signal are present,
either due to process parameter alterations or
inherent randomness in the process.
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2. The dynamic resistance curve is containing
information that is not necessarily observable
in a time signal, and therefore lost by currently
existing techniques. Consequently, the widely
investigated techniques based on the geometric
attributes of the dynamic resistance measure-
ment (see section 3.2) are not fully exploiting
their potential.

3. Alternatives for the measurement of dynamic
resistance are lacking robustness, mainly due
to the type of measurement. This leads to
either economical or infrastructural burdens,
which render them less interesting for industrial
application.

In an effort to remedy these shortcomings,
this paper investigates a weld quality monitor-
ing approach based on the underlying parametric
dependencies of the dynamic resistance during the
RSW process. The weld nugget diameter serves as
the main driving Quality Indicator (QI) for this
research. The capability of predicting the weld
nugget diameter by means of limited measure-
ments is an important aspect of the developed
approach. This is important to keep the number of
man-hours required to measure the data-set fea-
sible. Furthermore, the technique should be able
to cope with variations, re-calibrations or other
possible variability within industrial application.

We propose deep learning autoencoders to
discover a low dimensional representation that
captures the underlying causes of the resistance
in the secondary circuit of the welding machine
during the RSW process. This allows for a sparse
representation that can be leveraged towards in-
line prediction of the weld nugget diameter. The
method is demonstrated on an experimental data-
set to clarify the technique and to compare it
with the geometrical attributes approach (elabo-
rated in section 3), by means of computational
performance, prediction accuracy, advantages and
disadvantages.

Next, the method is demonstrated on several
example problems, showing that the technique has
large potential on diverse problems.

The paper is structured as follows:

® Section 2 elaborates on the conducted experi-
ments, as well as the required hardware both for
experiments, measurements and processing the
data,
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® Section 3 discusses the geometrical attributes
approach, which serves as a reference for the
novel methods developed in the next sections,

® Section 4 introduces the autoencoder based
approach,

® Section 5 applies the introduced method to two
case studies to illustrate its application and
performance,

® Section 6 lists the most important conclusions
of this manuscript.

2 Experimental setup

Experiments described in this work are per-
formed on an ARO servo-driven RSW machine
with a 1000 Hz, 90 kVA DC power source, as
depicted in figure 2. The machine is equipped
with water cooled electrode caps with an ISO
5821:2009 FE-15.8-5.5-30 geometry. Three exper-
iments were conducted using process parameters
as summarised in table 1. For each experiment,
the complete set of process parameters and the
number of realisations n is provided. Experimen-
tal set 1 represents a limited run in a production
setup under ideal conditions, where variations are
only generated due to randomness in the process
and systematic uncertainty due to measurement
accuracy. Experimental set 2 is a set of multiple
experiments, with each subset having a different
value for a selected process parameter. For this
work, the current is adjusted, which is one of the
most influential process parameters of the pro-
cess [8]. The rationale behind this case study is
to prove the flexibility of the technique over a
wide range of machine parameters. Experimen-
tal set 3 is a set of multiple experiments, with
each subset having a geometrical adjustment of
the electrode clamp, causing a variation in the
static electrode bulk resistance (EBR), which is
part of the secondary circuit. This is realised by
adding custom build raisers (shims) between the
electrode and its holder. Due to the principle
of stacking multiple thin shims, the conductivity
decreases significantly, causing the resistivity to
increase with only a minor increase in extra mate-
rial required. For the three examined cases, the
resistance between two predetermined points, one
above the added shims and one below the added
shims, is measured to be 11.9, 108.4 and 371.5uf2
respectively. This case is included to illustrate the

243
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245

246

performance of the technique for a common prob-
lem in an industrial setting, where the change
of welding electrodes or welding clamps inher-
ently causes a variation in the overall resistance
of the machine’s electrical circuit. The welded
specimen are low carbon steel samples of 20 by
70 mm and thickness of 1 mm and are welded
in as-delivered condition. Data is acquired by a
Dewetron DEWEZ2-a4l, data acquisition system at
a sampling rate of 2 MHz. Acquired signals include
(1) electrical voltage over the welding electrodes
and (2) electrical current in the welding circuit,
measured by a PEM RFT 300S Rogowski coil and
preamplifier.

Fig. 2: Setup of the machine (left), with location
of shims for experimental set 3 (right), top-down:
zero, 3 and 5 shims.

All samples are labelled by physical measure-
ments of the weld nugget diameters according to
ISO 10447:2015 (specifies the procedures and rec-
ommended tooling to be used for peel and chisel
testing of resistance spot and projection welds.
IS0 10447:2015 applies to welds made in two or
more sheets in the thickness range of 0,5 mm
to 8,0 mm). The process parameters are chosen
such that the nominal nugget diameters corre-
spond to the welding lobe diagram according to
ISO 14327:2004, 3.5v/t, with ¢ the thickness of a
single plate. Furthermore, the weld time and force
differ greatly between the conducted experiments.
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This is deliberately determined as such, to provide
a demonstration on a case where the weld is gen-
erated in a short time window as well as a case
where a weld nugget is formed slower.

3 Dynamic resistance based
monitoring

This section describes, discusses and illustrates
the geometrical attributes regression model as pre-
sented in literature. It serves as a reference for the
developments in the remainder of this work.

The geometrical attributes regression model
is currently the most commonly adopted pre-
diction model in industry. The model is based
on input-output pairs, respectively from on-line
measurements and nugget diameter measurements
stemming from destructive testing (as elaborated
in section 2). Figure 3 visualises the main flow of
the approach. It consists of k welds being gener-
ated and measured by means of an experimental
campaign. The samples are peeled, a destructive
testing method (ISO 10447:2015) for determin-
ing the diameter of the weld nugget. When the
demanded samples k are generated, the data is
subjected to a training algorithm based on the
input-output pairs. All additional samples (i > k)
are then predicted based on the trained model.

3.1 Feature extraction

Measurement of dynamic resistance is one of
the most effective techniques for quality mon-
itoring and estimation, aided by the fact that
measurements are straightforward, including elec-
trical current and voltage in the secondary circuit.
Next, the dynamic resistance signal is obtained
according to Ohm’s law, i.e.

U(t)

R() = T

(1)

with R(t) the dynamic resistance, U(t) the the
voltage, I(t) the welding current and ¢ the welding
time.

During the process, the welding machine forms
a closed circuit with the secondary circuit of a
transformer, ensuring a solid mechanical assem-
bly between tooling and work pieces. The closed
circuit is modelled in terms of their individual

resistances. In this resistance model, the electri-
cal resistances of the transformer, the mechanical
assembly, and the work pieces are represented as
respectively R;, R,, and R;. The resistances R;
and R,, are assumed constant during the process.
The resistance of the work pieces is split into three
components:

1. the bulk resistance of the sheet metal (R}),

2. the interface resistance between electrodes and
sheet metal (R.),

3. the contact resistance of the parts surfaces

(Ry).

For the general case of two pieces of sheet
metal, assumed equal in properties and dimen-
sions, the resistance of the work pieces is:

Ry =2R, +2R. + Ry. (2)
As illustrated in figure 1, there are multiple

stages during the process, causing a large fluctu-
ation of R;. The geometrical attributes approach,

___________ Resistance spot
! welding i*" sample

|

Measure sig-

i<k nals [U, I]

Peeling of weld

l - >

Signal processing

L2
Nugget diame- J

ter prediction

Measurement of
nugget diameter

Train the corre-
lation model M

Fig. 3: Workflow a. General prediction model
structure for RSW
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Table 1: Overview of conducted experiments and their process parameters used in this paper. EBR:
Electrode bulk resistance setup, n: amount of welds

No. Current (kA) Force (kN) Time (ms) EBR N
1 7.2 5 210 cte 174
2 6.0-6.6-7.2 2.5 70 cte 50 - 50 - 50
3 7.6 2.5 80 var. 50 - 50 - 50

elaborated in section 3.2, refers to several points
that characterise the dynamical resistance curve.
Extracted points from the curve are based on e.g.,
peaks and slopes. Figure 4 illustrates several key
points of the curve, respectively the initial peak
Ry in phase 1, the pit R, in phase 2, the peak at
the beginning of phase 4, also commonly known
as the beta peak Rg and the last value of the
DR curve R, also respectively the times #g tq,
ts and t,. Next, several critical derivatives are
selected, the mean value R,,, the slopes m; and
my and the resistance variance dR1 = Rg — R,
and dR2 = R, — Rp

Dynamic Resistance

Time

Fig. 4: Theoretical dynamic resistance curve, with
selected features for the geometrical attributes
approach, adopted from [9].

However, one drawback of this technique is
that these measured parameters fluctuate heavily
during a single weld due to the time-varying cur-
rent generated by a mid frequency direct current
(MFDC) power supply. The dynamic resistance,
derived according to Eq. 1, is subjected to a sig-
nal filter in order to obtain the main trend. Zhang
et al. [26] evaluated the raw signals and acknowl-
edged, based on Fourier spectrum analysis, that
periodic features are key to the large fluctuations.
They applied a fourth-order digital low pass fil-
ter with a cut-off frequency of 50 Hz. For this

337

338

339

Table 2: Overview of correlations between derived
features and the QI, based on experimental case 1

feature (f;) % feature (f;) %
to 1.68 Ro 3.06
ta -31.37 Ra 33.36
tg -30.60 Rg 20.62
ty -20.43 R, -8.56
mi 8.60 mo 6.30
dRy -4.45 dR2 49.73
Ry 44.29

study, the concept of the moving average filtering
is selected to eliminate the interference of periodic
signals effectively [33].

3.2 Geometrical attributes model

Post-filtering the dynamic resistance signal pro-
vides a noise-free curve where the features
described in section 3.1 (Figure 4) are observ-
able. Table 2 gives an overview of the correlations
between the features according to figure 4 and
the QI, based on case 1 from table 1. This table
shows that correlations between inputs and the QI
are present. This confirms the applicability of the
geometrical attributes approach, as discussed by
[9]. The ensemble of these, or similarly derived,
correlations, superseded with generic regression
analysis, are current state of the art methods for
RSW quality indication. This is visualised as the
left part in figure 5. Part A, the feature selection,
yields the aforementioned features of the dynamic
resistance curve. Next, in part B, a multiple lin-
ear regression model describes the relationship
between the features and the QI. The selection
of features is case dependent, and relates to the
most significant features of the curve, with a min-
imum of six points, without significantly affecting
the model performance [9]. The regression model
is described as

q=PBo+ b fi+Befot ..+ Bfe+e (3)
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with g the QI response, f the regressor variable,
B the regression coefficients and e the error term.
This overall workflow makes it possible to
project new data-points onto the regression model
and predict (interpolate) an estimate for the QI.

Geometric
attributes
feature selection

Encoder

1
1

1
1 .
! Linear Regression Part B Ceopritom brocess :
1 regression 1
1
L N P ,I

Nugget diameter Nugget diameter
prediction prediction

Fig. 5: Workflow b. Technical

4 Autoencoder based weld
quality monitoring

This section discusses the main innovation of this
study, replacing both part A and part B of the
technique elaborated in section 3.2, as also illus-
trated in the right part of figure 5. In the following,
the method is introduced and discussed, as well as
illustrated based on experimental set 1 (table 1).

4.1 Part A: Feature extraction

4.1.1 The curse of dimensionality

Part A in this work focuses on improving the
amount of information that is extracted from the
dynamic resistance curve. For this, an efficient
coding is required that is capable of learning a
low dimensional representation for a set of data.
Opposed to the method of manually selecting
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points, recent advances in deep learning method-
ologies are proven to be very efficient in gathering
interesting features in the data, which are possi-
bly unobservable or not detectable to the engineer
during manual evaluation of the data. However,
especially for this application, this poses specific
challenges regarding the architecture of the net-
work. Indeed, with a sampling rate of 2Mhz and
the process yielding > 200ms of welding time, a
very high amount of data is gathered on multiple
channels, which serves as the input of the network.
The main problem is that the computational cost
of the neural network scales exponentially with the
data, by cause of a connection that is required to
each neuron in the next layer, according to:

k
mo—o(Ent).
=0

where zé is the value z for neuron number j in layer
l, o represents the activation function, usually a
sigmoid function ranging from —1 to 1, ¢(v;) =
m -1, zf_l representing neuron num-
ber i from layer [ — 1, w; the weight assigned
to each connection with the previous layer, k the
number of neurons in layer [ — 1 and zg = +1 for
adding a bias b = wg to the summation operator,
yielding v;. Evaluating this key equation is com-
putationally not a large effort. However, due to the
architecture of neural networks, it has to be solved
numerous times during training. As such the total
training effort is increased drastically. This is often
referred to as the curse of dimensionality, referring
to problems that occur when dealing with data in
high-dimensional spaces. It prevents strategies to
work efficiently, while creating problems concern-
ing computational expenses, which do not occur
in low-dimensional spaces.

Multiple techniques for dimensionality reduc-
tion exist. They can be divided into convex and
non-convex techniques, where convex techniques
optimise an objective function that does not con-
tain any local optima, e.g., Principal Component
Analysis (PCA), Kernel PCA, Isomaps, Local Lin-
ear Embedding (LLE) and non-convex techniques
optimise objective functions that do contain local
optima, e.g., Locally Linear Coordination (LLC),
manifold charting or autoencoders [14, 28]. For a
competent model, capable of being deployed in an
on-line context, a marginal computation cost is
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Measured DR
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Reconstructed DR

[

Fig. 6: Autoencoder topology

envisaged for the projection of a series of points
to the low dimensional space, but also the ability
to embed new high-dimensional data points into
an existing low-dimensional data representation is
important. For these reasons, autoencoders have
been selected for the dimension reduction in this
work.

4.1.2 Autoencoder based dimension
reduction

Autoencoders, a type of artificial neural network,
are the proposed solution for this work, based
on their efficiency, non-linear transformation and
intuitive nature [2].

These feed-forward networks have an odd num-
ber of hidden layers hL;, with i = 1...n; and
n; the amount of layers, where the hidden layers
are dimensioned such that the layer in the mid-
dle has a lower amount of neurons than the first
and last layer. This separates the autoencoder in
an input layer, an encoder part, the middle layer
with d < D, a decoder part and the reconstructed

layer:

D Encoder

d Decoder /D
y - Y

=y, (5)
where yP is the measured data, D the number of
time-steps in the input data, and d the amount
of neurons in the middle layer. The objective of
the autoencoder is to generate this neural network
architecture such that y'® ~ yP. The autoen-
coder is an unsupervised learning technique, since
its goal is to minimise an error in reconstructing
yP. The input layer yP has D neurons, where each
neuron represents an individual parameter from
the dataset. This data is reconstructed in the final
layer y'P of equal dimension D, as illustrated in
figure 6.

The centre layer in the network y<¢ represents
the original data in a lower dimension d, while
preserving as much structure as possible from the
dataset yP. The resulting low dimensional repre-
sentation in this centre layer functions as the input
for further processing, which has the benefit of
working with far less data without losing essential
information.

Mapping from the input vector to another vec-
tor by means of an encoder, based on the general
equation of a neural network topology (eq 4) gives:

yt =Wy + 0" (6)
and for the reconstruction through a decoder:
y'P =Wy 4+ 6%). (7)
The network is trained by minimising a loss
function, which includes regularisation terms.
Apart from the mean squared error function, an
L2 regularisation term A * Q. cignes and sparsity
regularisation term 5 * Qgpqrsity are added to the
loss function. The L2 regularisation term forces
the weights to remain small, by adding a penalty
to the loss function when weights are increas-
ing. The sparsity regularisation term attempts to
enforce a constraint on the sparsity of the out-
put from the hidden layer. The cost function for
training the autoencoder based on N samples
yields

1 N D
D S
n=1j=1
+ A x Qweights + B * Qsparsity

L(y",

(8)
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with A the coefficient for the L2 regulariza-
tion term and B the coefficient for the sparsity
regularization term.

The workflow for applying this metric for the
dynamic resistance curve is illustrated in figure 7.
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Fig. 7: Workflow c. Autoencoder training princi-
ple

1D
YTest

In this figure, there is a clear distinction
between the data for training and testing. It also
indicates the main workflow, where eq. 8 is used
to train the reconstruction of the measured signal
and to evaluate the reconstruction of test data.
Furthermore, the figure illustrates that part B is
connected to the low dimensional layer, in the
centre of the autoencoder.

4.1.3 Illustration

The autoencoder based dimension reduction is
now illustrated based on experimental case 1 from
table 1. Out of 174 experiments, 90 % serves
as training data, whereas the remaining 10 % is
test-data to evaluate the performance.

Figure 8 illustrates the performance of the
network for one sample from y2_ .. where one
dynamic resistance curve is plotted next to its
reconstructed counterpart. Since the error is
nearly negligible, the instantaneous reconstruction

error € 4 is given, defined as:

/D yD

€A = . (9)
yD

In this example, the signal is compressed from
D = 450.000 data-points into a middle layer of
the autoencoder, represented by y?, where d =
15. The hyper-parameters for the network are
summarised in table 3.

200 T T T T 20
Original signal
— — — Reconstructed signal

410

100 + 15

Resistance [pOhm)|

100 150
Time [ms|

Fig. 8: Measured and reconstructed signal with
means of an autoencoder network, with topology
450k — 15 — 450k

250

Note that the reconstruction is only required
for training of the autoencoder. For the purpose of
dimensionality reduction, the encoder projection,
resulting in the reduced space y? is an important
step to come to an efficient regression model, as
illustrated in figure 7.

At this point, it can be concluded that the
presented method is capable of projecting the
measured dataset into a reduced space y?, which
acts as a low dimensional space. The reconstructed
projected data, by means of the autoencoder, per-
forms approximately equal to the measured data,
as the error is nearly negligible. Furthermore, the
projected data contains nearly all information to
reconstruct the data in a low dimensional space,
thus possessing at least as valuable information as
the manually determined points, as described in
section 3.2. Therefore, the reduced space y® can
serve as an input to current the QI prediction step
using generalised techniques, e.g., multiple regres-
sion. It should be noted that the projected data
has no physical meaning in the process, opposed
to the selected features from section 3.2. The
added benefit of this method is the robustness of

\ Error 4153
\

Reconstruction Error (%]
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Table 3: Hyperparameters for training Autoen-
coder

Encoder-TF Sigmoid
Decoder-TF Sigmoid
d 15
L2 weight coef. [)] 0.009
Sparsity Proportion [p;] 0.719
Sparsity Regularization [3] 1.08
Normalised data Yes

the algorithm, which is unlikely to suffer abnor-
malites, e.g, where expulsion could cause an effect
in the curve, resulting in misjudgement or wrong
interpretation of the data. Additionally, the mea-
sured signal is prone to various effects like time
shift, originated during the processing of the data,
caused by the required filtering techniques of the
signal. The presented approach is also insensitive
to these effects.

4.2 Part B: QI prediction

Part B of the novel prediction model (see figure 5)
requires an algorithm capable of giving a robust
regression between input-output, respectively the
measured signals during the welding process pro-
jected on a reduced space Z by means of an
autoencoder, and the measured nugget diameter
of the weld (QI). Due to the low amount of avail-
able labelled data, training a neural network based
on input-output pairs tends to be troublesome,
in particular overfitting is a main concern. This
should not be confused with the neural network on
which the autoencoder from section 4.1 is based,
as the latter is an unsupervised technique, which
does not require labelled data.

4.2.1 Gaussian Process Regression

A powerful tool, ideal for this problem is Gaussian
Process Regression (GPR). In it’s original form,
Gaussian Process modelling is a statistical inter-
polation method that exploits Gaussian processes
to interpolate a series of complex functions. The
technique works well on small datasets, and has
the capability to provide uncertainty metrics on
the predictions. Gaussian process modelling, also
known as Kriging, was introduced in the context
of meta-modelling in the works of Sacks et al. [19],
in which the original form of Kriging, as developed
in the Master’s thesis of D. Krige [16], served as a
backbone to represent an input/output mapping

508

509

511

of an expensive computational model. For appli-
cation in machine learning, Kriging has evolved
as both regression and classification tool, and has
proven to be a treasured algorithm [18].

The required dataset D with N observation is

presented as

D={(yl,q¢)li=1,....N} (10)
with y¢ the vector with multiple input variables
and ¢; as a measure for the QI, which is continu-
ous, as this is a regression case.

In essence, GPR serves as an interpolation
model for a regression problem mapping the QI on
the variables.

They key equation of GPR is presented as:

(11)

with M(z) the GP model. It is assumed that
the observed responses are noisy and the noise ¢
follows a zero-mean Gaussian distribution

5~N(0,Z),

n

q=M(y) +e,

(12)

where ) is the covariance matrix of the noise
term. For this work, the noise variance is identified
as general heteroscedastic, in which the noise can
differ for each observed response. For a more in
depth study of GPR, the reader is referred to the
citations in previous section.

An important feature of this type of model is
the applicability of K-fold cross-validation. The
main idea of this is to re-evaluate the model with a
subset of the training data. This allows to optimise
the hyper-parameters of the model, based on eval-
uating the model with each subset of data, thus
minimising a cross-validation error. This yields a
model, capable of working under limited data, and
providing efficient predictors with minimal effort,
unlikely to suffer from overfitting. Performance-
wise, training this model takes significantly longer
than linear regression. However, as elaborated in
the introduction, the computational requirement
for training is irrelevant for an in-line paradigm.
What is of interest is the required time to evalu-
ate a single sample. This will be studied for the
illustrative data set in the next section.
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Fig. 9: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical

attributes approach (left) for the reference case

4.2.2 Illustration

The methodology is presented on the data result-
ing from section 4.1.3. Computation experiments
and the training of the proposed algorithms are
performed on a server, consisting of 2 AMD Epyc
7601 32-core CPU’s, 512 GB memory and an
NVIDIA Tesla V100 - 32 GB graphical accelera-
tor. For benchmarking computational effort of the
proposed algorithm, the system is limited to only
1 core, while GPU acceleration is disabled.

The summary of computational costs for both
the reference and the newly developed approach
are given in table 4. Comparison of the required
time for the regression approaches clearly reveals
that the GPR technique is more expensive. This
is due to the fact that substantially more time
is required to determine the optimal hyperparam-
eters, compared to the key, and only equation
required for multiple linear regression 3. Apart
from that, the table also shows that especially the
training of the unsupervised deep learning based
dimension reduction technique into an autoen-
coder (AE) necessitates a high performance com-
putational device. However, the cost for training is
only a small investment for a continuously guarded
process. Table 4 also summarises the computa-
tional costs for training and propagating a single

Table 4: Computational costs for the frame-
work, AFE: Autoencoder based dimension reduc-
tion, GPR: Gaussian Process Regression

Training 1 Sample
Part A Geom. attributes | 1.8 x 105 s 0.46 s
AE 5x 10% s 0.83 s
Part B Linear regression 1.01 s 0.03 s
GPR 91 s 0.04 s

sample. This shows that propagating a single
experiment through the full AE-GPR framework
requires only a marginally higher cost compared to
the approach based on the geometrical attributes.

In order to assess the performance of the devel-
oped method, figure 9 illustrates the correlation
between the predicted QI and the measured QI,
both for the geometrical attributes approach (left)
and the novel AE-GPR approach (right).

A clear improvement over the geometrical
approach is noticeable. Not only does the Root
Mean Squared Error (RMSE) improve vastly, from
0.26 to 0.18, it is also clearly visible that the
geometrical approach fails to predict the over-
all nugget diameter. Specifically, the graph based
on the geometrical approach shows a horizontal
scatter, indicating a larger spread on the mea-
sured QI, but a small spread on the predicted
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QI. Furthermore, in addition to the continuous
mean regressor estimate by the GPR model, also
confidence bounds are provided, based on the
available training data and known variance of the
GPR model. For this case, the 99 % bounds are
provided, showing a narrow band encapsulating
the data. As a final verification, the algorithm
is subjected to several testing points, which were
excluded from the training. The latter is rep-
resented by 10 % of the available data and is
visualised by the red crosses. The RMSE for the
test points improves from 0.21 to 0.13 for the test
data, which emphasises the performance of the
model by resulting in a prediction well within the
bounds predicted by the algorithm.

5 Verification of the proposed
method

To benchmark the accuracy and robustness of the
introduced approach, the algorithm is subjected to
two more cases. Compared to case 1 of section 3.2
for which an experimental set with fixed process
parameters was used (thus only yielding process
variability on both input and output), the next
two cases include highly relevant industrial events
representing common process variations.

5.1 Current variation

This case (table 1, No.2) is a dataset combin-
ing data from three consecutive experimental runs
with respectively altering the current as described
in table 1. The goal of this case is to determine
the robustness of the AE-GPR approach based on
a broader set of input signals, as could be the
case in an industrial setup where low- and flexible
production is key and in-line monitoring is envis-
aged. First, applying a dimension reduction on the
measured signals reduces the dataset from 450.000
samples to 15, while only losing < 1 % of infor-
mation, based on mean-squared error estimates.
This is illustrated in figure 11, where the origi-
nal curve, the reconstructed curve and the error
are illustrated. Analysing the measured and pre-
dicted data, illustrated in figure 10, clearly reveals
several meaningful results.

First, no separate data clusters can be dis-
tinguished according to the difference in welding
currents. Yet, the three datasets are separated
by colour, which reveals the difference in nugget
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diameter in function of process parameters. Sec-
ond, the measured results with 6.0kA and 7.2kA
have a wider spread of data compared to the
set welded with 6.6kA. Third, advancing to the
results of the prediction model, there is a clear
improvement of the AE-GPR method over the
geometrical approach. The RMSE is improved ,
from 0.39 to 0.13. It is clearly visible that the
predictions based on the AE-GPR approach are
more confined than the predictions based on the
geometrical approach. Furthermore, the predictor
based on the geometrical approach fails clearly in
determining the measured nugget diameter on the
samples stemming from the subset yielding the
smallest nugget diameter. The provided 99 % con-
fidence bounds show a narrow band encapsulating
the data.

As a final verification, the algorithm is sub-
jected to several testing points which were
excluded from the training. The latter is rep-
resented by 10 % of the available data and is
visualised by the red crosses. The RMSE for the
test points improves from 0.62 to 0.13 for testing
data. Both the RMSE and graphical representa-
tion of the predicted value indicate a prediction
well within the predicted bounds of the algorithm.

5.2 EBR variation

For the final example, a highly relevant industrial
case is elected. One of the advantages of many
state-of-the-art welding controllers is their ability
to monitor themself and intervene during a single
weld. This is required to achieve a certain thresh-
old of total current flow and is often realised by
extending the weld time or increasing the current.
An important reason why this threshold is often
not achieved is the variation in the closed loop
resistance in the secondary circuit. These varia-
tions affect the welding process and potentially the
reaction of the controller, causing a variation in
the weld nugget diameter. Also, it is well known
within RSW industry that the weld nugget diame-
ter is negatively affected by variation in the closed
loop resistance in the secondary circuit. The latter
is often a consequence of machine disturbances,
e.g., maintenance, re-torquing or swapping tools.
Thus re-calibration is required when adjustments
are made to the welding heads to counter this
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Fig. 10: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical
attributes approach (left) for the current variation case
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Fig. 11: Measured and reconstructed signal with
means of an autoencoder network, with topology
450k — 15 — 450k for the current variation case
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effect. The goal of this third case is to demon-
strate the potential of our approach when the
aforementioned effects are present.

The dataset is a combination of three consec-
utive experimental runs altering the resistance of
the secondary circuit by means of custom shims
between the welding head and electrode holder,
while the compensation of the controller is dis-
abled. The resistance between two fixed points in
the mechanical assembly is respectively measured
to be 11.9, 108.4 and 371.5 uf2. This is achieved
by respectively zero, 3 and 5 shims, as illustrated

©
@

99

717

in figure ?7?. This variation is a constant resistance
during the process and is part of R,,, as elaborated
in section 3.1.

Analysing the measured and predicted data,
illustrated in figure 12, clearly reveals several
meaningful results. First, the influence of the
change from 11.9 to 108.4u£2 has an almost negli-
gible effect on the measured nugget diameter with
respectively an average of 4.24 and 4.09 mm and
equal standard deviation of 0.18 mm. The experi-
ments where the resistance is increased to 371.5u$2
indicate a noticeably smaller nugget diameter,
with an average of 3.18 mm and standard devia-
tion of 0.33 mm. Second, applying the proposed
dimension reduction by means of a trained autoen-
coder reduces the dataset from 140.000 samples to
30, while only losing < 1% of information, based
on mean-squared error estimates.

Third, advancing to the results of the pre-
diction model, there is a clear improvement over
the geometrical approach. For the set with 11.9
and 108.4 pf2, the variation in nugget diameter is
rather low, yet the AE-GPR is capable of predict-
ing the nugget diameter more accurate compared
to the geometrical approach. The nugget diam-
eters for the set with 371.5 u€) range from 2.7
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Fig. 12: Predicted vs. actual QI based on the AE-GPR approach (right) compared to the Geometrical

attributes approach (left) for the EBR variation case

to 4.1 mm, while the geometrical approach pre-
dicts only between 3.0 and 3.5 mm. The AE-GPR
appraoch predicts this set, both for the training
and test points. The RMSE of the predictions
improves clearly, from 0.23 to 0.15. For this case,
the 99% bounds are provided, showing a narrow
band encapsulating the data.

The test points are represented by 10 % of
the available data. The RMSE for the test points
improves from 0.18 to 0.15, resulting in a pre-
diction well within the predicted bounds of the
algorithm.

6 Conclusion

This paper presents a novel approach for an effec-
tive predictor for the nugget diameter, i.e., the
main quality indicator (QI) of a resistance spot
welding process, based on on-line measured pro-
cess data. The most important feature of the
developed methodology is the combination of
deep learning for dimension reduction, and the
consequent machine learning prediction tool. We
demonstrate how to use unsupervised deep learn-
ing in the form of an autoencoder to discover
a low-dimensional transformation in which the
parameters characterise a pattern that embodies
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underlying information on the process, possibly
unobservable or not detectable by any other cur-
rently existing approach. The underlying informa-
tion is transformed into a low dimensional space,
which is an ideal scene for a Gaussian process
regression model linking the input data through
the autoencoder to the measured nugget diam-
eter. The model is trained on a limited set of
data, leading to a low cost implementation in
an industrial setting. The technique is presented
in an example case which clearly indicates that
it leads to an improved QI prediction compared
to the state of the art geometrical attributes
approach. The technique is presented on two addi-
tional cases, each pinpointing a specific bottleneck
within industry related to the RSW process. Both
cases are analysed and indicate very promising
results, where the new AE-GPR approach has
consistently improved results over the geometrical
approach. It should be noted that the time to train
the proposed model is substantially higher. How-
ever, the investment cost is rather low compared
to the benefit in an in-line monitoring system.
We conclude that the proposed method can be
readily applied to an in-line context for quality
assessment in industrial RSW applications, as the
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time for evaluating in an in-line context is suit-
able, and accuracy is vastly improved over existing
techniques.
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